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a b s t r a c t

Let G be a graph and X ⊆ V (G). Then X is a mutual-visibility set if each pair of
vertices from X is connected by a geodesic with no internal vertex in X . The mutual-
visibility number µ(G) of G is the cardinality of a largest mutual-visibility set. In this
paper, the mutual-visibility number of strong product graphs is investigated. As a tool
for this, total mutual-visibility sets are introduced. Along the way, basic properties
of such sets are presented. The (total) mutual-visibility number of strong products is
bounded from below in two ways, and determined exactly for strong grids of arbitrary
dimension. Strong prisms are studied separately and a couple of tight bounds for their
mutual-visibility number are given.
© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let G = (V (G), E(G)) be a connected and undirected graph, and X ⊆ V (G) a subset of the vertices of G. If x, y ∈ V (G), then
we say that x and y are X-visible, if there exists a shortest x, y-path whose internal vertices are all not in X . X is a mutual-
visibility set if its vertices are pairwise X-visible. The cardinality of a largest mutual-visibility set is the mutual-visibility
number of G, and it is denoted by µ(G). Each largest mutual-visibility set is also called µ-set of G.

These concepts were introduced by Di Stefano in [5]. They were in particular motivated by the significance that mutual-
visibility properties play within problems that arise in mobile entity models. Some of the numerous works that deal with
such models are [1,2,4,10]. Mutual-visibility sets in graphs are in a way dual to general position sets in graphs, the latter
concepts being widely investigated in the last years [7–9,11,12].

Among other results, it was proved in [5] that the decision problem concerning the mutual-visibility number is NP-
complete and the invariant was determined for several classes of graphs including block graphs, grids, and cographs. The
research was continued in [3] emphasizing on Cartesian products and graphs G with µ(G) = 3. Interestingly, determining
the mutual-visibility number of the Cartesian product of two complete graphs turns out to be equivalent to a case of the
celebrated Zarankiewicz’s problem which is a long-standing open combinatorial problem. Continuing the investigation of
the mutual-visibility in graph products, we investigate in this paper strong products.

In the next section, we introduce the necessary concepts and recall some known results. Then, in Section 3, we
introduce total mutual-visibility sets which turned out to be useful for the investigation of mutual-visibility sets in strong
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products, and give some basic properties of total mutual-visibility sets. In the subsequent section, we first bound from
below the (total) mutual-visibility number of strong products. Then we determine the mutual-visibility number for the
strong grids of arbitrary dimension which shows the tightness of the lower bound. In addition, we find families of strong
product graphs for which the bound is not tight and complete the section with another lower bound. In Section 5 we focus
on strong prisms where we give a couple of tight bounds for the mutual-visibility number. We conclude our exposition
with several open problems and directions for further investigation.

2. Preliminaries

Since two vertices from different components of a graph are not mutually visible, all graphs in the paper are connected
nless stated otherwise.
For a natural number n, we set [n] = {1, . . . , n}. Given a graph G = (V (G), E(G)), its order will be denoted by n(G).

he distance function dG on a graph G is the usual shortest-path distance. The subgraph G′ is convex if, for every two
ertices of G′, every shortest path in G between them lies completely in G′. The convex hull of V ′

⊆ V (G), denoted as
hull(V ′), is defined as the smallest convex subgraph containing V ′. A subset of vertices V ′

⊆ V (G) is an independent set if
no two distinct vertices in V ′ are adjacent in G, whereas V ′ is a clique if every two distinct vertices in V ′ are adjacent in
G. A universal vertex is a vertex that is adjacent to all other vertices of the graph. A cut-vertex is a vertex whose removal
increases the number of connected components of the graph.

The degree, degG(x), of a vertex x is the number of its neighbors. If X ⊆ V (G), then X denotes the complement of X ,
hat is the set containing all vertices of G not in X . Moreover, G[X] denotes the subgraph of G induced by X , that is the
maximal subgraph of G with vertex set X . The subgraph of G induced by X is denoted by G − X , and by G − v when
X = {v}. Two vertices u and v are false twins if uv ̸∈ E(G) and NG(u) = NG(v), where NG(x) is the open neighborhood of
, and are true twins if uv ∈ E(G) and NG[u] = NG[v], where NG[x] is the closed neighborhood of x. Vertices are twins if
they are true or false twins. Adding a new vertex to a graph G that is a true/false twin of an existing vertex of G is an
peration called splitting. Another one-vertex extending operation is that of attaching a pendant vertex, which is a vertex
onnected by a single edge to an existing vertex of the graph.
A graph is a complete graph (or clique graph) if every two distinct vertices are adjacent. A complete graph G is denoted

y Kn, where n = n(G). The graph K1 is the trivial graph. A graph is a block graph if every block (i.e., a maximal 2-connected
omponent) is a clique. Block graphs can be generated by using true twins and pendant vertices. Notice that the connected
lock graphs are exactly the graphs in which there is a unique induced path connecting every pair of vertices.
A graph is called a cograph whenever it is obtained by a sequence of splittings starting from K1. From this generative

efinition, it follows a useful structural property. Let G be a cograph, and let v1 be the starting vertex for a sequence of
plitting operations that build G. If G is connected, the first operation must be a true twin of v1 (that produces v2 adjacent
o v1). Let V1 = {v1} and V2 = {v2}. Now, for each further vertex v which must be added to build G, if v is a twin of a
ertex in V1 (V2, respectively), then add it to V1 (to V2, respectively). We obtain that V (G) can be partitioned into V1 and
2 where v′v′′

∈ E(G) for each v′
∈ V1 and v′′

∈ V2.
Cographs include complete split graphs and complete k-partite graphs. A graph is a complete split graph if it can be

artitioned into an independent set and a clique such that every vertex in the independent set is adjacent to every vertex
n the clique. A k-partite graph (alias k-chromatic graph) is a graph whose vertices are (or can be) partitioned into k
ifferent independent sets; hence, a complete k-partite graph is a k-partite graph in which there is an edge between
very pair of vertices from different independent sets.
The strong product G ⊠ H of graphs G and H has vertex set V (G ⊠ H) = V (G) × V (H), with vertices (g, h) and (g ′, h′)

eing adjacent in G ⊠ H if either gg ′
∈ E(G) and h = h′, or g = g ′ and hh′

∈ E(H), or gg ′
∈ E(G) and hh′

∈ E(H), see [6]. A
-layer through a vertex (g, h) is the subgraph of G⊠H induced by the vertices {(g ′, h) : g ′

∈ V (G)}. Analogously H-layers
re defined.
Finally, we recall the following result which is implicitly used throughout the paper.

roposition 2.1. [6, Proposition 5.4] If (g, h) and (g ′, h′) are vertices of a strong product G ⊠ H, then

dG⊠H ((g, h), (g ′, h′)) = max{dG(g, g ′), dH (h, h′)}.

3. Total mutual-visibility

The following definition introduces a variation of mutual-visibility. It will be useful to provide bounds on the
mutual-visibility number of strong product graphs, although we consider that the concept might be also of independent
interest.

If G is a graph and X ⊆ V (G), then X is a total mutual-visibility set of G if every pair of vertices x and y of G is X-visible.
he term ‘‘total’’ comes from observing that if X is a total mutual-visibility set of G, then for every pair x, y ∈ V (G) there
xists a shortest x, y-path whose internal vertices are all not in X . The cardinality of a largest total mutual-visibility set
f G is the total mutual-visibility number of G and is denoted by µt(G). Notice that there could be graphs G which do
ot contain total mutual-visibility sets, for such situations we set µt(G) = 0. For the sake of brevity, we say that X is a
(G)-set (or µ -set if we are not interested in the graph) if it is a total mutual-visibility set such that |X | = µ (G).
t t t
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Fig. 1. Some cactus graphs. The first two on the left do not fulfill the conditions of Proposition 3.2, and hence their total mutual-visibility number
is greater than zero.

Clearly, every total mutual-visibility set is a mutual-visibility set, hence we have the following inequality

0 ≤ µt(G) ≤ µ(G). (1)

In the following we show that such bounds can actually be achieved by the total mutual-visibility number. Concerning the
lower bound of (1), it can be easily checked that µt(Cn) = 0 for n ≥ 5. The variety of graphs with this property appears
to be large as the next result confirms.

Proposition 3.1. Let G be a graph. If V (G) =
⋃k

i=1 Vi, where G[Vi] is a convex subgraph of G and µt(G[Vi]) = 0 for each
i ∈ [k], then µt(G) = 0.

Proof. Suppose on the contrary that G contains a total mutual-visibility set X with |X | ≥ 1. Select an arbitrary vertex
x ∈ X . Then there exists an i ∈ [k] such that x ∈ Vi. Hence clearly, |X ∩ G[Vi]| ≥ 1. However, since G[Vi] is convex, we get
that X ∩ G[Vi] is a total mutual-visibility set of G[Vi], a contradiction to the assumption µt(G[Vi]) = 0. □

In what follows we show that there also exist graphs G with µt(G) = 0 such that they belong to well-known graph
classes and they are not covered by Proposition 3.1. To this end, recall that a cactus graph is a graph whose blocks are
cycles and/or complete graphs K2. Fig. 1 shows four examples of cactus graphs.

Proposition 3.2. Let G be a cactus graph. Then µt(G) = 0 if and only if G has minimum degree 2 and for each cycle C in G
with n(C) ≤ 4 all the vertices in C have degree at least 3 in G.

Proof. (⇐) Assume that G does not contain pendant vertices and that for each cycle C of G, either n(C) ≤ 4 and each
vertex in C has degree at least 3, or n(C) ≥ 5. Suppose now µt(G) > 0 and consider any total mutual-visibility set X of

with |X | ≥ 1 and let v ∈ X . If v does not belong to any cycle of G, since there are no pendant vertices, then v must
ave at least two neighbors and such neighbors are not X-visible, which is not possible. Thus, we may consider v belongs
o a cycle C . If n(C) ≥ 5, then the two neighbors of v belonging to C are not X-visible. If n(C) ≤ 4 and each vertex in C
as degree at least 3, then again there must exist a pair of neighbors of v which are non X-visible, a contradiction again.
ence µt(G) = 0 must hold.
(⇒) It can be readily observed that each pendant vertex of G forms a total mutual-visibility set of G. Thus, G has

minimum degree 2, since µt(G) = 0. Moreover, if C is a cycle in G such that n(C) ≤ 4 and there exists v ∈ V (C) with
egG(v) = 2, then the set {v} is a total mutual-visibility set of G, which is not possible. Therefore, the second claim
ollows. □

As an application of this lemma, consider Fig. 1. From the left, the first two cactus graphs have total mutual-visibility
umber greater than zero since they both do not fulfill the conditions of the above lemma. On the contrary, the other two
raphs have total mutual-visibility number equal to zero. Moreover, notice that among the cactus graphs it is possible
o find infinitely many graphs G with µt(G) = 0 which are not covered by Proposition 3.1. For instance, if G is a cactus
raph with minimum degree at least 2, girth at least 5, and contains at least one path of length at least 2 whose edges
ie in no cycle, then µt(G) = 0 but G might not admit a proper convex cover as in Proposition 3.1. The rightmost graph
n Fig. 1 is an example.

Concerning the upper bound in (1), we introduce the following definition. A graph G is a (µ, µt)-graph if µ(G) = µt(G).

roposition 3.3. Block graphs (and hence trees and complete graphs) and graphs containing a universal vertex are all
µ, µ )-graphs.
t
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Fig. 2. A graph G with µ-sets X1 (left) and X2 (right) represented by red vertices. X2 is also a µt-set, while X1 is not a µt-set (the two vertices not
in X1 are not X1-visible).

Proof. If G is a complete graph, then µ(G) = µt(G) = n(G). If G is not complete and has a universal vertex, then it can be
easily observed that µ(G) = µt(G) = n(G) − 1.

Assume that G is a block graph. From [5, Theorem 4.2] we know that if G is a block graph and X the set of its cut-vertices,
then V (G) \ X is a µ-set of G and hence µ(G) = |V (G) \ X |. We now show that V (G) \ X is also a µt-set of G. To this end,
let us first observe that (1) each vertex in V (G) \ X is adjacent to a vertex in X and that (2) G[X] is a convex subgraph of
. Hence, every x, y ∈ V (G) are (V (G) \ X)-visible regardless their membership to V (G) \ X . This proves that V (G) \ X is
lso a µt-set of G. □

In the following, we characterize those cographs which are (µ, µt)-graphs. To this aim, we first recall a result from [5].

emma 3.4 ([5, Lemma 4.8]). Given a graph G, then µ(G) ≥ n(G) − 1 if and only if there exists a vertex v in G adjacent to
ach vertex u in G − v such that degG−v(u) < n(G) − 2.

In what follows, any vertex v of G fulfilling the condition in the above lemma will be called enabling.

roposition 3.5. A cograph G is a (µ, µt)-graph if and only if it has a universal vertex or no enabling vertices.

roof. (⇐) If G has a universal vertex, then clearly µt(G) = µ(G). If G has no enabling vertices, then µ(G) < n(G) − 1 by
emma 3.4. Since µ(G) ≥ n(G) − 2 by [5, Theorem 4.11], we get µ(G) = n(G) − 2. According to the structural property
f cographs recalled in Section 2, the vertices of G can be partitioned into two sets V1 and V2 such that each vertex in V1
s adjacent to each vertex of V2. If v1 (v2, respectively) is an arbitrary vertex in V1 (V2, respectively), then it can be easily
bserved that X = V (G) \ {v1, v2} is a total mutual-visibility set. Hence, µt(G) = µ(G) = n(G) − 2.
(⇒) We show that G is not a (µ, µt)-graph by assuming that G has an enabling vertex v but no universal vertices. In

his case, V (G) can be partitioned in three sets: A = {v}, B the set of neighbors of v, and C which contains all the remaining
ertices. Notice that C must be not empty otherwise v would be a universal vertex, against the hypothesis. By definition
f enabling vertex, B contains all the vertices u ∈ G such that degG−v(v) < n(G) − 2. This implies that for each u ∈ C we
ave degG−v(u) ≥ n(G) − 2. As a consequence, we have that (1) G[C] is a clique, and (2) bc ∈ E(G) for each b ∈ B and

c ∈ C . Then B ∪ C is a mutual-visibility set and hence µ(G) ≥ n(G) − 1. As G has no universal vertices, µ(G) = n(G) − 1.
We now show that µt(G) cannot be equal to n(G)− 1. In fact, let u ∈ V (G) and assume that X = V (G) \ {u} is a µt-set.

learly, u ̸= v because v is not X-visible with vertices in C . Vertex u cannot be in B since it is not a universal vertex and
o there is a vertex w ∈ B such that uw ̸∈ E(G). But then u and w are not X-visible. Finally, u cannot be in C , because in
his case u and v are not X-visible. □

The following result is a straightforward consequence of the characterization provided by Proposition 3.5.

orollary 3.6. Complete split graphs and complete k-partite graphs (k ≥ 2) with at least three vertices in each partition are
µ, µt)-graphs.

Observe that since µ(Cn) = 3 and µt(Cn) = 2 for n ≤ 4, the inequality µt(G) ≤ µ(G) can be strict. Moreover, even if
he equality is attained, it can happen that some µ-sets are µt-sets but some are not. For an example consider the graph
rom Fig. 2.

. Mutual-visibility in strong products

In this section, we show how the total mutual-visibility of factor graphs can be used to provide lower bounds for
he mutual-visibility number of their strong products. To this end, we consider the following refinement of the total
utual-visibility. We say that a total mutual-visibility set S of a graph G is feasible if any two adjacent vertices x, y ∈ S
ave a common neighbor z /∈ S. Fig. 2 (right side) shows a graph that admits a feasible µt-set. Note that there could be
raphs having no feasible µt-set, say C4. Moreover, if S is a feasible total mutual-visibility set of G and G is not trivial,

hen it has cardinality at most |V (G)| − 1. Also, if S is an independent total mutual-visibility set, then it is clearly feasible.
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Fig. 3. A representation of G ⊠ P3 , where G is the graph in the right side of Fig. 2. The represented µt-set is that defined by Theorem 4.1.

Theorem 4.1. If SG and SH are feasible total mutual-visibility sets of the non-trivial graphs G and H, respectively, then there
exists a feasible total mutual-visibility set S of G ⊠ H such that

|S| ≥ |SG|n(H) + |SH |n(G) − |SG| · |SH |.

In particular, if both G and H admit feasible µt-sets, then

µt(G ⊠ H) ≥ µt(G)n(H) + µt(H)n(G) − µt(G)µt(H).

Proof. Let S = (V (G) × V (H)) \ (SG × SH ); see Fig. 3 for an example of the construction of S.
In the following we first prove that S is a total mutual-visibility set of G ⊠ H , and then we observe that S is feasible.

et (g, h) and (g ′, h′) be arbitrary but distinct vertices from V (G ⊠ H). Consider first the case in which dG(g, g ′) ≥ 2 and
H (h, h′) ≥ 2. Regardless the membership of g, g ′ to SG, since SG is a total mutual-visibility set of G there exists a shortest
, g ′-path PG in G such that no internal vertex of PG is in SG. Let the consecutive vertices of PG be g = g0, g1, . . . , gk = g ′,

with k ≥ 1 since dG(g, g ′) ≥ 2. Similarly, there is a shortest h, h′-path PH in H such that no internal vertex of PH is in
SH . Let the consecutive vertices of PH be h = h0, h1, . . . , hℓ = h′, with ℓ ≥ 1 since dH (h, h′) ≥ 2. Assume without loss of
enerality that ℓ ≤ k. Then the vertices

(g, h) = (g0, h0), (g1, h1), . . . , (gℓ−1, hℓ−1), (gℓ, hℓ−1), . . . , (gk−1, hℓ−1)(gk, hℓ) = (g ′, h′)

nduce a shortest (g, h), (g ′, h′)-path Q in G ⊠ H . Clearly, no internal vertex of Q is in S.
If dG(g, g ′) = 1 and dH (h, h′) = 1, then (g, g ′) and (h, h′) are adjacent and we are done. Thus, we may assume that

either dG(g, g ′) ≥ 2 or dH (h, h′) ≥ 2.
Assume that dG(g, g ′) = 1 and dH (h, h′) ≥ 2. Consider again the h, h′-path PH defined as above. If g /∈ SG, then the

vertices

(g, h) = (g, h0), (g, h1), . . . , (g, hℓ−1), (g ′, hℓ) = (g ′, h′)

induce a shortest (g, h), (g ′, h′)-path Q ′ in G ⊠ H , such that no internal vertex of Q ′ is in S. On the other hand, if g ∈ SG
and g ′

∈ SG, then since SG is a feasible total mutual-visibility set of G, the vertices g, g ′ have a common neighbor w /∈ SG.
If g ∈ SG and g ′

̸∈ SG, then we set w = g ′. Thus, the vertices

(g, h) = (g0, h0), (w, h1), . . . , (w, hℓ−1), (g ′, hℓ) = (g ′, h′)

induce a shortest (g, h), (g ′, h′)-path Q ′′ in G⊠H , such that no internal vertex of Q ′′ is in S. Symmetrically, if dG(g, g ′) ≥ 2
and dH (h, h′) = 1, we obtain analogous conclusions to the ones above.

Consider now the remaining case in which g = g ′ or h = h′ (but not both). By the commutativity of the strong product,
we may without loss of generality assume h = h′ (and hence g ̸= g ′). Let g = g0, g1, . . . , gk = g ′ be a shortest g, g ′-path
in G, with k ≥ 1, such that each internal vertex (if any) is not in SG. If k = 1, then (g, h)(g ′, h′) ∈ E(G ⊠ H) and there is
nothing to prove. Assume now k ≥ 2. Since H is non-trivial and SH is feasible, it holds |SH | < n(H). If h ̸∈ SH , then

(g, h) = (g0, h), (g1, h), (g2, h), . . . , (gk−1, h), (gk, h′) = (g ′, h′)

trivially shows that (g, h) and (g ′, h′) are mutually visible. Instead, if h ∈ SH , since SH is feasible, then there exists a vertex
z /∈ SH such that hz ∈ E(H). Consider the path Q ′ induced by the sequence of vertices

(g, h) = (g0, h), (g1, z), (g2, z), . . . , (gk−1, z), (gk, h′) = (g ′, h′).

The length of Q ′ is k, hence Q ′ is a shortest (g, h), (g ′, h′)-path. Moreover, as z ̸∈ SH we get that each internal vertex of Q
does not belong to S.
140
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According to all the analyzed cases, we have shown that the set S is a total mutual-visibility set. Since

|S| = n(G)n(H) − (n(G) − |SG|)(n(H) − |SH |)
= |SG|n(H) + |SH |n(G) − |SG| · |SH |

e are done with the first inequality. When SG and SH are µt-sets and G and H are non-complete graphs, the second
nequality follows directly from the first one.

To conclude the proof, we now show that S is feasible. That is, given two adjacent vertices (g, h), (g ′, h′) ∈ S, we prove
hat there exists a third vertex (g ′′, h′′) not in S which is adjacent to both (g, h) and (g ′, h′).

Consider first the case when g ̸= g ′ and h ̸= h′. By the definition of the strong product, gg ′
∈ E(G) and hh′

∈ E(H). We
ow claim that there exist a clique KG of cardinality 2 or 3 as a subgraph of G that contains g , g ′, and a vertex g ′′ (which
ay coincide with g or g ′) not belonging to SG. If both g and g ′ lie in SG, then since SG is feasible, there exists a vertex

′′
̸∈ SG such that g , g ′, and g ′′ induce a clique of order 3. If g ̸∈ SG or g ′

̸∈ SG, then the property trivially holds, since
gg ′

∈ E(G) induces a clique of order 2. We have thus proved that claim, that is, we have a clique KG (of order 3 or 2) with
a vertex g ′′ not in SG. By the commutativity of the strong product, there also exist a clique KH as a subgraph of H that
ontains h, h′, and a vertex h′′ not belonging to SH (which may coincide with h or h′). Since the strong product of KG and
KH induces a clique of G ⊠ H , the vertex (g ′′, h′′) is adjacent to both (g, h) and (g ′, h′). This part of the proof is concluded
by observing that (g ′′, h′′) is not in S.

The second case to consider is when g = g ′ or h = h′, we may without loss of generality assume h = h′. As in the
previous case, there exist a clique KG of cardinality 2 or 3 as a subgraph of G that contains g , g ′, and a vertex g ′′

̸∈ SG
(which may coincide with g or g ′). Concerning H , since h = h′, there exist a clique KH of cardinality 2 or 1 as a subgraph
of H that contains h and a vertex h′′ (which may coincide with h) not belonging to SH . If h ̸∈ SH , then V (KH ) = {h} and
we can set h′′

= h. If h ∈ SH , then given any neighbor h̄ of h, either h̄ ̸∈ SH (so V (KH ) = {h, h̄} and h′′
= h̄) or, since SH is

feasible, there exists h′′
̸∈ SH adjacent to both h and h̄ (so V (KH ) = {h, h′′

}). We can again conclude that (g ′′, h′′) ̸∈ S and
g ′′, h′′) is adjacent to both (g, h) and (g ′, h′). □

Of course, when both G and H are (µ, µt)-graphs that admit feasible µt-sets, the lower bound expressed by Theorem 4.1
an be reformulated as follows:

µ(G ⊠ H) ≥ µt(G ⊠ H) ≥ µ(G)n(H) + µ(H)n(G) − µ(G)µ(H) . (2)

Theorem 4.1 extends to an arbitrary number of factors as follows.

orollary 4.2. Let Hk = G1 ⊠ G2 ⊠ · · · ⊠ Gk, k ≥ 2. If Gi is a non-complete graph that admits a feasible µt-set for each
≤ i ≤ k, then

µt(Hk) ≥

k∏
i=1

n(Gi) −

k∏
i=1

(n(Gi) − µt(Gi)).

roof. For each 1 ≤ i ≤ k, let Xi be a feasible µt(Gi)-set. Let

Sk = (V (G1) × · · · × V (Gk)) \ (X1 × · · · × Xk).

We prove that Sk is a total mutual-visibility set of Hk and proceed by induction on k.
By Theorem 4.1 we get that the assertion holds for k = 2: S2 is a feasible total mutual-visibility set of H2. Let us assume

it is true for Hk, k ≥ 2, and consider Hk+1 = Hk ⊠ Gk+1. By the inductive hypothesis, Sk is a feasible total mutual-visibility
set of Hk. By the proof of Theorem 4.1, Sk+1 is a feasible total mutual-visibility set of Hk+1. Thus

µt(Hk+1) ≥ n(Hk)n(Gk+1) − (n(Hk) − µt(Hk))(n(Gk+1) − µt(Gk+1))

≥ n(Hk)n(Gk+1) −

(
n(Hk) −

(∏k
i=1 n(Gi) −

∏k
i=1(n(Gi) − µt(Gi))

))
(n(Gk+1) − µt(Gk+1))

= n(Hk+1) −

(∏k
i=1(n(Gi) − µt(Gi))

)
(n(Gk+1) − µt(Gk+1))

= n(Hk+1) −
∏k+1

i=1 (n(Gi) − µt(Gi))

nd we are done. □

The following result (cf. Theorem 4.4) shows that there are (µ, µt)-graphs for which the lower bound provided by (2)
oincides with the mutual-visibility number of the strong product. Notice that it concerns the strong product of paths
ith at least three vertices, whereas Theorem 5.4 (cf. Section 5 where strong prisms are considered) will provide the
xact value of µ(P2 ⊠ G) for every block graph G (and hence also µ(P2 ⊠ Pn) with n ≥ 2).
We first recall the following result that uses convex hulls to provide an upper bound to µ(G).
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Fig. 4. Visualization of diagonals as defined in the proof of Theorem 4.4. (Left) In this strong product H2 = P5 ⊠ P6 , the thicker and bolder lines
represent non-degenerated diagonals. (Right) A representation of H3 = P5 ⊠ P6 ⊠ P6 as an ‘‘opaque rectangular cuboid’’ where the position of the
vertex with coordinates (1, 1, 1) is shown. Black vertices represent the elements of set I , that is the starting point of non-degenerate diagonals;
white vertices represent the elements of set D, that is vertices forming degenerated diagonal. All such diagonals cover the whole graph H3 .

Lemma 4.3 ([5, Lemma 2.3]). Given a graph G, let V1, . . . , Vk be subsets of V (G) such that
⋃k

i=1 Vi = V (G). Then, µ(G) ≤∑k
i=1 µ(hull(Vi)).

Theorem 4.4. If Hk = Pn1 ⊠ · · · ⊠ Pnk , where k ≥ 2 and n(Pni ) ≥ 3 for i ∈ [k], then

µ(Hk) =

k∏
i=1

n(Pni ) −

k∏
i=1

(n(Pni ) − 2).

Proof. Let us assume that V (Pni ) = [ni]. Let Xi ⊆ V (Pni ) be the (total) mutual-visibility set of Pni formed by the end-vertices
of the path. Note that Xi is feasible. According to the proof of Corollary 4.2, we get that

Sk = (V (Pn1 ) × · · · × V (Pnk )) \ (Xi × · · · × Xi) (3)

is a total mutual-visibility set of Hk. By the same corollary, we also get the following lower bound:

µ(Hk) ≥ µt(Hk) ≥

k∏
i=1

n(Pni ) −

k∏
i=1

(n(Pni ) − µt(Pni )) =

k∏
i=1

n(Pni ) −

k∏
i=1

(n(Pni ) − 2).

Let the tuple (ℓ1, . . . , ℓk) denote the generic vertex of Hk, where ℓi ∈ [n(Pni )], i ∈ [k]. We define the following two subsets
of V (Hk):

• VInt = {(ℓ1, . . . , ℓk) : ∀ i ∈ [k], ℓi ̸= 1 and ℓi ̸= n(Pni )};
• VExt = {(ℓ1, . . . , ℓk) : ∃ i ∈ [k], ℓi = 1 or ℓi = n(Pni )}.

From these definitions, it can be easily observed that VInt and VExt form a partition of V (Hk). Moreover, according to this
notation, we get the following characterization of the total mutual-visibility set Sk defined in (3):

Sk = VExt. (4)

To prove the upper bound for µ(Hk), we use Lemma 4.3. To this end, we determine the (minimum) number of induced and
convex diagonals which cover all the vertices of Hk. A diagonal is either degenerated or non-degenerated: non-degenerated
diagonals are paths of Hk formed by at least two vertices and having the form ((ℓ1, . . . , ℓk), (ℓ1 + 1, . . . , ℓk + 1), (ℓ1 +

2, . . . , ℓk + 2), . . .), whereas each degenerated diagonal consists of a single vertex. These two kinds of diagonals are
formally defined as follows (see Fig. 4 for two examples):
(i) Each vertex in I = {(ℓ1, . . . , ℓk) : ∃ i ∈ [k], ℓi = 1 and ∀j ∈ [k], ℓj ̸= n(Pnj )} belongs to non-degenerated diagonals. In
particular, each vertex in I is the initial vertex (i.e., one of its end-vertices) of such kind of diagonals.
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Fig. 5. The graph T ⊠ P5 and its mutual-visibility set of cardinality 36.

(ii) If (ℓ1, . . . , ℓk) belongs to a non-degenerated diagonal d, then also its neighbor (ℓ1 + 1, . . . , ℓk + 1) (if it exists in
Hk) belongs to d. This property allows to define non-degenerated diagonals, along all their maximal length, till some
terminating vertex having at least one coordinate ℓi such that ℓi = n(Pni ). We denote by T all the terminating vertices
of non-degenerated diagonals.

iii) The set D = {(ℓ1, . . . , ℓk) : ∃ i, j ∈ [k], ℓi = 1 and ℓj = n(Pnj )} contains all vertices forming degenerated diagonals.

Notice that the non-degenerated diagonals are pairwise vertex disjoint. The requested covering of Hk is given by
ll the maximal non-degenerated diagonals along with all the degenerated diagonals. Now, let X ⊆ V (Hk) be the
et containing the end-vertices of each non-degenerated diagonal and all the vertices forming degenerated diagonals;
ormally, X = I ∪T ∪D. According to Lemma 4.3 we know that µ(Hk) ≤ |X |. By Eq. (4), we complete the proof by showing
that VExt = X .

• Let v = (ℓ1, . . . , ℓk) ∈ VExt. By definition of VExt, there exists a coordinate ℓi of v for which ℓi = 1 or ℓi = n(Pni ). If
ℓi = n(Pni ) = 1, then property (iii) in the definition of diagonals holds. This means that v ∈ D and hence v ∈ X . If
ℓi = 1 and ℓi ̸= n(Pni ) hold, then property (i) in the definition of diagonals holds. This means that v ∈ I and hence
v ∈ X . If ℓi ̸= 1 and ℓi = n(Pni ) hold for each i, then consider the smallest coordinate ℓj of v. According to property
(ii), the vertex v′

= (ℓ1 − (ℓj − 1), . . . , ℓk − (ℓj − 1)) lies in the set I from which a non-degenerated diagonal starts.
This implies that v ∈ T and hence v ∈ X . So, in all cases, we have v ∈ X .

• Let v = (ℓ1, . . . , ℓk) ∈ X . If v ∈ I ∪ T ∪ D, then v ∈ VExt holds by definition of the three sets.

This proves that VExt = X holds. □

It seems worth pointing out that the result of Theorem 4.4 for two- and three-dimensional strong grids reads as follows:

µ(Pn1 ⊠ Pn2 ) = 2n1 + 2n2 − 4 ,

µ(Pn1 ⊠ Pn2 ⊠ Pn3 ) = 2(n1n2 + n1n3 + n2n3) − 4(n1 + n2 + n3) + 8 .

To conclude the analysis, notice there are examples of graphs for which the bound of Theorem 4.1 is not sharp. An
example of this situation is given in Fig. 5.

Let T be the tree obtained from K1,3 by subdividing each of its edges three times. Since both T and P5 admit feasible
µt-sets, Theorem 4.1 implies µ(T ⊠ P5) ≥ µ(P5)n(T ) + µ(T )n(P5) − µ(P5)µ(T ) = 35, but in Fig. 5 we can see a mutual-
visibility set of cardinality 36 found by computer search. This example also shows that even when both factors of a strong
product are (µ, µt)-graphs, their strong product does not achieve the equality in the bound of Theorem 4.1. Note that this
particular example can be generalized to an infinite family of graphs where the difference between the mutual-visibility
number and the bound of the theorem becomes arbitrarily large. This situation also suggests that generalizing Theorem 4.4
(when k = 2) to the strong product of two arbitrary trees might be a challenging problem.
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Corollary 4.5. If G1, . . . ,Gk are non-complete graphs, each containing a universal vertex, then

µt(G1 ⊠ · · · ⊠ Gk) =

k∏
i=1

n(Gi) − 1.

Proof. Observe that if v is a universal vertex of Gi, then V (Gi) \ {v} is a feasible µt-set of Gi. Hence, since each Gi is a
(µ, µt)-graph that admits a feasible µt-set, by Corollary 4.2 we get µt(G1 ⊠ · · · ⊠ Gk) ≥

∏k
i=1 n(Gi) − 1. The claim follows

by simply observing that G1 ⊠ · · · ⊠ Gk is not a clique and hence µ(G1 ⊠ · · · ⊠ Gk) <
∏k

i=1 n(Gi). □

We conclude the section with another lower bound on µ(G⊠H) in terms of the mutual-visibility number of the factors.

Theorem 4.6. If G and H are graphs, then

µ(G ⊠ H) ≥ µ(G)µ(H).

Proof. Let SG be a µ-set of G and SH be a µ-set of H . Then we claim that S = SG × SH is a mutual-visibility set of G ⊠ H .
Let (g, h) and (g ′, h′) be arbitrary two vertices from S. Since g, g ′

∈ SG, there exists a shortest g, g ′-path PG in G such that
no internal vertex of PG is in SG. Let the consecutive vertices of PG be g = g0, g1, . . . , gk = g ′. Similarly, there is a shortest
h, h′-path PH in H such that no internal vertex of PH is in SH . Let the consecutive vertices of PH be h = h0, h1, . . . , hℓ = h′.
Note that it is possible that k = 0 or ℓ = 0 (but not both). Assume without loss of generality that ℓ ≤ k. Then the vertices

(g, h) = (g0, h0), (g1, h1), . . . , (gℓ, hℓ), (gℓ+1, hℓ)), . . . , (gk, hℓ)) = (g ′, h′)

induce a shortest (g, h), (g ′, h′)-path Q in G ⊠ H . Clearly, no internal vertex of Q is in S, hence we conclude that S is a
mutual-visibility set. □

5. Mutual-visibility in strong prisms

In this section we study the mutual-visibility number of strong prisms, that is graphs in the form G ⊠ P2. We begin
with the following general lower bound.

Theorem 5.1. If G is a graph, then µ(G ⊠ P2) ≥ max{n(G), 2µ(G)}.

Proof. Since µ(P2) = 2, by Theorem 4.6 we get µ(G ⊠ P2) ≥ 2µ(G). Assuming V (P2) = {p, q}, we prove the statement by
showing that S = V (G) × {p} is a mutual-visibility set of G ⊠ P2.

Let (g, p) and (g ′, p), with g ̸= g ′, be arbitrary two distinct vertices from S. Consider a shortest g, g ′-path PG in G. Let
the consecutive vertices of PG be g = g0, g1, . . . , gk = g ′. Since g ̸= g ′ we get k ≥ 1. If k = 1, then (g, p) and (g ′, p) are
connected and there is nothing to prove. If k ≥ 2, then the vertices

(g, p) = (g0, p), (g1, q), . . . , (gk−1, q), (gk, p) = (g ′, p)

induce a shortest (g, p), (g ′, p)-path Q in G ⊠ P2. Clearly, no internal vertex of Q is in S, hence we conclude that S is a
mutual-visibility set of G ⊠ P2. □

Theorem 5.1 can be improved for (µ, µt)-graphs as we next show.

Theorem 5.2. If G is a (µ, µt)-graph that admits a feasible µt-set, then µ(G ⊠ P2) ≥ µ(G) + n(G).

Proof. Consider a feasible µt-set (which is also a µ-set) of G and a total mutual-visibility set X for P2 composed by only
one vertex. If G is trivial, then the statement clearly holds, otherwise we can apply the first inequality of Theorem 4.1
and (2) as follows:

µ(G ⊠ P2) ≥ µ(G)n(P2) + |X |n(G) − µ(G)|X |

= µ(G) · 2 + n(G) − µ(G)
= µ(G) + n(G). □

Next we show that the lower bound of Theorem 5.2 is attained by block graphs (in particular non-complete block
graphs, which admit feasible µt-sets). To do so, we need the following lemma.

Lemma 5.3. Let x be a cut-vertex of a graph G. Then there exists a µ-set of G ⊠ P2 which contains at most one copy of x in
the two G-layers.

Proof. Let S be a µ-set of G ⊠ P2 and suppose that x′, x′′
∈ S, where x′ and x′′ are the copies of x in the G-layers. Let H

and H ′ be two components of (G ⊠ P2) − {x′, x′′
}. Then S ∩ V (H) = ∅ or S ∩ V (H ′) = ∅, say S ∩ V (H) = ∅, for otherwise S

is not even a mutual-visibility set. Now the set S ′
= (S ∪ {z}) \ {x′

}, where z is an arbitrary vertex of H , is also a µ-set of

G ⊠ P2. □
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Theorem 5.4. If G is a block graph, then µ(G ⊠ P2) = n(G) + µ(G).

Proof. Let X be the set of the cut-vertices of G. By Lemma 5.3 there exists a µ-set S with at most one copy of each vertex
in X . We show that S includes one copy of any vertex v of G if v is a cut-vertex and two copies of v otherwise. This proves
the statement.

Consider two vertices u, v of the same copy G′ of G and the shortest u, v-path in G. If u and v belong to the same
block then they are adjacent since a block is a clique by definition. Otherwise, consider the shortest u, v-path in G′: it is
unique and passes only through cut-vertices of G′. Since for each vertex in X only one copy is in S, there exists a shortest
u, v-path in G ⊠ P2 without internal vertices in S. Then u and v are X-visible.

Assume that u and v do not belong to the same copy of G. If they belong to two copies of the same block, then they
are adjacent. Otherwise, as above, there exists a shortest u, v-path in G ⊠ P2 passing through copies of cut-vertices of G
and without internal vertices in S. □

We conclude the paper by demonstrating the sharpness of the bound of Theorem 5.1.

Theorem 5.5. If n ≥ 3, then

µ(Cn ⊠ P2) =

⎧⎨⎩
6; n ∈ {3, 4, 5},
7; n = 6,
n; n ≥ 7.

Proof. Recall from [5] that µ(Cn) = 3, n ≥ 3. Hence, Theorem 5.1 implies that µ(Cn ⊠ P2) ≥ 6 when n ≤ 6 and
µ(Cn ⊠ P2) ≥ n for n ≥ 6.

We checked by computer that µ(Cn ⊠ P2) = 6 when n ≤ 5 and µ(C6 ⊠ P2) = 7. Assume in the rest that n > 6 which
means that µ(Cn ⊠ P2) ≥ n. Let S be a µ-set of Cn ⊠ K2. We need to show that |S| ≤ n.

Let v0, v1, . . . , vn−1 and v′

0, v
′

1, . . . , v
′

n−1 be the vertices of the two Cn-layers. Then a pair vi, v
′

i is called a separating
air. S cannot contain three separating pairs since |S| ≥ n ≥ 7 for otherwise a vertex from S which is not in three fixed
eparating pairs cannot be in visibility with all the vertices in the separating pairs. Hence |S| ≤ n+2. If |S| ∈ {n+1, n+2},
then consider one separating pair vj, v

′

j . Then there exist a vertex in {vj−1, v
′

j−1} ∩ S and a vertex in {vj+1, v
′

j+1} ∩ S which
are not S-visible. We conclude that |S| ≤ n. □

6. Concluding remarks and future work

This work suggests some further research directions. We have shown that block graphs and certain cographs are
all (µ, µt)-graphs. Notice that cographs can be generated by using true and false twins, and that block graphs can be
generated by using true twins and pendant vertices. A superclass of both cographs and block graphs is that formed by
distance-hereditary graphs. In fact, these graphs can be generated by using true twins, false twins, and pendant vertices. It
would be interesting to characterize all the distance-hereditary graphs that are (µ, µt)-graphs. We left open the general
question about characterizing the larger class G of graphs formed by (µ, µt)-graphs. In addition, another characterization
that would be of interest concerns finding all graphs G for which µt(G) = 0.

Concerning specific results, in view of Theorem 4.4 (when we consider k = 2), it would be interesting to study µ(T⊠T ′)
for any two trees T and T ′. Also, Theorem 5.2 provides the lower bound µ(G ⊠ P2) ≥ µ(G) + n(G) for each (µ, µt)-graph
G, whereas Theorem 5.4 states that the equality is attained in the case of block graphs. We wonder if this equality holds
for each (µ, µt)-graph.

Another interesting point is studying other possible variations of the general concept of mutual-visibility sets and their
relationships, as well as relationships with the concept of general position sets.

It took a long time before we were able to produce a revised version of the present paper. As we finalize it, we would
just like to add that in the meantime, the concept of total mutual-visibility has already given rise to several further studies,
largely inspired by the original concluding remarks above.
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