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In a graph G , let ρ�(G) denote the minimum size of a set of edges and triangles that cover 
all edges of G , and let α1(G) be the maximum size of an edge set that contains at most 
one edge from each triangle. Motivated by a question of Erdős, Gallai, and Tuza, we study 
the relationship between ρ�(G) and α1(G) and establish a sharp upper bound on ρ�(G). 
We also prove Nordhaus-Gaddum-type inequalities for the considered invariants.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC license (http://creativecommons .org /licenses /by-nc /4 .0/).

1. Introduction

Throughout the paper, all graphs are simple and undirected. Let G be a graph with vertex set V (G) and edge set E(G). 
A set of pairwise adjacent vertices of G is called a clique of G . The size of a clique is the number of its vertices.

A triangle is a clique on three vertices, and we call G triangular if each edge is contained in a triangle in G . Throughout 
this paper, we will use the following triangle-related graph invariants:

• ρ�(G) := the minimum cardinality of a set consisting of edges and triangles that together cover E(G).
• τi(G) := the minimum cardinality of an edge set that contains at least i edges from each triangle in G (i ∈ {1, 2}).
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• αi(G) := the maximum cardinality of an edge set that contains at most i edges from each triangle in G (i ∈ {1, 2}). In 
particular, α1(G) is called the triangle-independence number of G .

• ν�(G) := the maximum number of pairwise edge-disjoint triangles in G .

For a vertex v ∈ V (G), its (open) neighborhood N(v) is the set of all neighbors of v in G , while its closed neighborhood is 
N[v] := N(v) ∪ {v}. As usual, G stands for the complement of G , while e(G), �(G) and δ(G) denote the number of edges, 
the maximum and the minimum vertex degree in G , respectively.

The subgraph induced by a set X ⊂ V (G) will be referred to as G[X]. Given two disjoint vertex sets X and Y in G , the 
set of edges between X and Y is denoted by E(X, Y ). If the edge set E(X, Y ) contains all possible edges between X and 
Y , it is a complete join X ∨ Y . The analogous notation is used for the complete join between two vertex-disjoint graphs. A 
clique covering C of E(G) is a collection of cliques of G such that every edge of G appears in at least one clique from C .

By definitions, αi(G) + τ3−i(G) = |E(G)| holds if i ∈ {1, 2}. In [8], Erdős, Gallai and Tuza deeply investigated the different 
relationships between α1(G) and τi(G), for i ∈ {1, 2}, and raised many open questions including the following conjecture:

Conjecture 1 ([8]). It holds for every triangular graph G that

α1(G) + τ1(G) ≤ |V (G)|2
4

.

Remark. The original conjecture is about triangular graphs, but it is equivalent to the conjecture for arbitrary graphs and 
that version is similarly popular.

In [12], Norin and Sun confirmed this conjecture to be true. Actually, they proved a stronger conjecture posed by Lehel 
[6].6 In the statement, τB(G) is the minimum cardinality of an edge set F ⊆ E(G) such that G − F is bipartite. Note that 
τB(G) is always an upper bound on τ1(G).

Theorem 2 ([12]). It holds for every graph G that

α1(G) + τB(G) ≤ |V (G)|2
4

. (1)

Moreover, the authors of [12] characterized the graphs that attain equality in (1).
Concerning triangle coverings, Lehel and Tuza [10] proved that every graph satisfies

α1(G) ≤ ρ�(G) ≤ α2(G) = e(G) − τ1(G).

In [8], the authors also asked whether there exists some exact relation between ρ�(G) and α1(G). In this paper, our goal 
is to study this problem. Among other results, we prove that the following is a tight upper bound on ρ�(G):

ρ�(G) ≤
⌊

1

2

(
e(G) + α1(G) − ν�(G)

)⌋
(2)

In Section 2, we prove (2) and show that for every n ≥ 1 there exists a graph of order n that satisfies (2) with equality. Here 
we show that the coefficient 1

2 of e(G) in (2) is also tight in a more general sense.

Proposition 3. For every real ε > 0 and arbitrarily large β > 0, there exist infinitely many graphs G with

ρ�(G) > βα1(G) +
(

1

2
− ε

)
e(G).

Proof. Let n, d, k be positive integers such that n = 2kd, and denote by G = G(A, B, n, d) the graph defined on the vertex 
set A ∪ B such that G[A] = n

2 K1, G[B] = kKd , and G(A, B, n, d) = G[A] ∨ G[B]. Note that |A| = |B| = n
2 .

Then, for any x ∈ A and any copy of Kd in B , we need at least d
2 triangles to cover the d edges between them. So, we 

have

ρ�(G) ≥ d

2
· n

2
· n

2d
= n2

8
.

Let T ⊆ E(G) be a triangle-independent set of size α1(G); that is, no two edges of T are contained in a triangle of G . For 
any x ∈ A and any copy Kd in B , we have |T ∩ E({x}, Kd)| ≤ 1 and |T ∩ E(Kd)| ≤ d

2 . So we have α1(G) = |T | ≤ n
2 · n

2d + d
2 · n

2d . 

6 Being unaware of Lehel’s conjecture, the same inequality was proposed also by Puleo several decades later in [13].
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By simple calculation, we get e(G) = n2

4 + (d−1)n
4 . For every positive ε′ there is a real ε such that ε′ > ε > 0 and 2β

ε is an 
integer. Therefore, it is enough to consider the cases when the latter property holds and we can choose d so that d = 2β

ε . 
Then the above inequalities yield

βα1(G) +
(

1

2
− ε

)
e(G) < β

(
n2

4d
+ n

4

)
+

(
1

2
− ε

)(
n2

4
+ dn

4

)

= n2

8
− εn2

8
− βn

4
+ βn

4ε
.

On the other hand, if n is sufficiently large, e.g. n > 2β

ε2 , then we have

ρ�(G) ≥ n2

8
>

n2

8
− εn2

8
− βn

4
+ βn

4ε
≥ βα1(G) +

(
1

2
− ε

)
e(G)

as required. �
Section 3 of this paper is devoted to the so-called Nordhaus–Gaddum-type problems. Nordhaus and Gaddum [11] proved 

that the chromatic number of a graph G and of its complement G always satisfy

2
√

n ≤ χ(G) + χ(G) ≤ n + 1,

where n denotes the order of G . Later on, similar results for other graph parameters have been found, known as Nordhaus–
Gaddum-type theorems, including those related to clique covering parameters (see, for example, [2,4,5]). In the literature, 
there are hundreds of papers considering inequalities of this type, for many other graph invariants. For a survey on this 
subject we refer the reader to [1].

In Section 3, we consider analogous problems for the invariants α1 and ρ� . Our main result on α1 shows that

α1(G) + α1(G) ≤ n2

4
+ O

(
n2

ln n

)

holds as n → ∞. For ρ� , with a somewhat weaker error term, we obtain

ρ�(G) + ρ�(G) ≤ n2

3
+ o

(
n2

)
.

Both upper bounds are asymptotically tight.

2. Upper bounds for ρ�

In this section we prove sharp upper bounds for ρ� .

Theorem 4. It holds for every graph G that

ρ�(G) ≤
⌊

1

2

(
e(G) + α1(G) − ν�(G)

)⌋
. (3)

Moreover, there exist triangular connected graphs of order n for every n ≥ 6, as well as non-triangular connected graphs for every 
n ≥ 1, that satisfy (3) with equality.

Proof. Given a graph G , we construct a set C of triangles and edges that together cover E(G). First, take ν�(G) edge-
disjoint triangles and put them into C . In this way, we have already covered 3ν�(G) edges of G . If there is a triangle 
with two uncovered edges, we add this triangle to C . We continue this procedure till there remains no such triangle in G . 
Suppose that we added r2 new triangles to C in this step and there remain r1 uncovered edges. Adding these r1 edges to 
C , the procedure finishes with a clique covering C . Clearly,

e(G) = 3ν�(G) + 2r2 + r1 (4)

and

ρ�(G) ≤ |C| = ν�(G) + r2 + r1. (5)

By equation (4), we have
3
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e(G)

2
− ν�(G)

2
+ r1

2
= ν�(G) + r2 + r1. (6)

Moreover, r1 ≤ α1(G) holds by our construction. Then, (5) and (6) imply the desired upper bound.
Trivial non-triangular examples for equality are the trees, or more generally the triangle-free graphs, because then we 

always have ρ�(G) = α1(G) = e(G).
To see sharpness with triangular graphs, for k ≥ 3, we consider the graph H = K3 ∨ Kk which is constructed from an 

independent vertex set {v1, . . . , vk} and a triangle {u1, u2, u3} by adding a complete join between them. Clearly, |V (H)| =
k + 3 and e(H) = 3k + 3. For each vi , we need at least two cliques of size at most three to cover the three edges incident 
to it. Consequently, ρ�(H) ≥ 2k. On the other hand, {u1u2 v1, u2u3 v2} ∪ {u3u1 vi : 3 ≤ i ≤ k} along with those edges which 
are not covered by these triangles form a clique covering C for E(H) with |C| = 2k. It follows that ρ�(H) = 2k. As {u2u3} ∪
{u1 vi : 1 ≤ i ≤ k} is a triangle-independent set, we have α1(H) ≥ k + 1. Consider now a maximum triangle-independent 
edge set S in G . By definition, at most one of the edges of the triangle {u1u2u3} belongs to S and, moreover, every 
vertex vi is incident to at most one edge from S . Therefore, |S| ≤ k + 1 and α1(H) = k + 1. Since ν�(H) = 3, we have 
ρ�(H) = ⌊ 1

2

(
e(H) +α1(H) − ν�(H)

)⌋ = ⌊ 1
2 (4k + 1)

⌋ = 2k = ρ�(H). The above construction, therefore, gives sharp examples 
of order n for every n ≥ 6. �

The following lemma is about maximum matchings in graphs.

Lemma 5. Let G be a connected graph that is not a complete graph of odd order. Then there exists a maximum matching M and a 
vertex v ∈ V (M) in G so that {v} ∪ (V (G)\V (M)) is an independent set in G.

Proof. Suppose that M = {x1 y1, . . . , xk yk} is a maximum matching in G and the statement is not true for M . Then, every 
vertex from V (M) is adjacent to a vertex from Z = V (G)\V (M). In particular, Z �= ∅.

Consider an arbitrary edge xi yi ∈ M . If there exist two different vertices z, z′ ∈ Z such that zxi and z′ yi are edges in G , 
then (M\{xi yi}) ∪ {zxi, z′ yi} would be a matching of cardinality |M| + 1. This contradicts the maximality of M . Thus, for 
each xi yi ∈ M there exists a vertex z such that N(xi) ∩ Z = N(yi) ∩ Z = {z}. This also implies N(z) ∩ N(z′) = ∅ for any two 
distinct z, z′ ∈ Z .

Now, suppose that Z contains more than one vertex, say Z = {z1, . . . , z�} and � ≥ 2. There must be an edge between 
N(z1) and V (M)\N(z1) because G is connected, Z is independent, and {N(z1), . . . , N(z�)} gives a partition of V (M). We 
may suppose, without loss of generality, that x1x j ∈ E(G) where x1 y1, x j y j ∈ M , and x1, y1 ∈ N(z1), x j, y j ∈ N(z j). This 
assumption yields a contradiction again as (M\{x1 y1, x j y j}) ∪ {x1x j, y1z1, y j z j} would be a matching containing |M| + 1
edges. It follows that Z = {z1}, and therefore, the number of vertices is odd, and z1 is adjacent to every vertex of G .

By our condition, G is not a complete graph, hence there exist two nonadjacent vertices, say y1 y2 /∈ E(G). Let M ′ =
(M\{x1 y1}) ∪ {x1z1}. Since M ′ is also a maximum matching and (V (G)\V (M ′)) ∪ {y2} = {y1, y2} is an independent set, M ′
satisfies the property stated in the lemma. �

Having Lemma 5 at hand, we now are able to prove another upper bound on ρ�(G) under some conditions on the 
structure of the graph G . The requirement in the theorem is met by, for instance, all maximal planar graphs with minimum 
degree 4 or 5.

Theorem 6. Let G be an n-vertex graph with no isolated vertex, such that for every vertex v ∈ V (G), the induced subgraph G[N(v)]
contains no component that is a complete graph of odd order. Then it holds that

ρ�(G) ≤
⌊

1

2

(
e(G) + α1(G)

) − n

6

⌋
.

Proof. It suffices to prove the statement for connected graphs. Let G be a connected graph that satisfies the conditions 
in the theorem, and choose a largest set T of edge-disjoint triangles. Further, let us set S = V (G)\V (T ). Clearly, G[S] is 
triangle-free.

Claim A. S is an independent set.

Proof. Suppose to the contrary that u1 and u2 are two adjacent vertices in S . The maximality of T implies N(u1) ∩N(u2) = ∅
and, therefore, G[N(u1)] contains a K1 component {u2}, a contradiction. (�)

Claim B. For each u ∈ S, T covers all edges of G[N(u)].

Proof. If an edge xy from G[N(u)] is not covered by T , then we can add the triangle uxy to the set T of edge-independent 
triangles, that contradicts the maximality of T . (�)
4
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Construction of clique covering C. First, we add the ν�(G) triangles from T to C . Then, for each u ∈ S , we take a maximum 
matching Mu in G[N(u)] and define the following sets:

R2
u = {uxy : xy ∈ Mu} and R1

u = {uz : z ∈ N(u)\V (Mu)}.
We also add the triangles in R2

u and edges in R1
u to C . Note that when a triangle uxy ∈ R2

u is added, it always covers two 
new edges from E(G). Finally, we consider the subgraph G[V (T )]. While there exists a triangle t that has two uncovered 
edges, we add t to R2

T and C . Finally, when there is no such triangle, we add the uncovered edges to the set R1
T and C .

By Claims A and B, there are no edges inside S , and the edges of G[N(u)] are covered by T . Moreover, by construction, 
R2

u ∪ R1
u covers all edges incident to u. We may conclude that the constructed set C = T ∪ R2

T ∪ R1
T ∪ ⋃

u∈S(R2
u ∪ R1

u) covers 
E(G). Introducing the notations

r2 = |R2
T | +

∑
u∈S

|R2
u| and r1 = |R1

T | +
∑
u∈S

|R1
u|,

and recalling that |T | = ν�(G), we have the same inequalities as in the proof of Theorem 4:

e(G) = 3ν�(G) + 2r2 + r1,

ρ�(G) ≤ ν�(G) + r2 + r1.

These relations give

ρ�(G) ≤ e(G)

2
− ν�(G)

2
+ r1

2
.

By construction, the r1 edges in C form a triangle-independent set in G . It shows r1 ≤ α1(G), but we can prove a stronger 
upper bound under the present conditions.

Claim C. r1 ≤ α1(G) − |S|.

Proof. Construct a triangle-independent edge set F as follows. First, consider a vertex u from S . Under the conditions given 
in the theorem, N(u) is not empty, and the induced subgraph G[N(u)] satisfies the conditions in Lemma 5. Then, we can 
find an independent vertex set Zu in G[N(u)] such that |Zu | = |N(u)| − 2|Mu | + 1 = |R1

u | + 1. For every z ∈ Zu , we add the 
edge uz to F , and perform the same procedure for every vertex from S . Finally, we add all edges from R1

T to F . Since S is 
an independent set in G , no two edges from F belong to the same triangle. Thus, F is a triangle-independent set and

α1(G) ≥ |F | = |R1
T | +

∑
u∈S

(|R1
u| + 1) = r1 + |S|.

This finishes the proof of the claim. (�)

Now, we can estimate ρ�(G) as

ρ�(G) ≤ e(G)

2
+ α1(G)

2
− ν�(G) + |S|

2
.

If ν�(G) ≥ n
3 , then we are done. Otherwise, ν�(G) = n−t

3 for some positive integer t . In this case, we have at most n − t
vertices that are covered by ν�(G) edge-disjoint triangles. Thus,

ν�(G) + |S| ≥ n − t

3
+ t >

n

3

that completes the proof of the theorem. �
3. Nordhaus-Gaddum inequalities

In this section we prove asymptotically tight upper bounds for α1(G) + α1(G) and ρ�(G) + ρ�(G).

Theorem 7. There exists a constant C > 0 such that for all graphs G on n vertices, the triangle-independence number satisfies the 
inequality

α1(G) + α1(G) ≤ n2

+ C
n2

.

4 ln n

5
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Proof. It is well known that every graph of order n contains an independent set or a complete subgraph on at least 
1
2 log2 n vertices, as one can select a sequence of this length by picking any vertex and continue the process either among 
its neighbors or among its non-neighbors, whichever are more. The set of vertices whose neighborhood is kept in the 
corresponding step induces a complete subgraph, while the other part of the sequence forms an independent set. (The last 
vertex can be in both.)

For a fixed small positive real δ, let us write �(1/2 − δ/2) log2 n� in the form c ln n. According to the above, the vertex 
set V of any graph G of order n can be partitioned into sets X, A1, . . . , Ak, B1, . . . , B� such that |X | < n1−δ and for each 
1 ≤ i ≤ k and 1 ≤ j ≤ � the following hold: Ai is independent, B j induces a complete subgraph in G , and |Ai | = |B j | = c ln n. 
Let us denote A = ∪k

i=1 Ai and B = ∪�
j=1 B j . (We also allow the cases with A = ∅ and B = ∅ that correspond to k = 0 and 

� = 0, respectively.) We clearly have

α1(G) + α1(G) ≤ α1(G[A ∪ B]) + α1(G[A ∪ B]) + |X |(n − |X |) +
(|X |

2

)

< α1(G[A ∪ B]) + α1(G[A ∪ B]) + n2−δ (7)

where the last term is of o( n2

ln n ). For the first term we observe

α1(G[A ∪ B]) ≤ α1(G[A]) + α1(G[B]) +
k∑

i=1

�∑
j=1

α1(G〈Ai, B j〉) ,

where α1(G〈Ai, B j〉) means the maximum number of edges e in a triangle-independent set of G such that one end of e
is in Ai and the other is in B j . The analogous inequality is valid for α1(G〈Ai, B j〉) in the complementary graph as well, to 
be used for the second term of (7). We are going to estimate the occurring terms as rearranged in a number of groups as 
follows.

Inside G[A] and G[B] we just apply the trivial fact that a triangle-independent edge set surely is triangle-free. Hence, 
writing nA = |A| and nB = |B|, by Turán’s theorem we obtain

α1(G[A]) + α1(G[B]) ≤ n2
A

4
+ n2

B

4
≤ n2

4
. (8)

Further, each G[Ai] and each G[B j] is a complete graph, admitting only a matching in a triangle-independent set inside 
them, and have no edges after complementation, therefore

k∑
i=1

(α1(G[Ai]) + α1(G[Ai]) ) +
�∑

j=1

(α1(G[B j]) + α1(G[B j]) ) ≤ nA

2
+ nB

2
≤ n

2
. (9)

For the rest of computation we apply the following fact. If H is a graph on vertex set P ∪ Q , and Q induces a complete 
subgraph, then each vertex of P is incident with at most one edge with other end in Q , in any triangle-independent set. As 
a consequence, the contribution of P –Q edges to α1(H) is at most |P |.

This fact can be applied in G between any two sets B j , and in G between any two sets Ai ; and also between any Ai and 
any B j , both in G and in G , because one of Ai and B j induces a complete subgraph in either of G and G .

Recall that |Ai | = |B j | = c ln n, and the number of those sets is k = nA
c ln n and � = nB

c ln n , respectively. From this we obtain

k∑
i=1

�∑
j=1

α1(G〈Ai, B j〉) + α1(G〈Ai, B j〉) ≤ 2k�c ln n

= 2
nA

c ln n

nB

c lnn
c lnn

≤ n2

2c lnn
(10)

and

α1(G[A]) + α1(G[B]) ≤
(

k

2

)
c lnn +

(
�

2

)
c ln n + n

2

<
n2

A + n2
B

(c lnn)2 c ln n + n

2

≤ n2

c lnn
+ n

2
. (11)

Summing up (8)–(11), the theorem follows. �

6
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Corollary 8. If n → ∞, then max{α1(G) + α1(G)} = ( 1
4 + o(1)

)
n2 , where the maximum is taken over all graphs with n vertices.

Proof. The upper bound is a straightforward corollary of Theorem 7. To see the lower bound, we consider the bipartite 
Turán graph G∗ = K�n/2�,�n/2�. Then α1(G∗) + α1(G∗) = �n2

4 � + � n
2 �. �

Concerning the lower bound, we can prove the following tight result.

Proposition 9. It holds for every graph G of order n that

α1(G) + α1(G) ≥
⌊n

2

⌋

and the bound is tight.

Proof. Partition the vertex set of G into � n
2 � disjoint pairs (and a singleton if n is odd). For every pair, the corresponding 

edge is present either in G or in G . The edge sets containing these pairs clearly form triangle-independent sets in G and G . 
This verifies the inequality, while its tightness follows from letting G be the complete graph Kn for every n. �
Theorem 10. If n → ∞, then

max{ρ�(G) + ρ�(G)} =
(

1

3
+ o(1)

)
n2 , (12)

where the maximum is taken over all graphs with n vertices.

Proof. To see this, first note that by applying Theorem 4, we have

ρ�(G) + ρ�(G) ≤ α1(G) + α1(G)

2
+ 1

2

(
n

2

)
− ν�(G) + ν�(G)

2
. (13)

Then, the first term on the right-hand side of (13) is bounded by n2

8 + O ( n2

ln n ), using Theorem 7. Moreover, as Erdős, 
Faudree and Ordman (see [7]) conjectured and Gruslys and Shoham [9] confirmed, every 2-edge coloring of Kn contains 
at least 1

12 n2 + o(n2) mutually edge-disjoint monochromatic triangles, i.e. ν�(G) + ν�(G) ≥ 1
12 n2 + o(n2). It gives an upper 

bound for the last term in (13). Hence,

ρ�(G) + ρ�(G) ≤ n2

8
+ O

(
n2

ln n

)
+ n2 − n

4
− n2

24
+ o(n2) = n2

3
+ o(n2).

To show the other direction, consider again the bipartite Turán graph G∗ = K�n/2�,�n/2�. It holds that

ρ�(G∗) + ρ�(G∗) ≥
⌊

n2

4

⌋
+ 2

(
1

3

(�n
2 �
2

))

≥ n2

4
+ n2

12
− o(n2) = 1

3
n2 − o(n2) ,

which finishes the proof of (12). �
Proposition 11. For every graph G on n vertices

ρ�(G) + ρ�(G) ≥ n(n − 1)

6

and the bound is asymptotically tight as n → ∞.

Proof. The lower bound follows from the easy observation that

ρ�(G) + ρ�(G) ≥ ρ�(Kn) ≥ 1

3

(
n

2

)
= n(n − 1)

6
.

Asymptotic tightness holds for the complete graphs G = Kn . To see this, we only need to prove that ρ�(Kn) ≤ n2

6 + O (n). 
This follows from the classical study of “leave graphs” of largest partial Steiner triple systems. More explicitly, it is known 
that every Kn admits a packing of edge-disjoint triangles such that at most n/2 + 1 edges remain uncovered; see e.g. Table 
40.22 on page 553 of [3]. �
7
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