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We answer a 15-year-old open question about the exact upper bound for bivariate copulas 
with a given diagonal section by giving an explicit formula for this bound. As an application, 
we determine the maximal asymmetry of bivariate copulas with a given diagonal section and 
construct a copula that attains it. We derive a formula for the maximal asymmetry that is simple 
enough to be used by practitioners.

1. Introduction

In recent years there has been a lot of interest in determining exact upper and lower bounds for sets of copulas satisfying some 
additional conditions. The main motivation for these studies are practical applications in situations where the exact joint distribution 
of studied random variables is unknown, and only partial information is available. Through Sklar’s theorem this partial information 
can usually be translated into conditions for the corresponding copulas. In this case, having tight bounds for the set of all admissible 
copulas allows one to make better estimations of the quantities of interest.

A particular example of the above is the situation when we prescribe the values of copulas on a given subset 𝑆 of the unit box. 
Standard cases for the set 𝑆 that have been considered in the literature include a finite set of points, a vertical or horizontal section, 
the main or opposite diagonal, a curvilinear section, a track, or a general compact set.

Exact upper and lower bounds for bivariate copulas with prescribed value at a single point are given in [19, Theorem 3.2.3]. 
In the multivariate setting these bounds were studied in [25] and finally determined in [14]. For copulas with prescribed values at 
more than one point see [18,4,14].

Bivariate copulas with prescribed diagonal section 𝛿 were first studied by Bertino [1], and later by Fredricks and Nelsen [9]. The 
exact lower bound for such copulas is given in [10] and it is the Bertino copula. In [21, Theorems 20 and 32] an upper bound is 
provided which is exact in some special cases. An example is also given which shows that this bound is not exact in general. The 
exact upper bound for all bivariate copulas with a given diagonal section is still an open question which we settle in this paper.

Diagonal sections of multivariate copulas were investigated in [2,13]. Bivariate copulas with prescribed opposite diagonal sections 
were considered in [3]. In [27] the authors study bounds for copulas with prescribed curvilinear sections. For more information on 
these results we refer the reader to a review paper [8]. Copulas with prescribed vertical or horizontal section are investigated in [6], 
while tracks of copulas are considered in [11]. Some results on copulas with prescribed values on general compact sets can be found 
in [17].

The main goal of this paper is to answer an open question of the exact upper bound for bivariate copulas with a given diagonal 
section (see [21]) by giving an explicit formula for this bound. We achieve this by constructing a new copula with prescribed diagonal 
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section, which attains the bound on the entire upper-left triangle of the unit square. We also answer the question posed in [21], for 
which diagonal sections this exact bound is a copula.

As an application of our main result, we determine the maximal asymmetry of bivariate copulas with a given diagonal section and 
construct a copula that attains it. In order to achieve this, we rely heavily on the formulas for the exact upper and lower bounds for 
copulas with a given diagonal section. We simplify originally complicated optimization problem of finding the maximal asymmetry 
on non-tangible, partly unknown domain to simpler optimization problems on compact intervals or the upper-left triangle of the unit 
square. In particular, we give explicit formulas to calculate the maximal asymmetry value, which should be simple enough to be used 
in practice. We also give some examples to illustrate our formulas.

The asymmetry, also known as the degree of non-exchangeability, is important in practice, as it is often the case that the data sets 
exhibit asymmetric properties [12]. To choose an appropriate family of copulas to model the data, it is advantageous to examine the 
asymmetry of copulas. The asymmetry of copulas has been extensively studied, see for example [15,23,7,16].

This paper is structured as follows. In Section 2 we give the necessary definitions and recall some known results on copulas with 
prescribed diagonal section. In Section 3 we determine the exact upper bound of all such copulas, and in Section 4 we apply our 
results to calculate their maximal asymmetry.

2. Preliminaries

Throughout the paper we shall denote the unit interval by 𝕀 = [0, 1]. We will use the terms increasing to mean non-decreasing and 
decreasing to mean non-increasing.

Definition 2.1. Let 𝐶 ∶ 𝕀2 → 𝕀 be a bivariate function. Then

(i) 𝐶 is grounded if 𝐶(𝑥, 0) = 𝐶(0, 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝕀;
(ii) 𝐶 has uniform marginals if 𝐶(𝑥, 1) = 𝑥 and 𝐶(1, 𝑦) = 𝑦 for all 𝑥, 𝑦 ∈ 𝕀;

(iii) 𝐶 is 2-increasing if for any rectangle 𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑] ⊆ 𝕀2 it holds that

V𝐶 (𝑅) = 𝐶(𝑏, 𝑑) + 𝐶(𝑎, 𝑐) − 𝐶(𝑏, 𝑐) − 𝐶(𝑎, 𝑑) ⩾ 0.

Definition 2.2. A bivariate function 𝐶 ∶ 𝕀2 → 𝕀 is called

(i) a copula if it is grounded, has uniform marginals and is 2-increasing;
(ii) a quasi-copula if it is grounded, has uniform marginals, is increasing in each variable, and 1-Lipschitz.

We denote by  the set of all copulas and by  the set of all quasi-copulas. Set  is a subset of  and set  is closed under taking 
arbitrary point-wise infima and suprema, i.e., it is a complete lattice, see [20,22]. If 𝐶 is a copula or a quasi-copula we denote by 𝛿𝐶

its diagonal section, i.e., a function 𝛿𝐶 (𝑥) = 𝐶(𝑥, 𝑥), and by 𝐶𝑡 its transpose, i.e., copula or quasi-copula 𝐶𝑡(𝑥, 𝑦) = 𝐶(𝑦, 𝑥).
We have the following characterization of diagonal sections (for copulas see [9], the proof for quasi-copulas is the same).

Proposition 2.3. For a function 𝛿∶ 𝕀 → 𝕀 the following conditions are equivalent:

(𝑖) 𝛿 is a diagonal section of some copula,

(𝑖𝑖) 𝛿 is a diagonal section of some quasi-copula,

(𝑖𝑖𝑖) 𝛿 satisfies the conditions

(𝑎) 𝛿(𝑥) ⩽ 𝑥 for all 𝑥 ∈ 𝕀,
(𝑏) 0 ⩽ 𝛿(𝑦) − 𝛿(𝑥) ⩽ 2(𝑦 − 𝑥) for all 𝑥, 𝑦 ∈ 𝕀 such that 𝑥 ⩽ 𝑦, and

(𝑐) 𝛿(1) = 1.

For any diagonal section 𝛿 we denote by 𝛿∶ 𝕀 → 𝕀 the function defined by 𝛿(𝑥) = 𝑥 − 𝛿(𝑥). The function 𝛿 is 1-Lipschitz, since, by 
Proposition 2.3 (𝑖𝑖𝑖)(𝑏), we have for any 𝑥, 𝑦 ∈ 𝕀 with 𝑦 ⩾ 𝑥

𝛿(𝑦) − 𝛿(𝑥) = (𝑦 − 𝑥) − (𝛿(𝑦) − 𝛿(𝑥)) ⩽ 𝑦 − 𝑥

and

𝛿(𝑦) − 𝛿(𝑥) = (𝑦 − 𝑥) − (𝛿(𝑦) − 𝛿(𝑥)) ⩾ 𝑦 − 𝑥 − 2(𝑦 − 𝑥) = 𝑥 − 𝑦.

This fact will be often used in our proofs. A similar argument as above shows that the difference of two increasing 1-Lipschitz 
functions is also 1-Lipschitz.

Definition 2.4. For any copula or quasi-copula 𝐶 its asymmetry is defined as the supremum norm of the difference 𝐶 − 𝐶𝑡, i.e.,{ }

2

𝜇(𝐶) = max |𝐶(𝑥, 𝑦) − 𝐶(𝑦, 𝑥)|∶ 𝑥, 𝑦 ∈ 𝕀 .



Fuzzy Sets and Systems 480 (2024) 108865D. Kokol Bukovšek, B. Mojškerc and N. Stopar

The asymmetry of any copula 𝐶 lies in the interval [0, 13 ], see [15,23]. If 𝜇(𝐶) = 0, then 𝐶 = 𝐶𝑡 and 𝐶 is called symmetric.

Definition 2.5. For a diagonal section 𝛿 define functions 𝐴𝛿, 𝐵𝛿, 𝐶𝛿, 𝐶𝛿, 𝐾𝛿 ∶ 𝕀2 → 𝕀 by

(i) 𝐴𝛿(𝑥, 𝑦) = sup{𝑄(𝑥, 𝑦)∶ 𝑄 ∈, 𝛿𝑄 = 𝛿},
(ii) 𝐵𝛿(𝑥, 𝑦) = inf{𝑄(𝑥, 𝑦)∶ 𝑄 ∈, 𝛿𝑄 = 𝛿},

(iii) 𝐶𝛿(𝑥, 𝑦) = sup{𝐶(𝑥, 𝑦)∶ 𝐶 ∈ , 𝛿𝐶 = 𝛿},
(iv) 𝐶𝛿(𝑥, 𝑦) = inf{𝐶(𝑥, 𝑦)∶ 𝐶 ∈ , 𝛿𝐶 = 𝛿},
(v) 𝐾𝛿(𝑥, 𝑦) = sup{𝐶(𝑥, 𝑦)∶ 𝐶 ∈ , 𝐶𝑡 = 𝐶, 𝛿𝐶 = 𝛿}.

There exist explicit formulas for four of these functions, which we now recall. The formula for the remaining one will be given in 
our Theorem 3.6. For any 𝑥, 𝑦 ∈ 𝕀 we will sometimes denote 𝑥 ∧ 𝑦 =min{𝑥, 𝑦} and 𝑥 ∨ 𝑦 =max{𝑥, 𝑦}.

Theorem 2.6 ([20,9]). For a diagonal section 𝛿 we have

(𝑖) 𝐴𝛿(𝑥, 𝑦) =min
{

𝑥, 𝑦, max{𝑥, 𝑦} − max
𝑡∈[𝑥∧𝑦,𝑥∨𝑦]

𝛿(𝑡)
}

,

(𝑖𝑖) 𝐵𝛿(𝑥, 𝑦) = 𝐶𝛿(𝑥, 𝑦) =min{𝑥, 𝑦} − min
𝑡∈[𝑥∧𝑦,𝑥∨𝑦]

𝛿(𝑡),

(𝑖𝑖𝑖) 𝐾𝛿(𝑥, 𝑦) =min
{

𝑥, 𝑦, 1
2
(

𝛿(𝑥) + 𝛿(𝑦)
)}

.

Functions 𝐴𝛿, 𝐵𝛿, 𝐶𝛿, 𝐶𝛿, 𝐾𝛿 are all quasi-copulas, since they are infima or suprema of quasi-copulas. It turns out that functions 
𝐵𝛿 and 𝐾𝛿 are always copulas, see [20,9].

The copula 𝐵𝛿 is called Bertino copula and it is always singular. The authors in [10] describe its support. They define a function 
ℎ𝛿 ∶ 𝕀 → 𝕀 by

ℎ𝛿(𝑥) = max{𝑦 ∈ 𝕀∶ 𝑦 ⩾ 𝑥, 𝛿(𝑡) ⩾ 𝛿(𝑥) for all 𝑡 ∈ [𝑥, 𝑦]}. (1)

Note that the maximum is attained since 𝛿 is continuous. The function ℎ𝛿 is strictly decreasing on every interval where 𝛿 is strictly 
increasing, ℎ𝛿 is constant on every interval where 𝛿 is constant, ℎ𝛿 is an identity on every open interval where 𝛿 is strictly 
decreasing, see [10]. In addition, since 𝛿 is continuous, 𝛿(ℎ𝛿(𝑥)) = 𝛿(𝑥) and ℎ𝛿(ℎ𝛿(𝑥)) = ℎ𝛿(𝑥) for all 𝑥 ∈ 𝕀. Furthermore, ℎ𝛿 is 
upper-semicontinuous, i.e., for every 𝑥 ∈ 𝕀 we have lim sup𝑢→𝑥 ℎ𝛿(𝑢) ⩽ ℎ𝛿(𝑥). Indeed, we have

lim sup
𝑢→𝑥

ℎ𝛿(𝑢) ⩾ lim sup
𝑢→𝑥

𝑢 = 𝑥.

If lim sup𝑢→𝑥 ℎ𝛿(𝑢) = 𝑥, then lim sup𝑢→𝑥 ℎ𝛿(𝑢) ⩽ ℎ𝛿(𝑥) by definition and the claim holds. Otherwise, let 𝑡 ∈ (𝑥, lim sup𝑢→𝑥 ℎ𝛿(𝑢)). There 
exists a sequence 𝑢𝑖 ∈ 𝕀 such that lim𝑖→∞ 𝑢𝑖 = 𝑥 and lim𝑖→∞ ℎ𝛿(𝑢𝑖) = limsup𝑢→𝑥 ℎ𝛿(𝑢). Then 𝑢𝑖 < 𝑡 < ℎ𝛿(𝑢𝑖) for 𝑖 sufficiently large, so 
that 𝛿(𝑡) ⩾ 𝛿(𝑢𝑖) by (1). Taking the limit as 𝑖 goes to ∞ gives 𝛿(𝑡) ⩾ 𝛿(𝑥). Since also

𝛿(limsup
𝑢→𝑥

ℎ𝛿(𝑢)) = limsup
𝑢→𝑥

𝛿(ℎ𝛿(𝑢)) = limsup
𝑢→𝑥

𝛿(𝑢) = 𝛿(𝑥),

we have 𝛿(𝑡) ⩾ 𝛿(𝑥) for all 𝑡 ∈ [𝑥, lim sup𝑢→𝑥 ℎ𝛿(𝑢)], which implies lim sup𝑢→𝑥 ℎ𝛿(𝑢) ⩽ ℎ𝛿(𝑥) and the claim is proved.

Theorem 2.7 ([10]). For a diagonal section 𝛿 the support of the Bertino copula 𝐵𝛿 is the smallest closed set which is symmetric with 
respect to the main diagonal and contains the continuous, strictly decreasing parts of the graph of function ℎ𝛿 , and the closure of the set 
{(𝑥, 𝑥) ∈ 𝕀2 ∶ 𝛿′(𝑥) ≠ ±1}.

We now recall the definition of total variation.

Definition 2.8. For a function 𝑓 ∶ 𝕀 →ℝ and 0 ⩽ 𝑥 ⩽ 𝑦 ⩽ 1 the total variation of 𝑓 on [𝑥, 𝑦] is defined by

TV𝑦
𝑥(𝑓 ) = sup

{
𝑛∑

𝑖=1
|𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖−1)|∶ 𝑥 = 𝑥0 < 𝑥1 < … < 𝑥𝑛 = 𝑦, 𝑛 ∈ ℕ ∪ {0}

}
.

For convenience we extend the definition of TV𝑦
𝑥(𝑓 ) to the case when 𝑦 < 𝑥 by letting TV𝑦

𝑥(𝑓 ) = −TV𝑥
𝑦(𝑓 ). If TV

1
0(𝑓 ) is finite 

then TV𝑦
𝑥(𝑓 ) = TV𝑦

0(𝑓 ) −TV𝑥
0(𝑓 ) for any 𝑥, 𝑦 ∈ 𝕀. For a 1-Lipschitz function 𝑓 we have |TV𝑦

𝑥(𝑓 )| ⩽ |𝑦 − 𝑥|, in particular, the function 
𝑥 ↦ TV𝑥

0(𝑓 ) is 1-Lipschitz and increasing as a function 𝕀 → ℝ. For any absolutely continuous function 𝑓 , in particular, for any 
3

1-Lipschitz function, the following formula holds [26, Theorem 7.31]:
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Fig. 1. Two subsequences of the sequence 𝑥 = 𝑥0 < 𝑥1 < … < 𝑥𝑛 = 𝑦 approximating the total variation of 𝛿 on [𝑥, 𝑦] in the proof of Proposition 3.1.

TV𝑦
𝑥(𝑓 ) =

𝑦

∫
𝑥

|𝑓 ′(𝑡)|𝑑𝑡. (2)

3. Copulas with prescribed diagonal section

We first prove a new upper bound for all copulas with prescribed diagonal section. Later we will prove that it is exact.

Proposition 3.1. Let 𝛿 be a diagonal section and let 𝐶 ∈  be any copula with 𝛿𝐶 = 𝛿. Then for every 𝑥, 𝑦 ∈ 𝕀 it holds that

𝐶(𝑥, 𝑦) ⩽min
{

𝑥, 𝑦,max{𝑥, 𝑦} − 1
2

(
𝛿(𝑥) + 𝛿(𝑦) + TV𝑥∨𝑦

𝑥∧𝑦(𝛿)
)}

. (3)

Remark 3.2. The intuition behind the bound in (3) is as follows. In [21, Theorem 32] it is proved that quasi-copula 𝐴𝛿 is the exact 
upper bound for copulas with prescribed diagonal section 𝛿 in the case 𝛿 is a simple diagonal section. Recall that a diagonal section 
𝛿 is called simple if there exists 𝑡0 ∈ 𝕀 such that 𝛿 is increasing on [0, 𝑡0] and decreasing on [𝑡0, 1], i.e., 𝛿 is unimodal. Next step is to 
consider bimodal 𝛿. It turns out that in this case the combination of values of 𝛿 at its three local extrema plays an important role, 
where the signs in the combination alternate. This hints at the total variation of 𝛿.

Proof of Proposition 3.1. We choose any 𝑥, 𝑦 ∈ 𝕀 with 𝑥 ⩽ 𝑦 and let 𝜀 > 0. By definition of TV𝑦
𝑥, there exists a sequence of points 

𝑥 = 𝑥0 < 𝑥1 < … < 𝑥𝑛 = 𝑦 such that

𝑛∑
𝑖=1

|𝛿(𝑥𝑖) − 𝛿(𝑥𝑖−1)| ⩾ TV𝑦
𝑥(𝛿) − 𝜀. (4)

Notice that as soon as 𝛿(𝑥𝑖−1) ⩽ 𝛿(𝑥𝑖) ⩽ 𝛿(𝑥𝑖+1) the point 𝑥𝑖 can be omitted from the partition while the sum in (4) remains the same. 
The same is true if 𝛿(𝑥𝑖−1) ⩾ 𝛿(𝑥𝑖) ⩾ 𝛿(𝑥𝑖+1). So we want to find two subsequences 𝑥 = 𝑠0 ⩽ 𝑡1 ⩽ 𝑠1 ⩽ 𝑡2 ⩽ 𝑠2 ⩽… ⩽ 𝑠𝑚−1 ⩽ 𝑡𝑚 ⩽ 𝑠𝑚 = 𝑦
of the sequence 𝑥 = 𝑥0 < 𝑥1 < … < 𝑥𝑛 = 𝑦 so that

𝛿(𝑠𝑘) ⩽ 𝛿(𝑡𝑘) and 𝛿(𝑠𝑘−1) ⩽ 𝛿(𝑡𝑘) for all 1 ⩽ 𝑘 ⩽ 𝑚, (5)

as demonstrated by example in Fig. 1.
Define

𝑗0 =0, 𝑠0 =𝑥0 = 𝑥,

𝐴1 = {𝑖 ∈ℕ∶ 1 ⩽ 𝑖 ⩽ 𝑛, 𝛿(𝑥𝑖) − 𝛿(𝑥𝑖−1) < 0}, if 𝐴1 ≠ ∅, 𝑖1 =min𝐴1 − 1, 𝑡1 =𝑥𝑖1
,

𝐵1 = {𝑖 ∈ℕ∶ 𝑖1 + 1 ⩽ 𝑖 ⩽ 𝑛, 𝛿(𝑥𝑖) − 𝛿(𝑥𝑖−1) > 0}, if 𝐵1 ≠ ∅, 𝑗1 =min𝐵1 − 1, 𝑠1 =𝑥𝑗1
,

⋮ ⋮ ⋮ ⋮

𝐴𝑘 = {𝑖 ∈ℕ∶ 𝑗𝑘−1 + 1 ⩽ 𝑖 ⩽ 𝑛, 𝛿(𝑥𝑖) − 𝛿(𝑥𝑖−1) < 0}, if 𝐴𝑘 ≠ ∅, 𝑖𝑘 =min𝐴𝑘 − 1, 𝑡𝑘 =𝑥𝑖𝑘
,

𝐵𝑘 = {𝑖 ∈ℕ∶ 𝑖𝑘 + 1 ⩽ 𝑖 ⩽ 𝑛, 𝛿(𝑥𝑖) − 𝛿(𝑥𝑖−1) > 0}, if 𝐵𝑘 ≠ ∅, 𝑗𝑘 =min𝐵𝑘 − 1, 𝑠𝑘 =𝑥𝑗𝑘
.

Let 𝑚 be the first index such that either 𝐴𝑚 = ∅ or 𝐵𝑚 = ∅. If 𝐴𝑚 = ∅ then we take 𝑡𝑚 = 𝑠𝑚 = 𝑥𝑛 = 𝑦 and 𝑖𝑚 = 𝑗𝑚 = 𝑛. Else if 𝐵𝑚 = ∅
we have 𝑡𝑚 already defined and we take 𝑠𝑚 = 𝑥𝑛 = 𝑦 and 𝑗𝑚 = 𝑛. In particular, if the last non-constant step of 𝛿 is upwards, then 
𝑡𝑚 = 𝑠𝑚, and if the first non-constant step of 𝛿 is downwards, then 𝑠0 = 𝑡1. If 𝛿 is constant on {𝑥𝑖 ∶ 𝑖 = 0, 1, … , 𝑛}, then 𝑚 = 1, 𝑠0 = 𝑥
4

and 𝑡1 = 𝑠1 = 𝑦.
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Fig. 2. Disjoint unions of boxes used in the derivation of inequalities (7) and (9).

We have

𝛿(𝑡𝑘) − 𝛿(𝑠𝑘−1) =
𝑖𝑘∑

𝑖=𝑗𝑘−1+1
|𝛿(𝑥𝑖) − 𝛿(𝑥𝑖−1)| and 𝛿(𝑡𝑘) − 𝛿(𝑠𝑘) =

𝑗𝑘∑
𝑖=𝑖𝑘+1

|𝛿(𝑥𝑖) − 𝛿(𝑥𝑖−1)|
for all 1 ⩽ 𝑘 ⩽ 𝑚, which implies

𝑚∑
𝑘=1

(
𝛿(𝑡𝑘) − 𝛿(𝑠𝑘−1)

)
+

𝑚∑
𝑘=1

(
𝛿(𝑡𝑘) − 𝛿(𝑠𝑘)

)
=

𝑛∑
𝑖=1

|𝛿(𝑥𝑖) − 𝛿(𝑥𝑖−1)|. (6)

We now estimate the value of a copula 𝐶 at the point (𝑥, 𝑦) as follows. From the positivity of volumes of rectangles depicted in Fig. 2
(left) we obtain

0 ⩽V𝐶 ([𝑥, 𝑡1] × [0, 𝑦]) +
𝑚−1∑
𝑘=1

V𝐶 ([𝑡𝑘, 𝑡𝑘+1] × [𝑡𝑘, 𝑦]) + V𝐶 ([𝑡𝑚,1] × [𝑡𝑚, 𝑦]) (7)

= 𝐶(𝑡1, 𝑦) − 𝐶(𝑥, 𝑦) +
𝑚−1∑
𝑘=1

(
𝐶(𝑡𝑘+1, 𝑦) + 𝛿(𝑡𝑘) − 𝐶(𝑡𝑘+1, 𝑡𝑘) − 𝐶(𝑡𝑘, 𝑦)

)
+ 𝑦 + 𝛿(𝑡𝑚) − 𝑡𝑚 − 𝐶(𝑡𝑚, 𝑦)

= −𝐶(𝑥, 𝑦) +
𝑚∑

𝑘=1
𝛿(𝑡𝑘) −

𝑚−1∑
𝑘=1

𝐶(𝑡𝑘+1, 𝑡𝑘) + 𝑦 − 𝑡𝑚,

so

𝐶(𝑥, 𝑦) ⩽
𝑚∑

𝑘=1
𝛿(𝑡𝑘) −

𝑚−1∑
𝑘=1

𝐶(𝑡𝑘+1, 𝑡𝑘) + 𝑦 − 𝑡𝑚. (8)

Furthermore, for every 𝑘 = 1, 2, … , 𝑚 − 1 the positivity of volumes of rectangles depicted in Fig. 2 (right) implies

0 ⩽V𝐶 ([𝑠𝑘, 𝑡𝑘+1] × [0, 𝑠𝑘]) + V𝐶 ([𝑡𝑘+1,1] × [𝑡𝑘, 𝑠𝑘]) (9)

= 𝐶(𝑡𝑘+1, 𝑠𝑘) − 𝛿(𝑠𝑘) + 𝑠𝑘 + 𝐶(𝑡𝑘+1, 𝑡𝑘) − 𝑡𝑘 − 𝐶(𝑡𝑘+1, 𝑠𝑘)

= 𝛿(𝑠𝑘) + 𝐶(𝑡𝑘+1, 𝑡𝑘) − 𝑡𝑘,

so 𝐶(𝑡𝑘+1, 𝑡𝑘) ⩾ 𝑡𝑘 − 𝛿(𝑠𝑘). It follows from inequality (8) that

𝐶(𝑥, 𝑦) ⩽
𝑚∑

𝑘=1
𝛿(𝑡𝑘) −

𝑚−1∑
𝑘=1

𝐶(𝑡𝑘+1, 𝑡𝑘) + 𝑦 − 𝑡𝑚

⩽
𝑚∑

𝑘=1
𝛿(𝑡𝑘) −

𝑚−1∑
𝑘=1

(
𝑡𝑘 − 𝛿(𝑠𝑘)

)
+ 𝑦 − 𝑡𝑚

=
𝑚∑

𝑘=1
𝛿(𝑡𝑘) −

𝑚∑
𝑘=1

𝑡𝑘 +
𝑚−1∑
𝑘=1

𝛿(𝑠𝑘) + 𝑦 = 𝑦 −
𝑚∑

𝑘=1
𝛿(𝑡𝑘) +

𝑚−1∑
𝑘=1

𝛿(𝑠𝑘)

(10)
5

and by rearranging the terms we obtain
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𝐶(𝑥, 𝑦) ⩽ 𝑦 − 1
2

(
𝛿(𝑥) + 𝛿(𝑦) − 𝛿(𝑠0) − 𝛿(𝑠𝑚) + 2

𝑚∑
𝑘=1

𝛿(𝑡𝑘) − 2
𝑚−1∑
𝑘=1

𝛿(𝑠𝑘)

)

= 𝑦 − 1
2

(
𝛿(𝑥) + 𝛿(𝑦) +

𝑚∑
𝑘=1

(
𝛿(𝑡𝑘) − 𝛿(𝑠𝑘−1)

)
+

𝑚∑
𝑘=1

(
𝛿(𝑡𝑘) − 𝛿(𝑠𝑘)

))

= 𝑦 − 1
2

(
𝛿(𝑥) + 𝛿(𝑦) +

𝑛∑
𝑖=1

|𝛿(𝑥𝑖) − 𝛿(𝑥𝑖−1)|)

⩽ 𝑦 − 1
2

(
𝛿(𝑥) + 𝛿(𝑦) + TV𝑦

𝑥(𝛿)
)
+ 𝜀

2
,

where the last equality and inequality follow from (6) and (4). We remark that the proof works also if 𝑚 = 1, in which case some of 
the sums in the above calculations are empty and should be understood as 0.

By sending 𝜀 to 0, we obtain

𝐶(𝑥, 𝑦) ⩽ 𝑦 − 1
2

(
𝛿(𝑥) + 𝛿(𝑦) + TV𝑦

𝑥(𝛿)
)
=max{𝑥, 𝑦} − 1

2

(
𝛿(𝑥) + 𝛿(𝑦) + TV𝑥∨𝑦

𝑥∧𝑦(𝛿)
)

.

In addition, 𝐶(𝑥, 𝑦) ⩽min{𝑥, 𝑦} since 𝐶 is a copula. It follows that the inequality (3) holds for any 𝑥 ⩽ 𝑦. If 𝑥 ⩾ 𝑦 then 𝐶(𝑥, 𝑦) = 𝐶𝑡(𝑦, 𝑥)
and the same conclusion follows since the right hand side of (3) is symmetric in 𝑥 and 𝑦. □

For an interested reader we remark that the inequality

𝐶(𝑥, 𝑦) ⩽
𝑚∑

𝑘=1
𝛿(𝑡𝑘) −

𝑚−1∑
𝑘=1

𝛿(𝑠𝑘) −
𝑚∑

𝑘=1
𝑡𝑘 +

𝑚−1∑
𝑘=1

𝑠𝑘 + 𝑦,

which is equivalent to inequality (10), can also be obtained directly if we apply the theory of volumes of (formal) disjoint unions 
of rectangles and multiplicities of their vertices developed in [24]. To this end one just needs to combine the rectangles depicted in 
Fig. 2 left with rectangles depicted in Fig. 2 right for all 𝑘 ∈ {1, 2, … , 𝑚 − 1}, and calculate the 𝐶 -volume of the so obtained formal 
disjoint union of rectangles. Since 𝐶 is a copula, this volume must be non-negative, which gives the above inequality (see [24] for 
details).

For a fixed diagonal section 𝛿 define an auxiliary function 𝑓 𝛿 ∶ 𝕀2 →ℝ with

𝑓 𝛿(𝑥, 𝑦) = 𝑦 − 1
2
(

𝛿(𝑥) + 𝛿(𝑦) + TV𝑦
𝑥(𝛿)

)
, (11)

which we will often use in the proofs. As we will see, the function 𝑓 𝛿 is non-zero, non-negative, has all 𝑓 𝛿 -volumes zero, but it is not 
grounded.

Next we show that the bound obtained in Proposition 3.1 is attained by a copula for any point of the upper-left triangle of the 
unit square.

Theorem 3.3. For any diagonal section 𝛿 the function 𝑈𝛿 ∶ 𝕀2 → 𝕀 defined by

𝑈𝛿(𝑥, 𝑦) = min
{

𝑥, 𝑦, 𝑦 − 1
2

(
𝛿(𝑥) + 𝛿(𝑦) + TV𝑦

𝑥(𝛿)
)}

is a copula with diagonal section 𝛿.

Proof. Note that 𝑈𝛿(𝑥, 𝑦) =min{𝑥, 𝑦, 𝑓 𝛿(𝑥, 𝑦)}. Rewrite function 𝑓 𝛿 as a sum of two univariate functions 𝑓 𝛿
1 , 𝑓 𝛿

2 ∶ 𝕀 →ℝ as follows

𝑓 𝛿(𝑥, 𝑦) = 𝑦 − 1
2

𝛿(𝑥) − 1
2

𝛿(𝑦) − 1
2
TV𝑦

0(𝛿) +
1
2
TV𝑥

0(𝛿)

=
(
−1
2

𝛿(𝑥) + 1
2
TV𝑥

0(𝛿)
)
+
(

𝑦 − 1
2

𝛿(𝑦) − 1
2
TV𝑦

0(𝛿)
)
= 𝑓 𝛿

1 (𝑥) + 𝑓 𝛿
2 (𝑦),

where

𝑓 𝛿
1 (𝑥) = −1

2
𝛿(𝑥) + 1

2
TV𝑥

0(𝛿) and 𝑓 𝛿
2 (𝑦) = 𝑦 − 1

2
𝛿(𝑦) − 1

2
TV𝑦

0(𝛿).

Now take an arbitrary rectangle 𝑅 = [𝑎, 𝑏] ×[𝑐, 𝑑] ⊆ 𝕀2 and calculate V𝑓 𝛿 (𝑅). Using 𝑓 𝛿(𝑥, 𝑦) = 𝑓 𝛿
1 (𝑥) +𝑓 𝛿

2 (𝑦), it holds that V𝑓 𝛿 (𝑅) =
0. Since 𝑅 is arbitrary, the function 𝑓 𝛿 is 2-increasing.

Next we show that the functions 𝑓 𝛿
1 and 𝑓 𝛿

2 are increasing and 1-Lipschitz. Choose 𝑥1, 𝑥2 ∈ 𝕀 with 𝑥1 ⩽ 𝑥2. Then( )

6

𝑓 𝛿
1 (𝑥2) − 𝑓 𝛿

1 (𝑥1) =
1
2

TV𝑥2
𝑥1
(𝛿) − (𝛿(𝑥2) − 𝛿(𝑥1)) ⩾ 0,
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hence 𝑓 𝛿
1 is increasing. Note also that TV𝑥

0(𝛿) and 𝛿(𝑥) are both 1-Lipschitz, so their difference is 2-Lipschitz, and if we apply 
multiplication with 12 , we get that 𝑓 𝛿

1 is 1-Lipschitz, as required. To show that 𝑓 𝛿
2 is increasing, first choose 𝑦1, 𝑦2 ∈ 𝕀 with 𝑦1 ⩽ 𝑦2. 

Then, using the fact that TV𝑦
0(𝛿) and 𝛿(𝑦) are 1-Lipschitz, we get

𝑓 𝛿
2 (𝑦2) − 𝑓 𝛿

2 (𝑦1) =
1
2
(
(𝑦2 − 𝑦1) − TV𝑦2

𝑦1
(𝛿)

)
+ 1

2
(
(𝑦2 − 𝑦1) − (𝛿(𝑦2) − 𝛿(𝑦1))

)
⩾ 0,

hence 𝑓 𝛿
2 is increasing. To show that 𝑓 𝛿

2 is 1-Lipschitz, we use the fact that 𝑓 𝛿
2 can be written as a difference of two increasing 

1-Lipschitz functions 𝑦 and 12 (𝛿(𝑦) +TV𝑦
0(𝛿)). Since 𝑓 𝛿 is 2-increasing, increasing in each variable, and 1-Lipschitz, we may apply [5, 

Lemma 3.1] to conclude that 𝑈𝛿(𝑥, 𝑦) =min{𝑥, 𝑦, 𝑓 𝛿(𝑥, 𝑦)} is 2-increasing.
Since 𝑓 𝛿

1 (0) = 𝑓 𝛿
2 (0) = 0 and functions 𝑓 𝛿

1 , 𝑓 𝛿
2 are increasing, they are non-negative. It follows that 𝑈𝛿(𝑥, 𝑦) = min{𝑥, 𝑦, 𝑓 𝛿

1 (𝑥) +
𝑓 𝛿
2 (𝑦)} is grounded. Similarly, using

𝑓 𝛿(1, 𝑦) = 𝑦 − 1
2

𝛿(𝑦) + 1
2
TV1

𝑦(𝛿) = 𝑦 + 1
2
(
TV1

𝑦(𝛿) − (𝛿(𝑦) − 𝛿(1))
)
⩾ 𝑦,

𝑓 𝛿(𝑥,1) = 1 − 1
2

𝛿(𝑥) − 1
2
TV1

𝑥(𝛿) = 𝑥 + 1
2
(
1 − 𝑥 − 𝛿(𝑥)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

⩾ 0

)
+ 1

2
(
1 − 𝑥 − TV1

𝑥(𝛿)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

⩾ 0

)
⩾ 𝑥,

we see that 𝑈𝛿 has uniform marginals. Groundedness, 2-increasingness, and uniform marginals of 𝑈𝛿 imply that 𝑈𝛿 is a copula.
Finally, using

𝑈𝛿(𝑥, 𝑥) = min
{

𝑥, 𝑥, 𝑥 − 1
2
(

𝛿(𝑥) + 𝛿(𝑥) + TV𝑥
𝑥(𝛿)

)}
=min{𝑥, 𝛿(𝑥)} = 𝛿(𝑥),

we see that the diagonal section of 𝑈𝛿 is equal to 𝛿. □

For any diagonal section 𝛿, using the function 𝑓 𝛿 defined in (11), we introduce the sets

𝐷◦
𝑓 (𝛿) = {(𝑥, 𝑦) ∈ 𝕀2 ∶ 𝑓 𝛿(𝑥, 𝑦) < min{𝑥, 𝑦}}

and

𝐷𝑓 (𝛿) = 𝐷◦
𝑓
(𝛿) ∪ {(𝑥, 𝑥) ∈ 𝕀2 ∶ 𝑥 ∈ 𝕀},

𝐷𝑥(𝛿) = {(𝑥, 𝑦) ∈ 𝕀2 ∶ 𝑥 ⩽ 𝑦, 𝑥 ⩽ 𝑓 𝛿(𝑥, 𝑦)},

𝐷𝑦(𝛿) = {(𝑥, 𝑦) ∈ 𝕀2 ∶ 𝑦 ⩽ 𝑥, 𝑦 ⩽ 𝑓 𝛿(𝑥, 𝑦)},

where 𝐷◦
𝑓
(𝛿) denotes the closure of the set 𝐷◦

𝑓
(𝛿).

Notice that the set 𝐷𝑓 (𝛿) is not necessarily equal to the set 𝐾 = {(𝑥, 𝑦) ∈ 𝕀2 ∶ 𝑓 𝛿(𝑥, 𝑦) ⩽min{𝑥, 𝑦}}. Suppose for example that

𝛿(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0; 0 ⩽ 𝑥 ⩽ 1
4 ,

2𝑥 − 1
2 ;

1
4 < 𝑥 ⩽ 1

2 ,

1
2 ;

1
2 < 𝑥 ⩽ 3

4 ,

2𝑥 − 1; 3
4 < 𝑥 ⩽ 1.

Assume that (𝑥, 𝑦) ∈ [0, 12 ] × [ 12 , 1]. Since the function 𝑓 𝛿
1 is 1-Lipschitz and 𝑓 𝛿

2 is increasing, we have

𝑓 𝛿(𝑥, 𝑦) = 𝑓 𝛿
1 (𝑥) + 𝑓 𝛿

2 (𝑦) ⩾ 𝑓 𝛿
1 (

1
2 ) + 𝑥 − 1

2 + 𝑓 𝛿
2 (

1
2 ) = 𝑥 + 𝑓 𝛿( 12 , 1

2 ) −
1
2 = 𝑥.

It follows that [0, 12 ) × ( 12 , 1] ∩ 𝐷𝑓 (𝛿) = ∅. On the other hand, TV
3
4
1
4

(𝛿) = 1
2 , so that 𝑓 𝛿( 14 , 34 ) =

1
4 and ( 14 , 34 ) ∈ 𝐾 ⧵ 𝐷𝑓 (𝛿).

If the whole rectangle 𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑] is included in either of the sets 𝐷𝑓 (𝛿), 𝐷𝑥(𝛿), or 𝐷𝑦(𝛿), then V𝑈𝛿
(𝑅) = 0. Since 𝐷𝑓 (𝛿) ∪

𝐷𝑥(𝛿) ∪𝐷𝑦(𝛿) = 𝕀2, it follows that all the mass of copula 𝑈𝛿 is concentrated in the (common) boundary of the sets 𝐷𝑓 (𝛿), 𝐷𝑥(𝛿), 𝐷𝑦(𝛿), 
i.e., in the set 

(
𝐷𝑓 (𝛿) ∩ 𝐷𝑥(𝛿)

)
∪
(

𝐷𝑓 (𝛿) ∩ 𝐷𝑦(𝛿)
)
.

Furthermore, we define functions 𝑔𝛿
𝑈

, 𝑔𝛿
𝐿
∶ 𝕀 → 𝕀 by

𝑔𝛿
𝑈 (𝑥) = max{𝑦 ∈ 𝕀∶ (𝑥, 𝑦) ∈ 𝐷𝑓 (𝛿)},

𝑔𝛿
𝐿(𝑥) = min{𝑦 ∈ 𝕀∶ (𝑥, 𝑦) ∈ 𝐷𝑓 (𝛿)}.

Note that max and min are attained since the set 𝐷𝑓 (𝛿) is closed. Since the main diagonal of the square 𝕀2 is included in 𝐷𝑓 (𝛿), the 
7

functions 𝑔𝛿
𝑈

and 𝑔𝛿
𝐿

are well defined and 𝑔𝛿
𝐿
(𝑥) ⩽ 𝑥 ⩽ 𝑔𝛿

𝑈
(𝑥) for all 𝑥 ∈ 𝕀.
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Lemma 3.4. The sets 𝐷𝑥(𝛿), 𝐷𝑦(𝛿), 𝐷𝑓 (𝛿) and functions 𝑔𝛿
𝑈

and 𝑔𝛿
𝐿

have the following properties:

(𝑖) For any point (𝑥, 𝑦) ∈ 𝕀2 let Δ(𝑥,𝑦) be a triangle with vertices (𝑥, 𝑦), (𝑥, 𝑥) and (𝑦, 𝑦). If (𝑥, 𝑦) ∈ 𝐷𝑓 (𝛿), then Δ(𝑥,𝑦) ⊆ 𝐷𝑓 (𝛿).
(𝑖𝑖) The functions 𝑔𝛿

𝑈
and 𝑔𝛿

𝐿
are increasing.

(𝑖𝑖𝑖) The set 𝐷𝑓 (𝛿) ∩ 𝐷𝑥(𝛿) is a union of the graph of 𝑔𝛿
𝑈

and the vertical segments {𝑥} × [lim𝑡↗𝑥 𝑔𝛿
𝑈
(𝑡), lim𝑡↘𝑥 𝑔𝛿

𝑈
(𝑡)] for all points 

𝑥 where 𝑔𝛿
𝑈

is not continuous. Similarly, the set 𝐷𝑓 (𝛿) ∩ 𝐷𝑦(𝛿) is a union of the graph of 𝑔𝛿
𝐿

and the vertical segments 
{𝑥} × [lim𝑡↗𝑥 𝑔𝛿

𝐿
(𝑡), lim𝑡↘𝑥 𝑔𝛿

𝐿
(𝑡)] for all points 𝑥 where 𝑔𝛿

𝐿
is not continuous.

(𝑖𝑣) The function 𝑔𝛿
𝑈

is right-continuous and 𝑔𝛿
𝐿

is left-continuous.

Proof. (𝑖): The claim is clear if 𝑥 = 𝑦. Now assume 𝑥 < 𝑦 and let (𝑧, 𝑤) ∈ 𝕀2 such that 𝑥 < 𝑧 < 𝑤 < 𝑦, i.e., (𝑧, 𝑤) lies in the interior 
of Δ(𝑥,𝑦). Since (𝑥, 𝑦) ∈ 𝐷𝑓 (𝛿) and 𝑥 < 𝑦 it follows that (𝑥, 𝑦) ∈ 𝐷◦

𝑓
(𝛿), so there exists a sequence (𝑥𝑖, 𝑦𝑖) ∈ 𝐷◦

𝑓
(𝛿) with 𝑥𝑖 ⩽ 𝑦𝑖 that 

converges to (𝑥, 𝑦). Hence, 𝑓 𝛿(𝑥𝑖, 𝑦𝑖) < min{𝑥𝑖, 𝑦𝑖} = 𝑥𝑖 and 𝑥𝑖 < 𝑧 < 𝑤 < 𝑦𝑖 for sufficiently large 𝑖. The increasingness and 1-Lipschitz 
property of 𝑓 𝛿 imply

𝑓 𝛿(𝑧, 𝑤) ⩽ 𝑓 𝛿(𝑧, 𝑦𝑖) ⩽ 𝑓 𝛿(𝑥𝑖, 𝑦𝑖) + (𝑧 − 𝑥𝑖) < 𝑥𝑖 + (𝑧 − 𝑥𝑖) = 𝑧,

so that (𝑧, 𝑤) ∈ 𝐷◦
𝑓
(𝛿). Therefore, the interior of Δ(𝑥,𝑦) is a subset of 𝐷◦

𝑓
(𝛿) and consequently Δ(𝑥,𝑦) ⊆ 𝐷𝑓 (𝛿). The proof in case 𝑥 > 𝑦

is similar.
(𝑖𝑖): Suppose that 𝑥 < 𝑦. If 𝑔𝛿

𝑈
(𝑥) ⩽ 𝑦, then 𝑔𝛿

𝑈
(𝑦) ⩾ 𝑦 ⩾ 𝑔𝛿

𝑈
(𝑥). So assume that 𝑔𝛿

𝑈
(𝑥) ⩾ 𝑦. The point (𝑥, 𝑔𝛿

𝑈
(𝑥)) belongs to 𝐷𝑓 (𝛿) by 

definition, so that Δ(𝑥,𝑔𝛿
𝑈
(𝑥)) ⊆ 𝐷𝑓 (𝛿) by (𝑖). Since (𝑦, 𝑔𝛿

𝑈
(𝑥)) ∈Δ(𝑥,𝑔𝛿

𝑈
(𝑥)) it follows that 𝑔𝛿

𝑈
(𝑦) ⩾ 𝑔𝛿

𝑈
(𝑥). The proof for the function 𝑔𝛿

𝐿
is 

similar.
(𝑖𝑖𝑖): We first prove that the graph of 𝑔𝛿

𝑈
is included in 𝐷𝑓 (𝛿) ∩ 𝐷𝑥(𝛿). Suppose that the point (𝑥, 𝑦) belongs to the graph of 𝑔𝛿

𝑈
. 

Then 𝑦 = 𝑔𝛿
𝑈
(𝑥) and (𝑥, 𝑦) ∈ 𝐷𝑓 (𝛿). Furthermore, for any 𝑡 > 𝑦 we have (𝑥, 𝑡) ∉ 𝐷𝑓 (𝛿), so (𝑥, 𝑡) ∈ 𝐷𝑥(𝛿). Since 𝐷𝑥(𝛿) is closed, also 

(𝑥, 𝑦) ∈ 𝐷𝑥(𝛿), so that (𝑥, 𝑦) ∈ 𝐷𝑓 (𝛿) ∩ 𝐷𝑥(𝛿).
Let 𝑥 ∈ 𝕀 and define the set 𝐴 = {𝑡 ∈ 𝕀∶ (𝑥, 𝑡) ∈ 𝐷𝑓 (𝛿) ∩𝐷𝑥(𝛿)}. It is closed and non-empty, since 𝐷𝑓 (𝛿) ∩𝐷𝑥(𝛿) contains the graph 

of 𝑔𝛿
𝑈

. Let 𝑦1 = min𝐴 and 𝑦2 = max𝐴. Since (𝑥, 𝑦2) ∈ 𝐷𝑓 (𝛿), we have 𝑓 𝛿(𝑥, 𝑦2) ⩽ 𝑥 and since (𝑥, 𝑦1) ∈ 𝐷𝑥(𝛿), we have 𝑓 𝛿(𝑥, 𝑦1) ⩾ 𝑥. 
Since 𝑓 𝛿(𝑥, 𝑦) is increasing in 𝑦, it follows that 𝑓 𝛿(𝑥, 𝑦) = 𝑥 for any 𝑦 ∈ [𝑦1, 𝑦2], so {𝑥} × [𝑦1, 𝑦2] ⊆ 𝐷𝑥(𝛿). Furthermore, since (𝑥, 𝑦2) ∈
𝐷𝑓 (𝛿), we have {𝑥} × [𝑦1, 𝑦2] ⊆ 𝐷𝑓 (𝛿) by (𝑖). This implies that 𝐴 = [𝑦1, 𝑦2].

Suppose that lim𝑡↗𝑥 𝑔𝛿
𝑈
(𝑡) > 𝑦1. Then there exists 𝑡 < 𝑥, such that 𝑔𝛿

𝑈
(𝑡) > 𝑦1. Since the point (𝑡, 𝑔𝛿

𝑈
(𝑡)) ∈ 𝐷𝑓 (𝛿), it follows that 

(𝑥, 𝑦1) ∈ 𝐷◦
𝑓
(𝛿) by (𝑖), which is a contradiction with (𝑥, 𝑦1) ∈ 𝐷𝑥(𝛿). It follows that lim𝑡↗𝑥 𝑔𝛿

𝑈
(𝑡) ⩽ 𝑦1. Furthermore, lim𝑡↘𝑥 𝑔𝛿

𝑈
(𝑡) ⩾ 𝑦2, 

since (𝑥, 𝑦2) ∈ 𝐷𝑓 (𝛿) and thus 𝑔𝛿
𝑈
(𝑡) ⩾ 𝑦2 for any 𝑡 > 𝑥 by (𝑖). It follows that 𝐴 ⊆ [lim𝑡↗𝑥 𝑔𝛿

𝑈
(𝑡), lim𝑡↘𝑥 𝑔𝛿

𝑈
(𝑡)]. On the other hand, both 

points (𝑥, lim𝑡↗𝑥 𝑔𝛿
𝑈
(𝑡)) and (𝑥, lim𝑡↘𝑥 𝑔𝛿

𝑈
(𝑡)), belong to 𝐷𝑓 (𝛿) ∩𝐷𝑥(𝛿), so also [lim𝑡↗𝑥 𝑔𝛿

𝑈
(𝑡), lim𝑡↘𝑥 𝑔𝛿

𝑈
(𝑡)] ⊆ 𝐴. This finishes the proof 

for the set 𝐷𝑓 (𝛿) ∩ 𝐷𝑥(𝛿). The proof for the set 𝐷𝑓 (𝛿) ∩ 𝐷𝑦(𝛿) is analogous.

(𝑖𝑣): Suppose that the function 𝑔𝛿
𝑈

is not continuous at 𝑥 ∈ 𝕀. Then the set 𝐴 = {𝑡 ∈ 𝕀∶ (𝑥, 𝑡) ∈ 𝐷𝑓 (𝛿) ∩ 𝐷𝑥(𝛿)} equals the interval 
[lim𝑡↗𝑥 𝑔𝛿

𝑈
(𝑡), lim𝑡↘𝑥 𝑔𝛿

𝑈
(𝑡)] by (𝑖𝑖𝑖). If follows that (𝑥, lim𝑡↘𝑥 𝑔𝛿

𝑈
(𝑡)) ∈ 𝐷𝑓 (𝛿), hence, lim𝑡↘𝑥 𝑔𝛿

𝑈
(𝑡) ⩽ 𝑔𝛿

𝑈
(𝑥). Furthermore, lim𝑡↘𝑥 𝑔𝛿

𝑈
(𝑡) ⩾

𝑔𝛿
𝑈
(𝑥) since 𝑔𝛿

𝑈
is increasing. Thus 𝑔𝛿

𝑈
is right-continuous at 𝑥. The proof for the function 𝑔𝛿

𝐿
goes the same way. □

Since a copula cannot have any mass on vertical segments, the above lemma implies that all the mass of copula 𝑈𝛿 is concentrated 
on the graphs of functions 𝑔𝛿

𝑈
and 𝑔𝛿

𝐿
.

Next example shows how the copula 𝑈𝛿 can be computed for a given diagonal section 𝛿.

Example 3.5. Let 𝛿 be a diagonal section defined by 𝛿(𝑥) = 𝑥2 for all 𝑥 ∈ 𝕀. Then

𝑓 𝛿
1 (𝑥) =

1
2
(
TV𝑥

0(𝛿) − 𝛿(𝑥)
)
=

{
0; 𝑥 ⩽ 1

2 ,

𝑥2 − 𝑥 + 1
4 ; 𝑥 ⩾ 1

2 .

Similarly,

𝑓 𝛿
2 (𝑦) = 𝑦 − 1

2
(

𝛿(𝑦) + TV𝑦
0(𝛿)

)
=

{
𝑦2; 𝑦 ⩽ 1

2 ,

𝑦 − 1
4 ; 𝑦 ⩾ 1

2 .

We are now able to explicitly state 𝑓 𝛿(𝑥, 𝑦):

𝑓 𝛿(𝑥, 𝑦) =

⎧⎪⎪⎪⎨⎪⎪
𝑦2; (𝑥, 𝑦) ∈ [0, 1

2 ] × [0, 1
2 ],

𝑥2 − 𝑥 + 1
4 + 𝑦2; (𝑥, 𝑦) ∈ [ 12 ,1] × [0, 1

2 ],

𝑦 − 1
4 ; (𝑥, 𝑦) ∈ [0, 1

2 ] × [ 12 ,1],
2 1 1
8

⎪⎩𝑥 − 𝑥 + 𝑦; (𝑥, 𝑦) ∈ [ 2 ,1] × [ 2 ,1],
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Fig. 3. The graph of copula 𝑈𝛿 with 𝛿(𝑥) = 𝑥2 (left) and its scatterplot with the corresponding regions 𝐷𝑓 (𝛿), 𝐷𝑥(𝛿), and 𝐷𝑦(𝛿) (right).

and 𝑈𝛿(𝑥, 𝑦):

𝑈𝛿(𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩
𝑥; 𝑔𝛿

𝑈
(𝑥) ⩽ 𝑦,

𝑓 𝛿(𝑥, 𝑦); 𝑔𝛿
𝐿
(𝑥) ⩽ 𝑦 ⩽ 𝑔𝛿

𝑈
(𝑥),

𝑦; 𝑦 ⩽ 𝑔𝛿
𝐿
(𝑥),

where

𝑔𝛿
𝑈 (𝑥) =

⎧⎪⎪⎨⎪⎪⎩

√
𝑥; 0 ⩽ 𝑥 ⩽ 1

4 ,

𝑥 + 1
4 ;

1
4 ⩽ 𝑥 ⩽ 1

2 ,

2𝑥 − 𝑥2; 1
2 ⩽ 𝑥 ⩽ 1,

and 𝑔𝛿
𝐿(𝑥) =

⎧⎪⎨⎪⎩
0; 0 ⩽ 𝑥 ⩽ 1

2 ,

1
2 −

√
𝑥 − 𝑥2; 1

2 ⩽ 𝑥 ⩽ 1.

In Fig. 3 the graph of copula 𝑈𝛿 is shown. The regions 𝐷𝑓 (𝛿), 𝐷𝑥(𝛿), and 𝐷𝑦(𝛿) of the copula 𝑈𝛿 are also shown. Note that the curves 
in the scatterplot coincide with the graphs of the functions 𝑔𝛿

𝑈
(upper curve) and 𝑔𝛿

𝐿
(lower curve).

We now collect our findings in our main theorem, which gives the formula for the exact upper bound for copulas with prescribed 
diagonal section, and thus settles an open question mentioned in the introduction.

Theorem 3.6. For any diagonal section 𝛿 we have

𝐶𝛿(𝑥, 𝑦) = min
{

𝑥, 𝑦,max{𝑥, 𝑦} − 1
2

(
𝛿(𝑥) + 𝛿(𝑦) + TV𝑥∨𝑦

𝑥∧𝑦(𝛿)
)}

for all 𝑥, 𝑦 ∈ 𝕀.

Proof. Note that

min
{

𝑥, 𝑦,max{𝑥, 𝑦} − 1
2

(
𝛿(𝑥) + 𝛿(𝑦) + TV𝑥∨𝑦

𝑥∧𝑦(𝛿)
)}

=max{𝑈𝛿(𝑥, 𝑦), 𝑈 𝑡
𝛿(𝑥, 𝑦)}

for all 𝑥, 𝑦 ∈ 𝕀. By Theorem 3.3 the functions 𝑈𝛿 and 𝑈 𝑡
𝛿

are copulas. The result now easily follows from Proposition 3.1. □

Note that in the language of Section 4 quasi-copula 𝐶𝛿 is a diagonal splice of copulas 𝑈𝛿 and 𝑈 𝑡
𝛿
, i.e.,

𝐶𝛿(𝑥, 𝑦) = max{𝑈𝛿(𝑥, 𝑦), 𝑈 𝑡
𝛿(𝑥, 𝑦)} = (𝑈𝛿 𝑈 𝑡

𝛿)(𝑥, 𝑦) =

{
𝑈𝛿(𝑥, 𝑦); 𝑥 ⩽ 𝑦,

𝑈 𝑡
𝛿
(𝑥, 𝑦); 𝑦 ⩽ 𝑥.
9

The next example demonstrates the difference between the quasi-copulas 𝐾𝛿 , 𝐶𝛿 and 𝐴𝛿 .
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Fig. 4. The graphs of functions 𝐾𝛿 (left), 𝐶𝛿 (middle), and 𝐴𝛿 (right) with 𝛿 from Example 3.7.

Example 3.7. Let 𝛿 be a diagonal section defined by

𝛿(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0; 0 ⩽ 𝑥 ⩽ 3
10 ,

2𝑥 − 3
5 ;

3
10 ⩽ 𝑥 ⩽ 9

20 ,

𝑥 − 3
20 ;

9
20 ⩽ 𝑥 ⩽ 11

20 ,

2
5 ;

11
20 ⩽ 𝑥 ⩽ 7

10 ,

2𝑥 − 1; 7
10 ⩽ 𝑥 ⩽ 1.

The graph of the corresponding function 𝛿 is shown in Fig. 5 (left). As evident from the graphs depicted in Fig. 4, quasi-copula 𝐶𝛿 is 
different from both 𝐾𝛿 and 𝐴𝛿 in this case, so in the point-wise order it lies strictly between them. We remark that at point ( 3

10 , 710 ), 
i.e., at one of the “indentations” of the graph of 𝐶𝛿 , we have values 𝐾𝛿(

3
10 , 710 ) =

1
5 , 𝐶𝛿(

3
10 , 710 ) =

1
4 , and 𝐴𝛿(

3
10 , 710 ) =

3
10 . This point 

is one of the points where the difference between 𝐶𝛿 and 𝐴𝛿 is the biggest for this 𝛿.

In [21, Theorem 20] the authors prove that quasi-copula 𝐶𝛿 is a copula if and only if 𝐶𝛿 = 𝐾𝛿 , and pose a question to characterize 
diagonal sections 𝛿 for which this holds. Our next theorem answers this question.

Theorem 3.8. For any diagonal section 𝛿 the following are equivalent:

(𝑖) 𝐶𝛿 = 𝐾𝛿 ,

(𝑖𝑖) 𝛿′(𝑥) ∈ {0, 2} almost everywhere on the set Λ = {𝑥 ∈ 𝕀∶ 𝛿(𝑥) < 𝑥}.

Proof. Suppose first that (𝑖𝑖) holds. The set Λ is an open subset of 𝕀, hence there exists a countable collection of disjoint open 
intervals {Λ𝑖}𝑖∈𝐽 such that Λ =

⋃
𝑖∈𝐽 Λ𝑖.

Let 𝐶 be any copula with 𝛿𝐶 = 𝛿. Suppose that (𝑥, 𝑦) ∈ 𝕀2 ⧵
⋃

𝑖∈𝐽 (Λ𝑖 ×Λ𝑖) and 𝑥 ⩽ 𝑦. Then either 𝑥 ∈ 𝕀 ⧵
⋃

𝑖∈𝐽 Λ𝑖 or 𝑥 ∈Λ𝑖 for some 
𝑖 ∈ 𝐽 and 𝑦 ∉ Λ𝑖. In the first case 𝐶(𝑥, 𝑦) ⩾ 𝐶(𝑥, 𝑥) = 𝛿(𝑥) = 𝑥, so 𝐶(𝑥, 𝑦) = 𝑀(𝑥, 𝑦). In the second case let Λ𝑖 = (𝑎, 𝑏). It follows that 
𝑦 ⩾ 𝑏. Since 𝐶(𝑎, 𝑎) = 𝑎 and 𝐶(𝑏, 𝑏) = 𝑏, we obtain that 𝐶(𝑎, 𝑏) ⩾ 𝐶(𝑎, 𝑎) = 𝑎 and 𝐶(𝑎, 𝑏) ⩽ 𝑀(𝑎, 𝑏) = 𝑎, so that 𝐶(𝑎, 𝑏) = 𝑎. Furthermore, 
since 𝑥 ∈ (𝑎, 𝑏), we have 𝐶(𝑥, 𝑏) ⩽ 𝐶(𝑎, 𝑏) + 𝑥 − 𝑎 = 𝑥 and 𝐶(𝑥, 𝑏) ⩾ 𝐶(𝑏, 𝑏) + 𝑥 − 𝑏 = 𝑥, so that 𝐶(𝑥, 𝑏) = 𝑥. It follows that 𝐶(𝑥, 𝑦) ⩾
𝐶(𝑥, 𝑏) = 𝑥 and 𝐶(𝑥, 𝑦) = 𝑀(𝑥, 𝑦) again. A similar argument shows that 𝐶(𝑥, 𝑦) = 𝑀(𝑥, 𝑦) also for any (𝑥, 𝑦) ∈ 𝕀2 ⧵

⋃
𝑖∈𝐽 (Λ𝑖 ×Λ𝑖) with 

𝑥 ⩾ 𝑦.
Therefore 𝐶𝛿 and 𝐾𝛿 match on the set 𝕀2 ⧵

⋃
𝑖∈𝐽 (Λ𝑖 × Λ𝑖). Now let 𝑖 ∈ 𝐽 and Λ𝑖 = (𝑎, 𝑏). Then 𝛿(𝑎) = 𝑎 and 𝛿(𝑏) = 𝑏, but 𝛿(𝑡) < 𝑡

for all 𝑡 ∈ (𝑎, 𝑏). By assumption it holds that 𝛿′(𝑡) ∈ {0, 2} a.e. on (𝑎, 𝑏), or equivalently, 𝛿′(𝑡) ∈ {−1, 1} a.e. on (𝑎, 𝑏). By equation (2)
we have

TV𝑦
𝑥(𝛿) =

𝑦

∫
𝑥

|𝛿′(𝑡)|𝑑𝑡 = 𝑦 − 𝑥

for every 𝑥, 𝑦 ∈ (𝑎, 𝑏) with 𝑥 ⩽ 𝑦. It follows that 𝑓 𝛿(𝑥, 𝑦) = 1
2 (𝛿(𝑥) + 𝛿(𝑦)), so 𝐶𝛿(𝑥, 𝑦) = 𝐾𝛿(𝑥, 𝑦) for every (𝑥, 𝑦) ∈ Λ𝑖 ×Λ𝑖.

Conversely, assume that 𝐾𝛿 = 𝐶𝛿 . Take any 𝑥 ∈ Λ, so that 𝛿(𝑥) < 𝑥. Recall the definition of function 𝑓 𝛿 from equation (11) and 
10

define a function 𝜑∶ (max{−𝑥, 𝑥 − 1}, min{𝑥, 1 − 𝑥}) → ℝ by 𝜑(𝑡) = 𝑓 𝛿(𝑥 − 𝑡, 𝑥 + 𝑡) − (𝑥 − 𝑡). Since 𝑥 ∈ (0, 1), function 𝜑 is defined 
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on a nonempty interval containing 0. Function 𝜑 is continuous and has value 𝜑(0) = 𝑓 𝛿(𝑥, 𝑥) − 𝑥 = 𝛿(𝑥) − 𝑥 < 0. Hence, there exists 
𝜀 = 𝜀𝑥 > 0 such that 𝜑(𝜀) < 0. This implies 𝑓 𝛿(𝑥 − 𝜀, 𝑥 + 𝜀) < 𝑥 − 𝜀 < 𝑥 + 𝜀, so that (𝑥 − 𝜀, 𝑥 + 𝜀) ∈ 𝐷𝑓 (𝛿). Now,

𝐾𝛿(𝑥 − 𝜀, 𝑥 + 𝜀) = 𝐶𝛿(𝑥 − 𝜀, 𝑥 + 𝜀) = 𝑓 𝛿(𝑥 − 𝜀, 𝑥 + 𝜀) < 𝑥 − 𝜀.

By Theorem 2.6 (𝑖𝑖𝑖) we have 𝐾𝛿(𝑥 −𝜀, 𝑥 +𝜀) = 1
2 (𝛿(𝑥 −𝜀) + 𝛿(𝑥 +𝜀)). So 𝑓 𝛿(𝑥 −𝜀, 𝑥 +𝜀) = 1

2 (𝛿(𝑥 −𝜀) + 𝛿(𝑥 +𝜀)), and by the definition 
of 𝑓 𝛿 we infer TV𝑥+𝜀

𝑥−𝜀(𝛿) = 2𝜀. Since |𝛿′(𝑡)| ⩽ 1 where it exists (it exists a.e. on 𝕀), it follows from equation (2) that |𝛿′(𝑡)| = 1 a.e. on 
the interval (𝑥 − 𝜀, 𝑥 + 𝜀). Hence, 𝛿′(𝑡) ∈ {0, 2} a.e. on (𝑥 − 𝜀, 𝑥 + 𝜀).

The family  of intervals (𝑥 − 𝜀𝑥, 𝑥 + 𝜀𝑥) for all 𝑥 ∈ Λ is an open cover of Λ. Since Λ is second-countable, there is a countable 
subfamily of  which still covers Λ. It follows that 𝛿′(𝑥) ∈ {0, 2} a.e. on Λ. □

In [21, Theorem 32] it was shown that for a simple diagonal section 𝛿 (i.e., 𝛿 unimodal), we have 𝐶𝛿 = 𝐴𝛿 . Next theorem gives a 
complete characterization of diagonal sections 𝛿 for which the quasi-copula 𝐶𝛿 is equal to 𝐴𝛿 .

Theorem 3.9. For any diagonal section 𝛿 the following are equivalent:

(𝑖) 𝐶𝛿 = 𝐴𝛿 ,

(𝑖𝑖) 𝑦 − 𝑥 ⩾max{𝛿(𝑥), ̂𝛿(𝑦)} whenever 𝑥, 𝑦 ∈ 𝕀 are such that 𝑥 < 𝑦, 𝛿′(𝑥), ̂𝛿′(𝑦) exist, and 𝛿′(𝑥) < 0 < 𝛿′(𝑦).

Proof. (𝑖) ⇒ (𝑖𝑖): Suppose that 𝐶𝛿 = 𝐴𝛿 . Let 𝑥, 𝑦 ∈ 𝕀 be such that 𝑥 < 𝑦, 𝛿′(𝑥), ̂𝛿′(𝑦) exist, and 𝛿′(𝑥) < 0 < 𝛿′(𝑦). We need to prove that 
𝑦 − 𝑥 ⩾max{𝛿(𝑥), ̂𝛿(𝑦)}. Let 𝑡 ∈ [𝑥, 𝑦] be the point where the function 𝛿 attains its maximum on [𝑥, 𝑦], i.e., 𝛿(𝑡) =max𝑠∈[𝑥,𝑦] 𝛿(𝑠). We 
will consider two cases, 𝑡 > 𝑥 and 𝑡 = 𝑥.

Suppose first that 𝑡 > 𝑥. Since 𝛿′(𝑥) < 0, there exists 𝑥1 > 𝑥, such that 𝛿(𝑥1) < 𝛿(𝑥) and we can choose 𝑥1 so that 𝑥1 < 𝑡. It follows 
that

TV𝑡
𝑥(𝛿) ⩾ |𝛿(𝑥) − 𝛿(𝑥1)|+ |𝛿(𝑥1) − 𝛿(𝑡)| = 𝛿(𝑥) − 𝛿(𝑥1) + 𝛿(𝑡) − 𝛿(𝑥1) > 𝛿(𝑡) − 𝛿(𝑥),

thus

𝑓 𝛿(𝑥, 𝑡) = 𝑡 − 1
2

(
𝛿(𝑥) + 𝛿(𝑡) + TV𝑡

𝑥(𝛿)
)

< 𝑡 − 1
2

(
𝛿(𝑥) + 𝛿(𝑡) + 𝛿(𝑡) − 𝛿(𝑥)

)
= 𝑡 − 𝛿(𝑡).

Now,

𝐶𝛿(𝑥, 𝑡) = 𝐴𝛿(𝑥, 𝑡) = min{𝑥, 𝑡 − max
𝑠∈[𝑥,𝑡]

𝛿(𝑠)} = min{𝑥, 𝑡 − 𝛿(𝑡)}.

On the other hand, 𝐶𝛿(𝑥, 𝑡) =min{𝑥, 𝑓 𝛿(𝑥, 𝑡)}. From min{𝑥, 𝑡 −𝛿(𝑡)} =min{𝑥, 𝑓 𝛿(𝑥, 𝑡)} and 𝑓 𝛿(𝑥, 𝑡) < 𝑡 −𝛿(𝑡) it follows that 𝑥 = 𝑓 𝛿(𝑥, 𝑡), 
hence 𝐶𝛿(𝑥, 𝑡) = 𝐴𝛿(𝑥, 𝑡) = 𝑥. This implies 𝑥 < 𝑡 − 𝛿(𝑡). Finally, we can estimate

𝑦 − 𝑥 ⩾ 𝑡 − 𝑥 ⩾ 𝛿(𝑡) ⩾max{𝛿(𝑥), 𝛿(𝑦)}.

Suppose now that 𝑡 = 𝑥. Since 𝛿′(𝑦) > 0, there exists 𝑦1 < 𝑦, such that 𝛿(𝑦1) < 𝛿(𝑦) and we can choose 𝑦1 so that 𝑥 < 𝑦1. Similarly 
as above we obtain

TV𝑦
𝑥(𝛿) > 𝛿(𝑥) − 𝛿(𝑦) and 𝑓 𝛿(𝑥, 𝑦) < 𝑦 − 𝛿(𝑥).

Since

𝐶𝛿(𝑥, 𝑦) = 𝐴𝛿(𝑥, 𝑦) = min{𝑥, 𝑦 − 𝛿(𝑥)}

it follows that 𝐶𝛿(𝑥, 𝑦) = 𝐴𝛿(𝑥, 𝑦) = 𝑥, thus 𝑥 ⩽ 𝑦 − 𝛿(𝑥) and finally

𝑦 − 𝑥 ⩾ 𝛿(𝑥) = max{𝛿(𝑥), 𝛿(𝑦)}.

(𝑖𝑖) ⇒ (𝑖): Let (𝑥, 𝑦) ∈ 𝕀2. We need to prove that 𝐶𝛿(𝑥, 𝑦) = 𝐴𝛿(𝑥, 𝑦). This clearly holds when 𝑥 = 𝑦. Since 𝐶𝛿 and 𝐴𝛿 are both 
symmetric, we may thus assume that 𝑥 < 𝑦. We consider two cases.

Suppose first that there are no points 𝑥 ⩽ 𝑥1 < 𝑡 < 𝑦1 ⩽ 𝑦 such that 𝛿(𝑡) < min{𝛿(𝑥1), ̂𝛿(𝑦1)}. It follows that there exists 𝑡0 ∈ [𝑥, 𝑦]
such that 𝛿 is increasing on [𝑥, 𝑡0] (when 𝑡0 > 𝑥) and decreasing on [𝑡0, 𝑦] (when 𝑡0 < 𝑦). Hence, TV𝑦

𝑥(𝛿) = 2𝛿(𝑡0) − 𝛿(𝑥) − 𝛿(𝑦) and

𝐶𝛿(𝑥, 𝑦) = min
{

𝑥, 𝑦 − 1
2
(

𝛿(𝑥) + 𝛿(𝑦) + TV𝑦
𝑥(𝛿)

)}
=min{𝑥, 𝑦 − 𝛿(𝑡0)} = min{𝑥, 𝑦 − max

𝑡∈[𝑥,𝑦]
𝛿(𝑡)} = 𝐴𝛿(𝑥, 𝑦).

Now suppose there exist 𝑥 ⩽ 𝑥1 < 𝑡 < 𝑦1 ⩽ 𝑦 such that 𝛿(𝑡) < min{𝛿(𝑥1), ̂𝛿(𝑦1)}. Since 𝛿 is continuous it has a global minimum on 
[𝑥1, 𝑦1]. Let this global minimum be attained at 𝑡1. By assumption 𝑥1 < 𝑡1 < 𝑦1. Let [𝑥2, 𝑦2] ⊆ [𝑥1, 𝑦1] be the maximal closed interval 
11

such that 𝛿(𝑡) = 𝛿(𝑡1) for all 𝑡 ∈ [𝑥2, 𝑦2]. It exists since 𝛿 is continuous. Clearly, [𝑥2, 𝑦2] ⊆ (𝑥1, 𝑦1).
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Fig. 5. Upright versus lying shaded rectangle representing the condition (𝑖𝑖) of Theorem 3.9 - in the first case we have 𝐶𝛿 ≠ 𝐴𝛿 , while in the second we have 𝐶𝛿 = 𝐴𝛿 .

Fix some 𝜀 > 0 such that 𝑥2 − 𝜀, 𝑦2 + 𝜀 ∈ [𝑥1, 𝑦1]. We claim that there exists 0 < 𝜀𝑥 < 𝜀 such that 𝛿′(𝑥2 − 𝜀𝑥) < 0. Suppose this is 
not the case. Then 𝛿′(𝑡) ⩾ 0 whenever 𝑡 ∈ (𝑥2 − 𝜀, 𝑥2) and the derivative exists. Equation (2) implies

0 ⩽ TV𝑥2
𝑥2−𝜀(𝛿) =

𝑥2

∫
𝑥2−𝜀

𝛿′(𝑡) 𝑑𝑡 = 𝛿(𝑥2) − 𝛿(𝑥2 − 𝜀) ⩽ 0,

so that function 𝛿 is constant on [𝑥2 − 𝜀, 𝑥2]. This contradicts the maximality of the interval [𝑥2, 𝑦2], which proves our claim. A 
similar argument shows that there exists 0 < 𝜀𝑦 < 𝜀 such that 𝛿′(𝑦2 + 𝜀𝑦) > 0. The assumption in item (𝑖𝑖) for the points 𝑥2 − 𝜀𝑥 and 
𝑦2 + 𝜀𝑦 now implies

(𝑦2 + 𝜀𝑦) − (𝑥2 − 𝜀𝑥) ⩾max{𝛿(𝑦2 + 𝜀𝑦), 𝛿(𝑥2 − 𝜀𝑥)} ⩾ 𝛿(𝑡1),

hence, 𝑦2 −𝑥2 ⩾ 𝛿(𝑡1) − 𝜀𝑥 − 𝜀𝑦 > 𝛿(𝑡1) −2𝜀. By sending 𝜀 to 0 we obtain 𝑦2 −𝑥2 ⩾ 𝛿(𝑡1) or equivalently 𝑦2 − 𝛿(𝑡1) ⩾ 𝑥2. Consequently, 
using Theorem 3.6, we obtain

𝐶𝛿(𝑥2, 𝑦2) = min
{

𝑥2, 𝑦2 −
1
2
(

𝛿(𝑥2) + 𝛿(𝑦2) + TV𝑦2
𝑥2
(𝛿)

)}
=min

{
𝑥2, 𝑦2 −

1
2
(

𝛿(𝑡1) + 𝛿(𝑡1) + 0
)}

=min
{

𝑥2, 𝑦2 − 𝛿(𝑡1)
}
= 𝑥2.

Since 𝐶𝛿 is increasing in each variable and 1-Lipschitz, we infer

𝐶𝛿(𝑥, 𝑦) ⩾ 𝐶𝛿(𝑥, 𝑦2) ⩾ 𝐶𝛿(𝑥2, 𝑦2) − (𝑥2 − 𝑥) = 𝑥.

This automatically implies that 𝐴𝛿(𝑥, 𝑦) = 𝐶𝛿(𝑥, 𝑦) = 𝑥. □

Condition (𝑖𝑖) is clearly satisfied if the diagonal 𝛿 is simple (cf. [21, Theorem 32]). If the diagonal 𝛿 is not simple, there exist 
𝑥, 𝑦 ∈ 𝕀 with 𝑥 < 𝑦, such that 𝛿′(𝑥), ̂𝛿′(𝑦) exist, and 𝛿′(𝑥) < 0 < 𝛿′(𝑦). The condition (𝑖𝑖) requires that any such 𝑥 and 𝑦 are far apart 
enough relative to the values of 𝛿. More precisely, condition 𝛿′(𝑥) < 0 < 𝛿′(𝑦) ensures that the global minimum of 𝛿 on the interval 
[𝑥, 𝑦] is attained at some point 𝑡1 ∈ (𝑥, 𝑦), and the proof of (𝑖𝑖) ⇒ (𝑖) shows that there exists a subinterval [𝑥2, 𝑦2] ⊂ (𝑥, 𝑦), containing 
𝑡1, such that 𝛿 is constant on [𝑥2, 𝑦2] and 𝑦2 − 𝑥2 ⩾ 𝛿(𝑥2). So either 𝑥2 < 𝑦2 and the graph of 𝛿 has a flat section whose width is at 
least as large as its height, or 𝑥2 = 𝑦2 and 𝛿 has a zero on (𝑥, 𝑦). In the latter case there exists 𝑡 ∈ (𝑥, 𝑦) such that 𝛿(𝑡) = 𝑡, so any copula 
𝐶 with 𝛿𝐶 = 𝛿 is an ordinal sum, see [19, Theorem 3.2.1]. Example of a diagonal 𝛿 that satisfies respectively violates condition (𝑖𝑖)
is depicted in Fig. 5.

Next example shows that the dependence of the upper bound quasi-copula 𝐶𝛿 on the diagonal 𝛿 is not continuous. This is not 
surprising, since the formula contains total variation.

Example 3.10. Let 𝛿 be a diagonal section defined by

𝛿(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
0; 0 ⩽ 𝑥 ⩽ 1

3 ,

𝑥 − 1
3 ;

1
3 ⩽ 𝑥 ⩽ 2

3 ,

2𝑥 − 1; 2
3 ⩽ 𝑥 ⩽ 1.

For every 𝑛 ∈ℕ we perturb 𝛿 into diagonal section 𝛿𝑛 = 𝛿 −𝜑𝑛, where 𝜑𝑛 ∶ 𝕀 → 𝕀 is a zigzag function. More precisely, 𝜑𝑛 is piecewise 
linear function with support equal to the interval [ 13 , 23 ], for every 𝑥 ∈ [ 13 , 23 ] for which 𝜑′

𝑛(𝑥) exists we have 𝜑′
𝑛(𝑥) = ±1, and 

𝜑𝑛(𝑥) ⩽
1
3𝑛

for all 𝑥 ∈ 𝕀. It follows that the sequence of diagonal sections 𝛿𝑛 converges to 𝛿 in supremum norm. Since 𝛿 is a simple 
diagonal, we have 𝐶𝛿 = 𝐴𝛿 by Theorem 3.9. Furthermore, 𝛿′𝑛(𝑥) ∈ {0, 2} whenever it exists, so 𝐶𝛿𝑛

= 𝐾𝛿𝑛
by Theorem 3.8. Now,
12

lim
𝑛→∞

𝐶𝛿𝑛
= lim

𝑛→∞
𝐾𝛿𝑛

= 𝐾𝛿 ≠ 𝐴𝛿 = 𝐶𝛿.
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Fig. 6. The graph of 𝛿 in dotted line and an example of 𝛿𝑛 in full line (upper left), quasi-copula 𝐶𝛿𝑛
(upper right), quasi-copula 𝐶𝛿 = 𝐴𝛿 (lower left), and copula 𝐾𝛿

(lower right) from Example 3.10.

Fig. 6 shows the graph of function 𝛿, an example of perturbed 𝛿𝑛, and graphs of quasi-copulas 𝐶𝛿𝑛
, 𝐶𝛿 = 𝐴𝛿 , and lim

𝑛→∞
𝐶𝛿𝑛

= 𝐾𝛿 .

4. Maximal asymmetry of copulas with a given diagonal section

In this section we apply our main results to the study of the asymmetry of copulas. We are interested in how large the asymmetry 
of a copula can be, if we know its diagonal section.

Definition 4.1. For a given diagonal section 𝛿 we define

𝜇𝛿 = sup{𝜇(𝐶)∶ 𝐶 ∈ , 𝛿𝐶 = 𝛿},

i.e., the maximal asymmetry of all copulas with diagonal section 𝛿.

We remark that the supremum is attained, see Corollary 4.4. In order to understand the results of this section, we need from 
Section 3 the function 𝑓 𝛿 given by equation (11) and its properties, the copula 𝑈𝛿 from Theorem 3.3, and the function 𝑔𝛿

𝑈
and its 

properties from Lemma 3.4.
We recall the definition of the diagonal splice of two quasi-copulas with the same diagonal section, which is always a quasi-copula, 

see [21].

Definition 4.2. Let 𝑄1, 𝑄2 ∈ with 𝑄1(𝑥, 𝑥) = 𝑄2(𝑥, 𝑥) = 𝛿(𝑥) for all 𝑥 ∈ 𝕀. For 𝑥, 𝑦 ∈ 𝕀 define

(𝑄1 𝑄2)(𝑥, 𝑦) =

{
𝑄1(𝑥, 𝑦); 𝑥 ⩽ 𝑦,

𝑄2(𝑥, 𝑦); 𝑥 ⩾ 𝑦.
13

Next proposition shows that the diagonal splice of quasi-copula 𝐶𝛿 and Bertino copula 𝐵𝛿 is always a copula.
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Proposition 4.3. For a given diagonal section 𝛿 the function 𝐶𝛿 𝐵𝛿 is a copula.

Proof. Since 𝐶𝛿 𝐵𝛿 = 𝑈𝛿 𝐵𝛿 , it suffices to show that 𝑈𝛿(𝑥, 𝑦) + 𝐵𝛿(𝑦, 𝑥) ⩽ 𝛿(𝑥) + 𝛿(𝑦) for every 𝑥, 𝑦 ∈ 𝕀 with 𝑥 ⩽ 𝑦 by [21, 
Theorem 7]. Indeed, if 𝑥 ⩽ 𝑦 then

𝛿(𝑥) + 𝛿(𝑦) − 𝑈𝛿(𝑥, 𝑦) − 𝐵𝛿(𝑦, 𝑥) ⩾ 𝛿(𝑥) + 𝛿(𝑦) − 𝑈𝛿(𝑥, 𝑦) − 𝑈𝛿(𝑦, 𝑥) = V𝑈𝛿
([𝑥, 𝑦] × [𝑥, 𝑦]) ⩾ 0,

because 𝑈𝛿 is a copula. □

In the rest of the paper we will derive various formulas for calculating the maximal asymmetry of copulas with a given diagonal 
section. Each formula will be progressively easier to evaluate. In particular, we show that

• maximal asymmetry 𝜇𝛿 is attained by copula 𝐶𝛿 𝐵𝛿 (see Corollary 4.4),

• the asymmetry 𝜇(𝐶𝛿 𝐵𝛿) is attained on the graph of the function 𝑔𝛿
𝑈

(see Lemma 4.5 and Theorem 4.6),

• the asymmetry 𝜇(𝐶𝛿 𝐵𝛿) is attained on the intersection of the graph of 𝑔𝛿
𝑈

and the extended graph of ℎ𝛿 (see Proposition 4.7
and Theorem 4.8),

• for a simple diagonal we find a specific point 𝑥0 ∈ 𝕀 such that 𝜇𝛿 = 𝛿(𝑥0) (see Proposition 4.10).

Corollary 4.4. For a given diagonal section 𝛿 we have 𝜇𝛿 = 𝜇(𝐶𝛿 𝐵𝛿).

Proof. For any copula 𝐶 with diagonal section 𝛿 and 0 ⩽ 𝑥 ⩽ 𝑦 ⩽ 1 we have

|𝐶(𝑥, 𝑦) − 𝐶(𝑦, 𝑥)| =max{𝐶(𝑥, 𝑦), 𝐶(𝑦, 𝑥)} −min{𝐶(𝑥, 𝑦), 𝐶(𝑦, 𝑥)} ⩽ 𝐶𝛿(𝑥, 𝑦) − 𝐵𝛿(𝑦, 𝑥) ⩽ 𝜇(𝐶𝛿 𝐵𝛿).

Hence, 𝜇(𝐶) ⩽ 𝜇(𝐶𝛿 𝐵𝛿). Since 𝐶𝛿 𝐵𝛿 is a copula with diagonal section 𝛿, we conclude that 𝜇𝛿 = 𝜇(𝐶𝛿 𝐵𝛿). □

Now we look at the asymmetry of copula 𝐶𝛿 𝐵𝛿 . We consider a vertical section {𝑥0} × [𝑥0, 1], and show that the maximal 
asymmetry on this section is attained on its intersection with the graph of 𝑔𝛿

𝑈
. Hence, 𝜇(𝐶𝛿 𝐵𝛿) is attained on the graph of 𝑔𝛿

𝑈
.

Lemma 4.5. For a given diagonal section 𝛿 and any 𝑥0 ∈ 𝕀 we have

max
𝑦∈[𝑥0 ,1]

(𝐶𝛿(𝑥0, 𝑦) − 𝐵𝛿(𝑥0, 𝑦)) = 𝐶𝛿(𝑥0, 𝑔𝛿
𝑈 (𝑥0)) − 𝐵𝛿(𝑥0, 𝑔𝛿

𝑈 (𝑥0)) = min
𝑡∈[𝑥0 ,𝑔𝛿

𝑈
(𝑥0)]

𝛿(𝑡).

Proof. The second equality follows immediately from the definition of the function 𝑔𝛿
𝑈

and Theorem 2.6 (𝑖𝑖). To prove the first 
equality we define a function 𝑘∶ [𝑥0, 1] → 𝕀 by

𝑘(𝑦) = 𝐶𝛿(𝑥0, 𝑦) − 𝐵𝛿(𝑥0, 𝑦).

It is obvious that 𝑘(𝑥0) = 𝑘(1) = 0. To prove the claim it is sufficient to show that 𝑘 is increasing on the interval [𝑥0, 𝑔𝛿
𝑈
(𝑥0)] and 

decreasing on the interval [𝑔𝛿
𝑈
(𝑥0), 1]. By the definition of the function 𝑔𝛿

𝑈
we have for any 𝑦 ∈ [𝑥0, 𝑔𝛿

𝑈
(𝑥0)] that (𝑥0, 𝑦) ∈ 𝐷𝑓 (𝛿), and 

for any 𝑦 ∈ [𝑔𝛿
𝑈
(𝑥0), 1] we have (𝑥0, 𝑦) ∈ 𝐷𝑥(𝛿). It follows that on the interval [𝑔𝛿

𝑈
(𝑥0), 1] we have 𝑘(𝑦) = 𝑥0 − 𝐵𝛿(𝑥0, 𝑦), which is 

decreasing in 𝑦. On the interval [𝑥0, 𝑔𝛿
𝑈
(𝑥0)] we have

𝑘(𝑦) = 𝑓 𝛿(𝑥0, 𝑦) − 𝐵𝛿(𝑥0, 𝑦) = 𝑦 − 1
2

(
𝛿(𝑥0) + 𝛿(𝑦) + TV𝑦

𝑥0
(𝛿)

)
− 𝑥0 + min

𝑡∈[𝑥0 ,𝑦]
𝛿(𝑡).

Suppose that 𝑥0 ⩽ 𝑦1 ⩽ 𝑦2 ⩽ 𝑔𝛿
𝑈
(𝑥0). Let 𝑡1 ∈ [𝑥0, 𝑦1] be the point where min𝑡∈[𝑥0 ,𝑦1] 𝛿(𝑡) = 𝛿(𝑡1) and 𝑡2 ∈ [𝑥0, 𝑦2] be the point where 

min𝑡∈[𝑥0 ,𝑦2] 𝛿(𝑡) = 𝛿(𝑡2). We have

𝑘(𝑦2) − 𝑘(𝑦1) = 𝑦2 − 𝑦1 −
1
2

(
𝛿(𝑦2) − 𝛿(𝑦1) + TV𝑦2

𝑦1
(𝛿)

)
+ 𝛿(𝑡2) − 𝛿(𝑡1).

Since 𝛿 is 1-Lipschitz, we have TV𝑦2
𝑦1
(𝛿) ⩽ 𝑦2 − 𝑦1, so

𝑘(𝑦2) − 𝑘(𝑦1) ⩾ 𝑦2 − 𝑦1 −
1
2

(
𝛿(𝑦2) − 𝛿(𝑦1) + 𝑦2 − 𝑦1

)
+ 𝛿(𝑡2) − 𝛿(𝑡1)

= 1
2

(
(𝑦2 − 𝑦1) −

(
𝛿(𝑦2) − 𝛿(𝑦1)

))
+ 𝛿(𝑡2) − 𝛿(𝑡1).
14

If 𝛿(𝑡2) = 𝛿(𝑡1), it follows that 𝑘(𝑦2) − 𝑘(𝑦1) ⩾ 0, since 𝛿 is 1-Lipschitz. If 𝛿(𝑡2) < 𝛿(𝑡1), then 𝑦1 < 𝑡2, and since 𝛿(𝑡1) ⩽ 𝛿(𝑦1) we obtain
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𝑘(𝑦2) − 𝑘(𝑦1) ⩾
1
2

(
𝑦2 − 𝑦1 − 𝛿(𝑦2) + 𝛿(𝑦1)

)
+ 𝛿(𝑡2) − 𝛿(𝑦1)

= 1
2

(
𝑦2 − 𝑡2 − (𝛿(𝑦2) − 𝛿(𝑡2)) + 𝑡2 − 𝑦1 − (𝛿(𝑦1) − 𝛿(𝑡2))

)
⩾ 0

since the function 𝛿 is 1-Lipschitz. The conclusion follows. □

The following theorem is a direct consequence of Lemma 4.5 and Corollary 4.4.

Theorem 4.6. For a given diagonal section 𝛿 we have

𝜇𝛿 =max
𝑥∈𝕀

min
𝑡∈[𝑥,𝑔𝛿

𝑈
(𝑥)]

𝛿(𝑡).

Proof. By Corollary 4.4 we have 𝜇𝛿 = 𝜇(𝐶𝛿 𝐵𝛿). Hence,

𝜇𝛿 = max
(𝑥,𝑦)∈𝕀2

𝑥⩽𝑦

(𝐶𝛿(𝑥, 𝑦) − 𝐵𝛿(𝑥, 𝑦)) = max
𝑥∈𝕀

max
𝑦∈[𝑥,1]

(𝐶𝛿(𝑥, 𝑦) − 𝐵𝛿(𝑥, 𝑦)) = max
𝑥∈𝕀

min
𝑡∈[𝑥,𝑔𝛿

𝑈
(𝑥)]

𝛿(𝑡)

by Lemma 4.5. □

Next, we want to show that the asymmetry of 𝐶𝛿 𝐵𝛿 is attained also on the (extended) graph of the function ℎ𝛿 , defined in (1), 
corresponding to the support of Bertino copula 𝐵𝛿 . Denote by 𝑍𝛿 ⊆ 𝕀 the set of discontinuities of ℎ𝛿 . We define the set

𝐻𝛿 = {(𝑥, ℎ𝛿(𝑥)) ∈ 𝕀2 ∶ 𝑥 ∈ 𝕀} ∪
⋃

𝑥∈𝑍𝛿

(
{𝑥} × [lim inf

𝑡→𝑥
ℎ𝛿(𝑡), ℎ𝛿(𝑥)]

)
,

i.e., the graph of the function ℎ𝛿 with added vertical sections where it is discontinuous.

Proposition 4.7. Let 𝛿 be a diagonal section. If (𝑥, 𝑔𝛿
𝑈
(𝑥)) ∈ 𝐻𝛿 for some point 𝑥 ∈ 𝕀, then min

𝑡∈[𝑥,𝑔𝛿
𝑈
(𝑥)]

𝛿(𝑡) = 𝛿(𝑥). There exists a point 𝑥0 ∈ 𝕀, 

such that

(𝑥0, 𝑔𝛿
𝑈 (𝑥0)) ∈ 𝐻𝛿 and 𝜇𝛿 = (𝐶𝛿 𝐵𝛿)(𝑥0, 𝑔𝛿

𝑈 (𝑥0)) = 𝛿(𝑥0).

Proof. Let 𝜏 ∶ 𝕀 → 𝕀 be a function defined by

𝜏(𝑥) = min
𝑡∈[𝑥,𝑔𝛿

𝑈
(𝑥)]

𝛿(𝑡). (12)

Since 𝐵𝛿 and 𝐶𝛿 are continuous, also 𝜏 is continuous by Lemma 4.5. Suppose that (𝑥, 𝑔𝛿
𝑈
(𝑥)) ∈ 𝐻𝛿 for some point 𝑥 ∈ 𝕀. Then 

𝑔𝛿
𝑈
(𝑥) ⩽ ℎ𝛿(𝑥). Thus for every 𝑡 ∈ [𝑥, 𝑔𝛿

𝑈
(𝑥)] it holds that 𝛿(𝑡) ⩾ 𝛿(𝑥) by the definition of 𝛿(𝑥). It follows that 𝜏(𝑥) = 𝛿(𝑥).

If 𝛿 = 𝛿𝑀 then 𝑔𝛿
𝑈
(𝑥) = 𝑥 and ℎ𝛿(𝑥) = 1 for any 𝑥 ∈ 𝕀, so the claim is trivial. Suppose 𝛿 ≠ 𝛿𝑀 , so that there exists 𝑡 ∈ 𝕀, such that 

𝛿(𝑡) = 𝜀 > 0. Since 𝛿 is continuous, there exist points 𝑥 ∈ [0, 𝑡], 𝑦 ∈ [𝑡, 1], such that 𝛿(𝑥) = 𝛿(𝑦) = 𝜀
2 and 𝛿(𝑠) ⩾ 𝜀

2 for any 𝑠 ∈ [𝑥, 𝑦]. It 
follows that 𝐵𝛿(𝑥, 𝑦) = 𝑥 − 𝜀

2 . Since 𝜀 ⩽ TV𝑦
𝑥(𝛿) ⩽ 𝑦 − 𝑥, we have

𝑓 𝛿(𝑥, 𝑦) = 𝑦 − 1
2
(

𝛿(𝑥) + 𝛿(𝑦) + TV𝑦
𝑥(𝛿)

)
⩾ 𝑦 − 1

2
(

𝜀 + 𝑦 − 𝑥
)
= 1

2
(

𝑥 + 𝑦 − 𝜀
)
⩾ 𝑥,

so that 𝐶𝛿(𝑥, 𝑦) = 𝑥. It follows that 𝜇𝛿 ⩾ 𝐶𝛿(𝑥, 𝑦) − 𝐵𝛿(𝑥, 𝑦) = 𝜀
2 > 0.

Let 𝐴 be the set of all 𝑥 ∈ 𝕀 where 𝜏 attains its maximum 𝜇𝛿 . The set 𝐴 is a closed subset of 𝕀. Let 𝐴′ be its connected component. 
Then it is a closed interval 𝐴′ = [𝑥1, 𝑥2], where we allow that 𝑥1 = 𝑥2. Since 𝜇𝛿 > 0, we have 𝑥1, 𝑥2 ∉ {0, 1}.

For any 𝜀 > 0 there exist 𝑡1 ∈ 𝕀 ∩ (𝑥1 − 𝜀, 𝑥1) such that 𝜏(𝑡1) < 𝜏(𝑥1) = 𝜇𝛿 and 𝑡2 ∈ 𝕀 ∩ (𝑥2, 𝑥2 + 𝜀) such that 𝜏(𝑡2) < 𝜏(𝑥2). Since

𝜏(𝑡1) = min
𝑠∈[𝑡1 ,𝑔𝛿

𝑈
(𝑡1)]

𝛿(𝑠) < 𝜏(𝑥1) = min
𝑠∈[𝑥1 ,𝑔𝛿

𝑈
(𝑥1)]

𝛿(𝑠)

and 𝑔𝛿
𝑈

is increasing, it follows that there exists 𝑡′1 ∈ [𝑡1, 𝑥1) such that 𝛿(𝑡′1) < 𝜏(𝑥1). By sending 𝜀 to 0 we obtain 𝜏(𝑥1) = 𝛿(𝑥1). 
Therefore 𝛿(𝑠) ⩾ 𝛿(𝑥1) for any 𝑠 ∈ [𝑥1, 𝑔𝛿

𝑈
(𝑥1)], which implies ℎ𝛿(𝑥1) ⩾ 𝑔𝛿

𝑈
(𝑥1). Furthermore, since

𝜏(𝑡2) = min
𝑠∈[𝑡2 ,𝑔𝛿

𝑈
(𝑡2)]

𝛿(𝑠) < 𝜏(𝑥2) = min
𝑠∈[𝑥2 ,𝑔𝛿

𝑈
(𝑥2)]

𝛿(𝑠),

it follows that there exists 𝑡′2 ∈ (𝑔𝛿
𝑈
(𝑥2), 𝑔𝛿

𝑈
(𝑡2)] such that 𝛿(𝑡′2) < 𝜏(𝑥2). Since 𝛿(𝑡′2) < 𝜏(𝑥2) ⩽ 𝛿(𝑥2) it follows that ℎ𝛿(𝑥2) ⩽ 𝑡′2. Since 
15

𝑔𝛿
𝑈

is right-continuous, by sending 𝜀 to 0, we obtain ℎ𝛿(𝑥2) ⩽ 𝑔𝛿
𝑈
(𝑥2).
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If the component 𝐴′ is actually a singleton 𝑥0, i.e., 𝑥1 = 𝑥2 = 𝑥0, we obtain from the above ℎ𝛿(𝑥0) = 𝑔𝛿
𝑈
(𝑥0), so the point 

(𝑥0, 𝑔𝛿
𝑈
(𝑥0)) lies on the graph of ℎ𝛿 , thus in the set 𝐻𝛿 .

Assume that 𝐴′ is not a singleton, so that 𝑥1 < 𝑥2. If the function 𝑔𝛿
𝑈

is continuous on 𝐴′, then its graph crosses 𝐻𝛿 , since 
𝑔𝛿

𝑈
(𝑥1) ⩽ ℎ𝛿(𝑥1), ℎ𝛿(𝑥2) ⩽ 𝑔𝛿

𝑈
(𝑥2), and 𝐻𝛿 is connected. So there exists 𝑥0 ∈ 𝐴′, such that (𝑥0, 𝑔𝛿

𝑈
(𝑥0)) ∈ 𝐻𝛿 . Suppose now that the 

function 𝑔𝛿
𝑈

has a jump at a point 𝑥 ∈ 𝐴′. We will show that it is not possible that it jumps over ℎ𝛿(𝑥). Indeed, suppose that

𝑦1 = lim
𝑡↗𝑥

𝑔𝛿
𝑈 (𝑡) ⩽ ℎ𝛿(𝑥) < lim

𝑡↘𝑥
𝑔𝛿

𝑈 (𝑡) = 𝑔𝛿
𝑈 (𝑥) = 𝑦2.

Then the segment {𝑥} × [𝑦1, 𝑦2] is contained in the set 𝐷𝑓 (𝛿) ∩ 𝐷𝑥(𝛿), so the continuity of the function 𝑓 𝛿 implies 𝑓 𝛿(𝑥, 𝑡) = 𝑥 for all 
𝑡 ∈ [𝑦1, 𝑦2]. In particular,

0 = 𝑓 𝛿(𝑥, 𝑦2) − 𝑓 𝛿(𝑥, 𝑦1) = (𝑦2 − 𝑦1) −
1
2

(
𝛿(𝑦2) − 𝛿(𝑦1) + TV𝑦2

𝑦1
(𝛿)

)
.

Since TV𝑦2
𝑦1
(𝛿) ⩽ 𝑦2 −𝑦1, this implies 𝛿(𝑦2) −𝛿(𝑦1) = 2(𝑦2 −𝑦1) −TV𝑦2

𝑦1
(𝛿) ⩾ 𝑦2 −𝑦1. Since 𝛿 is 1-Lipschits, it follows that 𝛿(𝑦2) −𝛿(𝑦1) =

𝑦2 − 𝑦1 and 𝛿 is increasing on the interval [𝑦1, 𝑦2]. Now, since ℎ𝛿(𝑥) ⩾ 𝑦1, we have 𝛿(𝑡) ⩾ 𝛿(𝑥) for all 𝑡 ∈ [𝑥, 𝑦1]. Since 𝛿 is increasing 
on the interval [𝑦1, 𝑦2], it follows that 𝛿(𝑡) ⩾ 𝛿(𝑥) for all 𝑡 ∈ [𝑥, 𝑦2], so ℎ𝛿(𝑥) ⩾ 𝑦2, a contradiction.

We now have 𝑔𝛿
𝑈
(𝑥1) ⩽ ℎ𝛿(𝑥1) and ℎ𝛿(𝑥2) ⩽ 𝑔𝛿

𝑈
(𝑥2). We may assume that the latter inequality is strict, otherwise we are done by 

taking 𝑥0 = 𝑥2. Then the set 𝐵 = {𝑥 ∈ [𝑥1, 𝑥2]∶ ℎ𝛿(𝑥) < 𝑔𝛿
𝑈
(𝑥)} is nonempty, so we may define 𝑥0 = inf 𝐵. If 𝑥0 = 𝑥1, then 𝑔𝛿

𝑈
(𝑥0) ⩽

ℎ𝛿(𝑥0). If 𝑥0 > 𝑥1 we can look at the left limit lim𝑡↗𝑥0
𝑔𝛿

𝑈
(𝑡) ⩽ lim sup𝑡↗𝑥0

ℎ𝛿(𝑡) ⩽ ℎ𝛿(𝑥0), since ℎ𝛿 is upper-semicontinuous. By the 
above it follows that 𝑔𝛿

𝑈
(𝑥0) ⩽ ℎ𝛿(𝑥0) also in this case. In particular, 𝑥0 does not belong to the set 𝐵, so ℎ𝛿(𝑡) < 𝑔𝛿

𝑈
(𝑡) for some 𝑡 > 𝑥0

arbitrarily close to 𝑥0. It follows also that 𝑥0 < 𝑥2, so we may calculate lim inf 𝑡→𝑥0
ℎ𝛿(𝑡) ⩽ lim inf 𝑡↘𝑥0

ℎ𝛿(𝑡) ⩽ lim𝑡↘𝑥0
𝑔𝛿

𝑈
(𝑡) = 𝑔𝛿

𝑈
(𝑥0). 

This implies that (𝑥0, 𝑔𝛿
𝑈
(𝑥0)) ∈ 𝐻𝛿 , which finishes the proof. □

Proposition 4.7 (and its proof) provides an algorithm for computing 𝜇𝛿 for a given diagonal section 𝛿 as follows:

(1) Compute the function 𝑔𝛿
𝑈

.

(2) Compute the function ℎ𝛿 .
(3) Add vertical sections to the graph of ℎ𝛿 at jumps to determine 𝐻𝛿 .
(4) Find the set Ω𝛿 of points in the intersection of the graph of 𝑔𝛿

𝑈
and 𝐻𝛿 lying in the strict upper triangle {(𝑥, 𝑦)∶ 0 ⩽ 𝑥 < 𝑦 ⩽ 1}.

(5) If Ω𝛿 is empty, then 𝜇𝛿 = 0.
(6) Otherwise, find the maximal value of 𝛿(𝑥) over all 𝑥 ∈ 𝕀 such that (𝑥, 𝑔𝛿

𝑈
(𝑥)) ∈Ω𝛿 .

A few remarks are in order:

• Note that the last step in the algorithm is valid due to the fact that 𝜏(𝑥) = 𝛿(𝑥) for all (𝑥, 𝑔𝛿
𝑈
(𝑥)) ∈ Ω𝛿 , where the function 𝜏 is 

defined in (12).
• If a point (𝑥, 𝑦) lies on the diagonal of 𝕀2, then |𝐶(𝑥, 𝑦) − 𝐶(𝑦, 𝑥)| = 0 for any copula 𝐶 . So if 𝜇(𝐶) > 0, then this point can be 

disregarded when computing 𝜇(𝐶). Thus, to narrow the set of candidates for computing 𝜇𝛿 , we exclude diagonal points from Ω𝛿

in step (4).
• The case 𝛿𝑀 (𝑥) = 𝑥 for all 𝑥 ∈ 𝕀 is a trivial one since 𝐵𝛿𝑀

= 𝑀 by definition of 𝐵𝛿 . Therefore, the copula 𝐶𝛿𝑀
𝐵𝛿𝑀

equals 𝑀 , 
and 𝜇𝛿𝑀

= 0.
• The set Ω𝛿 is nonempty if and only if 𝛿 ≠ 𝛿𝑀 . For any 𝛿 ≠ 𝛿𝑀 it holds that 𝜇𝛿 > 0.

These findings are gathered in the main theorem of this section.

Theorem 4.8. For a given diagonal section 𝛿 ≠ 𝛿𝑀 we have

𝜇𝛿 =max{𝛿(𝑥)∶ 𝑥 ∈ 𝕀, (𝑥, 𝑔𝛿
𝑈 (𝑥)) ∈ 𝐻𝛿, 𝑔𝛿

𝑈 (𝑥) > 𝑥}.

The following example shows how we can compute the maximal possible asymmetry of all copulas with a given diagonal section 
using Theorem 4.8. It also demonstrates that it is not enough to look just at the intersections of graphs of 𝑔𝛿

𝑈
and ℎ𝛿 , we need to add 
16

vertical segments to the graph of ℎ𝛿 .
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Fig. 7. The graph of 𝛿 (left), the set 𝐻𝛿 in full line and the graph of 𝑔𝛿
𝑈

in dotted line (right) from Example 4.9.

Example 4.9. Let 𝛿 be a diagonal section defined by

𝛿(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0; 0 ⩽ 𝑥 ⩽ 11
40 ,

2𝑥 − 11
20 ;

11
40 ⩽ 𝑥 ⩽ 31

80 ,

9
40 ;

31
80 ⩽ 𝑥 ⩽ 1

2 ,

2𝑥 − 31
40 ;

1
2 ⩽ 𝑥 ⩽ 49

80 ,

9
20 ;

49
80 ⩽ 𝑥 ⩽ 29

40 ,

2𝑥 − 1; 29
40 ⩽ 𝑥 ⩽ 1.

A lengthy calculation gives us

𝑔𝛿
𝑈 (𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑥 + 11
40 ; 0 ⩽ 𝑥 < 9

80 ,

𝑥 + 31
80 ;

9
80 ⩽ 𝑥 < 9

40 ,

𝑥 + 1
2 ;

9
40 ⩽ 𝑥 < 11

40 ,

31
40 ;

11
40 ⩽ 𝑥 < 31

80 ,

𝑥 + 31
80 ;

31
80 ⩽ 𝑥 < 1

2 ,

71
80 ;

1
2 ⩽ 𝑥 < 49

80 ,

𝑥 + 11
40 ;

49
80 ⩽ 𝑥 < 29

40 ,

1; 29
40 ⩽ 𝑥 ⩽ 1,

and ℎ𝛿(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − 𝑥; 0 ⩽ 𝑥 ⩽ 13
80 ,

11
20 − 𝑥; 13

80 < 𝑥 ⩽ 11
40 ,

𝑥; 11
40 < 𝑥 < 31

80 ,

1 − 𝑥; 31
80 ⩽ 𝑥 ⩽ 1

2 ,

𝑥; 1
2 < 𝑥 < 49

80 ,

29
20 − 𝑥; 49

80 ⩽ 𝑥 ⩽ 29
40 ,

𝑥; 29
40 < 𝑥 ⩽ 1.

Apart from the graph of ℎ𝛿 the set 𝐻𝛿 includes also vertical sections { 13
80 } ×[

31
80 , 6780 ], {

31
80 } ×[

31
80 , 4980 ], and { 49

80 } ×[
49
80 , 6780 ]. The only point 

in the strict upper triangle where (𝑥, 𝑔𝛿
𝑈
(𝑥)) ∈ 𝐻𝛿 is 𝑥 = 13

80 , while 𝑔𝛿
𝑈
( 1380 ) =

11
20 ≠ ℎ𝛿( 1380 ) =

67
80 . It follows that 𝜇𝛿 = 𝛿( 1380 ) =

13
80 = 0.1625. 

Fig. 7 depicts the graph of the function 𝛿 (left) and the graph of the function 𝑔𝛿
𝑈

and the set 𝐻𝛿 (right).

In the special case that 𝛿 is a simple diagonal section Theorem 4.8 can be simplified as follows.

Proposition 4.10. If 𝛿 is a simple diagonal section, then there is a unique point 𝑥0 ∈ 𝕀 such that 𝛿 is increasing on [0, 𝑥0] and (𝑥0, 𝑔𝛿
𝑈
(𝑥0)) ∈

𝐻𝛿 . Furthermore, 𝜇𝛿 = 𝛿(𝑥0) = 𝛿(𝑔𝛿
𝑈
(𝑥0)).

Proof. Suppose 𝑡0 ∈ 𝕀 is the largest point at which 𝛿 attains its global maximum, so that ℎ𝛿(𝑡0) = 𝑡0 ⩽ 𝑔𝛿
𝑈
(𝑡0). Since ℎ𝛿(0) = 1 ⩾ 𝑔𝛿

𝑈
(0), 

we conclude as in the proof of Proposition 4.7 that there exists 𝑥0 ∈ [0, 𝑡0] such that (𝑥0, 𝑔𝛿
𝑈
(𝑥0)) ∈ 𝐻𝛿 .

Since the function ℎ𝛿 is decreasing on [0, 𝑡0] and 𝑔𝛿
𝑈

is increasing, there is only one such point 𝑥0 with (𝑥0, 𝑔𝛿
𝑈
(𝑥0)) ∈ 𝐻𝛿 , unless 

ℎ𝛿 and 𝑔𝛿
𝑈

are both constant on some interval (𝑥1, 𝑥2) with 𝑥1 < 𝑥2. So suppose that this is the case. Since ℎ𝛿 is constant, also 𝛿 is 
17

constant on (𝑥1, 𝑥2). By definition of 𝑔𝛿
𝑈

and continuity of 𝑓 𝛿 we have
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𝑓 𝛿(𝑡, 𝑔𝛿
𝑈 (𝑡)) = 𝑓 𝛿

1 (𝑡) + 𝑓 𝛿
2 (𝑔

𝛿
𝑈 (𝑡)) = 𝑡

for every 𝑡 ∈ (𝑥1, 𝑥2). Now, 𝑓 𝛿
1 (𝑡) = −1

2𝛿(𝑡) + 1
2TV

𝑡
0(𝛿) is constant on (𝑥1, 𝑥2), since 𝛿 is, and also 𝑓 𝛿

2 (𝑔
𝛿
𝑈
(𝑡)) is constant, since 𝑔𝛿

𝑈
is 

constant here, which is a contradiction.
Since ℎ𝛿(𝑡) ⩾ 𝑡0 for all 𝑡 ∈ 𝕀 and 𝛿 is continuous and decreasing on [𝑡0, 1] we have

𝛿(lim inf
𝑡→𝑥0

ℎ𝛿(𝑡)) = limsup
𝑡→𝑥0

𝛿(ℎ𝛿(𝑡)) = limsup
𝑡→𝑥0

𝛿(𝑡) = 𝛿(𝑥0) = 𝛿(ℎ𝛿(𝑥0)),

and consequently 𝛿 is constant on [lim inf 𝑡→𝑥0
ℎ𝛿(𝑡), ℎ𝛿(𝑥0)]. This interval contains 𝑔𝛿

𝑈
(𝑥0) because (𝑥0, 𝑔𝛿

𝑈
(𝑥0)) ∈ 𝐻𝛿 , hence,

𝛿(𝑔𝛿
𝑈 (𝑥0)) = 𝛿(ℎ𝛿(𝑥0)) = 𝛿(𝑥0) and 𝑔𝛿

𝑈 (𝑥0) ⩾ 𝑡0. (13)

Now let, 𝑥1 ∈ (𝑡0, 1] be any point such that (𝑥1, 𝑔𝛿
𝑈
(𝑥1)) ∈ 𝐻𝛿 , so that 𝑡0 ⩽ 𝑔𝛿

𝑈
(𝑥1) ⩽ ℎ𝛿(𝑥1). Since 𝛿(ℎ𝛿(𝑥1)) = 𝛿(𝑥1) and 𝛿 is 

decreasing on [𝑡0, 1], it must be constant on [𝑥1, ℎ𝛿(𝑥1)]. But then 𝛿(𝑔𝛿
𝑈
(𝑥1)) = 𝛿(𝑥1) because 𝑥1 ⩽ 𝑔𝛿

𝑈
(𝑥1) ⩽ ℎ𝛿(𝑥1). From this and 

from (13) we conclude that

𝛿(𝑥0) = 𝛿(𝑔𝛿
𝑈 (𝑥0)) ⩾ 𝛿(𝑔𝛿

𝑈 (𝑥1)) = 𝛿(𝑥1).

It now follows from Proposition 4.7 that 𝜇𝛿 = 𝛿(𝑥0). □

Proposition 4.10 is illustrated in the following example.

Example 4.11. Let 𝛿 be a diagonal section defined by 𝛿(𝑥) = 𝑥2 for all 𝑥 ∈ 𝕀. Since 𝛿 is a simple diagonal and 𝛿 is symmetric with 
respect to 𝑥 = 1

2 , we have

ℎ𝛿(𝑥) =

{
1 − 𝑥; 0 ⩽ 𝑥 ⩽ 1

2 ,

𝑥; 1
2 < 𝑥 ⩽ 1,

and 𝑔𝛿
𝑈

is given in Example 3.5. Since 𝑔𝛿
𝑈
( 38 ) =

5
8 = ℎ𝛿( 38 ) and 𝛿 is increasing on [0, 38 ], Proposition 4.10 implies 𝜇𝛿 = 𝛿( 38 ) =

15
64 ≈

0.2344.
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