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A B S T R A C T

Across much of Europe, climate change has caused a major dieback of Norway spruce (Picea abies L.), an 
economically important tree species. However, the southeasternmost fringe of this tree species – the Eastern 
Carpathians – has not yet suffered large-scale dieback. Studying temporal shifts of climate sensitivity (TSCS) over 
time may elucidate the degree to which Norway spruce may be vulnerable to climate-change induced decline in 
upcoming decades. Under this framework, we analyzed a regional tree-ring network comprising >3000 trees, 
with the aim of quantifying TSCS since 1950. We mathematically defined TSCS as the slope parameter of the 
regression of climate sensitivity (the correlation coefficient) over time. Given the often-observed contrasting shift 
of climate sensitivity at low versus high elevations, we were particularly interested in studying potentially 
divergent TSCS along elevational and spatial gradients. Our analyses revealed several indications of TSCS for 
Norway spruce in the Eastern Carpathians. First, at high elevations (>1100 m a.s.l.), we found that the positive 
link between summer temperature and spruce growth decreased significantly over the study period. In turn, these 
trees, over time, featured an increasing positive relationship with late winter temperatures. At low elevations 
(<800 m a.s.l.), the signal of positive summer Standardised Precipitation-Evapotranspiration Index (SPEI) cor-
relation became more frequent among sites towards 2021, while the strength of the positive winter SPEI cor-
relation from the previous growing season weakened. Our results revealed that TSCS was driven significantly by 
an elevational climate gradient and a longitudinal continentality gradient. Overall, our findings indicate that 
Norway spruce is increasingly affected by water limitations under climate change at low elevations, highlighting 
a potentially rising risk of decline of this species in the Eastern Carpathians.

1. Introduction

Forests are one of the most important terrestrial carbon sinks on 
Earth, storing ~45 % of terrestrial carbon and contributing ~50 % of 
terrestrial net primary production (Bonan, 2008; Pan et al., 2011). 
Consequently, forests are critical for achieving carbon neutrality and 
mitigating climate change effects (Fetting, 2020). As the climate 
changes, so does the sensitivity of tree-growth to environmental drivers 
is changing (Camarero et al., 2021), making understanding and pre-
dicting forest ecosystem responses to environmental changes chal-
lenging (Luo et al., 2015). Yet, assessing tree and forest responses is 

imperative to forecast the implications of a changing climate on the 
biosphere (Peltier and Ogle, 2020).

In regions with clearly defined growing seasons, trees typically form 
annual growth rings (commonly known as tree rings), whose variability 
over time is often linked to annual climate conditions that constrain 
growth, such as low temperature or drought. To date, numerous tree- 
ring studies have highlighted the consequences of global warming on 
forest ecosystems, including mortality events (Cailleret et al., 2019, 
2017), changes in carbon and water dynamics (Babst et al., 2019, 2014; 
Buras et al., 2023; Frank et al., 2015), and reconstruction of past climatic 
variability (Büntgen et al., 2010; Esper et al., 2016; Popa and Kern, 
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2009; Rocha et al., 2021). Tree rings thus represent an invaluable 
climate change proxy, which integrates climate variability from various 
parts of the growing season (Babst et al., 2018) and can contribute 
greatly to Intergovernmental Panel on Climate Change (IPCC) assess-
ment reports (Calvin et al., 2023). However, deciphering the climate 
information stored in tree-ring parameters is difficult since tree growth 
is influenced by many factors, such as various climate parameters, 
silvicultural management practices, or disturbances (Fritts, 1976).

Global environmental change has strongly influenced species dis-
tribution, carbon stock, growth dynamics, and mortality rates in forest 
ecosystems (Mueller et al., 2005; Schuldt et al., 2020; Zhang et al., 
2018). At the individual tree level, climate affects tree growth by 
interacting with carbon assimilation at the leaf level (McDowell et al., 
2022) and carbon storage at the stem level (Litton et al., 2007). As a 
consequence of climate change, the temperature response of trees 
weakens in temperature-limited environments and becomes more 
negative in water-limited ones (Charney et al., 2016). Hence, under 
increasingly dry conditions, the water limitations on wood formation 
intensify globally (Babst et al., 2019).

In recent decades, non-stationarity of climate-growth relationships 
(also known as the divergence problem) has been reported in cold- 
limited ecosystems, respectively at high latitudes (Briffa et al., 1998; 
D’Arrigo et al., 2008; Hofgaard et al., 2019) and high elevations 
(Büntgen et al., 2006). Furthermore, changes in tree sensitivity to 
climate have also been observed in temperate forests (Bošel’a et al., 
2014; Carrer and Urbinati, 2006; Leonelli et al., 2011), and this phe-
nomenon has been recognized at a global scale in response to climate 
change (Babst et al., 2019). Wilmking et al. (2020) found 56 % of studies 
that tested for non-stationarity to identify clear signs of unstable 
climate-growth relationships. In the current context of continuous 
warming (IPCC, 2023), we may expect severe changes in forest sensi-
tivity to climatic factors (Brodribb et al., 2020). Moreover, the sensi-
tivity of secondary growth to climate parameters can change after 
extreme drought events (Leifsson et al., 2023). Consequently, tree 
growth sensitivity to climatic conditions is shifting over time, sometimes 
abruptly (Leifsson et al., 2023), which will impact forest resilience, 
forest vulnerability, and tree growth patterns in the short term and 
tree-species composition of forests in the long term (De Marco et al., 
2022). Taken together, the rising awareness of the non-stationarity of 
climate-growth relationships mirrors a temporal shift in trees’ climate 
sensitivity (TSCS) potentially induced by climate change. In mathematic 
terms, TSCS can be quantified as the temporal change/shift of the 
coupling between measurements of secondary tree growth (e.g., tree 
rings) and measurements of climate parameters that govern tree growth 
(e.g., temperature and precipitation).

While assessments of changes in the climate sensitivity of trees in 
Europe are common (Castaldi et al., 2020; Kolář et al., 2017; Ponocná 
et al., 2016; Schurman et al., 2019; Svobodová et al., 2019), most studies 
rely on monthly climatic data. However, applying climate data with a 
monthly resolution induces an artificial barrier that lacks a physiological 
explanation. In particular, Jevšenak (2019) showed that daily climatic 
data allow for more precise quantification of climate-growth relation-
ships and may thus reveal more detailed insights into TSCS.

Within temperate forests, the climatic factors limiting tree growth 
typically vary from low summer temperatures at high elevations to 
scarce water availability at lower elevations (Babst et al., 2013). In 
forest ecosystems, where temperature and moisture limitations interact, 
trees can alter their sensitivity from one climatic factor to another 
(Tumajer et al., 2023, 2017). In boreal forests, the climate sensitivity of 
trees to summer temperatures changed significantly under different 
climate regimes (dry versus wet periods) (Lange et al., 2018). In the 
Carpathian Mountains, the summer temperature sensitivity of various 
xylem parameters (e.g., cell lumen area, radial cell wall thickness, cell 
number) has decreased in recent decades (Știrbu et al., 2022; Unter-
holzner et al., 2024). These studies indicate that quantifying TSCS for a 
given tree species in a given region may provide insights into how well 

that species may cope with ongoing climate change.
In Europe, the increased intensity and frequency of droughts under 

climate change has affected large areas of forests (Hlásny et al., 2021a; 
Senf et al., 2020). Norway spruce (Picea abies L.), hereafter referred to as 
spruce, is one of the most vulnerable tree-species (Hlásny et al., 2021b; 
Obladen et al., 2021; Synek et al., 2020), and is highly important from 
both economic and ecological perspectives (Klimo et al., 2000). In 
Europe, spruce is distributed from sea level to the timberline at eleva-
tions of 2400 m (Caudullo et al., 2016). The Eastern Carpathians 
represent the southeasternmost edge of the natural distribution of 
spruce (Caudullo et al., 2017, 2016). Thus, at the easternmost limits 
spruce may face growth constraints in terms of water availability due to 
an increased continentality effect (Sidor et al., 2015). In managed forests 
- which constitute the majority of European forests - spruce is typically 
cultivated in even-aged monocultures, both inside and outside its nat-
ural range (Spiecker, 2004). Recently, large spruce diebacks in Central 
Europe (Hlásny et al., 2021b) have focused the attention of forest 
managers and researchers on this species, which is projected to vastly 
decline across Central and Eastern Europe, including the Eastern Car-
pathians, under various future climate scenarios (Buras and Menzel, 
2019). Spruce mortality is, however, less pronounced in Eastern Europe 
than Central Europe (Synek et al., 2020), yet knowledge on the decline 
of spruce in the Eastern Carpathians is sparse (Popa et al., 2024b).

Climate-growth relationships of spruce have been extensively 
investigated across Europe (Begović et al., 2020; Bošel’a et al., 2014; 
Jevšenak et al., 2021; Schurman et al., 2019; Sidor et al., 2015; 
Svobodová et al., 2019; van der Maaten-Theunissen et al., 2013). This 
species was reported to be drought-limited, particularly at low eleva-
tions (Sidor et al., 2015; van der Maaten-Theunissen et al., 2013), which 
is further modulated by prevailing soil conditions (Rehschuh et al., 
2017). Recently, studies conducted in primary spruce forests in the 
Carpathians revealed an increased sensitivity of this species to drought 
at high elevations as well (Björklund et al., 2019; Schurman et al., 2019). 
While Sidor et al. (2015) found that tree growth at high-elevation sites in 
the Eastern Carpathians was mostly determined by summer tempera-
ture, a recent study in the same region highlighted the pronounced 
impact of winter temperatures on tree growth (Popa et al., 2022). These 
contrasting findings may hint TSCS of spruce in the Eastern Carpathians, 
which has already been reported for the Western Carpathians (Bošel’a 
et al., 2014). Yet, to the best of our knowledge, no large-scale studies on 
TSCS of spruce using daily climatic data in Eastern Europe have been 
conducted. While previous studies focused mostly on non-stationarity of 
primary climatic signals, this paper introduces a much more thorough 
assessment of climate-growth non-stationarity. It extends the focus to 
include shifting responses related to secondary climate effects and in-
fluences from the previous growing season.

The absence of large-scale studies addressing TSCS of spruce using 
daily climate data in Eastern Europe highlights a significant knowledge 
gap that warrants further investigation. To address this, we developed a 
novel method for assessing temporal shifts in climate sensitivity (TSCS) 
for spruce in the Eastern Carpathians. Our study utilizes a large tree-ring 
network that encompasses >3000 trees from 158 stands, covering a 
wide range of elevation from 475 to 1675 m. This network is combined 
with gridded climate data at a daily temporal resolution to more pre-
cisely identify the climate-parameter specific season of interest. A cen-
tral aim of our study is to develop a comprehensive understanding of 
TSCS of spruce in the Carpathians, with the goal of identifying the 
dominant underlying mechanisms. To address this aim, we hypothesize 
that:

(H1) with the progression of global warming, summer temperature is 
becoming less constraining factor for spruce growth at high 
elevations;

(H2) however, the importance of water availability for tree growth at 
low elevations is increasing due to the intensification of drought 
events;
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(H3) due to the pronounced east-west continentality gradient in the 
Carpathians, we expect differences in temporal shifts in climate 
sensitivity (TSCS) between the eastern and western regions.

2. Material and methods

2.1. Study area

The Carpathians constitute the largest continuous area of natural 
spruce distribution in Southeastern Europe (Caudullo et al., 2016; Sta-
nescu et al., 1997). The study area consisted of managed, monospecific 
spruce stands located along latitudinal, (46◦ 36` to 47◦ 53` N), longi-
tudinal (24◦ 55` to 26◦ 00` E), and elevational gradients (from 475 m to 
the upper forest limit, up to 1675 m) (Fig. 1). To evaluate the effect of 
elevation on the response of spruce to climate (H1 and H2), sites were 
sampled in four elevational belts: <800 m (30 plots), 800 to 1100 m (40 
plots), 1100 to 1400 m (46 plots), and >1400 m (42 plots). This 
extensive coverage provided a unique opportunity to capture the di-
versity of climatic conditions faced by spruce in Southeastern Europe. To 
assess the response of spruce to climate change, 158 even-aged, 
managed forest stands were sampled for increment cores. Most of the 
sampled stands were pure spruce, whereas some were admixed stands 
with >80 % spruce represented in the growing stock. The admixed 
stands featured other species in combination with spruce, including 

European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) at low 
and intermediate elevations, and rowan (Sorbus aucuparia L.) and birch 
(Betula pendula L.) at high elevations. The climate of the study area is 
characterized by a mountainous, temperate, and continental climate. 
The hottest month is July, the coldest month is January, and the largest 
amount of precipitation usually occurs in June. The mean annual tem-
perature ranges from 7.4 ◦C at low elevations to 3.2 ◦C at high eleva-
tions, while the annual precipitation varies from 620 to 820 mm 
(Fig. 1C).

2.2. Tree-ring data collection and sample preparation

In each of the studied stands, 20 to 22 dominant trees without visible 
injuries were sampled from 2021 to 2022. For plots sampled in early 
summer of 2021 radial growth was not accomplished, thus, this year was 
not included in the analyses for 11 % of the plots. From each tree, one 
increment core was extracted using a 5 mm Pressler increment borer. 
The cores were prepared according to standard dendrochronological 
procedures (Speer, 2010), meaning they were air-dried, mounted on 
wood supports, and sanded with progressive grit-level sanding paper 
until the ring borders were clearly visible. Increment cores were scanned 
at a high resolution (2400 dpi true resolution) with an Epson Expression 
12,000 XL scanner. Tree ring-width measurements were performed on 
scanned images using the software CooRecorder/CDendro (Version 9.6, 

Fig. 1. The location of the study is in the Eastern Carpathians. The map insets show: spruce distribution (A) across Europe (map after www.euforgen.org) and (B) in 
Romania (Stanescu et al., 1997) (dark green – natural distribution, light green – artificial distribution, red border – study area); and (C) mean annual temperature 
(MAT) and mean annual precipitation (MAP) in studied sites color coded by elevational belt (yellow – <800 m, blue – 800 to 1100 m, red – 1100 to 1400 m, and 
green >1400 m).
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Cybis Elektronik & Data AB, Sweden) with a precision of 0.01 mm. In-
dividual series were cross-dated visually using TSAPWin software (Rinn, 
2012) and statistically checked using the COFECHA software 
(Grissino-Mayer, 2001). Trees with an age difference higher than 30 
years from the mean stand age were excluded from the analyses to assess 
age homogeneity within the analyzed forest stands. The final database 
consisted of 3032 trees from 158 stands.

2.3. Tree-growth and climate database

Individual tree ring-width measurements were detrended by 
applying a cubic-smoothing spline of 32 years with a 50 % frequency 
cut-off. The aim of detrending was to reduce the non-climatic signals 
captured in tree rings (e.g., age trends, competition, past silvicultural 
treatments, and disturbances) (Cook and Kairiukstis, 1990). A cubic 

smoothing spline detrending was selected to emphasize high-frequency 
growth variability, which ideally mirrors the growth variability associ-
ated with climate variability. The tree ring-width index series (TRI) was 
calculated as the ratio between the measured series and the values 
modeled by the fitted spline function. At the plot level, chronologies 
were computed by averaging the individual series using a biweight 
robust mean which effectively minimizes the impact of outliers (Cook 
and Kairiukstis, 1990). During the site chronology building, an autore-
gressive model was applied to eliminate the influence of autocorrela-
tion, also known as pre-whitening (Cook, 1985). These site-specific 
pre-whitened chronologies were used for further analysis. Detrending 
individual series and chronology development was done in the R envi-
ronment (R Core Team, 2023) using the ‘dplR’ package (Bunn, 2008).

We deployed a Principal Component Gradient Analysis (PCGA; Buras 
et al., 2016) based on site chronologies to justify our elevational belt 

Fig. 2. Flowchart of the statistical analysis: (A) the input data used to assess the climate-growth relationships at the plot level; (B) the static method; and (C) the 
dynamic method. Climate-growth relationships represents the outputs of the dendroTools analyses which are matrices with correlation coefficients for all considered 
seasons. One season* represents one pixel in the heatmaps presented later and consists of the ending day of the year (DOY, x-axis) and the season length (y-axis) and 
refers to all combinations of window length (from 21 to 180 days) and an ending day from May 1st in the previous year until September 30th in the current year.
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sampling design. PCGA allows for quantifying the influence of envi-
ronmental gradients on variations of the population signal in tree-ring 
data (Buras et al., 2016). PCGA is similar to Principal Component 
Analysis, but with distinction that it emphasizes on the loadings of the 
first two principal components only which were shown to mirror pat-
terns of growth synchronicity related to existing sub populations (e.g., 
Rehschuh et al., 2017, Buras et al., 2023). Consequently, we assessed the 
influence of elevation on the population inherent gradient as determined 
using PCGA. The influence was quantified by computing Spearman’s 
rank correlation for site-specific elevations ordered according to the 
identified PCGA gradient (Rehschuh et al., 2017). Here, a strong and 
significant positive correlation would indicate that elevation signifi-
cantly alters the growth signal, thus justifying the separation of our data 
into elevational belts. PCGA was computed using the ‘dendRolAB’ R 
package (Buras, 2022).

The climatic data (daily maximum and minimum temperatures and 
precipitation) used in this study were downloaded for the period 1950 to 
2021, at the plot level from the easyclimate database (Cruz-Alonso et al., 
2023), which represents a downscaled version of the E-OBS climatic 
database (Cornes et al., 2018) at a spatial resolution of (0.0083◦, ~1 
km). The mean daily temperature was calculated as the average of the 
minimum and maximum temperatures. The Standardized 
Precipitation-Evapotranspiration Index (SPEI) was used to characterize 
water availability in the study area (Beguerıa et al., 2013). The potential 
evapotranspiration data were calculated according to the 
Hargreaves-Samani method based on temperature (mean, maximum, 
and minimum) and plot latitude, which was used to estimate the net 
solar radiation at the surface (Hargreaves and Samani, 1985). To 
calculate SPEI, the climatic water balance values, defined as the differ-
ence between precipitation and potential evapotranspiration, were 
aggregated, at different cumulative daily windows, into a log-logistic 
probability distribution (Jevšenak, 2019).

2.4. Statistical analysis

The complex workflow of our statistical analysis is presented in 
Fig. 2. The climate-growth relationships of spruce were assessed for 
mean temperature, precipitation, and SPEI. Since SPEI is a more precise 
proxy for actual plant water availability than precipitation, the results 
for temperature (H1) and SPEI (H2) are shown in the main text, while 
figures related to precipitation are placed in the supplementary mate-
rial. To quantify TSCS, we applied two methods. First, the common 
overlap period of tree-ring and climate data was split into two periods 
(referred to as static method in the following – Fig. 2B): 1951 to 1985 
(early) and 1986 to 2021 (late). For each period, we independently 
applied the day-wise aggregated climate-growth correlations from the 
dendroTools R package (Jevšenak, 2020; Jevšenak and Levanič, 2018). 
In particular, we calculated the Pearson correlation coefficient across 
520 seasonal aggregates of climate. This analysis spanned from May 1st 
of the previous growing season to September 30th of the current 
growing season, correlating these aggregates with the plot-level mean 
TRI chronologies. We considered all window sizes (season lengths) be-
tween 21 and 180 days. The aim of this static approach was to quantify 
the change in climate response between the two periods.

For the static method, we first calculated the percentage of plots with 
significant correlation coefficients independently for each of the two 
split periods (p < 0.05). Next, for each elevational belt, we calculated the 
mean correlation coefficients and the standard deviations for each sea-
son and climate parameter, highlighting the differences in climate 
sensitivity between the elevational belts (see Fig. 2B for more details).

To further investigate TSCS over time, we applied a dynamic method 
(Fig. 2C) consisting of a moving-window approach to assess the tem-
poral change of climate-growth relationships. To do this, we applied a 
window-size of 31 years, starting with the period 1951 to 1981, while 
shifting the analyzed period by 1 year at a time and ending with the 
period 1991 to 2021. At each step, we calculated the climate-growth 

correlations for the subset period for the three climate parameters and 
the same seasonal windows and season length used in the static method.

The output matrices of the dynamic approach were used to investi-
gate TSCS in more detail. For each site, we first derived trends in climate 
sensitivity for all seasons analyzed. To do so, we regressed the correla-
tion coefficients versus time independently for each season-length 
combination and extracted the beta coefficients from ordinary linear 
regressions as a mathematical representation of TSCS (Eq. (1)), where 
cor represents the correlation coefficients in a subset period, a the 
intercept, ß the beta coefficient, interval the subset period, ε the error 
associated with the model, i the season, and j the plot. 

corij = aij + βij⋅intervalij + εij (1) 

Finally, the beta coefficients, representing TSCS, were averaged 
within each elevational belt to obtain trends related to different eleva-
tions. To define an increase or decrease in correlations within the period 
from 1950 to 2021, four possible TSCS types were defined. If both cor-
relations had the same sign in the first and last intervals, it was defined 
as a positive–positive type or a negative–negative type (see Fig. 2C for 
more details). In the negative-negative type, the sign of the beta coef-
ficient was changed to keep the coherence with the positive-positive 
type for easier interpretation. If the sign of the correlation coefficients 
between the first and last intervals was different, it was defined as a 
positive-negative or negative-positive type.

In our study, we conducted an extensive series of correlation tests 
and are aware of the issue of multiple comparisons (Gelman and Loken, 
2013), wherein the likelihood of erroneously identifying results as sig-
nificant escalates substantially. To mitigate this risk, we emphasize 
findings where multiple seasons showed significant values. We did not 
count on the significance, but rather we used it as an objective threshold 
for distinguishing meaningful signals from the background noise. 
Furthermore, we observed significant outcomes for seasons that are 
closely related, a pattern that strongly suggests these results are not 
mere products of stochastic processes.

To address the third hypothesis, we regressed TSCS (beta co-
efficients) against elevation, latitude, and longitude. In this analysis, we 
selected the four seasonal windows that revealed the strongest TSCS. 
This selection resulted in two seasons each for temperature (one from 
the current growing season and one from winter) as well as SPEI (one 
from the end of the current growing season and one from winter). Here, 
significant regressions would support H3 since a significant change of 
TSCS along elevation, longitude, or latitude would indicate TSCS 
divergence which was the assumption underlying H3 and the central 
aim of our investigation. To investigate the importance of each of the 
environmental parameters on TSCS, we fitted multiple linear regression 
models (Uyanık and Güler, 2013) with Eq. (2), where β is the dependent 
variable (beta coefficients), β0 is the intercept, β1 is the coefficient for the 
independent variable elevation, β2 is the coefficient for the independent 
variable longitude, and β3 is the coefficient for the independent variable 
latitude, ε the error associated with the model. 

β = β0 + β1⋅Elevation + β2⋅Longitude + β3⋅Latitude + ε (2) 

Based on the fitted models, we calculated the variable importance for 
elevation, longitude, and latitude, respectively (Grömping, 2015). In-
dependent multiple linear regression models were fitted for each high-
lighted season. Computation of the model and extraction of the variable 
importance was done in the R environment using the ‘relaimpo’ R 
package (Groemping and Matthias, 2018).

3. Results

3.1. Radial tree growth among elevational belts

Differences in the radial tree growth of spruce were largely explained 
by the elevational gradient (Fig. 3A). The second principal component 
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Fig. 3. (A) Principal Component Gradient Analysis (PCGA) computed at the plot level; and (B) distribution of the plots in relation to elevation and order of PCGA 
gradient, color coded by elevational belt (yellow – <800 m, blue – 800 to 1100 m, red – 1100 to 1400 m, and green >1400 m).

Fig. 4. Mean temperature and Standardized Precipitation-Evapotranspiration Index (SPEI) correlation coefficients with residual tree ring-width index (TRI) values 
for different elevational belts in the early (1951 to 1985) and late (1986 to 2021) periods. Only the seasons in which at least 25 % of the chronologies had a sig-
nificant correlation coefficient (p < 0.05) are shown. The vertical dotted gray line represents the limit between the previous (lowercase letters) and current (up-
percase letters) year. The reference position of each correlation coefficient is the end of the considered time window. Similar results for precipitation are shown 
in Figure S4.
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(PC2), which explained 18 % of the variance in radial tree growth, was 
assumed to be related to the influence of elevation. However, the first 
principal component (PC1) explained 42 % of variance and was assumed 
to reflect the common climatic signal. The Spearman’s rank correlation 
for site-specific elevations, ordered according to the identified PCGA 
gradient (Fig. 3B), was 0.90 (p < 0.001), confirming a significant effect 
of elevation on growth variability and thus supporting the categoric 
division into four elevational belts. Yet, at elevations below 1100 m i.e. 
within the optimal distribution range of spruce in the Carpathians, the 
effect of elevation appeared to be less influential (Fig. 3B). TRI generally 
showed a similar variability among elevational belts in recent decades 
(Fig. S1). However, the greatest variability occurred at elevations below 
800 m, where extremely low TRI values (<0.75) were observed in 1968, 
2003, 2015, and 2020. In each of these drought years, TRI decreased at 
all elevational belts.

3.2. Shifting climate sensitivity using the static method

The climate-growth relationships assessed by the static approach 
indicated shifting responses to climate between the early (1951 to 1985) 
and late (1986 to 2021) periods. We observed a significant summer 
temperature signal in the two upper elevational belts in the early period 
which largely disappeared in the late period (Fig. 4 Temperature panel). 
In the early period, late spring to early summer (the season between 28 
Apr. to 30 Jul.) showed the highest correlation (r = 0.559), indicating a 
strong growth constraint due to low temperatures. Meanwhile, the 
correlations between temperatures from the end of summer and TRI 
were associated with the highest standard deviation, indicating diverse 
growth responses across the network (Fig. S2 Temperature panel). At 
elevations above 1400 m, current summer temperatures and TRI were 
significant correlated in >75 % of the plots (Fig. S3 Temperature panel), 
highlighting a common signal within this elevation belt. In the late 
period, the positive effect of temperature largely disappeared in the 
summer, while a more widespread temperature sensitivity of TRI was 
observed in the spring, indicating a significant temperature effect from 
the beginning of the growing season. Furthermore, winter temperatures 
and TRI were positively correlated for elevations above 1100 m in the 
late period. The highest correlations were identified for short seasons, in 
the first part of winter (r = 0.491 for the 21-day season from 3 to 23 
Dec.). Selecting larger cumulative seasons, we observed the entire 
winter (Jan. and Feb.) to be positively, significantly correlated with TRI.

Positive correlations with previous late autumn/early winter SPEI at 
elevations below 1100 m in the early period indicated a growth limi-
tation due to low water availability, a pattern which strongly decreased 
in the late period (Fig. 4 SPEI panel). Intense autumn rains or early first 
snow thus became less constraining for spruce growth at low and in-
termediate elevations, while water availability from the previous sum-
mer remained positively correlated with TRI. In the early period, the 
highest correlations between previous autumn SPEI and TRI corre-
sponded to short cumulative seasons (r = 0.581 for a 23-day season from 
15 Sep. to 8 Oct.; these correlations are associated with high standard 
deviation – Fig. S2 SPEI panel), while, in the later period, they corre-
sponded to month-long seasons (r = 0.491 for a 32-day season from 15 
Jul. to 13 Jun.). Negative correlations between the current year’s spring 
SPEI values and TRI were observed at elevations below 1100 m in the 
early period (the highest correlation of r = − 0.489 for a season length of 
52 cumulative days from 16 Feb. to 9 Apr.), potentially reflecting ther-
mal constraints on TRI, but were no longer statistically significant (p >
0.05) in the late period. A typical correlation pattern was found at the 
lowest elevational belt, regarding the positive correlation between the 
late summer SPEI. However, from the period 1951–1985 to the period 
1986–2021, the number of seasons with a significant correlation with 
water availability increased, indicating an increase in the constraints of 
water availability over time and supporting H2. Furthermore, <50 % of 
plots recorded a significant correlation with water availability in the 
early period, while >90 % of the plots were significantly influenced by 

water availability in the late period (Fig. S3 SPEI panel). The correlation 
patterns between precipitation and TRI were similar to those of SPEI for 
both periods (Fig. S4).

3.3. Temporal shifts of climate sensitivity (TSCS) using the dynamic 
method

TSCS over time were highlighted by increases or decreases in cor-
relation intensity which sometimes led to a change in correlation sign 
(from positive to negative or vice versa) (Fig. 5). For elevations above 
1100 m, the summer temperature sensitivity declined substantially, 
namely a decrease in correlation intensity or a shift from positive to 
negative correlations, thus supporting H1. An interesting fact was the 
enhancement of the correlation between late winter (Jan. to Feb.) 
temperatures and TRI only at higher elevations, while an increase of 
correlation with spring (Mar. to Apr.) temperatures was observed along 
the entire elevational gradient. Considering the number of plots within 
the same TSCS type, the strongest common signal (>80 % plots) (Fig. S5 
Temperature panel) was identified for shorter cumulative seasons in the 
spring (Mar.) at low elevations and in mid-winter (Dec. to Jan.) at high 
elevations.

The correlation between the late autumn/early winter SPEI and TRI 
decreased substantially, with a stronger change at low elevations (Fig. 5
SPEI panel). At the same time, correlations shifted from positive to 
negative at higher elevations (>1100 m), especially during winter and 
early spring. Furthermore, most of the sites (over 80 %) recorded this 
change in correlation sign (Fig. S5 SPEI panel), revealing a strong 
common pattern within the elevational belts. The correlation intensity 
between the current summer SPEI and TRI decreased at elevations below 
1100 m, but for a smaller percentage of plots (less 60 %) (Fig. S5 SPEI 
panel). The positive late summer SPEI correlation at sites below 800 m 
(indicating dry conditions that hamper growth), increased over time, 
indicating a strongly positive TSCS. In accordance with H2, the positive 
TSCS was found at most of the low elevation plots (Fig. S5 SPEI panel). 
Similar to SPEI patterns, we observed a major TSCS for precipitation 
(Fig. S6). However, for summer precipitation (Jun. to Aug.), we 
observed a stronger negative TSCS at intermediate elevations, suggest-
ing that water availability is becoming a limiting factor, especially at 
low elevations.

3.4. Spatial trends in temporal shifts of climate sensitivity (TSCS)

In the context of addressing H3, analyses along the elevational 
gradient revealed significant trends (p < 0.001) in TSCS for all seasons 
and climatic parameters (Fig. 6, orange lines). Diverging TSCS were 
present across elevations, with sometimes increasing versus decreasing 
sensitivity at the edges of the elevational gradient. Considering the late 
winter temperature signal, positive TSCS were observed at high eleva-
tions with a trend toward lower and partly negative TSCS at low ele-
vations. For summer temperatures, the opposite relationship was 
observed. That is, while the sensitivity to summer temperatures 
decreased at high elevations, it remained stable (TSCS = 0) at low ele-
vations. Considering sensitivity to winter and summer water availability 
(SPEI), TSCS also diverged. While sensitivity to SPEI increased over time 
at low elevations, sensitivity to SPEI in both summer and winter slightly 
decreased at high elevations.

Regarding the longitudinal gradient, we again observed diverging 
TSCS from west to east for all four highlighted seasons (Fig. 6, green 
lines). Interestingly, the regression lines quantifying TSCS divergence of 
the longitudinal gradient were negatively correlated throughout with 
those from the elevational gradient (Fig. 6, green versus orange lines). 
Consequently, for winter SPEI and summer SPEI we found positive TSCS 
in the eastern part of the Eastern Carpathians, compared to western 
Carpathians, which featured a slightly negative TSCS and no TSCS for 
summer SPEI. TSCS of summer temperatures was negative across the 
whole continentality gradient but represented more negative trends in 
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the western part of the network. In comparison, TSCS of winter tem-
peratures shifted from positive values in the west to negative values in 
the east. TSCS also diverged along the studied latitudinal gradient, 
however, to a lesser extent than along the longitudinal gradient (Fig. 6, 
purple lines). While TSCS did not significantly diverge in the winter for 
temperature or SPEI, SPEI sensitivity increased in the summer toward 
the north while remaining stable in the south. Temperature sensitivity 
decreased in the summer in the south, while remaining stable in the 
north.

According to the multiple linear regression models, the elevational 
gradient significantly influenced (p < 0.001) TSCS in all seasons, with a 
variable importance of over 50 % in all models (Table 1). Meanwhile, 
the elevational gradient described most of the TSCS divergence with 
explained variances (r2) of corresponding regressions ranging from 0.22 
to 0.27. Longitude, as an expression of the continentality gradient, 
showed a significant influence (p < 0.05) on TSCS only in winter sea-
sons, with a variable importance higher of 30 % in these seasons 
(Table 1). The explained variances (r2) of longitude were lower than 
elevation and varied from 0.09 to 0.22. The longitudinal gradient only 
significantly influenced (p < 0.01) winter temperature TSCS, yet the 
variable importance was <10 % (Table 1). The latitude explained the 
least TSCS variance (r2 of 0.01 to 0.07). In other words, diverging TSCS 
was mostly related to elevational differences, followed by the longitu-
dinal continentality gradient.

4. Discussion

The results of our analyses supported the initially posed hypotheses. 
First, the summer-temperature sensitivity of Norway spruce signifi-
cantly decreased at high elevations (H1). Furthermore, sensitivity to 
water availability in late summer/early autumn increased widely, 
indicating that most sites became more sensitive to drought at low ele-
vations (H2). Together, these findings clearly indicate divergent tem-
poral shifts in climate sensitivity along the elevational transect, which 
was further modified by a continentality gradient along the longitudinal 
transect (H3). In the following, we conduct an in-depth discussion of 
each of these findings.

4.1. Continuous warming has changed spruce’s growth response to 
temperature at high elevations

Our results indicate current summer temperatures constrained 
spruce growth at high elevations in the early period (1951 to 1985) 
(Fig. 4). This is consistent with previous research in both the study area 
and other parts of Europe that found temperature and vegetative season 
length to limit spruce growth at high elevations (Bouriaud and Popa, 
2009; Hartl-Meier et al., 2014; Leonelli and Pelfini, 2008; Levanič et al., 
2009; Savva et al., 2006; Sidor et al., 2015). Maximal radial growth rates 
of spruce are likely to occur from June to July in mountainous areas 

Fig. 5. Seasons with increasing or decreasing correlations (the positive–positive or negative–negative temporal shifts in climate sensitivity (TSCS) types; red and 
blue), and seasons with a change in correlation sign (the negative–positive or positive–negative TSCS types; pink and green) for temperature and Standardized 
Precipitation-Evapotranspiration Index (SPEI). The figure shows only the seasons in which at least 50 % of the plots recorded a significant change in correlation. For 
the negative-negative scenario, signs of beta coefficients were flipped for a consistent interpretation. Polygons indicate seasons with significant correlation co-
efficients (p < 0.05) between tree ring-width index (TRI) and the climate variable, in the early and late periods (for differentiating between the two periods, see 
Fig. 4). The vertical dotted gray line represents the limit between the previous (lowercase letters) and current (uppercase letters) year.
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(Rossi et al., 2007; Treml et al., 2015), indicating that low temperatures 
in these months may limit growth and consequently result in narrower 
tree-ring widths. While the current summer temperature correlation 
with TRI in the early period is consistent with this physiological pattern, 
spruce’s climate response decreased strongly in the late period (1986 to 
2021), especially at elevations above 1100 m. These TSCS indicate that 
temperature-related growth constraints have disappeared over time, 

which is likely attributed to the continuous warming trend observed at a 
global scale in recent decades (Babst et al., 2019). Global temperature 
has increased by approximately 1.1 ◦C compared with the pre-industrial 
period (Calvin et al., 2023), with an increase of 0.54 ◦C in temperature 
anomalies recorded in the last decades (Valipour et al., 2021). 
Furthermore, climate warming in mountainous regions has occurred at a 
rate above the global mean (Wang et al., 2014). The Carpathians have 

Fig. 6. Trends in temporal shifts of climate sensitivity (TSCS) in relation to elevation (orange), longitude (green), and latitude (purple). Winter Standardized 
Precipitation-Evapotranspiration Index (SPEI) corresponds to SPEI for a season length of 23 cumulative days ending on 25 Jan.; Summer SPEI corresponds to SPEI for 
a season length of 78 cumulative days ending on 30 Sep.; Winter Temperature corresponds to temperature for a season length of 56 cumulative days ending on 29 
Jan.; and Summer Temperature corresponds to temperature for a season length of 21 cumulative days ending on 2 Aug. Solid lines represent significant trends (p >
0.05), while dotted lines indicate insignificant ones.
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similarly experienced a significant warming trend in recent decades 
(Micu et al., 2021). Continuous warming has changed sensitivity to 
climate across Europe for spruce (Bošel’a et al., 2014; Popa et al., 2024a; 
Schurman et al., 2019; Svobodová et al., 2019) and other tree species as 
well (Castaldi et al., 2020; Dobrovolný et al., 2016; Hofgaard et al., 
2019; Unterholzner et al., 2024).

At the same, with the continuous warming trend, TRI displayed an 
increasing positive relationship with winter temperatures. During 
winter, low temperatures may cause xylem embolism (Lens et al., 2013; 
Mayr et al., 2020) or increase soil freeze depths, delaying the onset of 
xylogenesis (Lupi et al., 2012). Trees are more responsive to warmer 
winter or early spring temperatures at high elevations (Primicia et al., 
2015), which accelerate spring snow melt and initiate cambium reac-
tivation (Jochner et al., 2018; Rossi et al., 2008). The significant cor-
relations between winter temperature and TRI in the late period, 
especially at elevations above 1100 m (Fig. 4, Temperature panel), are 
likely due to high temperatures accelerating snow melt and increasing 
soil temperature. Earlier snowmelt is likely to result in a longer growing 
season (Hu et al., 2010) with a positive impact on tree growth (Hinzman 
et al., 2005). In the last half of the 20th century, the onset of the growing 
season occurred with an estimated 2.2 days earlier per decade across 
Europe (Schwartz et al., 2006). The sensitivity of spruce growth to late 
autumn/early winter SPEI decreased in both the early and late periods at 
elevations below 1400 m (Fig. 5), which can also be attributed to 
shifting snow cover patterns associated with continuous warming. In the 
past, snow in early winter insulated the soil during later, colder periods 
of winter. In the Romanian Carpathians, snow depth and the number of 
days with snowfall and snow cover have been decreasing (Micu et al., 
2015) and first snow occurrence has been delayed (Micu, 2009). Other 
studies conducted on spruce in the Carpathians also reported a signifi-
cant and positive sensitivity to winter temperatures (Popa et al., 2022; 
Primicia et al., 2015). Altogether, these findings support H1, that spruce 
growth at high elevations is now constrained more by winter and early 
spring temperatures than summer temperatures, suggesting that the 
onset of vegetation, rather than absolute summer temperature, is more 
decisive for secondary tree growth.

Concerning TSCS of trees to temperature, a shifted response, in 
relation to elevation, was found from the previous autumn (more sig-
nificant changes at low elevations) to winter (more significant changes 
at higher elevations), which is likely related to temperature’s influence 
on physiological processes. At low elevations, long summers and warm 
autumn conditions may influence physiological processes at the end of 
the growing season, improving tree performance the following year by 
enhancing carbohydrate synthesis or favoring bud maturation (Gričar 

et al., 2022; Primicia et al., 2015; Von Felten et al., 2007). At low ele-
vations, the historical scarcity of winter precipitation (snow) suggests 
that recent environmental changes minimally impact TSCS. Meanwhile, 
winter conditions have changed considerably in recent decades in 
mountainous areas (Micu et al., 2015), resulting in more pronounced 
TSCS of spruce to temperature at high elevations during the winter.

Interestingly, TRI was significantly negatively correlated with pre-
vious summer temperature in the early period, and yet significantly 
positively correlated with previous summer/autumn SPEI in the late 
period, especially at intermediate elevations (Fig. 4). The correlation 
between previous growing season temperature and TRI is related to the 
temporal memory of growth (Klesse et al., 2023) and is potentially 
linked with non-structural carbohydrate dynamics (Michelot et al., 
2012). We may assume that a warm summer may favor flowering and 
seed production of spruce, which could leading to a growth reduction, 
and hence, reduced TRI, in the following year (Hacket-Pain et al., 2019, 
2015; Seifert and Müller-Starck, 2009; Selås et al., 2002). However, cone 
reproduction data are not available for our study sites. Consequently, an 
in-depth analysis based on other databases, such as the ICP Forests (htt 
p://icp-forests.net), may better reveal insights into these physiological 
mechanisms.

4.2. Diverging effects of climate change on spruce’s water-availability 
sensitivity

Water availability, expressed as total precipitation or drought index 
SPEI, is an important regulator of spruce growth across large gradients 
(Jevšenak et al., 2021; Lévesque et al., 2013; Vitali et al., 2017). As with 
previous research that indicated climatic constraints shifting from 
temperature to moisture availability (Babst et al., 2019, 2013), we found 
that summer temperature is no longer the main driving factor at high 
elevations, where spring water availability has gained importance for 
tree growth over time (Fig. 4 SPEI panel, Figure S4). We interpret this 
signal as an increasing importance of snowmelt contributing to soil 
water content at high elevations early in the season. Similar findings 
were reported in the Calimani Mountains natural forests, the northern 
part of the Eastern Carpathians, where winter precipitation in the form 
of snow represented an important water resource for Carpathian spruce 
forests (Björklund et al. 2019; Schurman et al., 2019). Snow may play a 
more important role in maintaining moisture for mountainous soils, 
which tend to be shallow (Beniston et al., 2003). Importantly, these 
results highlight the potential for a climate-change-induced drought 
vulnerability at high elevations in the Eastern Carpathians. The reason 
why we did not find this phenomenon at intermediate elevations 

Table 1 
Summary of multiple linear regression models explaining the influence of elevation, longitude, and latitude on temporal shifts of climate sensitivity (TSCS) related to 
temperature and Standardized Precipitation-Evapotranspiration Index (SPEI) across the Eastern Carpathians. Independent multiple linear regression models were 
fitted for each of the highlighted seasons (see Fig. 6), with adjusted explained variance (adj r2) given in brackets. Var. imp. represents variable importance presented in 
relative terms.

Season (adj r2) Predictor Variable Estimate Std. Error t value P-value Sig. Var. imp.

Winter SPEI (0.232) Intercept − 0.12370 0.116 − 1.063 0.289  
Elevation − 0.00001 0.000 − 4.590 <0.001 *** 65 %
Longitude 0.00603 0.003 2.335 0.021 * 32 %
Latitude − 0.00033 0.002 − 0.172 0.864 ns 3 %

Summer SPEI (0.274) Intercept − 0.19740 0.104 − 1.890 0.061  
Elevation − 0.00001 0.000 − 5.364 <0.001 *** 69 %
Longitude 0.00261 0.002 1.124 0.263 ns 17 %
Latitude 0.00313 0.002 1.820 0.071 ns 14 %

Winter Temperature (0.335) Intercept − 0.02816 0.096 − 0.295 0.769  
Elevation 0.00001 0.000 5.242 <0.001 *** 51 %
Longitude − 0.00839 0.002 − 3.951 <0.001 *** 42 %
Latitude 0.00494 0.002 3.139 0.002 ** 7 %

Summer Temperature (0.168) Intercept − 0.30350 0.186 − 1.628 0.106  
Elevation − 0.00001 0.000 − 3.721 <0.001 *** 64 %
Longitude 0.00640 0.004 1.546 0.124 ns 26 %
Latitude 0.00306 0.003 0.998 0.320 ns 10 %

Significance level *** p < 0.001; ** p < 0.01; *p < 0.05.
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however remains unclear but might be related to different soil proper-
ties, and thus, a lower effect of snowmelt at intermediate elevations.

While the positive summer SPEI sensitivity at low elevations – 
indicating dry conditions constraining spruce growth – slightly 
decreased over time, late summer/early autumn SPEI sensitivity became 
significantly positive (Figs. 4 and 5), signaling a shift in the seasonal 
impact of water availability on tree-ring width. However, in the last 
decades, water availability limitations were confirmed by intensification 
of the shared response of significant correlation among plots. The ma-
jority of sites exhibited similar trends (Fig. S3 SPEI panel), suggesting a 
synchronous response among trees, thus an early warning signal of 
forest decline (Shestakova et al., 2018). Spruce is known as a 
drought-intolerant species (Lévesque et al., 2013; Schuster and Ober-
huber, 2013; van der Maaten-Theunissen et al., 2013), usually featuring 
a shallow root system (Caudullo et al., 2016) that limits its ability to 
access water in deeper soil layers. In strong drought years, usually 
associated with narrower rings, spruce was found to be more vulnerable 
than other coniferous species (Bouriaud and Popa, 2009; Vitali et al., 
2017). Popa et al. (2024b) found a strong growth reduction of spruce at 
low elevations, indicating possible negative effects of increasing drought 
limitations. Thus, our results indicate a high drought vulnerability of 
spruce at low elevations, which may increase with more frequent and 
prolonged drought and heatwave events.

4.3. Elevation and continentality modulate temporal shifts of climate 
sensitivity (TSCS) in the Eastern Carpathians

Our results indicated differences in climate-growth relationships 
with elevation (Fig. 4), as found in previous studies of trees’ response to 
climate (Kolář et al., 2017; Ponocná et al., 2016; Sidor et al., 2015). 
However, our findings also indicated significant trends in TSCS with 
elevation, highlighting that elevation modulates both tree response to 
climate and TSCS (Fig. 6). The elevational gradient had the highest 
importance (69 %) in modulating the TSCS of summer SPEI, with most 
changes occurring at low elevations. The increase of TSCS to winter 
temperature at high elevations may be related, as previously noted, to a 
lack of snow and possible changes in the onset of vegetative seasons. 
These shifts emphasize the need to quantify spruce’s adaptability and 
resilience capacity to new climatic conditions for future management in 
the Carpathians (Popa et al., 2024).

In addition to elevation, our results indicated differences across the 
longitudinal gradient (from the east to the west side of the Carpathians), 
while the latitudinal gradient (from the northern to the southeastern 
sites) did not differ significantly. The opposite trend between the ele-
vational gradient and the longitudinal gradient were partially related 
with a smaller correlation (r = − 0.481), supporting the assumption that 
these variables influenced TSCS independently. Similarly, low values of 
correlation coefficients (r < 0.1) between latitude and longitude 
confirmed that these variables independently influenced TSCS, but with 
different importance (Table 1), thus confirming different findings along 
the elevational and spatial gradients. The Carpathians are considered 
one of the major landforms in Southeastern Europe (UNEP, 2008) and 
form a natural barrier between cold continental Eastern Europe and 
temperate Central Europe (Spinoni et al., 2015). Hence, this mountain 
chain with various and fragmented reliefs induces differences in climate 
along the east-to-west transect, especially inducing a continentality ef-
fect to the east. Most TSCS for water availability occurred in the eastern 
part of the Carpathians, at a longitude greater than 25.5◦E, which has 
previously been identified as a climate change “hot spot” within Eastern 
Europe (Hlásny et al., 2016). Our results confirmed that a rapid change 
of climate, coupled with a delayed tree response, is likely to increase the 
vulnerability of spruce in the region.

The varying changes in winter temperature sensitivity of spruce from 
west to east can be attributed, in part, to the natural barrier effect 
exerted by the Carpathian Mountains against westerly winds (Hlásny 
et al., 2016). During winter, cold winds from the eastern part of the 

continent influence the eastern parts of the Carpathian Arch more than 
the western and inner parts (Micu et al., 2015). At the same time, a more 
pronounced trend in changing spruce sensitivity to winter and summer 
SPEI was also observed on the eastern side of the Carpathians. In 
extremely dry years, water availability differed between the north-
eastern part of the Carpathians and the western and southern parts 
(Spinoni et al., 2013). Altogether, these results confirmed H3 and, with 
increasing trends and changing drought conditions (Ionita and Nagav-
ciuc, 2021; Spinoni et al., 2018), we may expect different responses of 
spruce along the Carpathians.

4.4. Methodological consideration and future perspectives

The primary focus of this study was on the principal climatic factors 
affecting tree growth, namely temperature, precipitation, and plant 
water availability (Fritts, 1976). However, it’s crucial to note that cloud 
cover and relative sun duration, both of which influence net down-
welling shortwave radiation and serve as primary drivers of photosyn-
thesis, bear significant implications for secondary tree growth (D’Arrigo 
et al., 2008; Nagavciuc et al., 2019). For example, global solar dimming 
was observed from the 1960s to the 1980s, followed by an increase in 
brightening from the 1990s to the 2000s (Wild et al., 2007). These 
changes overlap with our early and late periods and may induce 
different responses in tree growth. Using this parameter to investigate 
TSCS is of interest for future investigations. Further uncertainties may be 
induced by air pollution, which may affect tree growth or 
climate-growth relationships (Buras et al., 2018; Sidor et al., 2022; 
Cuciurean et al., 2024). Nevertheless, we are confident that the observed 
TSCS were mainly driven by a warming and drying climate in the region, 
due to TSCS indicating meaningful physiological reactions to these cli-
matic changes (see previous sections of the discussion).

The dendrochronological network used in this study was distributed 
across a wide range of various environmental conditions (e.g., bedrock, 
soil, and forest management), which likely influence climate-growth 
relationships as well. Because of the wide area covered by the sam-
pling network, spanning from 475 m to the timberline at 1675 m, the soil 
characteristics of the studied stands vary. Usually, deeper soils are 
present at low elevations, while, soils are shallow with bedrock close to 
the surface at the timberline. Soil characteristics are known to be 
important drivers of tree growth (Maes et al., 2019) and may result in a 
differentiation of climate-growth relationships due to significant effects 
on plant-water availability, as reported previously for spruce (Rehschuh 
et al., 2017). Although soil conditions may explain part of the local 
variations of climate sensitivity in our network, they are unlikely to 
explain the observed TSCS since soil characteristics typically do not 
change on such a short timescale. Furthermore, the extensive replication 
in our network aimed to minimize local effects, with each elevational 
belt represented by at least 30 sites.

Forest management practices have strongly influence tree growth 
and ability to recover from drought events (Pretzsch, 2021; Schmied 
et al., 2022). In the current study, forest management practices were not 
considered, due to the high number of plots and scarcity of management 
data to address this question adequately. Thus, management activities 
may represent another source of uncertainty. However, it is worth 
noting that forestry regulations in Romania since World War II have 
aimed to standardize and regulate the implementation of forest man-
agement plans (Albulescu et al., 2022), likely resulting in similar forest 
management along our network of managed forest stands. We tested the 
effect of age on our results by splitting the dataset into three age classes 
(young stands <70 yrs., mature 71 to 100 yrs. and old >100 yrs.) and 
found no significant changes to our results.

Despite these potential additional influencing factors, our study 
strongly suggests that climate change is affecting spruce in the Eastern 
Carpathians at high rates. Consequently, forest managers need to be 
alert to improve spruce management in the context of drought-induced 
forest decline and resulting bark beetle calamities (Schmied et al., 
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2022). In our study area, no large-scale bark beetle calamities have been 
reported so far (Synek et al., 2020) and thus, have not affected TSCS. 
However, our divergent TSCS findings indicate an increased vulnera-
bility of spruce forests which, under extreme climatic change, may be 
prone to large-scale diebacks. Additional investigations of how spruce 
reacts in extreme drought years may reveal more detailed perspective on 
this species in Eastern Europe. Also, applying a similar methodology to 
other abundant species (e.g., silver fir, European beech) may provide 
important insights into the future of Carpathian forests, such as 
temporarily altered climate-growth relationships as shown recently for a 
global tree-ring network (Leifsson et al., 2023). Meanwhile, linking 
TSCS to other tree-ring parameters (stable isotopes, wood-anatomical 
features, basal area increment trends, or statistical early-warning sig-
nals) may reveal important relationships between changes in the climate 
response of trees, ecophysiology, and biomass accumulation. Ideally, 
pursuing any of these avenues of investigation will increase under-
standing of the response of Eastern Carpathian forest biomes to climate 
change to better project their future performance.

5. Conclusion

The Carpathians host the largest forested area in Eastern Europe, 
with a major importance in providing ecosystem services to a wider 
region (Mráz and Ronikier, 2016). Assessing and understanding Car-
pathian forests’ condition and reactions to climate change is an imper-
ative step for sustainable forest management and the continued 
provision of ecosystem services. In the context of global change, our 
results provide novel insights as to how temporarily changing climatic 
factors alter spruce growth in the Eastern Carpathians. By employing a 
mathematical quantification to assess temporal shifts in climate sensi-
tivity along both an elevational and continentality gradient, our study 
reveals three key findings. First, summer temperature became less 
constraining to spruce growth at high elevations. Second, it highlights 
an expansion in the season of growth sensitivity to water availability, 
extending into late summer/autumn and becoming a shared character-
istic for most sites, at low elevations. Third, the temporal shifts in 
climate sensitivity of spruce were divergent along the examined gradi-
ents in the Eastern Carpathians. Overall, these observed temporal shifts 
in the climate sensitivity patterns over the past decades suggest poten-
tially significant ongoing shifts in spruce’s climate sensitivity and, 
consequently, a changing performance under continued climate change 
in the Eastern Carpathians.
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