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a b s t r a c t

The Maker–Breaker domination game is played on a graph G by two players, called
Dominator and Staller, who alternately choose a vertex that has not been played so far.
Dominator wins the game if his moves form a dominating set. Staller wins if she plays
all vertices from a closed neighborhood of a vertex v ∈ V (G). Dominator’s fast winning
strategies were studied earlier. In this work, we concentrate on the cases when Staller
has a winning strategy in the game. We introduce the invariant γ ′

SMB(G) (resp., γSMB(G))
which is the smallest integer k such that, under any strategy of Dominator, Staller can
win the game by playing at most k vertices, if Staller (resp., Dominator) plays first on
the graph G.

We prove some basic properties of γSMB(G) and γ ′

SMB(G) and study the parameters’
changes under some operators as taking the disjoint union of graphs or deleting a cut
vertex. We show that the inequality δ(G) + 1 ≤ γ ′

SMB(G) ≤ γSMB(G) always holds and
that for every three integers r, s, t with 2 ≤ r ≤ s ≤ t , there exists a graph G such that
δ(G) + 1 = r , γ ′

SMB(G) = s, and γSMB(G) = t . We prove exact formulas for γ ′

SMB(G) where
G is a path or it is a tadpole graph which is obtained from the disjoint union of a cycle
and a path by adding one edge between them.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A general frame for studying Maker–Breaker games was introduced by Erdős and Selfridge [12] nearly 50 years ago.
ince then, several variants have been defined and studied extensively [16]. In this work, we are interested in the Maker–
reaker domination game [11]. In particular, we focus on the cases when Breaker (i.e., Staller) wins the game and consider
reaker’s fast winning strategies. Along this way, we translate the problem to the Maker–Breaker game played on the
losed neighborhood hypergraph of a graph. We establish sharp lower and upper bounds on the corresponding graph
nvariants and determine the exact values for paths and tadpole graphs.

.1. Standard definitions

Throughout the paper, we denote by V (G) and E(G), respectively, the vertex and edge set of a graph G. For a vertex
∈ V (G), the open neighborhood NG(v) contains the neighbors of v and the closed neighborhood of v is defined as
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G[v] = NG(v) ∪ {v}. Then, degG(v) = |NG(v)|. For a set S ⊆ V (G) we use the analogous notation NG(S) =
⋃

v∈S NG(v)
nd NG[S] =

⋃
v∈S NG[v]. If the graph is clear from the context, we omit the index and simply write N(v), N[v], N(S), and

[S]. A vertex v is a leaf if degG(v) = 1, and the neighbor of a leaf is a support vertex. A support vertex is said to be a
trong support vertex if it is adjacent to at least two leaves. Otherwise, we call it a weak support vertex.

A vertex dominates itself and its neighbors. A set D ⊆ V (G) is a dominating set in G if N[D] = V (G). The minimum
ardinality of such a set is the domination number of G and denoted by γ (G). A dominating set is minimal if it does not
ontain any dominating set as a proper subset.
A hypergraph H is a set system over the underlying vertex set V (H). Equivalently, the set E(H) of its (hyper)edges is a

subset of 2V (H). In general, we assume that each e ∈ E(H) contains at least one vertex, but sometimes we do not exclude
the case of e = ∅. For the latter situation, we will always mention this possibility directly. A hypergraph is k-uniform if
|e| = k for every e ∈ E(H) and it is simple if e ̸⊆ f holds for every two different edges. Note that a simple graph is just a
simple 2-uniform hypergraph. We say that H1 is a subhypergraph of H2, if E(H1) ⊆ E(H2).

A vertex set T ⊆ V (H) is a transversal (or vertex cover) in a hypergraph H if it meets every edge of H. Assuming
/∈ E(H), the minimum cardinality of a transversal is the transversal number τ (H) of the hypergraph. A minimal transversal
f H is a transversal that does not contain any other transversal as a proper subset. Following Berge’s notation, we denote
y Tr(H) the hypergraph on the vertex set V (H) that contains all minimal transversals of H as hyperedges. We cite a
elated result of Berge.

roposition 1.1 (Corollary 1, pp. 44 [2]). Let H1 and H2 be two simple hypergraphs on the same vertex set. Then, Tr(H1) = H2
f and only if Tr(H2) = H1.

We also introduce an operator named simplification on hypergraphs that transforms H into Ĥ by sequentially removing,
hile it is possible, an edge e ∈ E(H) if it contains another edge as a subset. It is clear by definition that Ĥ is a simple
ypergraph and that T is a (minimal) transversal in H if and only if it is a (minimal) transversal in Ĥ.
Given a graph G, we define two hypergraphs on the same vertex set V (G). Let DG be the hypergraph that contains all

he minimal dominating sets of G as hyperedges and let HG be the hypergraph with edge set E(HG) = {NG[v] : v ∈ V (G)}.
ccording to the standard terminology, we say that HG is the closed neighborhood hypergraph of G. By definition, D ⊆ V (G)
s a minimal dominating set in G if and only if it is a minimal transversal in the closed neighborhood hypergraph HG.
bserve that DG is a simple hypergraph for every G. These observations together with Proposition 1.1 imply the following
tatement.

roposition 1.2. It holds for every graph G that Tr(HG) = DG and Tr(DG) = ĤG.

.2. Winning number in a Maker–Breaker game

The Maker–Breaker game is played by two persons, namely Maker and Breaker, on a hypergraph H. The vertex set V (H)
s called the board of the game while the edges of H are interpreted as winning sets. The two players alternately choose
i.e., play) an unplayed vertex from the board. We say that a player claims the set S ⊆ V (H) if he (or she) plays all vertices
f S. It is a Maker-start game (resp., Breaker-start game) if Maker (resp., Breaker) is the first to play. Maker wins the game
f he claims a winning set while Breaker wins if she can prevent Maker from doing this. The latter equivalently means
hat Breaker plays at least one vertex from each winning set; that is, she claims a transversal of H. We may conclude the
ollowing.

bservation 1.3. A Maker–Breaker game on H with a player A as Maker and a player B as Breaker is the same as the
aker–Breaker game on Tr(H) where the roles of A and B are switched.

In the last decades, several variants of the Maker–Breaker game were specified and intensively studied. These include
he connectivity game [13,17], the hamiltonicity game [1,23,24], the Maker–Breaker resolving [21], domination [11,15]
nd total domination [14] games. For other versions and references see [16].
Fast winning strategies were also studied for some types of Maker–Breaker games [9–11,14,15,21]. We introduce here

our hypergraph invariants to measure how fast a player can win in a (general) Maker–Breaker game. Assume first that
Maker–Breaker game is played on H and Maker can win the game when he is the first player. We say that Maker wins

n his ith move if he claims a winning set (i.e., an edge of H) with this move. We suppose that Maker’s goal is to win the
ame as soon as possible and that Breaker’s goal is just the opposite. The winning number of Maker, denoted by wM

M (H),
s the minimum number of his moves needed to win the game if both players play optimally. If Maker has no winning
trategy as a first player, we set wM

M (H) = ∞. In the Breaker-start game, wB
M (H) is defined similarly.

Now, consider the problem from Breaker’s point of view. We say that the game is over and Breaker wins in her ith
ove if she claims a minimal transversal of H with this move. Clearly, this situation makes it impossible for Maker to
laim a winning set even if the game would be continued. Analogously to the previous case, we assume that Breaker’s
oal is to win the game by playing as few vertices as possible, while Maker’s goal is the opposite. Then, if Maker starts the

M
ame and Breaker has a winning strategy, the winning number of Breaker, wB (H), is the minimum number of her moves

11
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eeded to win the game if both players play optimally. Further, wM
B (H) = ∞, if Breaker cannot win the game.1 For the

ame when Breaker is the first player, wB
B(H) is defined analogously. Concerning the notation wY

X in general, for every pair
X, Y ) with X, Y ∈ {M, B} the superscript Y denotes the player who starts the game while the subscript X indicates the
layer whose fast winning strategies are considered. By Observation 1.3, wM

M (H) = wB
B(Tr(H)) and wB

M (H) = wM
B (Tr(H)).

.3. Maker-Breaker domination game

The Maker–Breaker domination game (MBD game for short) was recently introduced in [11] and further studied in [15].
he MBD game on a graph G is a Maker–Breaker game played on DG. Following the terminology introduced for the
arlier versions of the domination game [3–7,18,19,22], Maker and Breaker are respectively called Dominator and Staller
n an MBD game. An MBD game is called D-game if Dominator starts the game and it is an S-game if Staller starts. By
bservation 1.3 and Proposition 1.2, a Maker–Breaker domination game on a graph G can also be considered as a Maker–
reaker game on the closed neighborhood hypergraph HG (or on its simplification ĤG) where Staller is the Maker and
ominator is the Breaker.
Now suppose that Dominator has a winning strategy on G in the D-game. As it was introduced in [15], the minimum

umber of moves of Dominator to win the game is the Maker–Breaker domination number (MBD-number) γMB(G). If
ominator does not have a winning strategy, we set γMB(G) = ∞. In terms of the winning number defined for the
eneral case, γMB(G) = wM

M (DG). Similarly, for the S-game, γ ′

MB(G) = wB
M (DG).

In this paper, as proposed in [15], we consider the problem from Staller’s point of view. Suppose that Staller has a
strategy to win the (MBD) D-game on a graph G. Then, Staller wins in her ith move if she claims a minimal transversal
of DG with this move. It equivalently means that she can claim a closed neighborhood NG[v] of a vertex v. The Staller–
aker–Breaker domination number (SMBD-number) γSMB(G) of G is the minimum number of Staller’s moves she needs to
in the D-game if both players play optimally. If Staller has no winning strategy in the D-game, we set γSMB(G) = ∞.
his definition gives γSMB(G) = wM

B (DG) = wB
M (HG). For the S-game, the invariant γ ′

SMB(G) is defined analogously and we
ave γ ′

SMB(G) = wB
B(DG) = wM

M (HG).
By definition, a Maker–Breaker game is a finite game and there is always a winner. Therefore, for each graph G either

oth γMB(G) < ∞ and γSMB(G) = ∞ hold, or γMB(G) = ∞ and γSMB(G) < ∞. The analogous statement is true for the
nvariants related to the S-game. Further, as it was shown in [17, Proposition 2.1.6, pp. 15] for the Maker–Breaker game in
eneral, if Staller (Dominator) can win as the second player, then she (he) can win as the first player. Then, γSMB(G) < ∞

mplies γ ′

SMB(G) < ∞.
In this work, we concentrate on the cases where Staller wins in at least one of the D- and S-game that is if γ ′

SMB(G) < ∞.
ypically, we will consider the Maker–Breaker game on the closed neighborhood hypergraph HG.

tructure of the paper. In Section 2.1 we study the behavior of the winning numbers under some changes in the
ypergraph such as taking disjoint union, deleting or shrinking edges. Then, in Section 2.2, we state similar results for the
MBD-numbers of a graph and prove the inequality δ(G) + 1 ≤ γ ′

SMB(G) ≤ γSMB(G) and the No-Skip Lemma. Section 3 is
evoted to a construction which shows that for every three integers satisfying 2 ≤ r ≤ s ≤ t there exists a graph G with
(G)+1 = r , γSMB(G) = s, and γ ′

SMB(G) = t . In Section 4, we consider the changes of SMBD-numbers if a leaf and its support
ertex is removed from a graph. Applying the previous propositions, it is proved in Section 5 that γ ′

SMB(Pn) = ⌊log2 n⌋+ 1
olds for every path of odd order. Together with the corresponding theorem proved in [11], our results complete the
tudy of the MBD games on paths. The SMBD-numbers of tadpole graphs (that can be obtained from a cycle and a path by
dding an edge between a vertex of the cycle and an endvertex of the path) are determined in Section 6. Some additional
bservations and conjectures are provided in Section 7.

. Basic properties

In this section we state several basic properties of the Maker–Breaker games in general, of the MBD games, and their
ypergraph representation.

.1. Basics for Maker–Breaker games

We introduce two operators on hypergraphs that help us modeling Maker’s and Breaker’s moves. LetH be a hypergraph
nd X ⊆ V (H). The hypergraph H − X is obtained from H by deleting the vertices contained in X and also deleting all
ncident edges. Formally,

V (H − X) = V (H) \ X and E(H − X) = {e : e ∈ E(H) and e ∩ X = ∅}.

1 If wY
X (H) equals ∞ (for X, Y ∈ {M, B}) by definition, we consider it as an infinite cardinality number (e.g., ℵ0) and refer to it in calculations or

relations accordingly. For instance, for every hypergraph H and X ∈ {M, B}, wX
M (H)+wX

B (H) = ∞ always holds, while wX
M (H) < wX

B (H) means that
Maker has a winning strategy in the game if X plays first.
12
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H

he other operator is named shrinking and the resulted hypergraph is denoted by H | X . It means that the vertices in X
re deleted from H but we keep the remaining parts of the incident edges. That is,

V (H | X) = V (H) \ X and E(H | X) = {e \ X : e ∈ E(H)}.

ote that shrinking may transform a simple hypergraph into a non-simple one. In particular, it may create some empty
dges. If X contains only one vertex v, we may write H − v and H | v instead of H − {v} and H | {v}, respectively.
In a Maker–Breaker game, the winning sets can be modified after each move of the players as follows.

roposition 2.1. Suppose that a Maker–Breaker game is played on a hypergraph H and v ∈ V (H).

(i) If Breaker is the first player and she plays v, the continuation of the game corresponds to a Maker-start game on H − v.
In particular, if v is an optimal first move of Breaker, then wB

M (H) = wM
M (H − v).

(ii) If Maker is the first player and he plays v, the continuation of the game corresponds to a Breaker-start game on H | v.
In particular, if v is an optimal first move of Maker, then wM

M (H) = wB
M (H | v) + 1. Further, Maker wins the game with

this move v if and only if H | v contains an empty hyperedge but H does not.

roof. (i) After Breaker plays v, this vertex cannot be played anymore, and none of the incident edges can be claimed by
aker. As the other winning sets remain untouched, Maker may imagine that he starts a Maker–Breaker game on H − v
ith his next move. Concerning the equality wB

M (H) = wM
M (H−v), recall that only Maker’s moves are counted for wB

M (H).
(ii) If Maker plays v on H, this vertex cannot be played in the continuation. Further, if v belongs to a winning set

∈ E(H) then, in the continuation, it is enough to claim e\ {v} for Maker to win the game. Thus, the players may imagine
hat the continuation is a Breaker-start game on H | v. It is also clear that Maker claims a winning set with the move v
f and only if {v} ∈ E(H) that is equivalent to ∅ ∈ E(H | v). □

Next we show that adding some new winning sets or shrinking some of the winning sets is never disadvantageous for
aker.

roposition 2.2. Let H1 and H2 be two hypergraphs on the same vertex set.

(i) If E(H1) ⊆ E(H2), then wM
M (H1) ≥ wM

M (H2) and wB
M (H1) ≥ wB

M (H2) holds.
(ii) Suppose that for each e ∈ E(H1) there exists an edge e′

∈ E(H2) such that e′
⊆ e. Then, wM

M (H1) ≥ wM
M (H2) and

wB
M (H1) ≥ wB

M (H2) holds.

roof. As (i) can be considered as a special case of (ii), it is enough to prove the second statement. If wM
M (H1) = ∞ or

B
M (H1) = ∞, the corresponding inequality clearly holds. Otherwise, suppose that Maker plays on H2 (as the first player)

ollowing a strategy that is optimal for H1 while Breaker plays optimally on H2. Maker’s strategy ensures that, under any
trategy of Breaker, he claims a winning set from E(H1) in at most wM

M (H1) moves. Let this winning set be e ∈ E(H1) in
he current game. Since there is a winning set e′ in H2 so that e′

⊆ e, Maker wins on H2 either with this move or earlier.
his proves wM

M (H1) ≥ wM
M (H2). The argument is similar if Breaker starts the game. □

Propositions 2.1 and 2.2 together imply that, during a Maker–Breaker game, skipping a move or playing an isolated
ertex (i.e., a vertex of degree 0 in H) is never advantageous for Maker. The same is true for Breaker concerning her
oves.

roposition 2.3. Let H be a disconnected hypergraph that consists of the components H1, . . . ,Hℓ such that wM
M (H1) ≤ · · · ≤

M
M (Hℓ). Then, the following holds:

wM
M (H) = wM

M (H1) and wM
M (H1) ≤ wB

M (H) ≤ wM
M (H2).

roof. Since E(H1) ⊆ E(H), Proposition 2.2(i) implies wM
M (H) ≤ wM

M (H1). On the other hand, Breaker may reply to each
ove of Maker by playing an optimal move in the same component. This strategy ensures the game on H not being

inished before Maker’s wM
M (H1)th move. We infer of wM

M (H) = wM
M (H1).

By Proposition 2.1(i) and Proposition 2.2(i), wM
M (H) ≤ wB

M (H) always holds. Thus, wM
M (H) = wM

M (H1) implies wM
M (H1) ≤

B
M (H). For the upper bound, if Breaker starts the game on H by selecting a vertex v, consider the following strategy
f Maker. If v ∈ V (H1), Maker plays according to an optimal strategy on H2 from the next move on. This ensures that
he game finishes in his wM

M (H2)th move or earlier. If v /∈ V (H1) then, from the next move, Maker plays according to an
ptimal strategy on H1 and ensures that the game finishes in his wM

M (H1)th move or earlier. As wM
M (H1) ≤ wM

M (H2), we
ay conclude wB

M (H) ≤ wM
M (H2). □

.2. Basics for Maker–Breaker domination games

Recall that an MBD game on a graph G corresponds to a Maker–Breaker game on the closed neighborhood hypergraph
with γ ′ (G) = wM (H ) and γ (G) = wB (H ). When we consider an MBD game in which Staller has already played
G SMB M G SMB M G

13
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he vertices from S and Dominator has played the vertices from D, we will often refer to the hypergraph of current
winning sets. By Proposition 2.1, this hypergraph is (HG | S) − D. To prove lower bounds on γSMB(G) or γ ′

SMB(G) we often
modify the hypergraph H of current winning sets by adding new winning sets or replacing an e ∈ E(H) with an e′

⊆ e.
By Proposition 2.2, this makes it easier for Staller to win. In the other case, when we want to prove an upper bound on
γSMB(G) or γ ′

SMB(G), we can modify H by deleting some winning sets or replacing an e ∈ E(H) with an e′
⊇ e.

If G consists of the components G1, . . . ,Gℓ, then HG consists of the components HG1 , . . .HGℓ
. This fact and Proposi-

ion 2.3 readily imply the following statement.

roposition 2.4. If a disconnected graph G consists of the components G1, . . . ,Gℓ and γ ′

SMB(G1) ≤ · · · ≤ γ ′

SMB(Gℓ), then the
following statements hold:

(i) γ ′

SMB(G) = γ ′

SMB(G1);
(ii) γ ′

SMB(G1) ≤ γSMB(G) ≤ γ ′

SMB(G2).

Proposition 2.5. Let v be a cut vertex in a connected graph G. If G1, . . . ,Gℓ are the components of G − v indexed so that
γ ′

SMB(G1) ≤ · · · ≤ γ ′

SMB(Gℓ), then

γ ′

SMB(G) ≤ γ ′

SMB(G2) + 1.

roof. If γ ′

SMB(G2) = ∞, the inequality is clearly valid. Otherwise, consider the strategy of Staller when she plays v as the
irst move in the game on G. By Proposition 2.1, the continuation of the game is the same as it would be on HG | v. As
is a cut vertex in G, the hypergraph HG | v corresponds to the disjoint union of the closed neighborhood hypergraphs

of G1, . . . ,Gℓ supplemented with an extra hyperedge e = NG(v). Deleting e from HG | v, we obtain the hypergraph H′.
y Proposition 2.2, we have wB

M (HG | v) ≤ wB
M (H′). Observe that H′ contains ℓ components, namely HG1 , . . . ,HGℓ

. By
Proposition 2.4, wM

M (H′) ≤ γ ′

SMB(G2) and, therefore, Staller can ensure that she wins after playing at most 1 + γ ′

SMB(G2)
vertices (together with her first move). □

As a further consequence of Propositions 2.1 and 2.2, we get the following statement which is analogous to the No-
Skip Lemma proved in [15] for the MBD games where Dominator’s fast winning strategies and the parameters γMB(G) and
γ ′

MB(G) were studied.

Lemma 2.6 (No-Skip Lemma). In an optimal strategy of Staller to achieve γSMB(G) or γ ′

SMB(G) it is never an advantage for her
to skip a move. Moreover, if Dominator skips a move it can never disadvantage Staller.

We close this section with a simple but important relation between the minimum degree δ(G) and the invariants
SMB(G), γ ′

SMB(G).

roposition 2.7. If G is a graph with minimum degree δ(G), then

δ(G) + 1 ≤ γ ′

SMB(G) ≤ γSMB(G). (1)

Proof. Clearly, δ(G) + 1 ≤ γ ′

SMB(G) as Staller can win the game only by claiming a closed neighborhood a vertex. To
show γ ′

SMB(G) ≤ γSMB(G), we consider the D-game as an S-game in which Staller skips the first move. By Lemma 2.6,
γ ′

SMB(G) ≤ γSMB(G). □

It is clear that the presence of an isolated vertex implies γ ′

SMB(G) = 1 and we may easily construct a graph Gt for each
t ≥ 1 such that δ(G) = 0, γ ′

SMB(G) = 1 and γSMB(G) = t . In Section 3, we will show that for every triple of integers (r, s, t)
with 2 ≤ r ≤ s ≤ t there exists a graph G satisfying δ(G) + 1 = r , γSMB(G) = s, and γ ′

SMB(G) = t .

3. A realization theorem for δ, γ ′

SMB, and γSMB

We start with the definition of two families of graphs. Let F1 be isomorphic to P3 and X1 ⊆ V (F1) contain the two
leaves and let z1 denote the support (central) vertex. For k ≥ 2, we construct Fk by using two copies of Fk−1, namely F 1

k−1
and F 2

k−1, and adding a new vertex zk which is adjacent to every vertex in X1
k−1 ∪ X2

k−1. Let us define Xk = X1
k−1 ∪ X2

k−1
and Yk = V (Fk) \ (Xk ∪ {zk}). (See Fig. 1.) It is clear by the recursive definition that |Xk| = 2k and each vertex from Xk is of
degree k. Moreover, Yk contains 2k−i vertices of degree 2i for all i ∈ [k − 1] and, therefore, |Yk| = 2k

− 2.
We define F ′

k by modifying Fk as follows. For i ∈ [2], let F ′

i
∼= Fi. If k ≥ 3, F ′

k is obtained from Fk by adding a complete
graph of order k−1. We denote by Y+

k the set of these k−1 new vertices and supplement the graph with a join between
Y+

k and Yk. Observe that degF ′
k
(v) > k holds for all v ∈ Yk ∪ Y+

k and therefore, δ(F ′

k) = k.

Lemma 3.1. For every positive integer k, γ ′ (F ′) = k + 1 and γ (F ′) = ∞.
SMB k SMB k
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Fig. 1. Graphs F ′

1
∼= F1 , F ′

2
∼= F2 , and F ′

3 . In F ′

3 every vertex in Y+

3 is adjacent to every vertex in Y3 .

Proof. Let k be a positive integer. Since δ(F ′

k) = k, Proposition 2.7 shows that γ ′

SMB(F
′

k) ≥ k+1. To prove γ ′

SMB(F
′

k) ≤ k+1, we
describe an appropriate strategy for Staller in the S-game. Staller plays zk in her first move. According to the construction,
F ′

k − zk contains two disjoint copies of Fk−1. Thus, after Dominator’s first move, there remains a subgraph F i
k−1 such that

none of its vertices are played and Staller may claim its center z ik−1 in her second move. Then, F i
k−1 − z ik−1 contains two

copies of Fk−2 and at least one of them remains unplayed after the next move of Dominator. From this unplayed F j
k−2

subgraph, Staller plays the center z jk−2. Continuing this way, in her ℓth move, ℓ ∈ [k], Staller plays the center of a copy
of Fk−ℓ+1. As the described strategy ensures, after Staller’s kth move, there remain two vertices, say x1 and x2, such that
all vertices from NF ′

k
(x1) = NF ′

k
(x2) have been already claimed by Staller. After Dominator’s kth move, Staller may play

one of these vertices, say x1, and win the game by claiming NF ′
k
[x1]. This strategy shows that γ ′

SMB(F
′

k) ≤ k + 1 and then
γ ′

SMB(F
′

k) = k + 1 follows.
We next show that γSMB(F ′

k) = ∞ for every positive integer k. Dominator wins the D-game in F ′

1 with his first move
by playing z1. In F ′

2, Dominator first plays z2 and then he can claim one (unplayed) vertex from each component of F ′

2 − z2
as his second and third move. This way Dominator can always claim a dominating set in F ′

2. If k ≥ 3, Dominator may
start the game by playing zk. We remark that there remains at least one unplayed vertex in Y+

k after the first move of
Staller. If Dominator responds by playing such a vertex, he claims a dominating set with this move. We therefore conclude
γSMB(F ′

k) = ∞. □

By Proposition 2.7, δ(G) + 1 ≤ γ ′

SMB(G) ≤ γSMB(G) holds for every graph G. The following realization theorem implies
the sharpness of this inequality (1), and also that the differences γSMB(G) − γ ′

SMB(G) and γ ′

SMB(G) − δ(G) can be arbitrarily
large.

Theorem 3.2. For every three integers r, s, t with 2 ≤ r ≤ s ≤ t, there exists a graph G such that δ(G)+ 1 = r, γ ′

SMB(G) = s,
and γSMB(G) = t.

Proof. Let r, s, t be integers such that 2 ≤ r ≤ s ≤ t and let Gr,s,t be the disjoint union of a copy of Kr , a copy of F ′

s−1,
and a copy of F ′ . We show that δ(G ) + 1 = r , γ ′ (G ) = s, and γ (G ) = t hold.
t−1 r,s,t SMB r,s,t SMB r,s,t

15
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Notice first that δ(Kr ) = r − 1, δ(F ′

s−1) = s − 1, and δ(F ′

t−1) = t − 1. Thus, δ(Gr,s,t ) + 1 = r . As r ≥ 2 is supposed,
Dominator wins in Kr both in a D-game and S-game; that is, γSMB(Kr ) = γ ′

SMB(Kr ) = ∞. By Lemma 3.1, γ ′

SMB(F
′

s−1) = s,
γ ′

SMB(F
′

t−1) = t , and γSMB(F ′

s−1) = γSMB(F ′

t−1) = ∞. Proposition 2.4(i) immediately implies γ ′

SMB(G) = s.
Now consider a D-game played on Gr,s,t . By Proposition 2.4 (ii), γSMB(Gr,s,t ) ≤ t holds. To prove the other direction, we

present a strategy for Dominator which guarantees that Staller needs to play at least t vertices to win. Dominator first
plays zs−1 in the component F ′

s−1. Then, if Staller plays a vertex from a component, in the next turn Dominator replies
with an optimal move in the same component. This ensures that Staller cannot win by claiming a closed neighborhood
of a vertex from V (Kr ) ∪ V (F ′

s−1). As δ(F ′

t−1) = t − 1, it needs at least t moves to claim a closed neighborhood of a vertex
from F ′

t−1. It follows that γSMB(Gr,s,t ) ≥ t and we infer γSMB(Gr,s,t ) = t □

The disconnected graph Gr,s,t in the above proof can be replaced with a connected graph that still satisfies the required
properties. Indeed, fix a vertex v ∈ V (Kr ) and add the edges vzs−1 and vzt−1 to Gr,s,t . As r ≥ 2, the obtained graph G′

r,s,t
is of minimum degree r − 1, and it can be shown that both γ ′

SMB(G
′
r,s,t ) = s and γSMB(G′

r,s,t ) = t remain true.
We note, related to Theorem 3.2, that the statement remains true if the cases t = ∞ and s = t = ∞ are allowed.

Indeed, deleting the component F ′

t−1 from Gr,s,t , we obtain a graph with δ + 1 = r , γ ′

SMB = s and γSMB = ∞, while the
deletion of both F ′

s−1 and F ′

t−1 leaves Kr with δ(Kr ) + 1 = r and γ ′

SMB(Kr ) = γSMB(Kr ) = ∞.

4. Deleting a leaf and a support vertex

The deletion of a strong support vertex and all the adjacent leaves from a graph G might increase γ ′

SMB(G) and γSMB(G)
drastically.2 In this section we consider the possible changes of the SMBD-numbers when a weak support vertex and its
leaf are removed from a graph.

Proposition 4.1. Let G′ be a graph obtained from G by removing a weak support vertex and the adjacent leaf. Then, the
following inequalities hold:

γ ′

SMB(G) − 1 ≤ γ ′

SMB(G
′) ≤ γ ′

SMB(G) and γSMB(G′) ≤ γSMB(G).

Proof. Let u be a weak support vertex in G that is adjacent to the leaf v. Then u is a cut vertex in G and G−u is isomorphic
to the disjoint union of G′

= G − {u, v} and the isolated vertex v. By Proposition 2.5, γ ′

SMB(G) − 1 ≤ γ ′

SMB(G
′).

To prove the inequalities γ ′

SMB(G
′) ≤ γ ′

SMB(G) and γSMB(G′) ≤ γSMB(G), we use the imagination strategy. Let Game 1 be
an S-game on G′ where Dominator plays optimally, and let Game 2 be an S-game on G in which Staller applies an optimal
strategy. Whenever Dominator plays a vertex in Game 1, he copies this move to Game 2. There Staller replies optimally
on G, say by playing si, and copies this move to Game 1 if it is possible. In particular, whenever si ∈ V (G) \ {u, v}, Staller
can copy the move to Game 1. Observe that if a winning set in Game 2 contains v, it also contains u. We may therefore
assume that Staller never plays v while u is also available. If si = u, then Staller will not play any vertex in Game 1. To
continue Game 2, Staller imagines that Dominator replies by playing v in G. Then, if Game 2 is not yet over, Staller selects
an optimal move si+1 in Game 2 and copies it to Game 1. From this moment, the process continues by simply copying
the players’ optimal moves to the other game.

For i ∈ [2], let ti be the number of Staller’s moves until she wins in Game i and set ti = ∞ if she does not win.
Observe that NG′ [x] ⊆ NG[x] holds for every vertex x ∈ V (G) \ {u, v} and, by the described strategy, Staller cannot win in
G by claiming the entire NG[u] or NG[v]. Thus, when Game 2 ends by the move st2 and it is copied to Game 1, Staller has
already claimed a closed neighborhood in Game 1. We may therefore conclude that t1 ≤ t2. Suppose first that Staller starts
in both Game 1 and Game 2. Since Dominator plays optimally in Game 1 but Staller might not, we infer γ ′

SMB(G
′) ≤ t1.

Similarly, as Dominator might not follow an optimal strategy in Game 2, but Staller plays optimally, we have t2 ≤ γ ′

SMB(G).
This proves γ ′

SMB(G
′) ≤ γ ′

SMB(G). If Dominator starts in both Game 1 and Game 2, then the same argumentation yields
γSMB(G′) ≤ γSMB(G). □

It is not hard to see that γSMB(G)−1 ≤ γSMB(G′) is not always true for G and G′ under the conditions of Proposition 4.1.
As an example, we may consider a graph G such that a weak support vertex u is adjacent to all vertices. In this graph
Dominator may win the D-game with his first move d1 = u that implies γSMB(G) = ∞ even if γSMB(G′) is finite. However
we can prove that γSMB(G)−1 ≤ γSMB(G′) holds under stronger conditions. Note that the removal of a weak support vertex
of degree 2 and its leaf, had a central role when Dominator’s fast winning strategies were studied in [15] and also where
the outcome of the game were considered in [11].

Proposition 4.2. Let G be a graph with a weak support vertex of degree 2 and G′ a graph obtained from G by removing this
weak support vertex and the adjacent leaf. Then, γSMB(G) − 1 ≤ γSMB(G′) holds.

2 For example, let G be the graph obtained from a P2 : v1v2 and a P3 : u1u2u3 component by adding the edge v1u2 . It is easy to see that
γ ′

SMB(G) = 2, but Staller cannot win if we remove u2 and the leaves u1, u2 . For the D-game, consider the graph G′ which is the disjoint union of G
and an isolated vertex. Observe that γ (G′) = 2 and γ (G′

− {u , u , u }) = ∞.
SMB SMB 2 1 3
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roof. Let u be a weak support vertex in G adjacent to the leaf v and to the non-leaf vertex u′. We set G′
= G−{u, v} and

note that the closed neighborhoods of vertices in V (G)\{u, u′, v} are the same in G as in G′. We prove γSMB(G)−1 ≤ γSMB(G′)
by using the imagination strategy and comparing the winning sets in the two games after a vertex from {u, v, u′

} was
played. Let Game 1 be a D-game on G where Dominator plays optimally, and Game 2 be a D-game on G′ where Staller
plays optimally. If neither of u, u′ and v has been played until a moment in the game, then the moves of the players are
simply copied to the another game. That is, whenever Dominator plays a vertex di in Game 1, he copies this move to Game
2. There Staller replies optimally on G′, say by playing si, and copies this move to Game 1. Under the given conditions, it
is always possible. If a vertex from {u, v, u′

} is played, the corresponding move(s) in the other game will be specified in
Case 1 and 2. For i ∈ [2], let ti be the number of Staller’s moves until she wins in Game i and set ti = ∞ if she does not
win. We prove t1 ≤ t2 + 1 by considering three cases.

Case 1. If Dominator plays first a vertex di from {u, v, u′
}, this move belongs to Game 1. We may suppose that Dominator’s

corresponding move in Game 2 is u′. After these moves, each remaining winning set of Staller in Game 2 is also a winning
set in Game 1. By Proposition 2.2(i), this proves t1 ≤ t2.

Case 2. If Staller plays first a vertex si from {u, v, u′
}, then si = u′ as this move belongs to Game 2. Note that Case 1 excludes

Case 2 in a game and, therefore, u, u′ and v all are unplayed in Game 1. We may set si = u in Game 1. Dominator, who
plays optimally there, has to reply by claiming v as otherwise Staller could win in her next move by playing v. These two
moves u and v are not copied to Game 2. Instead, we set si+1 = u′ in Game 1 and observe that the winning sets in Game
1 and Game 2 are the same, while the number of moves of Staller in Game 1 is one more than the number of her moves
in Game 2. We may infer t1 = t2 +1. Remark that this argumentation is also true if Staller finishes Game 2 with the move
st2 = u′.

Case 3. If neither of u, u′ and v is played during the games, then the moves are just copied from one game to the other.
Further, under this condition, Staller cannot win by claiming the entire NG′ [u′

], NG[u′
], NG[u], or NG[v]. For the remaining

vertices, we have NG[x] = NG′ [x] and thus, the two games end together. This shows t1 = t2.
We may therefore conclude that t1 ≤ t2 + 1. Our argumentation is also valid for the cases when Staller does not win.

For this situation, we suppose that every vertex is played in G and G′ but no winning set is claimed by Staller.
Since Dominator plays optimally all along Game 1, we infer γSMB(G) ≤ t1. Similarly, as Staller follows an optimal

strategy in Game 2, we have t2 ≤ γSMB(G′). Together with t1 ≤ t2 + 1 we conclude γSMB(G) ≤ γSMB(G′) + 1. □

5. Paths

The ‘‘pairing strategy’’ of Maker [16] ensures that he can win in the Maker–Breaker game if an appropriate set of vertex
pairs can be defined. Its immediate consequence for the MBD game shows that Dominator has a winning strategy in both
the D-game and S-game if the graph admits a perfect matching. Here we state the lemma in a more general form.

Lemma 5.1. Consider an MBD game on G and let X and Y be the set of vertices played by Dominator and Staller, respectively,
until a moment during the game. If there exists a matching M in G− (X ∪ Y ) such that V (G) \ V (M) ⊆ NG[X], then Dominator
has a strategy to win the continuation of the game, no matter who plays the next vertex.

Proof. By the conditions of the lemma,

(X ∪ Y ) ⊆ (V (G) \ V (M)) ⊆ NG[X]

that is all vertices from X ∪ Y are dominated by the first |X | moves of Dominator. In the continuation Dominator can win
the game by applying the following strategy. If Staller plays a vertex v such that uv ∈ E(M) and u has not been played
et, then Dominator plays u in his next turn. Otherwise, Dominator plays an arbitrary unplayed vertex. As V (M) does

not contain any vertices from Y , this strategy makes sure that Dominator plays at least one vertex from each edge of the
matching (unless the game finishes earlier as the entire V (M) is dominated by Dominator’s moves). We conclude that
Dominator’s moves dominate every vertex from V (G) = V (M) ∪ (V (G) \ V (M)) and hence, he wins the game. □

As it was shown in [11], Dominator can win the MBD game on all paths and cycles if he is the first player; that is,
γSMB(Pn) = γSMB(Cn) = ∞. Moreover, Dominator also wins the S-game if it is played on a cycle or a path of an even order;
that is, γ ′

SMB(Pn) = γ ′

SMB(Cn) = ∞ if n is even. On the other hand, if n is odd, γ ′

SMB(Pn) < ∞.
By Proposition 4.1, γ ′

SMB(Pn+2) ≤ γ ′

SMB(Pn) + 1. Starting with γ ′

SMB(P1) = 1 and γ ′

SMB(P3) = 2, this yields γ ′

SMB(P2k+1) ≤

k+1. For paths of even order the corresponding invariant satisfies γ ′

MB(P2k) = k (see [15]). These facts might suggest that
γ ′

SMB(P2k+1) is equal to or not far from k + 1. However, as we will show, the value of γ ′

SMB(P2k+1) is significantly different
from k+1. The exact formula is established in the following theorem. If n ≥ 3 and n is odd, we may also cite the statement
f the theorem in the form of γ ′

SMB(Pn) = ⌈log2 n⌉.

heorem 5.2. If n is an odd positive integer, then

γ ′

SMB(Pn) = ⌊log2 n⌋ + 1. (2)

oreover, Staller has an optimal strategy in the S-game on Pn such that she wins on the closed neighborhood of a vertex v that
s at an even distance from the ends of the path.
17
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roof. First we observe that γ ′

SMB(P1) = 1 and γ ′

SMB(P3) = 2 and thus, the formula is valid for n = 1 and n = 3. Then
e proceed by induction on n. Suppose that n ≥ 5 and (2) is true for every odd integer which is smaller than n. We first
rove γ ′

SMB(Pn) ≤ ⌊log2 n⌋ + 1 by considering two cases.

pper bound, Case 1. Assume that n = 4k + 3 for an integer k ≥ 1 and consider the path Pn : v1 . . . v4k+3. Observe that
oth components of G − v2k+2 are isomorphic to P2k+1 where 2k + 1 =

n−1
2 . Proposition 2.5 and our hypothesis imply

γ ′

SMB(Pn) ≤ γ ′

SMB

(
P n−1

2

)
+ 1 =

⌊
log2

n − 1
2

⌋
+ 2 = ⌊log2(n − 1)⌋ + 1.

To finish the proof we add that, since n = 4k + 3 is not a power of 2, the equality ⌊log2(n − 1)⌋ = ⌊log2 n⌋ necessarily
olds.

pper bound, Case 2. Assume that n = 4k + 1 for an integer k ≥ 1 and consider the path Pn : v1 . . . v4k+1. Now, we
hoose the cut vertex v2k and consider the components P1

: v1 . . . v2k−1 and P2
: v2k+1 . . . v4k+1 of Pn − v2k. Remark that

2 is a path of order n+1
2 . As γ ′

SMB(P
1) ≤ γ ′

SMB(P
2), Proposition 2.5 and our hypothesis together imply

γ ′

SMB(Pn) ≤ γ ′

SMB

(
P n+1

2

)
+ 1 =

⌊
log2

n + 1
2

⌋
+ 2 = ⌊log2(n + 1)⌋ + 1.

As n+ 1 = 4k+ 2 and n+ 1 ≥ 6, it cannot be a power of 2 and therefore, we get ⌊log2(n + 1)⌋ = ⌊log2 n⌋. It finishes the
roof for the upper bound.

ower bound. We now prove that Dominator can ensure that Staller does not win in her first ⌊log2 n⌋ moves on the path
n : v1 . . . vn. We analyze different cases according to Staller’s first move s1.

• Assume that s1 = vi for an odd integer i ∈ {1, 3, . . . , n}. By symmetry and the condition n ≥ 5, we may suppose
i ≥ 3. Dominator then replies by playing d1 = vi−1. The remaining vertices, except vi−2, are covered by the following
matching in G − {vi, vi−1}:

v1v2, . . . , vi−4vi−3, vi+1vi+2, . . . , vn−1vn.

As it satisfies the conditions in Lemma 5.1, we may conclude, by Lemma 5.1, that Dominator can win the game if
Staller’s first move is vi with an odd index i.

• Suppose now that s1 = vi and i is even. We may also assume, without loss of generality, that i ≤
n+1
2 . Dominator’s

response is the move d1 = vi−1. After these two moves, by Proposition 2.1, the winning sets for Staller are exactly
the edges of the hypergraph H′

= (HPn | vi) − vi−1. If i = 2, then H′ is isomorphic to the closed neighborhood
hypergraph of the path Pn−2 and, by the induction hypothesis, Staller needs at least ⌊log2(n− 2)⌋ + 1 further moves
there to win. Note that, as n ≥ 5, the inequality ⌊log2(n − 2)⌋ + 2 ≥ ⌊log2 n⌋ + 1 is valid and completes the proof
for the case of i = 2. If i ≥ 4, then H′ contains two components. One of them is exactly the closed neighborhood
hypergraph of the odd path P2

: vi+1 . . . vn. Adding the extra (hyper)edge {vi−2, vi−3} to the other component of H′,
we obtain the closed neighborhood hypergraph of the even path P1

: v1 . . . vi−2. Since γ ′

SMB(P
1) = ∞, Proposition 2.4

and the induction hypothesis together imply that Staller needs at least γ ′

SMB(P
2) = ⌊log2(n− i)⌋+1 moves to win the

S-game on P1
∪ P2. Since H′ can be obtained from the closed neighborhood hypergraph HP1∪P2 by deleting the edge

{vi−2, vi−3}, Staller needs at least as many moves to win on H′ as on HP1∪P2 . We may conclude that, if Dominator
plays optimally and Staller wins with her tth move, then

t ≥ ⌊log2(n − i)⌋ + 2 ≥

⌊
log2

n − 1
2

⌋
+ 2 = ⌊log2(n − 1)⌋ + 1 = ⌊log2 n⌋ + 1,

where the last equality is true because n cannot be a power of 2.

his establishes the lower bound γ ′

SMB(Pn) ≥ ⌊log2 n⌋ + 1 and, together with the first part of the proof, we obtain
γ ′

SMB(Pn) = ⌊log2 n⌋ + 1 for every odd integer n. Analyzing Staller’s strategy described in the proof of the upper bound,
e also infer that the claimed winning set is always one of N[v1],N[v3], . . . ,N[vn]. □

6. Tadpole graphs

The tadpole graph T (n, k) with parameters n ≥ 3 and k ≥ 1 is obtained from an n-cycle and a (vertex disjoint) path of
rder k such that one vertex from the cycle and one end vertex of the path are made adjacent (see Fig. 2). These graphs
ave been recently studied in [8] concerning Rall’s 1/2-conjecture [20] on the domination game.
First we prove a short technical lemma.

emma 6.1. For every two integers a and b with a ≥ 1 and b ≥ 2, the following is true:

max{⌊log a⌋ + 1, ⌈log (b − 1)⌉} ≥ ⌈log (a + b)⌉ − 1.
2 2 2
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Fig. 2. The tadpole graph T (6, 5).

Proof. Let ⌈log2(a+b)⌉ = s and note that s ≥ 2. Suppose for a contradiction that ⌊log2 a⌋+1 ≤ s−2 and ⌈log2(b−1)⌉ ≤ s−2
imultaneously hold. These assumptions imply a < 2s−2 and b ≤ 2s−2

+ 1. We infer a + b < 2s−1
+ 1 and, as a + b is an

integer, we get a + b ≤ 2s−1 that contradicts the definition of s. □

To state the main theorem of this section, we introduce the notation

σ (n) =
2⌈log2 n⌉

− n
2

+ 1.

heorem 6.2. For every tadpole graph T (n, k) it is true that γSMB(T (n, k)) = ∞ and

γ ′

SMB(T (n, k)) =

{
⌈log2(n + k + σ (n))⌉ if n is even and k is odd;
∞ otherwise.

roof. Let v0v1 . . . vn−1v0 and u1 . . . uk be the cycle and the path of the tadpole graph, respectively, such that v0 and uk
re adjacent.
We first prove that Dominator can win the D-game that is γSMB(T (n, k)) = ∞ holds for every pair (n, k) of positive

ntegers with n ≥ 3. Let Dominator play d1 = v0 as his first move. The edges

v1v2, . . . , v2⌈n/2⌉−3v2⌈n/2⌉−2, u1u2, . . . , u2⌊k/2⌋−1u2⌊k/2⌋

orm a matching in T (n, k) − v0 that covers all vertices which are not dominated by v0. Lemma 5.1 thus implies
SMB(T (n, k)) = ∞.
Next, we consider the S-game. If both n and k are odd or both are even, then T (n, k) has a perfect matching and

ominator can win by applying the pairing strategy. If n is odd and k is even, we may iteratively remove a weak
upport vertex and its leaf until a cycle Cn remains. Thus, by Proposition 4.1, γ ′

SMB(Cn) ≤ γ ′

SMB(T (n, k)) is valid and then,
′

SMB(Cn) = ∞ [11] implies γ ′

SMB(T (n, k)) = ∞.
In the rest of the proof, we suppose that n is even, k is odd, and an S-game is played on T (n, k). From now on, ℓ denotes

log2 n⌉. Note that ℓ ≥ 3 unless n = 4.

pper bound We consider three cases and show that Staller can win by playing at most ⌈log2(n+k+σ (n))⌉ vertices. The
irst two cases together settle the proof for every tadpole graph T (n, 1), n ≥ 4. Then, in Case 3, we proceed by induction
n k for every fixed n.

ase 1. n + k + σ (n) ≤ 2ℓ.
To prove γ ′

SMB(T (n, k)) ≤ ℓ, consider the following strategy of Staller. First, Staller plays s1 = vi with i = 2⌈ n
4⌉. Observe

hat vi and v0 split the cycle into two nearly equal odd paths that are P1
: v1 . . . vi−1 and P2

: vi+1 . . . vn−1. If n = 4p, both
paths are of order n

2 − 1, and if n = 4p + 2, then P1 is of order n
2 and the order of P2 is n

2 − 2. Note that 2 ≤ i ≤ n − 2.
In the continuation, if Dominator’s first move d1 is not a neighbor of vi, Staller selects her next move s2 from {vi−1, vi+1}

such that the distance between s2 and d1 is at least 3. It can be done as our present condition n+ k+ σ (n) ≤ 2ℓ excludes
= 4. Without loss of generality, we may suppose that s2 = vi−1. Then, after Dominator’s move d2, one of vi−2 and vi+1
emains unplayed. Playing this vertex as s3, Staller can win the game by claiming N[vi] or N[vi−1]. In this case, Staller
ins the game in 3 ≤ ℓ moves.
If Dominator plays a neighbor of s1 as his first move d1, the game continues with the winning sets in (HT (n,k) | s1)−d1.

uppose that d1 = vi+1. Deleting the winning sets N[vi+3], . . . ,N[vn−1] from (HT (n,k) | s1)− d1, we obtain the hypergraph
H′. By Proposition 2.2, wM

M (H′) ≥ wM
M ((HT (n,k) | s1) − d1). Note that H′ can be obtained from the closed neighborhood

hypergraph of the path P ′
: vi−1 . . . v0uk . . . u1 by replacing the edge {v1, v0, uk} with {v1, v0, uk, vn−1}. Then, Staller

continues playing according to the optimal strategy on the path P ′ that makes sure that the claimed winning set is either
vj or uj with an odd index j. By Theorem 5.2, such a winning strategy exists and it can be applied for H′. The order of P ′

is at most n
2 + 1 + k, and therefore, Staller can win the game in at most 1 + ⌈log2(

n
2 + 1 + k)⌉ moves. We observe that

1 +

⌈
log2

(n
2

+ 1 + k
)⌉

= 1 + ⌈log2(n + k + σ (n) − 2ℓ−1)⌉ ≤ 1 + ⌈log2(2
ℓ
− 2ℓ−1)⌉ = ℓ,

where the inequality follows from the condition n + k + σ (n) ≤ 2ℓ.
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If d1 = vi−1, the argumentation is similar. Here we consider the path P ′
: vi+1 . . . vn−1v0uk . . . u1 which is of order

− i + k ≤
n
2 + k.

We conclude that, under the present condition, Staller has a strategy to win the S-game by playing at most ℓ vertices.
Therefore, γ ′

SMB(T (n, k)) ≤ ⌈log2(n + k + σ (n))⌉ holds if the parameters n and k satisfy the condition in Case 1.

Case 2. n ≥ 2ℓ
− 2 and k = 1.

As σ (n) = 1 if n = 2ℓ, and σ (n) = 2 if n = 2ℓ
− 2, we have ⌈log2(n + k + σ (n))⌉ = ℓ + 1 under the present condition.

o show γ ′

SMB(T (n, 1)) ≤ ℓ + 1, we apply Proposition 2.5 for the cut vertex v0. The components of T (n, 1) − v0 are an
solated vertex with γ ′

SMB(P1) = 1 and an (n − 1)-path with γ ′

SMB(Pn−1) = ⌈log2(n − 1)⌉ = ℓ. Proposition 2.5 therefore
mplies γ ′

SMB(T (n, 1)) ≤ ℓ + 1.

ase 3. 2s−1 < n + k + σ (n) ≤ 2s and s ≥ ℓ + 1.
To prove γ ′

SMB(T (n, k)) ≤ s we identify appropriate cut vertices again. If k ≤ 2s−1, we consider T (n, k) − v0. The
wo components are isomorphic to two paths, one is of order n − 1 and the other is of order k. by definition of ℓ,
e have n − 1 < 2ℓ

≤ 2s−1 that gives max{n − 1, k} ≤ 2s−1 in turn and we conclude, by Proposition 2.5 that
′

SMB(T (n, k)) ≤ (s − 1) + 1 = s.
If k > 2s−1, we choose the cut vertex u2s−1 and consider the two components obtained after the removal of u2s−1 . One

omponent is a path with γ ′

SMB(P2s−1−1) = s − 1 while the other component is a tadpole graph T ′
= T (n, k − 2s−1). Since

+ k+σ (n) ≤ 2s implies n+ k− 2s−1
+σ (n) ≤ 2s−1, the induction hypothesis yields γ ′

SMB(T
′) ≤ s− 1. By Proposition 2.5,

e infer γ ′

SMB(T (n, k)) ≤ (s − 1) + 1 = s again.

ower bound. In the second part, we show that

γ ′

SMB(T (n, k)) ≥ ⌈log2(n + k + σ (n))⌉

olds for every pair (n, k) with n ≥ 4 even and k ≥ 1 odd. First we eliminate some worst first moves of Staller which
ake possible Dominator’s winning in the continuation. Let s1 and d1 denote Staller’s and Dominator’s first move in the
-game on T (n, k).

ase 1 s1 = ui and i is odd or s1 = vj and j is odd.
These are Staller’s worst first moves. We prove that, under this condition, Dominator has a winning strategy in the

ontinuation of the game.

• If s1 = u1 and k = 1, Dominator replies by playing d1 = v0. Then, the graph G−{u1, v0, v1} admits a perfect matching
that satisfies the conditions of Lemma 5.1 with X = {d1}, Y = {s1} and hence, Dominator can win the continuation
of the game.

• If s1 = u1 and k ≥ 3, Dominator plays d1 = u2. Here, we consider the perfect matching in G − {u1, u2, u3} and
conclude, by Lemma 5.1, that Dominator can win.

• If s1 = ui and i is an odd integer with i ≥ 3, Dominator replies with d1 = ui−1. The graph G − {ui, ui−1, ui−2} admits
a perfect matching and, by applying Lemma 5.1, we infer that Dominator can win in the continuation of the game.

• If s1 = v1, Dominator plays d1 = v2. As G− {v1, v2, v3} admits a perfect matching, we conclude, by Lemma 5.1, that
Dominator can win.

• If s1 = vj and j is an odd integer with j ≥ 3, Dominator plays d1 = vj−1. Since the conditions of Lemma 5.1 are
satisfied by the perfect matching in G − {vj, vj−1, vj−2}, Dominator can win the game.

Case 2. s1 = v0.
If k ≤ n−1, Dominator replies by playing d1 = uk and the continuation of the game reduces to a Maker–Breaker game

on H′
= (HT (n,k) | v0) − uk. If k = 1, then H′ is the closed neighborhood hypergraph of the path v1, . . . , vn−1. If k ≥ 3

then, by adding {uk−1, uk−2} to the winning sets, we obtain a hypergraph H′′ that consists of two components. H′′ is the
closed neighborhood hypergraph of a disjoint union of a path of order n − 1 and a path of order k − 1. As k − 1 is even,
γ ′

SMB(Pk−1) = ∞. Applying Propositions 2.2, 2.4, and Theorem 5.2 we get

wM
M (H′) ≥ wM

M (H′′) = γ ′

SMB(Pn−1) = ⌈log(n − 1)⌉ = ℓ,

no matter whether k = 1 or k ≥ 3. Dominator thus can force Staller to play at least ℓ + 1 vertices in the game. On the
other hand, the condition k ≤ n − 1 ≤ 2ℓ

− 1 implies

n + k + σ (n) =
n
2

+ k + 2ℓ−1
+ 1 ≤ 2ℓ−1

+ 2ℓ
− 1 + 2ℓ−1

+ 1 = 2ℓ+1.

onsequently, Dominator can ensure that Staller plays at least ⌈log2(n + k + σ (n))⌉ vertices.
Assume now that k ≥ n. Then, Dominator replies with d1 = v1 and the game continues on H′

= (HT (n,k) | v0) − v1.
dding the winning set {v2, v3} to H′, we obtain H′′ that is the closed neighborhood hypergraph of two disjoint paths
ne of them is an even path of order n − 2 and the other one is of order k. By the same reasoning as before, we get that
taller needs to play at least 1 + ⌈log2(k)⌉ vertices to win. If ℓ + 1 ≥ ⌈log2(n + k + σ (n))⌉, this already finishes the proof
s ⌈log2(k)⌉ ≥ ⌈log2(n)⌉ = ℓ. In the other case, ⌈log2(n + k + σ (n))⌉ = s ≥ ℓ + 2 and

2s−1 < n + k + σ (n) =
n

+ k + 2ℓ−1
+ 1.
2
20
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his, together with the condition n/2 ≤ 2ℓ−1 implies ⌈log2(k)⌉ ≥ s − 1 and therefore, 1 + ⌈log2(k)⌉ ≥ s as required.

ase 3. s1 = vi, i is even and i ≥ 2.
By symmetry, we may suppose that i ≥ n/2 if n ≡ 0 (mod 4) and i ≥ n/2 + 1 if n ≡ 2 (mod 4). Let Dominator reply

y playing d1 = vi+1. By Proposition 2.1, the game continues on H = (HT (n,k) | vi) − vi+1. We modify H by adding the
inning set {vi+2, vi+3} (if i + 1 ̸= n − 1) and replacing N[v0] and N[vn−1] with N[v0] \ {vn−1} and N[vn−1] \ {v0}. The

obtained hypergraph is denoted by H′. By Proposition 2.2, wM
M (H′) ≤ wM

M (H). Observe that H′ is the closed neighborhood
hypergraph of the graph G′ that consists of two (or only one) path components that are P1

: vi−1 . . . v0uk . . . u1 and
P2

: vi+2 . . . vn−1. The component P1 is a path of order i + k and P2 is a path of even order. By Proposition 2.4,
γ ′

SMB(G
′) = γ ′

SMB(P
1) = ⌈log2(i + k)⌉. Hence, if t is the number of moves Staller needs to win when s1 = vi is fixed,

then

t ≥ 1 + wM
M (H′) = 1 + γ ′

SMB(P
1) = 1 + ⌈log2(i + k)⌉. (3)

Let s = ⌈log2(n + k + σ (n))⌉.

• If s = ℓ, then (3) together with i + k ≥
n
2 + 1 > 2ℓ−2 gives t ≥ s.

• If s = ℓ + 1, we consider the inequality
n
2

+ k = n + k + σ (n) − 2ℓ−1
− 1 > 2ℓ

− 2ℓ−1
− 1 = 2ℓ−1

− 1. (4)

If n ≡ 0 (mod 4), then i ≥ n/2 and, as n/2+ k is odd, the strict inequality in (4) reduces to n
2 + k ≥ 2ℓ−1

+ 1. Then,
(3) and (4) together give t ≥ ℓ + 1. If n ≡ 2 (mod 4), then i ≥ 1 + n/2. By (4), we have

i + k ≥
n
2

+ k + 1 > 2ℓ−1

and, by using (3), we conclude t ≥ s again.
• If s ≥ ℓ + 2, then i + k > 2s−2. Then, 1 + ⌈log2(i + k)⌉ ≥ s and (3) imply the desired inequality t ≥ s.

emark that Cases 1–3 cover all possibilities if k = 1. Hence, we may proceed by induction on k when the last case is
onsidered.

ase 4. s1 = ui and i is even.
Applying Lemma 6.1 with a = i − 1 and b = n + k − i + σ (n) + 1 we obtain

m = max{⌊log2(i − 1)⌋ + 1, ⌈log2(n + k − i + σ (n))⌉}
≥ ⌈log2(n + k + σ (n))⌉ − 1.

(5)

f m = ⌊log2(i− 1)⌋ + 1, Dominator’s reply to s1 = ui is d1 = ui+1. Then, the game continues on H′
= (HT (n,k) | ui)− ui+1.

dding a new winning set {ui+2, ui+3} to H′, we obtain H′′. Note that playing on H′′ is at least as advantageous for Staller
s on H′. One component of H′′ is the closed neighborhood hypergraph of a tadpole graph T ′

= T (n, k− i−1). As k− i−1
s even, γ ′

SMB(T
′) = ∞. The other component of H′′ is the closed neighborhood hypergraph of a path of order i − 1. By

roposition 2.4, Staller has to play at least m further vertices to win. As (5) shows, the total number of Staller’s moves is
t least m + 1 ≥ ⌈log2(n + k + σ (n))⌉.
The proof is similar if m = ⌈log2(n + k − i + σ (n))⌉. Then, Dominator plays d1 = ui−1 and then, assuming optimal

trategies in the continuation, the game is played on the closed neighborhood hypergraph of a tadpole graph T (n, k − i)
nd Staller has to play at least m+1 = ⌈log2(n+k−i+σ (n))⌉+1 vertices to win. By (5), it is at least ⌈log2(n+k+σ (n))⌉. □

. Concluding remarks

Concerning the largest possible finite values of the SMBD-numbers, we have the following:

roposition 7.1. Let G be a graph on n vertices.

(i) If γ ′

SMB(G) < ∞, then γ ′

SMB(G) ≤
⌈ n

2

⌉
.

(ii) If γSMB(G) < ∞, then γSMB(G) ≤
⌊ n

2

⌋
.

Moreover, both upper bounds are sharp.

Proof. Staller and Dominator alternately select vertices in the MBD game. It readily follows that if Staller can win in an
S-game or D-game, then she plays at most ⌈n/2⌉ or at most ⌊n/2⌋ vertices, respectively.

To show the sharpness of the upper bounds, first consider the S-game on a subdivided star S1k which obtained from a
tar Sk by subdividing each of its k edges exactly once (see Fig. 3). Let Dominator play according the following strategy. If
taller plays a support vertex, Dominator replies by playing the adjacent leaf, and vice versa. If Staller plays the center of
he star, Dominator plays one of its neighbors (if possible). This strategy of Dominator ensures that Staller cannot claim
he closed neighborhood of any support vertices or leaves. As claiming the closed neighborhood of the center needs at
21
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Fig. 3. Graphs S14 and S24 .

least k + 1 moves, we have γ ′

SMB(S
1
k ) ≥ k + 1. On the other hand, if Staller plays support vertices, it forces Dominator to

respond with playing the adjacent leaves and Staller can win the game by playing the last leaf or the center of the star.
Therefore γ ′

SMB(S
1
k ) < ∞, and by the upper bound ⌈

n
2⌉ = k + 1 we conclude γSMB(S1k ) = k + 1. This proves that for every

dd integer n, there exists a graph with γ ′

SMB = ⌈n/2⌉. If n is even, let k = (n−2)/2. Supplementing S1k with a new vertex
hat is adjacent to all support vertices, we obtain a graph S2k on n = 2k + 2 vertices which satisfies γ ′

SMB(S
2
k ) = k + 1 (see

ig. 3). To obtain sharp examples for the D-game, we may add an isolated vertex to the graphs S1k and S2k . □

Even if the upper bounds in Proposition 7.1 are tight, we do not know sharp examples with δ(G) ≥ 2. We conjecture
that the inequalities can be improved as follows.

Conjecture 7.2. Let G be a graph n vertices.

(i) If γ ′

SMB(G) < ∞, then γ ′

SMB(G) ≤
⌈ n

2

⌉
− δ(G) + 1.

(ii) If γSMB(G) < ∞, then γSMB(G) ≤
⌊ n

2

⌋
− δ(G) + 1.
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