
Journal of Physics: Conference
Series

PAPER • OPEN ACCESS

Lessons from accelerating an RBF-FD phase-field
model of dendritic growth on GPUs
To cite this article: Boštjan Mavrič et al 2024 J. Phys.: Conf. Ser. 2766 012168

View the article online for updates and enhancements.

You may also like
Evolution of the Morphology of
Electrodeposited Copper at the Early
Stage of Dendritic Growth
Kei Nishikawa, Elisabeth Chassaing and
Michel Rosso

-

The phase field technique for modeling
multiphase materials
I Singer-Loginova and H M Singer

-

Support vector machines to detect
physiological patterns for EEG and EMG-
based human–computer interaction: a
review
L R Quitadamo, F Cavrini, L Sbernini et al.

-

This content was downloaded from IP address 77.38.113.217 on 25/09/2024 at 07:03

https://doi.org/10.1088/1742-6596/2766/1/012168
/article/10.1149/2.087304jes
/article/10.1149/2.087304jes
/article/10.1149/2.087304jes
/article/10.1088/0034-4885/71/10/106501
/article/10.1088/0034-4885/71/10/106501
/article/10.1088/1741-2552/14/1/011001
/article/10.1088/1741-2552/14/1/011001
/article/10.1088/1741-2552/14/1/011001
/article/10.1088/1741-2552/14/1/011001
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsuzhyOEaWm6s4Elupoq_u1xmmCJKV5ZhSen9qqcp90yuO9ZhYPpJ2KC0rH9Dt7w8Jk0sZf6LSjj4OODCPADY-hxK0aHOSxoRaK0GGXbgvA1qlfiQDkjozdurHjSiunJhIZCjMLSnLa9iw4gMwqQvStTME6-4NZxYkhgUYkJbwUM4IN93vYTjM31RcDz-Dm4aDi2wgfMULVtIZ5bLIU_ld8QmcDlbydg_1LVsqMBnuIb91DKIIsdnGAT1obS9fZ72pqhmpTpsCQqhC0cAzjGxWWXodLElWfXKXwrjg_kY_PACn1P0oXI7nGyj0V4Kc3QmwwZWkzSb8PB-SrhG1IH6umAvfg9cI9Cxs3xJqKG5I0p&sig=Cg0ArKJSzMDoDi8BiaZZ&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.electrochem.org/247/%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3DIOP_247_abstract_submission%26utm_id%3DIOP%2B247%2BAbstract%2BSubmission

Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

9th European Thermal Sciences Conference (Eurotherm 2024)
Journal of Physics: Conference Series 2766 (2024) 012168

IOP Publishing
doi:10.1088/1742-6596/2766/1/012168

1

Lessons from accelerating an RBF-FD phase-field

model of dendritic growth on GPUs

Boštjan Mavrič1,2, Tadej Dobravec2 and Božidar Šarler2,1

1 Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
2 Faculty of Mechanical Engineering, University of Ljubjana, Aškrčeva 6, 1000 Ljubljana,
Slovenia

E-mail: bostjan.mavric@imt.si

Abstract. Phase-field modeling of dendritic growth presents the state of the art in the field
of solidification modeling and are usually implemented using finite difference models combined
with explicit time marching and accelerated by using GPUs. They are a prime candidate for such
acceleration, since they require many arithmetic operations on relatively low ammount of data.
We present an attempt at porting an existing RBF-FD code optimized for CPU execution to use
GPU acceleration while keeping the resulting implementation portable between architectures.
We discuss the acceleration achieved, scaling and implementation issues and critically discuss
current landscape of GPGPU offerings.

1. Introduction
In recent years the hardware profile of the HPC hardware has moved from being focused on
homogeneous compute environment based on CPUs to heterogeneous compute environment
with a combination of CPUs and accelerators. Usually, most of the compute capability in terms
of floating point operations is contributed by the accelerator hardware. Such accelerators are
usually in the form of general purpose graphics computing units but specialized accelerator cards
are becoming more and more popular in recent years driven by the requirements coming from
the training of neural networks [1].

The accelerators are often used in connection with phase-field models of dendritic growth.
Such models are usually implemented using finite-difference methods and run on supercomputers
with great efficiency [2, 3]. Recent simulations of dendritic growth based on meshless RBF-FD
(radial basis function generated finite difference) methods have shown that such formulation
has an advantage over the finite-difference methods in terms of mesh-induced anisotropy [4, 5].
Artificial anisotropy is introduced into the FD-based models through the use of a structured,
usually cubic, grid that is needed to formulate the spatial discretisation. The RBF-FD methods
can be used on scattered isotropic nodes which helps to formulate a discretisation that does not
introduce additional sources of anisotropy and can thus produce more accurate results.

The RBF-FD models have been formulated based on an original software library written in
modern Fortran and did not exploit accelerators to speed-up the computation. The goal of this
work is to formulate an implementation that is able to leverage the immense computing power
available through accelerator hardware.

9th European Thermal Sciences Conference (Eurotherm 2024)
Journal of Physics: Conference Series 2766 (2024) 012168

IOP Publishing
doi:10.1088/1742-6596/2766/1/012168

2

2. Governing equations
We consider the solidification of pure supercooled melt in the 2-D computational domain Ω
with the boundary Γ. We study a simplified case with constant density ρ, specific heat at
constant pressure cp, and thermal conductivity k. The latent heat of melting and the melting
temperature are denoted as Lm and Tm, respectively. We use the dimensionless PF model [6],
where the spatial and temporal coordinates are measured in units of the PF interface thickness
and the PF characteristic attachment time, respectively. The PF interface thickness is defined
as

W0 = d0
1

α1
λ, (1)

where d0 is the thermal capillary length while α1 and λ stand for a constant and the free
parameter of the PF model, respectively. The PF characteristic attachment time is given as

τ0 =
d2

0

DT

α2

α2
1

λ3, (2)

where α2 stands for a constant of the PF model and DT = k/(ρcp) for the thermal diffusivity.
The PF constants are equal to α1 = 0.8839 and α2 = 0.6267 [6]. The selection of free parameter
λ has to yield W0 much smaller than the diffusion length of solidification to ensure a valid PF
model.

The PF model constrains PF values in the interval −1 ≤ φ ≤ 1, where φ = 1 and φ = −1
denote solid and liquid phases, respectively. We use the preconditioned PF [7]

ψ =
√

2 tanh−1(φ), (3)

to increase numerical stability for larger node spacings. The energy conservation equation in
terms of dimensionless temperature θ = (T − Tm)/(Lm/cp) reads as

∂θ

∂t
= D∇2θ +

1− φ2

2
√

2

∂ψ

∂t
(4)

where D stands for the dimensionless thermal diffusivity, measured in units of W 2
0 /τ0. The PF

equation reads as [8]

a2(n)
∂ψ

∂t
=
√

2 (φ− λ(1− φ)θ) + 2a(n)∇a(n) · ∇ψ

−
√

2φ∇ψ · a(n) +∇ · a(n) + a2(n)
(
∇2ψ −

√
2φ|∇ψ|2

)
,

(5)

where a(n) and a(n) represent the anisotropy functions. They depend on the normal to the
solid-liquid interface

n = (nx, ny) = − ∇ψ
|∇ψ|

. (6)

We consider the cubic anisotropy of the surface energy. In this case, anisotropy functions read
as

a(n) = 1− 3ε4 + 4ε4
(
n4
x + n4

y

)
, (7)

and
a(n) = 16ε4|∇ψ|a(n)

(
nx(n4

x + n4
y − n2

x), ny(n
4
x + n4

y − n2
y)
)
, (8)

where ε4 stands for the anisotropy strength of the interface energy.

9th European Thermal Sciences Conference (Eurotherm 2024)
Journal of Physics: Conference Series 2766 (2024) 012168

IOP Publishing
doi:10.1088/1742-6596/2766/1/012168

3

3. Solution procedure

3.1. Discretization
The problem is solved by employing the method of lines using first order explicit time stepping
method. The spatial discretization is done through meshless RBF-generated finite differences
(RBF-FD, also known as local radial basis function collocation method). It is formulated on
nodes xi of a scattered node set xi ∈ X and works by constructing interpolants from the
combination of monomials and RBFs across localized stencils, usually consisting of a small
number of nearest neighbours [9, 10]. In this way we can express the value of an unknown u(x)
at an arbitrary point x as

u(x) =
∑
i∈Ωk

wk,i(x, I)u(xi), (9)

where Ωk ⊂ X is the stencil centered on the node closest to x. The scalars wk,i(x, I) represent
the weights obtained from the solution of the local interpolation problem. The discretization
weights can be determined for any linear differential operator L by acting with the operator on
the local interpolation. In the equation above, this operator is the identity operator I. For a
general operator, we would have

Lu(x) =
∑
i∈Ωk

wk,i(x,L)u(xi). (10)

From the computational point of view, it is important to note that the matrix representing
wk,i(x,L) is sparse and contains n nonzero elements per row. Their positions depend on local
stencils Ωk and can be reordered into a band-limited matrix. Naturally, the weights do not
depend only on k but on x as well, meaning that every evaluation point comes with unique
evaluation weights, but can use the same values u(xi) given that xk is a common closest
node. Additionally, the weights wk,i(x,L) can be calculated in advance and reused during
the simulation steps.

3.2. Solution steps
The goal of solution procedure is to propagate the dicretized solutions ψ(X, t) and θ(X, t). With
this notation we introduce the vectors of unknowns as u(X, t) = [u(xi, t), ∀xi ∈ X]. The solution
algorithm proceeds as specified in algorithm 1.

3.3. Computer implementation
The goal of this work has been to add GPU offloading to an already existing implementation
of the solution procedure listed above. When doing this, it is necessary to account for different
offload paradigms and frameworks supported by specific combination of compiler toolchains
and hardware. This is summarized in table 1. Since we are trying to use a vendor-agnostic
solution it appears that OpenMP is the best option. It is supported by all compiler vendors,
allows for CPU fallback if GPU hardware is not available and shows performance close to native
implementations in CUDA or other vendor-specific languages. It is also expressive enough to
function well for the problems we are trying to address. With this in mind we proceeded to
use OMP offload constructs to mark the loops denoted as Precalculation, Rate calculations and
State update. All calculations are offloaded and the solution is only copied over to host when we
want to output the solution for visualisation purposes.

To arrive to the implementation benchmarked in this contribution we needed to introduce
some significant changes to the solver implementation. The first step was to remove most of
the encapsulation present in the Precalculation and Rate calculation loops. In practice this
meant removing functions implementing formulas for a(n), a(n) and functions implementing

9th European Thermal Sciences Conference (Eurotherm 2024)
Journal of Physics: Conference Series 2766 (2024) 012168

IOP Publishing
doi:10.1088/1742-6596/2766/1/012168

4

Algorithm 1: Calculation sequence of the solution procedure.

1 begin Initialisation
2 Position scattered nodes. ;
3 Calculate discretization weights.;
4 Initialize ψ(X, 0) and θ(X, 0);

5 while t < tend do
6 begin Precalculation
7 ∇ψ(X, t)← w(∇)ψ(X, t);
8 n(X, t)← ∇ψ(X, t)/|∇ψ(X, t)|;
9 a(X, t)← Calculated according to formula 7 from n(X, t). ;

10 a(X, t)← Calculated according to formula 8 from n(X, t). ;

11 begin Rate calculations

12
∂ψ
∂t (X, t)← Calculated according to formula 5 from ψ(X, t), a(X, t), a(X, t) and
∇ψ(X, t) ;

13
∂θ
∂t (X, t)← Calculated according to formula 4 from θ(X, t) and ∂ψ

∂t (X, t);

14 begin State update

15 ψ(X, t+ ∆t)← ψ(X, t) + ∆t∂ψ∂t (X, t);

16 θ(X, t+ ∆t)← θ(X, t) + ∆t∂θ∂t (X, t);
17 t← t+ ∆t

Table 1. Programming paradigm support matrix in popular Fortran compilers.

Nvidia Intel AMD

GNU OpenMP, OpenACC OpenMP, OpenACC OpenMP, OpenACC
ifort / OpenMP /
NVHPC OpenMP, OpenACC, CUDA / /
ROCm / / OpenMP, CUDA

the evaluation of differential operators like equation (10). This allowed to better exploit
parallelization by reducing register usage for each kernel. Secondly, related to this was the need
to remove all polymorphism present in the solver since polymorphic calls are not supported in
the offload sections.

3.4. Results and discussion
The results were collected on a workstation computer equipped with AMD Ryzen 9 5900X
processor and NVIDIA GeForce RTX 3080 GPU. The tests were performed by compiling the
code in three different modes summarized in table 2. The CPU results were obtained from
parallel runs on 12 physical cores of the processor. The GPU result employed a single GPGPU.
The timing results are shown in figure 1.

The timing is performed for a 2D simulation employing stencil size 13 and different number of
nodes discretizing the computational domain, which is determined by the number of points along
a boundary N . We chose the following values of N = [480, 640, 960, 1280], while keeping the
size of the computational domain fixed. The total computational work depends on the number
of time steps performed as well. We fix the total simulated time and the time step is reduced
in order to satisfy the von Neumann stability conditions for explicit time discretization using

9th European Thermal Sciences Conference (Eurotherm 2024)
Journal of Physics: Conference Series 2766 (2024) 012168

IOP Publishing
doi:10.1088/1742-6596/2766/1/012168

5

Table 2. Compilers and compiler flags used to produce results for this paper.

label compiler version compilation flags

GPU nvfortran 23.5 -i8 -mcmodel=medium -Mpreprocess

-Mfreeform -Mrecursive -Mreentrant -mp

-target=gpu -O3
CPU nvfortran nvfortran 23.5 -i8 -mcmodel=medium -Mpreprocess

-Mfreeform -Mrecursive -Mreentrant -mp

-O3 -tp host
CPU ifort ifort 2023.0.0 -reentrancy threaded -threads -parallel

-O3 -march=core-avx2 -align array64byte

-fma -ftz -fomit-frame-pointer

forward Euler scheme. Overall this means that the total computational work scales as N4.
From the timing results in figure 1 we can see that the elapsed time scales linearly with total

work. Small differences between different compilers for CPU runs disappear and the problem
size is increased. Interestingly, the GPU implementation seems to scale somewhat sublinearly
for small problems, but eventually regresses to the linear scaling as problem size becomes large
enough.

Figure 2 shows what speedup was achieved by the GPU implementation in comparison to the
CPU only computation. The speedup increases as the problem size grows, but seems to reach a
stationary value at around 4.5 .

We were also interested in how the balance between different parts of the solution procedures
in terms of time spent evolves as the problem size in increased. This is illustrated in figure 3.
There we compare the time spent in the Rate calculations and Precalculations. The former is
split in two parts: Gradient which represents the gradient calculation in line 7 of algorithm 1
and the rest, that is lines 8 to 10 in algorithm 1, which are labeled by Precalc. node and are
local, requiring information for a particular node only. We can see that the ratio between the
parts remains constant for CPU runs. For the GPU runs it varies and more time is spent in
gradient evaluation. From these we can conclude that for large problems the limiting factor is
the evaluation of differential operators and not node-local calculations.

4. Conclusions
The implementation of the solution procedure presented in this paper leveraged OpenMP
offloading to employ computational resources available on the GPU. This produced a portable
implementation that can run either on CPU or GPU hardware. The portability achieved comes,
however, at a cost that is paid in terms of code flexibility and extensibility. These are introduced
by the limitations that exist on what language features are allowed in the offloaded sections and
the fact that employing encapsulation in offloaded sections leads to degraded performance. This
could of course change with new compiler versions.

The speedups achieved show promising results, especially for larger problems. There are
further open avenues of research in terms of data structures employed to store the simulation
state and the development of algorithms specialized for evaluation of differential operators.
Because we are relying on a framework to produce GPU code, the balance has to be struck
between sophisticated algorithms that are hard for compiler to optimize and naive algorithms
that the compiler can understand well.

In the future we plan to further explore the interaction between the method parameters and
multiplication algorithms. We also plan to test the code on more GPU hardware to see what

9th European Thermal Sciences Conference (Eurotherm 2024)
Journal of Physics: Conference Series 2766 (2024) 012168

IOP Publishing
doi:10.1088/1742-6596/2766/1/012168

6

0.0 0.5 1.0 1.5 2.0 2.5
log10(Total work)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
g 1

0(
El

ap
se

d
tim

e)

linear
GPU
CPU nvfortran
CPU ifort

Figure 1. Time spent in the time stepping
loop. Time is reported relative to the
duration of the smallest case run on GPU
which took 21s. The data labeled linear
represents linear scaling.

0.0 0.5 1.0 1.5 2.0 2.5
log10(Total work)

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

d-
up

CPU nvfortran
CPU ifort

Figure 2. Speed-up achieved with the
GPU offloaded version.

480 960 1280
Mesh size

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

tim
e

sp
en

t

Gr
ad

ie
nt

Precalc.
 node

Ra
te

CPU nvfortran

480 960 1280
Mesh size

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ad

ie
nt

Pr
ec

al
c.

 n

od
e

Ra
te

GPU

Figure 3. Relative time spent
for particular task of the solution
procedure.

speed-ups can be offered by other manufacturers in this space.

Acknowledgements
The research has been supported by the ARIS projects Z2-4479, Z2-2640 and ARIS program
financing P2-0162 .

References
[1] Peccerillo B, Mannino M, Mondelli A and Bartolini S 2022 Journal of Systems Architecture 129 102561
[2] Sakane S, Takaki T and Aoki T 2022 Materials Theory 6 3
[3] Takaki T 2023 IOP Conference Series: Materials Science and Engineering 1274 012009
[4] Dobravec T, Mavrič B and Šarler B 2020 Computational Materials Science 172 109166
[5] Dobravec T, Mavrič B and Šarler B 2022 Computers & Mathematics with Applications 126 77–99
[6] Karma A and Rappel W J 1998 Physical Review E 57 4323
[7] Glasner K 2001 Journal of Computational Physics 174 695–711
[8] Boukellal A K, Rouby M and Debierre J M 2021 Computational Materials Science 186 110051
[9] Šarler B and Vertnik R 2006 Computers & Mathematics with Applications 51 1269–1282

[10] Flyer N, Fornberg B, Bayona V and Barnett G A 2016 Journal of Computational Physics 321 21–38

