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A B S T R A C T

Macroscopic descriptions of both natural and engineered materials usually include a number
of phenomenological parameters that have to be estimated from experiments or large-scale
microscopic simulations. When dealing with advanced complex materials, these descriptions
are sometimes not a priori available or not even known. Using sparsity-promoting techniques
one can extract macroscopic dynamic models directly from particle-based simulations. In this
work, we showcase such an approach on a simple fluid and test its robustness. We introduce a
novel measure for automatic macroscopic model selection that combines stability and accuracy
of a model. Using this measure and employing only a few physics-based assumptions, we
are able to infer both the mass continuity equation and an equation for the conservation
of linear momentum. Moreover, the extracted phenomenological and non-phenomenological
parameters agree well with their numerically measured values and the well-known semi-
empirical estimates. The presented model selection framework can be applied to simulations
or experimental data of more complex systems, described in general by a rich set of coupled
nonlinear macroscopic equations.

1. Introduction

Macroscopic descriptions of materials provide a systematic framework for predicting their dynamic behavior on large (industrial)
spatio-temporal scales. Methods for deriving macroscopic dynamic equations are usually based on a symmetry-based approach [1,2]
and provide dynamic laws for collective variables connected with conservation laws or symmetry breaking [3]. Although these
methods are thermodynamically consistent [4], they lack a bridge that connects the macroscopic phenomenological parameters
with microscopic properties.

In contrast, microscopic methods, such as molecular dynamics (MD) [5,6], provide a detailed picture of the material, but
are computationally intensive. The number of degrees of freedom in such a simulation can be reduced by the Mori–Zwanzig
formalism [7,8], resulting in coarse-grained mesoscopic methods [9–13] with variable degree of accuracy, which are governed
by dynamics in the form of a generalized Langevin equation. However, the extraction of phenomenological equilibrium or transport
coefficients requires prior knowledge of a complete macroscopic description, which is not always known in advance, especially
when dealing with a novel material. Moreover, the determination of transport coefficients is prone to noise when using equilibrium
methods [14], or requires a careful simulation setup to measure a specific phenomenological parameter when using non-equilibrium
methods [15,16].
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Data-driven techniques are becoming increasingly popular for discovering dynamic systems from data. Examples include
quation-free modeling [17], learning effective dynamics [18,19], modeling emergent dynamics [20], detecting causal relationships
etween time-dependent variables [21], symbolic regression [22,23], equation learning based on Gaussian processes [24] and neural
etwork based learning [25–28]. Sparse Identification of Nonlinear Dynamics (SINDy) [29] is a framework based on regularized least
quares regression, formally with an additional sparsity-promoting term, which has been shown to be effective in discovering explicit
nd parsimonious dynamic laws. It has already been applied to a variety of problems, such as chemical reaction dynamics [30],
lasma physics [31], nonlinear optics [32,33], mesoscale ocean eddies [34], oscillations in the tropical atmosphere [35], and COVID-
9 transmission dynamics [36]. In the case of partial differential equation discovery [37], the weak formulation of SINDy [38,39]
as proved to be particularly resistant to noise and could even handle experimental data [40,41].

However, the application of sparsity-promoting techniques to particle simulation data, i.e. particle trajectories, is rare, with the
xception of Refs. [42–44]. In Ref. [42], SINDy was applied to a particle-based description of active matter in the form of interactive
elf-propelled chiral particles, as well as to experimental video data on a driven colloidal system and collective motion of sunbleak
ish. By projecting the spatio-temporal data onto a spectral basis composed of Chebyshev polynomials in time and Fourier modes
n space, they were able to extract macroscopic dynamic models. In Ref. [43], the weak formulation of SINDy was applied to a
ystem of interacting particles, described by stochastic differential equations. In contrast to Ref. [42], where a Gaussian kernel is
sed to obtain the particle number density and the polarization density field, no smoothing of the input fields is required when using
he weak SINDy approach. In Ref. [44], sparse regression was used to extract the Vlasov equation as well as the single-fluid and
ulti-fluid magnetohydrodynamic models from particle-in-cell simulations of plasma. Therein, the weak formulation was crucial to

apture slow and large-scale phenomena in the presence of noisy simulation data.
In this work, we develop a novel macroscopic model selection measure and test it, together with SINDy, on simulation datasets

escribing the transient dynamics of a simple fluid in two different simulation configurations. We describe the dynamics of the
luid using dissipative particle dynamics (DPD) [45,46], which is a state-of-the-art mesoscopic particle-based technique. DPD is
ased on the representation of multiple atoms or even molecules as single beads and is therefore suitable for the study of complex
aterials [47], such as polymers [9], colloidal dynamics [48], magnetic fluids [49], biological membranes [50] or red blood

ells [51–54]. It has also recently been used to model ultrasound propagation in simple fluids [55]. We choose to simulate a one-
omponent isothermal DPD fluid, i.e. a simple fluid, since the macroscopic transport coefficients of such a system have a solid
heoretical and numerical foundation. We use the weak formulation of SINDy, whose superior handling of noisy data makes it
deal for studying large-scale MD or DPD simulation datasets of complex materials. Our new non-parametric measure automatically
elects the most suitable model according to its accuracy and stability and is, in combination with the weak SINDy, robust both to
igh-levels of noise and large model libraries. For an overview of our approach see Fig. 1.

. Learning framework

.1. Sparsity-promoting regression method

In general, a macroscopic dynamic model of a material is given by a set of 𝑀 fields {𝑢1, 𝑢2,… , 𝑢𝑀} equipped with coupled
onlinear partial differential equations. We assume that these equations can be written as follows:

𝜕𝑡𝑢𝑖 =
∑

𝑗
𝑐𝑢𝑖𝑗 𝐷𝑗𝑓𝑗 (𝑢1, 𝑢2,… , 𝑢𝑀 ) , (1)

here 𝑐𝑢𝑖𝑗 denotes a macroscopic coefficient corresponding to the 𝑗th term of the dynamics of the field 𝑢𝑖, and 𝐷𝑗 is either identity
or a general spatial derivative acting on some function of the fields 𝑓𝑗 .

The description of complex materials in terms of fields, as in Eq. (1), is used in several well-established field-theoretical methods,
such as classical density functional theory (DFT) [56], its dynamic extensions dynamic density functional theory (DDFT) [57] and
power functional theory (PFT) [58], Mori–Zwanzig projection formalism [59] and macroscopic dynamics [1,2]. These methods have
been applied to a wide range of complex systems, modeling both phase behavior [60] and dynamics of polymers [7,61–65], protein
absorption on nanoparticles [66], colloidal fluids [67,68], active matter [69,70], nematic liquid crystals [3], magnetic fluids [71]
and gels [72].

The problem of finding, for each field 𝑢𝑖, an equation of the form (1) that best describes a given dataset of known values
of the fields 𝑢1, 𝑢2, . . . , 𝑢𝑀 at some sample points {𝐱𝑘} in space and time can be tackled by linear regression. Constructing
a suitable library of candidate terms 𝐷𝑗𝑓𝑗 and evaluating Eq. (1) at every sample point yields a linear system for each field:
𝐮𝑡𝑖 = Φ𝐜𝑢𝑖 , where 𝐜𝑢𝑖 contains the coefficients [𝐜𝑢𝑖 ]𝑗 = 𝑐𝑢𝑖𝑗 , the library matrix Φ contains values of candidate terms at sample points
Φ]𝑗𝑘 = 𝐷𝑗𝑓𝑗 (𝑢1(𝐱𝑘), 𝑢2(𝐱𝑘),… , 𝑢𝑀 (𝐱𝑘)), and 𝐮𝑡𝑖 contains time derivatives of field 𝑢𝑖 at the same points [𝐮𝑡𝑖]𝑘 = 𝜕𝑡𝑢𝑖(𝐱𝑘). The system can
hen be used to find optimal coefficients that fit the dataset as closely as possible.

When discovering dynamic laws of a material about which we have only limited knowledge, it is reasonable to include a large
umber of terms into the library that could contribute to the unknown dynamics. We assume that only a few of these candidate
erms are actually necessary for a good description of its macroscopic dynamics. To achieve a sparse solution to the regression
roblem, we use the Sequentially Thresholded Least-Squares (STLSQ) method, which was first presented in [29]. This is an iterative
lgorithm, in which each iteration, enumerated with the index 𝑙, consists of two steps. First, a least-squares fit is calculated:
𝑢𝑖
𝑙 = argmin𝐜𝑢𝑖 ‖𝐮𝑡𝑖 − Φ𝑙𝐜𝑢𝑖‖22, using the current library matrix Φ𝑙 with normalized columns. Then, all terms whose coefficients in
𝑢𝑖

𝑙 are below some predetermined threshold 𝜆, are removed from the library. After no new terms are removed in this step, a final
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Fig. 1. Overview of data acquisition and the learning framework: (a) The fluid is described as a system of particles that evolve according to some force-field,
in our case given by dissipative particle dynamics (Section 3.1). (b) The transient dynamics of the fluid are stored in particle trajectory data (Section 3.3). (c)
Macroscopic fields 𝑢1(𝑡, 𝐱), 𝑢2(𝑡, 𝐱), . . . , 𝑢𝑀 (𝑡, 𝐱) are calculated from particle trajectories; in our case the mass density 𝜌(𝑡, 𝐱) and the two components of the velocity
field 𝑣𝑥(𝑡, 𝐱) and 𝑣𝑦(𝑡, 𝐱). (d) Random spatio-temporal regions are sampled from the coarse-grained fields and used to construct a sparse regression problem with
a large amount of candidate terms (Section 2.1). (e) The regression is performed across a wide range of values of the sparsity control parameter 𝜆 and the best
macroscopic model (f) is selected among the resulting models {𝑚} according to our novel measure 𝑞 that balances stability and accuracy (Section 2.2).

least-squares fit is performed with the resulting sparse library without normalization. The threshold 𝜆 controls the sparsity of the
result and is the only control parameter of this method. Its effect on the form of discovered models is discussed in Section 2.2.

The discrete approximations of spatio-temporal derivatives of noisy data are usually of low quality [37]. To mitigate the
effects of noise in the estimation of these derivatives, several techniques have been proposed: spectral denoising [73], polynomial
interpolation [37,74], and weak formulation of the problem [38,39]. Under the assumption that the given datapoints are arranged
on a grid, we use the latter. We obtain a weak formulation of SINDy by multiplying Eq. (1) with a sample function 𝜓𝑘(𝑡, 𝐱) and
subsequent spatio-temporal integration over the dataset domain:

∬ 𝜕𝑡𝑢𝑖 𝜓𝑘d𝑡d𝐱 = ∬
∑

𝑗
𝑐𝑗𝐷𝑗𝑓𝑗 𝜓𝑘d𝑡d𝐱 . (2)

Eq. (2) is in principle valid for any choice of 𝜓𝑘(𝑡, 𝐱). In our work, we use local polynomial bumps that are nonzero only in cuboidal
regions of ℎ𝑥 × ℎ𝑦 spatial and ℎ𝑡 temporal gridpoints and are centered around a given point in space–time (𝑡𝑘, 𝑥𝑘, 𝑦𝑘):

𝜓𝑘(𝑡, 𝑥, 𝑦) = 𝜓̃
(

2
ℎ𝑡

{

𝑡 − 𝑡𝑘
}

)

⋅ 𝜓̃
(

2
ℎ𝑥

{

𝑥 − 𝑥𝑘
}

)

⋅ 𝜓̃
(

2
ℎ𝑦

{

𝑦 − 𝑦𝑘
}

)

, (3)

where 𝜓̃ is defined as [75]

𝜓̃(𝑥) =
{

(1 − 𝑥2)𝜇+1 ; −1 < 𝑥 < 1
0 ; otherwise

. (4)

Here, 𝜇 is the maximum order of a derivative in the library.
Integrating Eq. (2) by parts and taking into account that sample functions 𝜓𝑘(𝑡, 𝐱) are zero at the dataset domain boundary, leads

to

−∬ 𝑢𝑖 𝜕𝑡𝜓𝑘d𝑡d𝐱 =
∑

𝑗
𝑐𝑢𝑖𝑗 (−1)

|𝛼𝑗 |
∬ 𝑓𝑗 𝐷𝑗𝜓𝑘d𝑡d𝐱 , (5)

where |𝛼𝑗 | denotes the order of the corresponding derivative. As can be seen from Eq. (5), the weak formulation converts spatio-
temporal derivatives of the noisy macroscopic fields into spatio-temporal derivatives of our sample functions 𝜓𝑘(𝑡, 𝐱), which are
analytically known. The assumed form of the sought Eqs. (1) ensures that all derivatives can be converted in this way.
3 
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Fig. 2. The process of model selection: (a) N random sets of K spatio-temporal samples are taken from the dataset. (b) For each sample set, sparse regression
is performed across a range of values of 𝜆, resulting in various models 𝑚𝑖, flanked on one side by the model that contains all terms 𝑚0 (black dots) and on the
other by the empty model 𝑚 = {} (white dots). Only four other models, 𝑚1, 𝑚2, 𝑚3 and 𝑚4, are depicted to signify the fact that typically only a handful of them
are discovered consistently, i.e. for most of the 𝑁 random sets of samples. (c) The measure 𝑞, see Eq. (6), is calculated for each model as a function of 𝜆 and
the model with the highest peak, in this case 𝑚2, is selected as the optimal one, 𝑚best , according to Eq. (7). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Just as Eq. (1) can be represented as a linear system for the unknown coefficients 𝑐𝑢𝑖𝑗 on a set of chosen sample points {𝐱𝑘},
Eq. (5) can be translated into a linear system on a set of chosen sample functions {𝜓𝑘} centered around 𝐱𝑘. To this end, we redefine
the quantities [𝐮𝑡𝑖]𝑘 and [Φ]𝑗𝑘 as integrals over space–time, [𝐮𝑡𝑖]𝑘 = −∬ 𝑢𝑖 𝜕𝑡𝜓𝑘d𝑡d𝐱 and [Φ]𝑗𝑘 = (−1)|𝛼𝑗 | ∬ 𝑓𝑗 𝐷𝑗𝜓𝑘d𝑡d𝐱. In practice,
these integrals are evaluated as sums over the ℎ𝑡 × ℎ𝑥 × ℎ𝑦 gridpoints where the sample function is nonzero. A sparse solution for
the unknown coefficients 𝑐𝑢𝑖𝑗 can then be extracted using the STLSQ method.

2.2. Model selection

Changing the sparsity control parameter 𝜆 produces models with varying degrees of complexity. With limited knowledge of the
system, the choice of the optimal model is usually not clear, necessitating the use of some kind of selection criterion. A good model
of macroscopic dynamics should first and foremost fit the data well and secondly, its form should be stable against resampling of
the data. This ensures that the model describes the underlying physics and not just specific samples.

To identify models that are both accurate and stable, we introduce a selection measure 𝑞 as the ratio of the probability 𝑝𝑚 that a
model with a certain set of terms 𝑚 = {𝑗 ∶ 𝑐𝑗 ≠ 0} appears as the result and the average mean squared error (MSE) of models with
this set of terms:

𝑞𝑚 =
𝑝𝑚

⟨MSE𝑚⟩
=

𝑛2𝑚𝐾

𝑁
∑𝑛𝑚
𝜈=1 ‖𝐮

𝑡
𝑖𝜈 − Φ𝜈𝐜𝑢𝑖‖22

. (6)

The probability 𝑝𝑚 is calculated as the number of times 𝑛𝑚 that a set of terms 𝑚 is extracted from some set of samples, divided by the
number of these sample sets 𝑁 , 𝑝𝑚 = 𝑛𝑚

𝑁 . A particular set of samples consists of 𝐾 sample functions 𝜓𝑘(𝑡, 𝐱), whose nonzero regions
are randomly distributed in the space–time of the dataset. In principle, any measure 𝑞 = 𝑓 (𝑝,MSE), where 𝑓 is a strictly increasing
function of 𝑝 and a strictly decreasing function of MSE, would work as a selection measure — the ratio of the two quantities is
merely the simplest possible choice.

To find the best model, we perform the regression on each of these sample sets for a range of values of the sparsity control
parameter, spanning from 𝜆min, where the STLSQ algorithm consistently removes no terms, to 𝜆max, where all terms are removed.
The model that achieves the highest value of this MSE-weighted probability 𝑞, which means that it is both stable (high probability
𝑝) and accurate (low MSE), is then selected as the best candidate for the true macroscopic model:

𝑚best = argmax
{𝑚}⧵{𝑚0}

(

max
𝜆

{

𝑞𝑚(𝜆)
}

)

. (7)

The model with no terms removed, 𝑚0, must be excluded from the selection process, as it will always be stable for sufficiently low
𝜆. The approach is summarized schematically in Fig. 2. The notion of stability against resampling of the data originates in stability
selection [76], which has already been successfully applied to partial differential equation discovery [42,77]. In contrast to our
work, stability selection considers probabilities of individual terms, regardless of which identified model they belong to, instead
of entire models, which does not allow for an obvious way of incorporating a measure of accuracy into the criterion. Moreover,
stability selection still requires manual selection of some threshold probability to determine the terms from which the final model is
to be constructed. For a comparison of our approach with some of the other common methods of model selection, see Section 4.3.
4 
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3. Simulations

3.1. Dissipative particle dynamics

We model the simple fluid using DPD, where individual particles represent several atoms or molecules. To have more control
ver the viscosity of the fluid, we use both the standard [46] and the transverse [78] DPD thermostats. The force between particles
and 𝑗 consists of a conservative force 𝐅𝐶𝑖𝑗 , a dissipative force 𝐅𝐷𝑖𝑗 and a random force 𝐅𝑅𝑖𝑗 , which gives a total force 𝐅𝑖 on particle 𝑖:

𝐅𝑖 =
∑

𝑗≠𝑖
𝐅𝐶𝑖𝑗 + 𝐅𝐷𝑖𝑗 + 𝐅𝑅𝑖𝑗 , (8)

here

𝐅𝐶𝑖𝑗 = 𝑎𝑖𝑗𝜔𝐶 (𝑟𝑖𝑗 )𝐫̂𝑖𝑗 , (9)

𝐅𝐷𝑖𝑗 = −𝛾∥𝜔∥
𝐷(𝑟𝑖𝑗 )

(

𝐫̂𝑖𝑗 ⊗ 𝐫̂𝑖𝑗
)

⋅ 𝐯𝑖𝑗 − 𝛾⟂𝜔⟂
𝐷(𝑟𝑖𝑗 )

(

I − 𝐫̂𝑖𝑗 ⊗ 𝐫̂𝑖𝑗
)

⋅ 𝐯𝑖𝑗 , (10)

𝐅𝑅𝑖𝑗 = 𝜎∥𝜔∥
𝑅(𝑟𝑖𝑗 )

(

𝐫̂𝑖𝑗 ⊗ 𝐫̂𝑖𝑗
)

⋅ 𝝃𝑖𝑗 + 𝜎⟂𝜔⟂
𝑅(𝑟𝑖𝑗 )

(

I − 𝐫̂𝑖𝑗 ⊗ 𝐫̂𝑖𝑗
)

⋅ 𝝃𝑖𝑗 , (11)

here 𝑎𝑖𝑗 is the interaction parameter between beads 𝑖 and 𝑗, 𝛾∥ and 𝛾⟂ are the friction parameters, 𝜎∥ and 𝜎⟂ are the noise strengths,
𝐶 , 𝜔∥

𝐷, 𝜔⟂
𝐷, 𝜔∥

𝑅 and 𝜔⟂
𝑅 are the weight functions, 𝐯𝑖𝑗 = 𝐯𝑖 − 𝐯𝑗 is the relative velocity of the two interacting particles, 𝐫̂𝑖𝑗 =

𝐫𝑖−𝐫𝑗
|𝐫𝑖−𝐫𝑗 |

is
he normalized vector along the inter-particle axis, and 𝝃𝑖𝑗 denotes a random unit vector. 𝝃𝑖𝑗 is uncorrelated with respect to different
airs of particles 𝑖 and 𝑗 and antisymmetric with respect to a swap of 𝑖 and 𝑗 (𝝃𝑖𝑗 = −𝝃𝑗𝑖):

⟨𝝃𝑖𝑗 (𝑡)⊗ 𝝃𝑘𝑙(𝑡′)⟩ = I(𝛿𝑖𝑘𝛿𝑗𝑙 − 𝛿𝑗𝑘𝛿𝑖𝑙)𝛿(𝑡 − 𝑡′), (12)

hich ensures that linear momentum is conserved.
The conservative part of the force is a linearly decreasing function of 𝑟𝑖𝑗 :

𝜔𝐶 (𝑟𝑖𝑗 ) =

{

1 − 𝑟𝑖𝑗
𝑟𝑐
, 𝑟𝑖𝑗 < 𝑟𝑐

0, 𝑟𝑖𝑗 ≥ 𝑟𝑐
, (13)

where 𝑟𝑐 is the cutoff and is chosen as the length scale in our simulations. To keep the system at a constant temperature 𝑇0, the
following relations must hold [46,78]:

𝜔∥
𝐷 = 𝜔∥

𝑅
2
, 2𝛾∥𝑘𝐵𝑇0 = 𝜎∥2 , (14)

𝜔⟂
𝐷 = 𝜔⟂

𝑅
2 , 2𝛾⟂𝑘𝐵𝑇0 = 𝜎⟂2 , (15)

where 𝑘𝐵 is the Boltzmann constant. Typically, 𝜔∥
𝑅(𝑟𝑖𝑗 ) and 𝜔⟂

𝑅(𝑟𝑖𝑗 ) are set equal to 𝜔𝐶 (𝑟𝑖𝑗 ).
DPD closely reproduces hydrodynamic behavior of a viscous fluid on the mesoscale. As shown in Refs. [79,80] for the 𝛾⟂ = 0

case, local conservation laws for the mass density and the density of linear momentum can be recovered using a Fokker–Planck
approach. The same cannot be done for the energy density, which means that standard DPD cannot support temperature gradients.
This can be remedied by adding an internal energy variable to each particle [81,82]. In this work, however, we restrict ourselves
to standard isothermal DPD simulations and focus on the mass and linear momentum densities.

Using DPD, we model the fluid in a cuboidal cell with periodic boundary conditions, see Fig. 3. We simulate a one-component
fluid where all particles have the same mass 𝑚 and all conservative interactions have the same strength 𝑎𝑖𝑗 = 𝑎. We set the DPD
parameters to commonly used values [83]: interaction amplitudes to 𝑎 = 25 𝑘𝐵𝑇0∕𝑟𝑐 and 𝛾∥ = 𝛾⟂ = 4.5𝑚∕𝜏 and mass density to
𝜌0 = 3𝑚∕𝑟3𝑐 . With the chosen DPD parameter values, a timestep of 𝛥𝑡 = 0.01 𝜏 leads to a thermally stable simulation. We take
the interaction cutoff radius 𝑟𝑐 , the particle mass 𝑚 and the equilibrium thermal energy 𝑘𝐵𝑇0 as units of length, mass and energy,
respectively. The characteristic unit of time is therefore 𝜏 = 𝑟𝑐

√

𝑚∕𝑘𝐵𝑇0.

3.2. Measuring shear viscosity

To compare the value of the extracted shear viscosity 𝜂 with its actual value, we measure it using the periodic Poiseuille flow
method [84]. We simulate the periodic Poiseuille flow in a simulation cell with dimensions 𝐿𝑥×𝐿𝑦×𝐿𝑧 = 40×20×20 𝑟3𝑐 . We apply a
constant external force 𝐅ext = sgn(𝐿𝑥∕2− 𝑥)𝐹𝑦𝐞̂𝑦 with amplitude 𝐹𝑦 = 0.002 𝑘𝐵𝑇0

𝑟𝑐
along the 𝑦 axis to all particles. The sign reversal in

he middle of the simulation cell and the periodic boundary conditions mimic infinite parallel plates in the 𝑦𝑧 plane. After running
he simulation for 500 𝜏, we calculate the viscosity from the 𝑦 component of the resulting velocity field via [84]

𝜂 =
𝜌0𝐹𝑦𝐿2

𝑥

12 𝑚⟨𝑣𝑦⟩
, (16)

where ⟨𝑣𝑦⟩ = 1
𝐿𝑥𝐿𝑦𝐿𝑧

∫ sgn(𝐿𝑥∕2 − 𝑥)𝑣𝑦d𝑥d𝑦d𝑧. We determine the accuracy of the result by repeating the simulation 10 times with
different initial positions of the particles. The average measured shear viscosity is then equal to 𝜂 = (1.332 ± 0.005) 𝑚 .
𝑟𝑐𝜏
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Fig. 3. State of the two simulations at the start of (a) or during (b) data acquisition. In Simulation A (a), the initial condition is a velocity profile given by
Eq. (17), while in Simulation B (b), the flow is induced by an external force acting on all particles in a narrow region on the left side of the simulation cell,
𝑥 < 1 𝑟𝑐 . The particles are colored according to the magnitude of their velocity, except for the frozen particles, which are marked in red. In Simulation B, the
data to the left of the blue plane is discarded. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

3.3. Datasets for model discovery

Since the learning framework relies on both temporal and spatial derivatives of the coarse-grained fields, it is crucial to simulate
and capture the transient flow dynamics of the fluid. The two simulation setups that we use to generate suitable datasets are
therefore: relaxation of an initial velocity profile (Simulation A) and flow past a cylinder (Simulation B), see Fig. 3. In both
simulations, initial and boundary conditions are translationally invariant along the 𝑧 axis and an averaging is performed along
this axis when computing the datasets. This allows us to control the amount of noise in the data by simply varying the size of the
simulation cell in this direction.

For the relaxing velocity profile, the simulation cell is a cube with a side length of 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 50 𝑟𝑐 . The initial velocity
profile of the particles is set to

𝐯(𝑥, 𝑦) = 𝑣0

[

sin(2𝜋𝑥∕𝐿𝑥) + sin(2𝜋𝑦∕𝐿𝑦) − sin(2𝜋{𝑥∕𝐿𝑥 + 𝑦∕𝐿𝑦})
cos(2𝜋𝑦∕𝐿𝑦) + cos(2𝜋𝑥∕𝐿𝑥) − cos(2𝜋{𝑥∕𝐿𝑥 + 𝑦∕𝐿𝑦})

]

, (17)

with 𝑣0 = 1 𝑟𝑐
𝜏 , and allowed to relax for 50 𝜏.

For the flow past a cylinder, the simulation cell has dimensions 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 100 × 50 × 50 𝑟3𝑐 . The cylinder has a diameter
of 𝑑 = 30 𝑟𝑐 , is centered at 𝑥 = 25 𝑟𝑐 , 𝑦 = 25 𝑟𝑐 and oriented along the 𝑧 axis. It is represented by a layer of frozen DPD particles
surrounding the structure [85,86], uniformly distributed with a surface density of 3𝑚∕𝑟2𝑐 . The flow is induced by a constant external
force 𝐅ext = 𝐹𝑥𝐞̂𝑥 with amplitude 𝐹𝑥 = 5 𝑘𝐵𝑇0

𝑟𝑐
, which acts along the 𝑥 axis on all particles between 𝑥 = 0 and 𝑥 = 1 𝑟𝑐 . Before the

data acquisition begins, we simulate the system for 200 𝜏. During this time, the flow reaches an average speed of about ⟨𝑣𝑥⟩ ≈ 1.6 𝑟𝑐
𝜏

and vortices start to shed from the cylinder. With the Reynolds number of about Re = 𝜌0𝑑⟨𝑣𝑥⟩
𝜂 ≈ 120, this is expected and is in line

with literature [87]. To make the resulting dataset comparable with that of Simulation A, the simulation is then continued for 50 𝜏
and only the right half (𝑥 > 50 𝑟𝑐) of the simulation cell is considered.

The datasets of both simulations, illustrated in Fig. 4, are then obtained by binning the particles in a 50 × 50 square grid in 𝑥 and
𝑦 coordinates, and recorded at every 10th timestep, resulting in time intervals of 10𝛥𝑡 = 0.1 𝜏. Three fields are calculated: the mass
density 𝜌, the horizontal velocity 𝑣𝑥 and the vertical velocity 𝑣𝑦. As a general rule the dataset should capture both the slowest (e.g.
viscous) and the fastest (e.g. sonic) timescales of the systems. To do that one has to perform sufficiently long simulations and record
the trajectories frequently enough. For our case the duration of the simulations of 50 𝜏 and time intervals of 0.1 𝜏 were sufficient to
discover the correct dynamic equations.

4. Results and discussion

The first step in discovering the macroscopic dynamics is to select the set of relevant variables to appear on the left-hand side
of Eq. (1). Here, we choose the mass density 𝜌 and the density of linear momentum 𝐠 = (𝑔𝑥, 𝑔𝑦) = (𝜌𝑣𝑥, 𝜌𝑣𝑦), which are the only
variables in standard DPD whose dynamics can be written as a conservation law [79,80].

The next step is to construct the library of candidate terms that appear on the right-hand side of Eq. (1). We choose to include
all terms that consist of derivatives up to the second order acting on products of the three fields (𝜌, 𝑣𝑥 and 𝑣𝑦) up to third order,
so that the library contains convective terms, such as 𝜕𝑦𝜌𝑣𝑥𝑣𝑦, as well as dissipative terms, such as 𝜕2𝑥𝑣𝑥. We also include product
terms without derivatives. On the other hand, products of derivatives, such as 𝜕 𝑣 𝜕 𝑣 , cannot be included in the library, as they
𝑦 𝑥 𝑥 𝑦
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Fig. 4. Three timeslices of density (𝜌) and velocity (𝑣𝑥 and 𝑣𝑦) profiles for Simulation A, velocity relaxation, (a) and Simulation B, flow behind a cylinder, (b),
recorded at 𝑡 = 0, 𝑡 = 25 𝜏 and 𝑡 = 50 𝜏 after the start of data acquisition. The passage of time is indicated by the arrows.

cannot be converted as described in Section 2.1. The total number of candidate terms, 114, could be reduced by taking the spatial
symmetries of the system into account [39,42]. However, we choose to use the full, unconstrained library for all three equations —
as a test of the algorithm’s ability to identify the symmetries on its own.

Since the mass density remains close to its mean value 𝜌0, we use the zero mean density 𝜌̃ = 𝜌−𝜌0 when constructing the library.
This reduces the correlation between the terms, at the cost of potentially increasing the number of terms required to describe the
dynamics.

To run the sparse regression algorithm on our datasets, we use the open-source Python package pySINDy [75].

4.1. Model discovery

To extract the dynamic models for the mass density 𝜌 and the density of linear momentum 𝐠, we perform the sparse regression
on 𝑁 = 50 sets of 𝐾 = 2000 sample functions with ℎ𝑥 = ℎ𝑦 = 18 and ℎ𝑡 = 8, for 100 values of the sparsity control parameter,
logarithmically spaced from 𝜆min = 10−3 to 𝜆max = 103. These values remain constant throughout this work. We have observed that
the peak discovery probability of many models falls sharply for ℎ𝑡 less than 8 and ℎ𝑥, ℎ𝑦 less than 18. A more systematic study of the
effects of these quantities is envisioned in future research. We assume that the system is sufficiently ergodic, so that the samples,
whose temporal dimension ℎ𝑡 is much smaller than the total duration of the numerical simulations, are not meaningfully statistically
dependent.

Calculating first just the probabilities of identification of specific models (Fig. 5a, c, e, g, i and k), we observe the same general
behavior when increasing 𝜆 for all three equations and both datasets. Initially, the probability of identifying the model with no
terms removed (dashed line) decreases steadily and reaches zero at 𝜆 ≈ 0.03 in the case of the density equation, or 𝜆 ≈ 0.1 in the
case of the momentum equation. This is followed by an intermediate region, in which no model is consistently identified. Finally,
at 𝜆 ≈ 0.2 in the case of the density equation, or 𝜆 ≈ 1 in the case of the momentum equation, stable sparse models begin to appear,
many of which reach 𝑝 = 1.

In the case of the density equation, for both datasets, two nonzero models achieve 𝑝 = 1 (red and green in Fig. 5a and b). Among
them, the MSE-weighted probability 𝑞 (Fig. 5c and d) clearly selects the more complex one. Its four terms correspond exactly to the
mass continuity equation

𝜕𝑡𝜌 = −∇ ⋅ (𝜌𝐯) = −𝜌0𝜕𝑥𝑣𝑥 − 𝜌0𝜕𝑦𝑣𝑦 − 𝜕𝑥𝜌̃𝑣𝑥 − 𝜕𝑦𝜌̃𝑣𝑦 . (18)

As shown in Table 1, the averages of its four coefficients also agree, up to at least two decimal places. The other stable model
corresponds to a simplification of the mass continuity equation 𝜕𝑡𝜌 = −𝜌0∇ ⋅ 𝐯 where spatial fluctuations of density have been
neglected.

For both components of the momentum equation, the procedure again selects the same model (red in Fig. 5f, h, j and l) for each
of the two datasets. Both of these selected models have eight terms, which can be arranged into the corresponding component of a
form of the compressible Navier–Stokes equation:

𝜕𝑡𝐠 = − ∇ ⋅ (𝜌𝐯⊗ 𝐯) + 𝜂∇2𝐯 − ∇𝑃 (𝜌) (19)

𝜕𝑡𝑔𝑖 = − 𝜌0
(

𝜕𝑥𝑣𝑥𝑣𝑖 + 𝜕𝑦𝑣𝑦𝑣𝑖
)

−
(

𝜕𝑥𝜌̃𝑣𝑥𝑣𝑖 + 𝜕𝑦𝜌̃𝑣𝑦𝑣𝑖
)

+ 𝜂
(

𝜕2𝑥𝑣𝑖 + 𝜕
2
𝑦𝑣𝑖

)

− 1
𝑚

(

𝑘𝐵𝑇 + 2𝛼𝑎
𝜌0
𝑚

)

𝜕𝑖𝜌̃ −
𝛼𝑎
𝑚2
𝜕𝑖𝜌̃

2 , (20)
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Table 1
Discovered model terms for the time derivative of mass density, together with expected and discovered values
of the corresponding coefficients. The distributions of the discovered values are represented by their mean value
and standard deviation. For clarity, units have been left out.
𝑐𝜌𝑗 𝐷𝑗𝑓𝑗 Expected value Simulation A Simulation B

−𝜌0 𝜕𝑥𝑣𝑥 −3 −3.0001 ± 0.0023 −2.9980 ± 0.0047
−𝜌0 𝜕𝑦𝑣𝑦 −3 −3.0002 ± 0.0019 −2.9984 ± 0.0041
−1 𝜕𝑥 𝜌̃𝑣𝑥 −1 −1.0005 ± 0.0027 −0.9995 ± 0.0021
−1 𝜕𝑦 𝜌̃𝑣𝑦 −1 −1.0017 ± 0.0036 −0.9993 ± 0.0026

Table 2
Discovered model terms for the time derivative of each component of linear momentum density, together with expected and
discovered values of the corresponding coefficients. The distributions of the discovered values are represented by their mean
value and standard deviation. For clarity, units have been left out.
𝑐𝑔𝑥𝑗 𝐷𝑗𝑓𝑗 Expected value Simulation A Simulation B

−𝜌0 𝜕𝑥𝑣2𝑥 −3 −2.993 ± 0.006 −2.992 ± 0.002
−𝜌0 𝜕𝑦𝑣𝑥𝑣𝑦 −3 −2.978 ± 0.006 −3.009 ± 0.002
−1 𝜕𝑥 𝜌̃𝑣2𝑥 −1 −1.020 ± 0.010 −0.995 ± 0.003
−1 𝜕𝑦 𝜌̃𝑣𝑥𝑣𝑦 −1 −1.031 ± 0.012 −1.013 ± 0.004
𝜂 𝜕2𝑥𝑣𝑥 1.332 2.279 ± 0.047 2.244 ± 0.064
𝜂 𝜕2𝑦𝑣𝑥 1.332 1.344 ± 0.031 1.419 ± 0.024
−(1 + 2𝛼𝑎𝜌0) 𝜕𝑥 𝜌̃ −16.150 −16.043 ± 0.017 −16.132 ± 0.036
−𝛼𝑎 𝜕𝑥 𝜌̃2 −2.525 −2.678 ± 0.017 −2.578 ± 0.035

𝑐𝑔𝑦𝑗 𝐷𝑗𝑓𝑗 Expected value Simulation A Simulation B

−𝜌0 𝜕𝑥𝑣𝑥𝑣𝑦 −3 −3.004 ± 0.007 −3.007 ± 0.002
−𝜌0 𝜕𝑦𝑣2𝑦 −3 −2.997 ± 0.007 −3.020 ± 0.004
−1 𝜕𝑥 𝜌̃𝑣𝑥𝑣𝑦 −1 −1.009 ± 0.016 −1.000 ± 0.003
−1 𝜕𝑦 𝜌̃𝑣2𝑦 −1 −1.021 ± 0.014 −1.004 ± 0.006
𝜂 𝜕2𝑦𝑣𝑦 1.332 2.248 ± 0.042 1.677 ± 0.050
𝜂 𝜕2𝑥𝑣𝑦 1.332 1.498 ± 0.059 1.834 ± 0.036
−(1 + 2𝛼𝑎𝜌0) 𝜕𝑦 𝜌̃ −16.150 −16.084 ± 0.012 −16.143 ± 0.024
−𝛼𝑎 𝜕𝑦 𝜌̃2 −2.525 −2.624 ± 0.015 −2.668 ± 0.026

where 𝑖 is either 𝑥 or 𝑦. The last two terms in Eq. (20), which describe the pressure gradient, correspond to the well-known
semi-empirical equation of state for one-component DPD systems [83]:

𝑃 = 𝜌𝑛𝑘𝐵𝑇 + 𝛼𝑎𝜌2𝑛, (21)

where 𝛼 = (0.101 ± 0.001) 𝑟4𝑐 is an empirical parameter and 𝜌𝑛 =
𝜌
𝑚 is the number density of particles.

Comparing the probability plots for the two datasets (Fig. 5e, g, i and k), it seems that the identification of the Navier–
Stokes equation is less probable using data from Simulation B, as the interval of 𝜆, for which this model is always discovered
is much narrower. The next model that is common to both components and both datasets is the six-term model (marked in purple)
corresponding to Eq. (20) with 𝜂 = 0. The fact that the viscosity terms are always the first to be thresholded out suggests that viscosity
effects contribute the least to the overall dynamics of these two simulations and are therefore the most difficult to discover.

The coefficients of the two discovered eight-term dynamic equations are collected in Table 2. The averages of the four non-
phenomenological parameters (−𝜌0 or −1) agree with the theory in at least two significant digits for both components and both
datasets. The extracted values for the viscosity 𝜂 are slightly larger than the value calculated from the Poiseuille flow in Section 3.1.
Interestingly, in both datasets, the coefficient in front of 𝜕2𝑥𝑣𝑥 (𝜕2𝑦𝑣𝑦) is noticeably larger than the coefficient in front of 𝜕2𝑦𝑣𝑥 (𝜕2𝑥𝑣𝑦),
perhaps indicating a contribution from the bulk viscosity of the fluid. Indeed, a model with nonzero bulk viscosity, containing an
additional, mixed derivative term 𝜕𝑥𝜕𝑦𝑣𝑥 is identified in the data from Simulation A (yellow in Fig. 5f and j), but not consistently
enough to be selected by our measure. A different simulation setup, in which the fluid is compressed more, might make the
identification of this model more probable.

We find an excellent agreement between the extracted values for the pressure gradient terms and the DPD equation of state,
Eq. (21). The physical significance of the extracted terms related to the pressure gradient is the following: the coefficient of the
linear term ∇𝑥𝜌̃ is equal to the squared speed of sound 𝑐2 = 1

𝑚 (𝑘𝐵𝑇 + 2𝛼𝑎 𝜌0𝑚 ), while the coefficient of the nonlinear term ∇𝑥𝜌̃2

orresponds to one half of the so-called Beyer’s nonlinear acoustic parameter [88]: 𝐵
𝜌20

=
(

𝜕2𝑃
𝜕𝜌2

)

𝜌=𝜌0
= 2𝛼𝑎

𝑚2 . This parameter plays an
mportant role in theranostic biomedical applications of ultrasound, where the assumption of linearity is often not valid [89].

We also note that most of the coefficients of the two components of the same vector term (e.g. 𝜕𝑥𝜌̃ and 𝜕𝑦𝜌̃) agree even better
ith each other than with their expected value, even though we have not provided any explicit symmetry constraints. This implies
hat the algorithm has independently discovered the vectorial nature of momentum.
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Fig. 5. Identification probabilities of the discovered models and their MSE-weighted counterparts for the density equation (a, b, c, d), the 𝑥-component of the
momentum equation (e, f, g, h) and the 𝑦-component of the momentum equation (i, j, k, l) for different values of the sparsity control parameter 𝜆. Only lines
of models that appear at least twice at any one 𝜆 are shown. The dashed line marks the model with all possible terms, while the dotted line marks the model
with all terms thresholded out. Apart from these two models, up to six models with the largest number of terms that reach at least 𝑝 = 0.25 are marked in color
and have their terms listed in the legend. All others are marked by transparent black lines. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

4.2. Robustness

To test the effect of noise on the results of the presented method, we run Simulation A in shallower (lower 𝐿𝑧) simulation cells,
thus reducing the number of particles used in the calculation of input fields.

As can be seen from Fig. 6, the algorithm successfully identifies and selects the continuity equation at all tested cell thicknesses,
with its maximum 𝑞 being twice as high as that of the next best model even at 𝐿𝑧 = 1 𝑟𝑐 . The 𝑥-component of the Navier–Stokes
equation is identified up to 𝐿𝑧 = 2 𝑟𝑐 , although the 𝑞-based selection chooses the inviscid model for 𝐿𝑧 < 4 𝑟𝑐 . The 𝑦-component of
the Navier–Stokes equation is similarly identified for all cell thicknesses except 𝐿𝑧 = 1 𝑟𝑐 , but is only selected as the best candidate
up to 𝐿𝑧 = 14 𝑟𝑐 . Then, it is replaced by the model without the 𝜕2𝑥𝑣𝑦 term, which in turn is later superseded, again, by the model
without any viscous terms.
9 
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Fig. 6. Maximum values of 𝑞 of particular models for the density equation (a) 𝑥-component of the momentum equation (b) and 𝑦-component of the momentum
equation (c) for different thicknesses 𝐿𝑧 of the simulation cell when running Simulation A. Only models that have the highest maximum 𝑞 at any 𝐿𝑧 are marked
in color and have their terms listed in the legend. The model with all possible terms and the empty model are not shown. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. MSE-weighted probabilities of discovered models for the density equation (a), the 𝑥-component of the momentum equation (b) and the 𝑦-component of
the momentum equation (c) for different values of the sparsity control parameter 𝜆, using data from Simulation A and a 510-term library. Only lines of models
that appear at least twice at any one 𝜆 are shown. The dashed line marks the model with all possible terms. For each plot, the three or four sparse models with
highest maximum values of 𝑞 are marked in color and have their terms listed in the legend. All others are marked by transparent black lines. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

The presented method also works well with libraries that are much larger than the one we have been using so far. To demonstrate
this, we perform a sweep of the sparsity control parameter on the data from Simulation A with a library containing products of
input fields up to the fourth order and derivatives up to the fourth order, amounting to 510 different terms. As it can be seen in
Fig. 7, even with this larger library the continuity and the Navier–Stokes equations remain the selected macroscopic models. For
an even larger library, the seven-term model for the 𝑦-component of the momentum equation (Fig. 7c) achieves a higher maximum
𝑞 than the eight-term model. Interestingly, and perhaps more importantly, although a larger library enables the discovery of more
complex dynamics, no such models appear.
10 
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Fig. 8. Dependence of maximum 𝑞, the validation MSE, the AIC and the BIC on the number of terms in the models found for the density equation (first column,
, d, g, j), the 𝑥-component of the momentum equation (second column, b, e, h, k) and the 𝑦-component of the momentum equation (third column, c, f, i, l)
or both datasets. If several models with the same number of terms were found, the better value (higher in the case of max(𝑞) and lower in the other three
ases) is displayed. The number of terms for which a particular criterion reaches its extremum is marked with an arrow. For the linear momentum equations,
he minima of AIC and BIC (h, i, k, l) select a much larger set of terms than our measure (b, c).

.3. Other model selection methods

We compare our model selection method (Eq. (7)) with some of the other commonly used automatic approaches: validation on a
eparate dataset, Akaike information criterion (AIC) [90] and Bayesian information criterion (BIC) [91]. To facilitate the comparison,
he results from Fig. 5 are presented compactly in Fig. 8a, b and c.

To generate two independent sets of samples, one for regression and one for validation, we split our dataset spatially. We take
𝐾 = 105 samples only from the top half of the data (𝑦 > 25 𝑟𝑐), run the regression, and compute, for each discovered model,

the MSE on 𝑁𝐾 samples taken from the bottom half of the data. For the density equation (Fig. 8d) and the 𝑦-component of the
momentum equation (Fig. 8f), the models with the minimal validation error are the correct, four- and eight-term models for both
datasets. However, for the 𝑥-component of the momentum equation (Fig. 8e), the two selected models both have too many terms.

Information criteria are model selection measures that explicitly penalize the number of terms in a model and, like our method, do
not require a separate validation dataset. AIC-based selection has already proved successful on some equation-finding problems [92],
while a custom but similar criterion was used in Refs. [38,43]. We again perform model discovery with 𝑁𝐾 samples, this time taken
from the entire dataset, and compute the two criteria as follows [93]:

AIC = 𝑁𝐾 ln
‖𝐮𝑡𝑖 − Φ𝐜𝑢𝑖‖22 + 2|𝑚| , (22)
𝑁𝐾
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BIC = 𝑁𝐾 ln
‖𝐮𝑡𝑖 − Φ𝐜𝑢𝑖‖22

𝑁𝐾
+ 2|𝑚| ln(𝑁𝐾) , (23)

where |𝑚| denotes the number of terms in 𝑚. As can be seen in Fig. 8g, h, i, j, k and l, both criteria struggle to select the correct
model, opting for a much larger model most of the time. Incidentally, a clear kink can be seen at the correct number of terms for
both criteria, indicating that a manual Pareto analysis, similar to Ref. [44], could also be used for model selection.

5. Conclusions and outlook

In this work, we extracted macroscopic dynamic equations from particle trajectory data acquired from DPD simulations. We
considered a simple fluid where the relationship between the model parameters and the macroscopic phenomenological coefficients
is well understood. Prior knowledge of the sought macroscopic law, i.e. the compressible Navier–Stokes equations, allowed us to
introduce and test a new model selection measure. Weighting the stability of a model with its average mean squared error produced
a criterion that can select suitable parsimonious models without the need to manually set either the sparsity control parameter or any
other threshold. For both mass density and linear momentum density, this measure correctly selected the full continuity equation
and momentum conservation, respectively. In contrast, model selection based on a validation dataset or information criteria was
unsuccessful.

The learning framework correctly identified the pressure equation of state. The obtained parameters of the equation of state,
i.e. the speed of sound and the Beyer’s nonlinear acoustic parameter, are in excellent quantitative agreement with those derived
from the semi-empirical relation for one-component DPD systems. This method could therefore serve as an alternative, potentially
more efficient method for measuring the pressure equation of state. The claim for efficiency can be argued from the fact that
only a single simulation is required to discover the equation of state. In contrast, current methods for measuring the equation of
state involve performing large number of simulations at different densities and measuring the equilibrium pressure or using open
boundary molecular dynamics [94] and measuring the equilibrium density at different values of the external pressure.

The presented method is extremely robust to noise. It is able to identify momentum conservation at low simulation cell
thicknesses, while mass conservation is reliably discovered even at the almost absurdly low thickness of 𝐿𝑧 = 1 𝑟𝑐 , where each
dataset bin contains on average only about 3 particles. It also works quantitatively well even when using an extensive library with
very few physics-informed assumptions to constrain its size. In particular, no symmetry assumptions were made at all.

One of the drawbacks of the weak formulation approach as used in this work is that it can only discover terms expressed as
derivatives of some functions of the input macroscopic variables. This has no influence on the discovery of linearized dynamic
equations. On the other hand, nonlinear effects, which cannot be expressed in this way, e.g. the dependence of viscosity on density,
can only be discovered by including the required derivatives in the set of input fields. Such derivatives must then be evaluated in
advance using some other method, and cannot benefit directly from the weak formulation.

The fact that the presented scheme requires only a few physics-based assumptions, is able to automatically select a suitable
macroscopic model and is highly robust to noise makes it ideal for application to particle simulations or experimental data of more
complex systems — as long as the data is either in the form of fields or such fields can be reconstructed from it. Examples of systems,
where macroscopic dynamic laws could be extracted in such a way, include the motility of cells, bacteria and other objects captured
by biomedical imaging tools, the collective dynamics of proteins, and systems with variables arising from spontaneous symmetry
breaking, e.g. liquid crystal phases or ferromagnetic fluids. The learning framework could also be applied to heterogeneous systems
with a spatially varying density field, such as metastable fluids or gels, where a 2-fluid description could come into play [95,96]. In
this work we have focused on discovering the bulk dynamics of the fluid, disregarding the dynamics at the boundary of the system
(e.g. on the surface of the cylindrical obstacle). To discover the form of the boundary conditions one could use the approach described
in Ref. [97], where a physics-informed neural network (PINN) was used to infer the macroscopic fields on the boundary given some
measurement points in the bulk and at or near the boundary. In a more recent work [98] PINNs were used in a subdomain of a
given system and coupled to classical numerical methods in a unified framework. Studies along these lines will be pursued in our
future work.
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