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It is well known that every bivariate copula induces a positive measure on the Borel 𝜎-algebra on 
[0, 1]2, but there exist bivariate quasi-copulas that do not induce a signed measure on the same 
𝜎-algebra. In this paper we show that a signed measure induced by a bivariate quasi-copula can 
always be expressed as an infinite combination of measures induced by copulas. With this we are 
able to give the first characterization of measure-inducing quasi-copulas in the bivariate setting.

1. Introduction

Copulas, introduced in 1959 by Sklar, are one of the main tools for modeling dependence of random variables in statistical 
literature. These are multivariate functions that link the cumulative distribution function of a random vector and its one-dimensional 
marginal distributions. Copulas have found widespread use in various practical applications such as finance [13], biology [21], 
environmental sciences [4,10] and many others.

Quasi-copulas, a generalization of copulas, were introduced by Alsina, Nelsen, and Schweizer [1] in order to characterize op-
erations on distribution functions that can be derived from operations on random variables. Their importance is explained by the 
following property: a point-wise infimum respectively supremum of a given set of copulas is always a quasi-copula. Thus, quasi-
copulas are indispensable in the theory of imprecise probabilities, which model situations when the exact dependence structure 
between random variables, i.e. copula, is not known and is therefore replaced by a set of copulas.

The set of all quasi-copulas has been studied intensively in recent years and compared to the set of all copulas. The lattice 
theoretical properties of both sets were investigated in [17,11,2,19], while topological properties, particularly from the perspective 
of Baire categories, were studied in [8,9]. From a measure-theoretic point of view one of the major differences between copulas and 
quasi-copulas is that, while every 𝑛-variate copula 𝐶 induces a positive measure 𝜇𝐶 on the Borel 𝜎-algebra on [0, 1]𝑛 (see [14]), there 
exist 𝑛-variate quasi-copulas (for all 𝑛 ≥ 2) that do not induce a signed measure on the same 𝜎-algebra [16,12]. This has stimulated 
numerous investigations of the mass distribution of quasi-copulas [15,5,24,23,7] and related concepts [6,18,20], aimed at a better 
understanding of the behavior of quasi-copulas. As evidenced by several very recent papers, this is an active area of research, where 
there is still much to be done. In fact, a full characterization of quasi-copulas that do induce a signed measure on the Borel 𝜎-algebra 
on [0, 1]𝑛 is still an open problem, see [3, Problem 4].
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In this paper we study bivariate quasi-copulas that induce a signed measure on the Borel 𝜎-algebra on [0, 1]2 . We show that 
the signed measure 𝜇𝑄 induced by such a quasi-copula 𝑄 can always be expressed with measures induced by bivariate copulas. 
This is done by making use of a recent result in [7] giving a characterization of those quasi-copulas that can be expressed as linear 
combinations of two copulas. Note that any such quasi-copula automatically induces a signed measure, but not all measure-inducing 
quasi-copulas can be expressed as linear combinations of copulas, see [7, Example 13]. However, the same paper also initiated the 
study of quasi-copulas using infinite series of copulas and this idea is key to our result. In particular, our main theorem reads as 
follows.

Theorem 1. For a bivariate quasi-copula 𝑄 the following two conditions are equivalent.

(𝑖) There exists a signed measure 𝜇𝑄 defined on the Borel 𝜎-algebra on [0, 1]2 such that

𝜇𝑄([0, 𝑥] × [0, 𝑦]) =𝑄(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ [0,1].

(𝑖𝑖) There exists a sequence of bivariate copulas 𝐶𝑛 and a sequence of real numbers 𝛾𝑛 such that

(𝑎) the series of functions 
∑∞
𝑛=1 𝛾𝑛𝐶𝑛 converges uniformly to 𝑄 and

(𝑏) the series of induced measures 
∑∞
𝑛=1 𝛾𝑛𝜇𝐶𝑛 converges in the total variation norm to some finite signed measure.

This result can be seen as a characterization of bivariate quasi-copulas that induce a signed measure on [0, 1]2 , so it gives an answer 
to the open problem [3, Problem 4] mentioned above in the bivariate case. However, we do not consider the bivariate case to be 
completely resolved, since it would still be beneficial to obtain a characterization of measure-inducing quasi-copulas in operationally 
simpler terms.

We note that in [7] it was shown that condition (𝑖𝑖)(𝑎) of Theorem 1 is satisfied by any quasi-copula, i.e. any quasi-copula can 
be expressed as an infinite linear combination of copulas (converging in the supremum norm). So the crucial part of the above 
equivalence is condition (𝑖𝑖)(𝑏). Any quasi-copula that does not induce a signed measure satisfies (𝑖𝑖)(𝑎) for some choice of 𝛾𝑛 and 𝐶𝑛
but fails to satisfy (𝑖𝑖)(𝑏).

The paper is structured as follows. In Section 2 we recall some basic notions from measure theory and some results on bivariate 
quasi-copulas that we will need in our proofs. The main part of the paper is devoted to the proof of Theorem 1. Assuming a quasi-
copula 𝑄 induces a signed measure 𝜇𝑄, we construct in Section 3 a sequence of measure-inducing quasi-copulas 𝑄𝑁 that converge to 
𝑄 and whose induced measures converge to 𝜇𝑄. In addition, all these quasi-copulas are linear combinations of copulas. In Section 4
we convert the sequence 𝑄𝑁 into a series of multiples of copulas 𝐶𝑛 , and finally prove Theorem 1. An example that demonstrates 
our result is given in Section 5.

2. Preliminaries

Throughout the paper we will denote the unit interval by 𝕀 = [0, 1] and the unit square by 𝕀2. A function 𝑄∶ 𝕀2 → 𝕀 is a (bivariate) 
quasi-copula if it satisfies the following conditions:

(𝑖) 𝑄 is grounded: 𝑄(𝑥, 0) =𝑄(0, 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝕀,
(𝑖𝑖) 𝑄 has uniform marginals: 𝑄(𝑥, 1) = 𝑥 and 𝑄(1, 𝑦) = 𝑦 for all 𝑥, 𝑦 ∈ 𝕀,
(𝑖𝑖𝑖) 𝑄 is increasing in each variable,
(𝑖𝑣) 𝑄 is 1-Lipschitz:

|𝑄(𝑥2, 𝑦2) −𝑄(𝑥1, 𝑦1)| ≤ |𝑥2 − 𝑥1|+ |𝑦2 − 𝑦1|
for all 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝕀.

A function 𝑄∶ 𝕀2 → 𝕀 that satisfies conditions (𝑖), (𝑖𝑖), and

(𝑣) 𝑄 is 2-increasing:

𝑄(𝑥2, 𝑦2) −𝑄(𝑥1, 𝑦2) −𝑄(𝑥2, 𝑦1) +𝑄(𝑥1, 𝑦1) ≥ 0

for all 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ 𝕀 with 𝑥1 ≤ 𝑥2 and 𝑦1 ≤ 𝑦2,

is called a (bivariate) copula.
Let (𝑋, ) be a measurable space equipped with a finite signed measure 𝜇. Let 𝜇 = 𝜇+ − 𝜇− be the Jordan decomposition of 

measure 𝜇, i.e., 𝜇+ and 𝜇− are finite positive measures with disjoint supports. If 𝑆+ and 𝑆− denote the supports of 𝜇+ and 𝜇−, 
respectively, then 𝜇+(𝐴) = 𝜇(𝐴 ∩ 𝑆+) and 𝜇−(𝐴) = −𝜇(𝐴 ∩ 𝑆−) for all 𝐴 ∈. The positive measure |𝜇| = 𝜇+ + 𝜇− is called the total 
variation measure of 𝜇. It satisfies the inequality |𝜇(𝐴)| ≤ |𝜇|(𝐴) for all 𝐴 ∈. The total variation norm of 𝜇 is given by
2

‖𝜇‖𝑇𝑉 = |𝜇|(𝑋) = 𝜇+(𝑋) + 𝜇−(𝑋) = 𝜇(𝑆+) − 𝜇(𝑆−). (1)
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The vector space of all finite signed measures on (𝑋, ) equipped with the total variation norm is a Banach space. For two finite 
measures 𝜇1 and 𝜇2 on  we write 𝜇1 ≤ 𝜇2 if 𝜇1(𝐴) ≤ 𝜇2(𝐴) for all 𝐴 ∈. In particular, we have −𝜇− ≤ 𝜇 ≤ 𝜇+ for any finite signed 
measure 𝜇.

The Borel 𝜎-algebras on 𝕀 and 𝕀2 will be denoted by (𝕀) and (𝕀2), respectively. Note that (𝕀2) = (𝕀) ⊗ (𝕀) is the smallest 
𝜎-algebra on 𝕀2 that contains all rectangles of the form 𝑅 = [0, 𝑥] ×[0, 𝑦] for some 𝑥, 𝑦 ∈ 𝕀. It also contains all rectangles that are either 
closed of open on any of their four sides. In particular, it contains all half-open rectangles of the form 𝑅 = (𝑥1, 𝑥2] × (𝑦1, 𝑦2] for some 
𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝕀 with 𝑥1 < 𝑥2 and 𝑦1 < 𝑦2.

A bivariate quasi-copula 𝑄 is said to induce a signed measure on (𝕀2) if there exists a signed measure 𝜇𝑄 on (𝕀2) such that 
𝜇𝑄([0, 𝑥] ×[0, 𝑦]) =𝑄(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝕀2. Measure 𝜇𝑄 is automatically finite and for any half-open rectangle 𝑅 = (𝑥1, 𝑥2] ×(𝑦1, 𝑦2] ⊆
𝕀2 we have 𝜇𝑄(𝑅) = 𝑉𝑄(𝑅), where

𝑉𝑄(𝑅) =𝑄(𝑥2, 𝑦2) −𝑄(𝑥1, 𝑦2) −𝑄(𝑥2, 𝑦1) +𝑄(𝑥1, 𝑦1)

is the volume of 𝑅 with respect to 𝑄. Since quasi-copulas are continuous functions, the equality 𝜇𝑄(𝑅) = 𝑉𝑄(𝑅) holds also if the 
rectangle 𝑅 is either open or closed on any of its sides, because the 𝜇𝑄 measure of a vertical or horizontal segment is 0. For example,

𝜇𝑄
(
(𝑥1, 𝑥2] × {𝑦0}

)
= 𝜇𝑄

( ∞⋂
𝑛=1

(𝑥1, 𝑥2] × ( 𝑛−1
𝑛
𝑦0, 𝑦0]

)
= lim
𝑛→∞

𝜇𝑄
(
(𝑥1, 𝑥2] × ( 𝑛−1

𝑛
𝑦0, 𝑦0]

)
= lim
𝑛→∞

(
𝑄(𝑥2, 𝑦0) −𝑄(𝑥1, 𝑦0) −𝑄(𝑥2,

𝑛−1
𝑛
𝑦0) +𝑄(𝑥1,

𝑛−1
𝑛
𝑦0)

)
=𝑄(𝑥2, 𝑦0) −𝑄(𝑥1, 𝑦0) −𝑄(𝑥2, 𝑦0) +𝑄(𝑥1, 𝑦0) = 0.

It is well known that any copula 𝐶 induces a (positive) measure 𝜇𝐶 on (𝕀2) and this measure is stochastic in the sense that 𝜇𝐶 (𝐴 × 𝕀) =
𝜇𝐶 (𝕀 ×𝐴) = 𝜆(𝐴), where 𝜆 denotes the Lebesgue measure on 𝕀.

We recall a result from [7] that will be crucial for our constructions. For a positive integer 𝑚 we will denote [𝑚] = {1, 2, … , 𝑚}.

Theorem 2 ([7, Theorem 10]). For a bivariate quasi-copula 𝑄 the following conditions are equivalent.

(𝑖) There exist bivariate copulas 𝐴 and 𝐵 and real numbers 𝛼 and 𝛽 such that

𝑄(𝑥, 𝑦) = 𝛼𝐴(𝑥, 𝑦) + 𝛽𝐵(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝕀2.

(𝑖𝑖) Quasi-copula 𝑄 satisfies the condition 𝛼𝑄 <∞, where

𝛼𝑄 = sup
𝑛≥1

{
max
𝑘∈[2𝑛]

2𝑛
2𝑛∑
𝑙=1
𝑉𝑄(𝑅𝑛𝑘𝑙)

+ , max
𝑙∈[2𝑛]

2𝑛
2𝑛∑
𝑘=1
𝑉𝑄(𝑅𝑛𝑘𝑙)

+

}
,

𝑅𝑛
𝑘𝑙
= [ 𝑘−12𝑛 , 

𝑘
2𝑛 ] × [ 𝑙−12𝑛 , 

𝑙
2𝑛 ] for all 𝑘, 𝑙 ∈ [2𝑛], and 𝑥+ = max{𝑥, 0} for all 𝑥 ∈ℝ.

Informally speaking, what the coefficient 𝛼𝑄 does, is approximately detect at most how much positive mass quasi-copula 𝑄
accumulates on any vertical/horizontal strip relative to the width/height of the strip. With increasing 𝑛 the detection is more and 
more accurate.

3. Measure induced by a quasi-copula

We assume throughout this section that 𝑄 is a bivariate quasi-copula that induces a signed measure 𝜇𝑄 on (𝕀2). We will denote 
by 𝜇𝑄 = 𝜇+

𝑄
− 𝜇−

𝑄
the Jordan decomposition of measure 𝜇𝑄. Since 𝜇+

𝑄
(𝕀2) − 𝜇−

𝑄
(𝕀2) = 1, both 𝜇+

𝑄
and 𝜇−

𝑄
are finite measures. Measure 

𝜇𝑄 is stochastic, but measures 𝜇+
𝑄

and 𝜇−
𝑄

are not, unless 𝑄 is a copula, in which case 𝜇+
𝑄
= 𝜇𝑄 is stochastic and 𝜇−

𝑄
is the zero 

measure.
The goal of this section is to construct a sequence of bivariate quasi-copulas 𝑄𝑁 with the following properties:

(𝑎) sequence 𝑄𝑁 converges to 𝑄 uniformly,
(𝑏) for every 𝑁 , 𝑄𝑁 induces a signed measure 𝜇𝑁 ,
(𝑐) for every 𝑁 , 𝑄𝑁 is a linear combination of two copulas,
(𝑑) sequence 𝜇𝑁 converges to 𝜇𝑄 in the total variation norm.

Let us give an outline of the construction, which is split into several steps to make it easier to follow. The main idea is to start 
with condition (𝑐), using Theorem 2. We need to approximate quasi-copula 𝑄, which need not satisfy 𝛼𝑄 <∞ (see condition (𝑖𝑖) of 
Theorem 2), with a quasi-copula 𝑄𝑁 , that does satisfy 𝛼𝑄𝑁 <∞. To this end we identify sets of the form 𝐾𝑁 × 𝕀 and 𝕀 ×𝐿𝑁 which 
cause 𝛼𝑄 to be greater than 𝑐𝑁 for some fixed normalising constant 𝑐. These sets are defined in Subsection 3.1. Quasi-copula 𝑄𝑁
(for every 𝑁 ≥ 1) is constructed in Subsection 3.3 by “smoothing out” the mass distribution of 𝑄 on the set (𝐾𝑁 × 𝕀) ∪ (𝕀 × 𝐿𝑁 )
3

and leaving it unchanged elsewhere. For this to work, the sets 𝐾𝑁 and 𝐿𝑁 need to be constructed carefully, because, to ensure 
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property (𝑎), they need to have small Lebesgue measure, i.e., in the limit when 𝑁 goes to infinity the measure must tend to 0, and, 
to ensure property (𝑑), the sets (𝐾𝑁 × 𝕀) ∪ (𝕀 × 𝐿𝑁 ) need to have small |𝜇𝑄| measure in the same sense. Both of these properties 
are verified in Subsection 3.2. We then prove property (𝑏) by explicitly constructing signed measures 𝜇𝑁 and showing with a direct 
calculation that they are induced by quasi-copulas 𝑄𝑁 . This is done in Subsection 3.4, where property (𝑑) is also verified. Finally, in 
Subsection 3.5 we prove that quasi-copulas 𝑄𝑁 satisfy condition (𝑖𝑖) of Theorem 2, which then give us property (𝑐) and consequently 
also property (𝑎).

3.1. Construction of sets 𝐾𝑁

We start with the construction of sets 𝐾𝑁 , the sets 𝐿𝑁 will be defined later. For an integer 𝑛 ≥ 0 we introduce a family of open 
intervals

𝑛 =
{
( 𝑖−12𝑛 ,

𝑖
2𝑛 ) ∣ 𝑖 ∈ [2𝑛]

}
,

which essentially form a partition of 𝕀. For integers 𝑛 ≥ 0 and 𝑁 ≥ 1 let

𝑛,𝑁 =
{
𝑆 ∈ 𝑛 ∣ 2𝑛𝜇+𝑄(𝑆 × 𝕀) >𝑁 ⋅ 𝜇+

𝑄
(𝕀2)

}
⊆ 𝑛 and 𝐽𝑛,𝑁 =

⋃
𝑆∈𝑛,𝑁

𝑆. (2)

Note that for every 𝑆 ∈ 𝑛 we have 𝜆(𝑆) = 1
2𝑛 , so that

𝑆 ∈ 𝑛,𝑁 if and only if 𝑆 ∈ 𝑛 and
𝜇+
𝑄
(𝑆 × 𝕀)

𝜆(𝑆)
>𝑁 ⋅ 𝜇+

𝑄
(𝕀2). (3)

To make sense of what follows, we make the following remark. Intuitively, the sets 𝐽𝑛,𝑁 × 𝕀 are the “bad” strips, which make 𝛼𝑄 from 
condition (𝑖𝑖) of Theorem 2 large and possibly infinite. We will later “smooth out” the mass distribution of 𝑄 on the bad strips in 
order to make 𝛼𝑄 finite. For this to work, we actually need to slightly enlarge the sets 𝐽𝑛,𝑁 , so that the smoothing will also affect the 
boundary of the bad strips.

For every 𝑛 ≥ 1 and 𝑆 ∈ 𝑛 there exists a uniquely determined 𝑆 ∈ 𝑛−1 such that 𝑆 ⊆ 𝑆 . For all 𝑁 ≥ 1 let

0,𝑁 =
{
𝑆 ∣ 𝑆 ∈ 1,𝑁

}
⊆ 0 and 𝐾0,𝑁 =

⋃
𝐴∈0,𝑁

𝐴, (4)

and define inductively for all 𝑛 ≥ 1

𝑛,𝑁 =
{
𝑆 ∣ 𝑆 ∈ 𝑛+1,𝑁 , 𝑆 ∩

𝑛−1⋃
𝑘=0
𝐾𝑘,𝑁 = ∅

}
⊆ 𝑛 and 𝐾𝑛,𝑁 =

⋃
𝐴∈𝑛,𝑁

𝐴. (5)

We give an example to demonstrate the sets introduced above.

Example 3. Let 𝑄 be a quasi-copula with mass distributed as depicted in Fig. 1 left, where the unit square 𝕀2 is divided into 16 × 16
small squares of dimensions 1

16 ×
1
16 . The dark gray squares contain a mass of 1

16 while the light gray squares contain a mass of − 1
16

distributed uniformly over the square. All other squares contain no mass.
The corresponding (nonempty) sets 𝐽𝑛,𝑁 and 𝐾𝑛,𝑁 , where 0 ≤ 𝑛 ≤ 4 and 1 ≤𝑁 ≤ 2, are depicted on Fig. 1 right, along with the 

values 𝜇+
𝑄
(𝑆 × 𝕀) for 𝑆 ∈ 0 ∪1 ∪2 ∪3 ∪4 on top (note that 𝜇+

𝑄
(𝕀2) = 28

16 ). In particular,

𝐽0,1 = ∅, 𝐽1,1 = ∅, 𝐽2,1 = ( 24 ,
3
4 ), 𝐽3,1 = ( 18 ,

2
8 ) ∪ ( 38 ,

4
8 ) ∪ ( 48 ,

5
8 ) ∪ ( 68 ,

7
8 ),

𝐽4,1 = ( 1
16 ,

2
16 ) ∪ ( 2

16 ,
3
16 ) ∪ ( 7

16 ,
8
16 ) ∪ ( 8

16 ,
9
16 ) ∪ ( 9

16 ,
10
16 ) ∪ ( 1116 ,

12
16 ) ∪ ( 1216 ,

13
16 ) ∪ ( 1316 ,

14
16 ),

𝐾0,1 = ∅, 𝐾1,1 = ( 12 ,1), 𝐾2,1 = (0, 14 ) ∪ ( 14 ,
2
4 ), 𝐾3,1 = ∅, 𝐾4,1 = ∅,

𝐽0,2 = ∅, 𝐽1,2 = ∅, 𝐽2,2 = ∅, 𝐽3,2 = ∅, 𝐽4,2 = ( 7
16 ,

8
16 ),

𝐾0,2 = ∅, 𝐾1,2 = ∅, 𝐾2,2 = ∅, 𝐾3,2 = ( 38 ,
4
8 ), 𝐾4,2 = ∅.

Next, we give some basic properties of the sets defined above.

Lemma 4. For all 𝑛 ≥ 1 we have

𝐽𝑛,𝑁 ⊆
𝑛−1⋃
𝑘=0
𝐾𝑘,𝑁 .

Proof. We prove this by induction on 𝑛. From equations (2) and (4) if follows that 𝐽1,𝑁 =
⋃
𝑆∈1,𝑁 𝑆 ⊆

⋃
𝑆∈1,𝑁 𝑆 = 𝐾0,𝑁 , so the 
4

claim holds for 𝑛 = 1. Suppose it holds for some 𝑛 ≥ 1 and let 𝑆 ∈ 𝑛+1,𝑁 . Then, by equation (5), either 𝑆 ∈𝑛,𝑁 or 𝑆∩
⋃𝑛−1
𝑘=0𝐾𝑘,𝑁 ≠ ∅. 
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Fig. 1. Mass distribution of a quasi-copula 𝑄 from Example 3 (left) and the corresponding sets 𝐽𝑛,𝑁 and 𝐾𝑛,𝑁 (right). Each dark gray square contains a mass of 1
16

and 
each light gray square contains a mass of − 1

16
.

In the first case 𝑆 ⊆ 𝑆 ⊆𝐾𝑛,𝑁 . In the second case 𝑆 ∩𝐾𝑘,𝑁 ≠ ∅ for some 0 ≤ 𝑘 ≤ 𝑛 − 1. Since 𝑆 ∈ 𝑛+1 and 𝐾𝑘,𝑁 is a union of some 
subfamily of 𝑘, it follows that 𝑆 ⊆ 𝐾𝑘,𝑁 , because 𝑛+1 is a refinement of 𝑘 for any 𝑘 ≤ 𝑛. By equation (2) we conclude that 
𝐽𝑛+1,𝑁 ⊆

⋃𝑛
𝑘=0𝐾𝑘,𝑁 , which finishes the proof. □

Lemma 5. For any 𝑁 ≥ 1 the sets 𝐾𝑛,𝑁 with 𝑛 ≥ 0 are disjoint.

Proof. If 𝑆 ∈ 𝑛+1,𝑁 , then 𝑆 ∈ 𝑛, while 
⋃𝑛−1
𝑘=0𝐾𝑘,𝑁 is a union of some subfamily of 

⋃𝑛−1
𝑘=0𝑘. Hence, either 𝑆 ⊆ 𝑆 ⊆

⋃𝑛−1
𝑘=0𝐾𝑘,𝑁 or 

𝑆 ∩
⋃𝑛−1
𝑘=0𝐾𝑘,𝑁 = ∅. So if 𝑆 ∈ 𝑛+1,𝑁 and 𝑆 ∩

⋃𝑛−1
𝑘=0𝐾𝑘,𝑁 = ∅, then 𝑆 ∩

⋃𝑛−1
𝑘=0𝐾𝑘,𝑁 = ∅. By equation (5) this implies that the sets 𝐾𝑛,𝑁

and 
⋃𝑛−1
𝑘=0𝐾𝑘,𝑁 are disjoint. The claim now follows. □

Lemma 5 implies that for every 𝑁 ≥ 1 we have a disjoint (double) union

𝐾𝑁 =
∞⋃
𝑛=0
𝐾𝑛,𝑁 =

∞⋃
𝑛=0

⋃
𝐴∈𝑛,𝑁

𝐴. (6)

Next lemma shows that the sequence of sets 𝐾𝑁 is decreasing in 𝑁 with respect to inclusion.

Lemma 6. 𝐾𝑁+1 ⊆𝐾𝑁 for all 𝑁 ≥ 1.

Proof. Let 𝐴 ∈𝑛,𝑁+1 for some 𝑛 ≥ 0. Then 𝐴 = 𝑆 for some 𝑆 ∈ 𝑛+1,𝑁+1. Clearly, 𝑛+1,𝑁+1 ⊆ 𝑛+1,𝑁 , so that 𝑆 ∈ 𝑛+1,𝑁 . From 
equation (2) and Lemma 4 it follows that 𝑆 ⊆ 𝐽𝑛+1,𝑁 ⊆

⋃𝑛
𝑘=0𝐾𝑘,𝑁 =

⋃𝑛
𝑘=0

⋃
𝐵∈𝑘,𝑁 𝐵, so there exists 0 ≤ 𝑘 ≤ 𝑛 and 𝐵 ∈𝑘,𝑁 such 

that 𝑆 ∩𝐵 ≠ ∅. Since 𝑆 ∈ 𝑛+1 and 𝐵 ∈ 𝑘 with 𝑘 ≤ 𝑛, we infer 𝑆 ⊆ 𝐵 and consequently even 𝐴 = 𝑆 ⊆ 𝐵, because 𝑘 < 𝑛 +1. We have 
thus shown that 𝐾𝑛,𝑁+1 ⊆

⋃𝑛
𝑘=0𝐾𝑘,𝑁 , which implies 𝐾𝑁+1 ⊆𝐾𝑁 . □

3.2. Measure-theoretic properties of sets 𝐾𝑁 and 𝐿𝑁

Note that all subsets of 𝕀 considered above are open, so they are Borel measurable. We will now show that the Lebesgue measure 
𝜆 of 𝐾𝑁 is small.

Lemma 7. 𝜆(𝐾𝑁 ) ≤
2
𝑁

for all 𝑁 ≥ 1.

Proof. By Lemma 5 the double union in (6) is disjoint, so we have

𝜆(𝐾𝑁 ) =
∞∑
𝑛=0

∑
𝐴∈𝑛,𝑁

𝜆(𝐴).
5

From equations (4) and (5) it follows that
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𝜆(𝐾𝑁 ) ≤
∑

𝑆∈1,𝑁

𝜆(𝑆) +
∞∑
𝑛=1

∑
𝑆∈𝑛+1,𝑁

𝑆∩
⋃𝑛−1
𝑘=0𝐾𝑘,𝑁=∅

𝜆(𝑆) =
∑

𝑆∈1,𝑁

2𝜆(𝑆) +
∞∑
𝑛=1

∑
𝑆∈𝑛+1,𝑁

𝑆∩
⋃𝑛−1
𝑘=0𝐾𝑘,𝑁=∅

2𝜆(𝑆).

Using property (3) we obtain

𝜆(𝐾𝑁 ) ≤
∑

𝑆∈1,𝑁

2𝜇+
𝑄
(𝑆 × 𝕀)

𝑁 ⋅ 𝜇+
𝑄
(𝕀2)

+
∞∑
𝑛=1

∑
𝑆∈𝑛+1,𝑁

𝑆∩
⋃𝑛−1
𝑘=0𝐾𝑘,𝑁=∅

2𝜇+
𝑄
(𝑆 × 𝕀)

𝑁 ⋅ 𝜇+
𝑄
(𝕀2)

.

By Lemma 4 we have 
⋃𝑛
𝑘=1 𝐽𝑘,𝑁 ⊆

⋃𝑛−1
𝑘=0𝐾𝑘,𝑁 , so we can further estimate

𝜆(𝐾𝑁 ) ≤
∑

𝑆∈1,𝑁

2𝜇+
𝑄
(𝑆 × 𝕀)

𝑁 ⋅ 𝜇+
𝑄
(𝕀2)

+
∞∑
𝑛=1

∑
𝑆∈𝑛+1,𝑁

𝑆∩
⋃𝑛
𝑘=1 𝐽𝑘,𝑁=∅

2𝜇+
𝑄
(𝑆 × 𝕀)

𝑁 ⋅ 𝜇+
𝑄
(𝕀2)

= 2
𝑁 ⋅ 𝜇+

𝑄
(𝕀2)

⋅
∑
𝑆∈1
𝑆⊆𝐽1,𝑁

𝜇+
𝑄
(𝑆 × 𝕀) + 2

𝑁 ⋅ 𝜇+
𝑄
(𝕀2)

⋅
∞∑
𝑛=1

∑
𝑆∈𝑛+1

𝑆⊆𝐽𝑛+1,𝑁⧵
⋃𝑛
𝑘=1 𝐽𝑘,𝑁

𝜇+
𝑄
(𝑆 × 𝕀)

≤
2

𝑁 ⋅ 𝜇+
𝑄
(𝕀2)

⋅ 𝜇+
𝑄
(𝐽1,𝑁 × 𝕀) + 2

𝑁 ⋅ 𝜇+
𝑄
(𝕀2)

⋅
∞∑
𝑛=1
𝜇+
𝑄

((
𝐽𝑛+1,𝑁 ⧵

𝑛⋃
𝑘=1
𝐽𝑘,𝑁

)
× 𝕀

)
= 2
𝑁 ⋅ 𝜇+

𝑄
(𝕀2)

⋅ 𝜇+
𝑄

( ∞⋃
𝑛=1
𝐽𝑛,𝑁 × 𝕀

)
≤

2
𝑁
. □

We can now give one of the key points of this construction. Let

𝐾 =
∞⋂
𝑁=1

𝐾𝑁. (7)

The first crucial property of the set 𝐾 is that its Lebesgue measure is 0.

Lemma 8. We have 𝜆(𝐾) = lim
𝑁→∞

𝜆(𝐾𝑁 ) = 0.

Proof. By Lemma 6 the sequence of sets 𝐾𝑁 is decreasing in 𝑁 . Hence, the conclusion follows directly from equation (7) and 
Lemma 7. □

Furthermore, the restriction of measure 𝜇𝑄 to the set 𝐾 × 𝕀 is the zero measure.

Lemma 9. The measures 𝜇′ defined for all 𝐵 ∈(𝕀2) by

𝜇′(𝐵) = 𝜇𝑄
(
𝐵 ∩ (𝐾 × 𝕀)

)
is the zero measure.

Proof. Let (𝑥, 𝑦) ∈ 𝕀2 be arbitrary and let 𝑅 = [0, 𝑥] × [0, 𝑦]. Then

|𝜇′(𝑅)| = |||𝜇𝑄(([0, 𝑥] ∩𝐾) × [0, 𝑦]
)||| = |||𝜇𝑄( ∞⋂

𝑁=1
([0, 𝑥] ∩𝐾𝑁 ) × [0, 𝑦]

)|||.
Taking into account the monotonicity of 𝐾𝑁 , see Lemma 6, and the fact that 𝜇𝑄 is a finite signed measure, we obtain

|𝜇′(𝑅)| = ||| lim
𝑁→∞

𝜇𝑄
(
([0, 𝑥] ∩𝐾𝑁 ) × [0, 𝑦]

)|||.
Using equation (6) and the fact that the union in (6) is disjoint by Lemma 5, we obtain

|𝜇′(𝑅)| = ||| lim
𝑁→∞

∞∑
𝑛=0

∑
𝐴∈𝑛,𝑁

𝜇𝑄
(
([0, 𝑥] ∩𝐴) × [0, 𝑦]

)||| ≤ lim
𝑁→∞

∞∑
𝑛=0

∑
𝐴∈𝑛,𝑁

|||𝜇𝑄(([0, 𝑥] ∩𝐴) × [0, 𝑦]
)|||. (8)

For any rectangle (𝑎, 𝑏} ×[0, 𝑦], where } stands for either ) or ], the continuity, groundedness and 1-Lipschitz property of quasi-copulas 
6

imply
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)||| = |𝑄(𝑏, 𝑦) −𝑄(𝑎, 𝑦)| ≤ |𝑏− 𝑎| = 𝜆((𝑎, 𝑏}),

regardless of whether (𝑎, 𝑏} is empty or not. Applying this inequality to the rectangle ([0, 𝑥] ∩𝐴) ×[0, 𝑦] in (8) and using also Lemma 8
we obtain

|𝜇′(𝑅)| ≤ lim
𝑁→∞

∞∑
𝑛=0

∑
𝐴∈𝑛,𝑁

𝜆([0, 𝑥] ∩𝐴) ≤ lim
𝑁→∞

∞∑
𝑛=0

∑
𝐴∈𝑛,𝑁

𝜆(𝐴) = lim
𝑁→∞

𝜆(𝐾𝑁 ) = 𝜆(𝐾) = 0

and consequently 𝜇′(𝑅) = 0. To prove that 𝜇′ is the zero measure on (𝕀2) we use a standard argument. By the above the collection 
′ = {𝐵 ∈(𝕀2) ∣ 𝜇′(𝐵) = 0} is a 𝜎-algebra that contains all rectangles of the form [0, 𝑥] × [0, 𝑦]. Hence, ′ =(𝕀2) and 𝜇′ is the zero 
measure. □

As a consequence to Lemma 9, we obtain the second crucial property of the set 𝐾 , which will be essential for the convergence of 
measures constructed later.

Lemma 10. We have

|𝜇𝑄|(𝐾 × 𝕀
)
= lim
𝑁→∞

|𝜇𝑄|(𝐾𝑁 × 𝕀
)
= 0.

Proof. The sequence 𝐾𝑁 × 𝕀 is decreasing in 𝑁 by Lemma 6, and we have 
⋂∞
𝑁=1(𝐾𝑁 × 𝕀) =𝐾 × 𝕀 by equation (7). This implies

lim
𝑁→∞

|𝜇𝑄|(𝐾𝑁 × 𝕀
)
= |𝜇𝑄|(𝐾 × 𝕀

)
.

By Lemma 9, the measure 𝜇′ defined in that lemma is a zero measure. Denote the support of 𝜇+
𝑄

by 𝑃+. Then

𝜇+
𝑄

(
𝐾 × 𝕀

)
= 𝜇𝑄

(
𝑃+ ∩ (𝐾 × 𝕀)

)
= 𝜇′(𝑃+) = 0,

and similarly 𝜇−
𝑄

(
𝐾 × 𝕀) = 0. The claim now follows since |𝜇𝑄| = 𝜇+𝑄 + 𝜇−

𝑄
. □

Switching the first and second coordinate in the above constructions, we can analogously define for all 𝑛 ≥ 0 and 𝑁 ≥ 1 the sets

𝑛,𝑁 =
{
𝑆 ∈ 𝑛 ∣ 2𝑛𝜇+𝑄(𝕀 × 𝑆) >𝑁 ⋅ 𝜇+

𝑄
(𝕀2)

}
⊆ 𝑛, 𝐼𝑛,𝑁 =

⋃
𝑆∈𝑛,𝑁

𝑆,

0,𝑁 =
{
𝑆 ∣ 𝑆 ∈ 1,𝑁

}
⊆ 0, 𝐿0,𝑁 =

⋃
𝐴∈0,𝑁

𝐴,

𝑛,𝑁 =
{
𝑆 ∣ 𝑆 ∈ 𝑛+1,𝑁 , 𝑆 ∩

𝑛−1⋃
𝑘=0
𝐿𝑘,𝑁 = ∅

}
⊆ 𝑛, 𝐿𝑛,𝑁 =

⋃
𝐴∈𝑛,𝑁

𝐴,

𝐿𝑁 =
∞⋃
𝑛=0
𝐿𝑛,𝑁 =

∞⋃
𝑛=0

⋃
𝐴∈𝑛,𝑁

𝐴, 𝐿 =
∞⋂
𝑁=1

𝐿𝑁. (9)

By symmetry the versions of Lemmas 7–10 for the sets 𝐿𝑁 and 𝐿 also hold. In particular, 𝜆(𝐿𝑁 ) ≤
2
𝑁

for all 𝑁 ≥ 1, 𝜆(𝐿) = 0, the 
measure 𝜇′′ defined for all 𝐵 ∈(𝕀2) by

𝜇′′(𝐵) = 𝜇𝑄
(
𝐵 ∩ (𝕀 ×𝐿)

)
is the zero measure, and the following lemma holds.

Lemma 11. We have

|𝜇𝑄|(𝕀 ×𝐿) = lim
𝑁→∞

|𝜇𝑄|(𝕀 ×𝐿𝑁) = 0.

3.3. Construction of quasi-copulas 𝑄𝑁

We now turn our attention to the construction of a sequence of quasi-copulas 𝑄𝑁 . For every positive integer 𝑁 denote the 
complements
7

𝐾 ′
𝑁 = 𝕀 ⧵𝐾𝑁 and 𝐿′

𝑁 = 𝕀 ⧵𝐿𝑁.
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Fig. 2. The extension 𝑄𝑁 of the sub-quasi-copula 𝑄|𝐾 ′
𝑁
×𝐿′

𝑁
defined on the shaded region 𝐾 ′

𝑁
× 𝐿′

𝑁
. The straight sections indicate in which direction the extension 

𝑄𝑁 is linear on (𝐾𝑁 × 𝕀) ∪ (𝕀 ×𝐿𝑁 ).

By equations (6) and (9) the sets 𝐾𝑁 and 𝐿𝑁 are open, so the sets 𝐾 ′
𝑁

and 𝐿′
𝑁

are closed and contain 0 and 1. The restriction 
𝑄|𝐾′

𝑁
×𝐿′

𝑁
of quasi-copula 𝑄 to the set 𝐾 ′

𝑁
× 𝐿′

𝑁
is a sub-quasi-copula according to [22, Definition 2.3]. We can extend sub-quasi-

copula 𝑄|𝐾′
𝑁
×𝐿′

𝑁
to a quasi-copula 𝑄𝑁 using the formula from the proof of [22, Theorem 2.3], which we recall now. Let (𝑥, 𝑦) be an 

arbitrary point in 𝕀2 and denote

𝑥1 = max
(
[0, 𝑥] ∩𝐾 ′

𝑁

)
, 𝑥2 = min

(
[𝑥,1] ∩𝐾 ′

𝑁

)
,

𝑦1 = max
(
[0, 𝑦] ∩𝐿′

𝑁

)
, 𝑦2 = min

(
[𝑦,1] ∩𝐿′

𝑁

)
.

Then 𝑥1 ≤ 𝑥 ≤ 𝑥2 and 𝑦1 ≤ 𝑦 ≤ 𝑦2. If 𝑥 ∈𝐾 ′
𝑁

, then 𝑥1 = 𝑥2, and if 𝑦 ∈𝐿′
𝑁

, then 𝑦1 = 𝑦2. Now let

𝛼 =

{ 𝑥−𝑥1
𝑥2−𝑥1

, 𝑥1 < 𝑥2,

1, 𝑥1 = 𝑥2,
and 𝛽 =

{ 𝑦−𝑦1
𝑦2−𝑦1

, 𝑦1 < 𝑦2,

1, 𝑦1 = 𝑦2.

Then the value of the extension at (𝑥, 𝑦) is given by

𝑄𝑁 (𝑥, 𝑦) = (1 − 𝛼)(1 − 𝛽)𝑄(𝑥1, 𝑦1) + (1 − 𝛼)𝛽𝑄(𝑥1, 𝑦2) + 𝛼(1 − 𝛽)𝑄(𝑥2, 𝑦1) + 𝛼𝛽𝑄(𝑥2, 𝑦2). (10)

Note that 𝑄𝑁 is bilinear on [𝑥1, 𝑥2] × [𝑦1, 𝑦2]. In particular, if 𝑅 is a closed rectangle such that only the vertices of 𝑅 lie in 𝐾 ′
𝑁
×𝐿′

𝑁
, 

then 𝑄𝑁 is bilinear on 𝑅 (e.g. 𝑅5 on Fig. 2). If only the left and right side of 𝑅 lie in 𝐾 ′
𝑁
× 𝐿′

𝑁
, then 𝑄𝑁 is linear in 𝑥 on 𝑅 but 

not necessary in 𝑦 (e.g. 𝑅2 and 𝑅8 on Fig. 2), if only the bottom and top side of 𝑅 lie in 𝐾 ′
𝑁
×𝐿′

𝑁
, then 𝑄𝑁 is linear in 𝑦 on 𝑅 but 

not necessary in 𝑥 (e.g. 𝑅4 and 𝑅6 on Fig. 2), and if the whole 𝑅 lies in 𝐾 ′
𝑁
× 𝐿′

𝑁
, then 𝑄𝑁 on 𝑅 is not linear in any coordinate 

in general (e.g. 𝑅1, 𝑅3, 𝑅7, and 𝑅9 on Fig. 2). So the extension 𝑄𝑁 is as linear as possible. This means that it spreads mass on 
𝕀 ⧵ (𝐾 ′

𝑁
×𝐿′

𝑁
) = (𝐾𝑁 × 𝕀) ∪ (𝕀 ×𝐿𝑁 ) uniformly in certain directions, which will be important later on.

3.4. Construction of measures 𝜇𝑁

We aim to prove that quasi-copulas 𝑄𝑁 induce signed measures on (𝕀2). We now construct these measures. From equations (6)
and (9) it follows that the sets 𝐾𝑁 and 𝐿𝑁 are countable unions of disjoint open intervals, say

𝐾𝑁 =
∞⋃
𝑖=0

(𝑎𝑁𝑖 , 𝑏
𝑁
𝑖 ) and 𝐿𝑁 =

∞⋃
𝑗=0

(𝑐𝑁𝑖 , 𝑑
𝑁
𝑖 ), (11)

where each (𝑎𝑁𝑖 , 𝑏
𝑁
𝑖 ) and (𝑐𝑁𝑖 , 𝑑

𝑁
𝑖 ) is a member of 

⋃∞
𝑛=0𝑛. We are assuming here without loss of generality that the unions are 

infinite. If they are finite the arguments are essentially the same.
For a set 𝐸 ∈(𝕀) with 𝜆(𝐸) > 0, define a probability measure 𝜆𝐸 on (𝕀) by

𝜆𝐸 (𝐴) = 𝜆(𝐴 ∩𝐸)∕𝜆(𝐸)

for all 𝐴 ∈(𝕀), and finite signed measures 𝜑𝐸 and 𝜓𝐸 on (𝕀) by

𝜑𝐸 (𝐴) = 𝜇𝑄
(
𝐸 × (𝐴 ∩𝐿′

𝑁 )
)

and 𝜓𝐸 (𝐴) = 𝜇𝑄
(
(𝐴 ∩𝐾 ′

𝑁 ) ×𝐸
)

(12)

for all 𝐴 ∈(𝕀). Furthermore, introduce finite signed measures 𝜇𝑁 and 𝜇𝑁 on (𝕀2) by

𝜇 =
∞∑
𝜆 𝑁 𝑁 ×𝜑 𝑁 𝑁 +

∞∑
𝜓 𝑁 𝑁 × 𝜆 𝑁 𝑁 +

∞∑ ∞∑
𝜇

(
(𝑎𝑁 , 𝑏𝑁 ) × (𝑐𝑁 ,𝑑𝑁 )

)
⋅ 𝜆 𝑁 𝑁 × 𝜆 𝑁 𝑁
8

𝑁
𝑖=0

(𝑎𝑖 ,𝑏𝑖 ) (𝑎𝑖 ,𝑏𝑖 )
𝑗=0

(𝑐𝑗 ,𝑑𝑗 ) (𝑐𝑗 ,𝑑𝑗 )
𝑖=0 𝑗=0

𝑄 𝑖 𝑖 𝑗 𝑗 (𝑎𝑖 ,𝑏𝑖 ) (𝑐𝑗 ,𝑑𝑗 ) (13)
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and

𝜇𝑁 (𝐵) = 𝜇𝑄
(
𝐵 ∩ (𝐾 ′

𝑁 ×𝐿′
𝑁 )

)
(14)

for all 𝐵 ∈(𝕀2), where × denotes both the product of measures and the Cartesian product of sets. The idea behind the definition of 
𝜇𝑁 is that it should correspond to the measure induced by the extension 𝑄𝑁 on the set (𝐾𝑁 × 𝕀) ∪ (𝕀 × 𝐿𝑁 ). In particular, the first 
sum corresponds to the regions where 𝑄𝑁 is linear in 𝑥 coordinate (regions 𝑅2 and 𝑅8 on Fig. 2), the second sum corresponds to the 
regions where 𝑄𝑁 is linear in 𝑦 coordinate (regions 𝑅4 and 𝑅6 on Fig. 2) and the third sum corresponds to the regions where 𝑄𝑁 is 
bilinear (region 𝑅5 on Fig. 2).

We first need to show that 𝜇𝑁 is well defined.

Lemma 12. For every 𝑁 ≥ 1 the sum in equation (13) converges in the total variation norm, so 𝜇𝑁 is a finite signed measure on (𝕀2).

Proof. For every 𝐸 ∈(𝕀) with 𝜆(𝐸) > 0 let 𝜑𝐸 = 𝜑+
𝐸
− 𝜑−

𝐸
be the Jordan decomposition of 𝜑𝐸 and denote the supports of 𝜑+

𝐸
and 

𝜑−
𝐸

by 𝑃+
𝐸

and 𝑃−
𝐸

, respectively. Since 𝜆𝐸 is a probability measure, and 𝜆𝐸 ×𝜑+
𝐸

and 𝜆𝐸 ×𝜑−
𝐸

are positive measures, we can estimate 
using equation (1)

‖𝜆𝐸 ×𝜑𝐸‖𝑇𝑉 = ‖𝜆𝐸 ×𝜑+
𝐸
− 𝜆𝐸 ×𝜑−

𝐸‖𝑇𝑉
≤ ‖𝜆𝐸 ×𝜑+

𝐸
‖𝑇𝑉 + ‖𝜆𝐸 ×𝜑−

𝐸‖𝑇𝑉 = 𝜑+
𝐸
(𝕀) +𝜑−

𝐸 (𝕀) = ‖𝜑𝐸‖𝑇𝑉 . (15)

Using equations (1) and (12) we estimate

‖𝜑𝐸‖𝑇𝑉 = 𝜑𝐸 (𝑃+
𝐸
) −𝜑𝐸 (𝑃−

𝐸 ) = 𝜇𝑄
(
𝐸 × (𝑃+

𝐸
∩𝐿′

𝑁 )
)
− 𝜇𝑄

(
𝐸 × (𝑃−

𝐸 ∩𝐿′
𝑁 )

)
≤ 𝜇+

𝑄

(
𝐸 × (𝑃+

𝐸
∩𝐿′

𝑁 )
)
+ 𝜇−𝑄

(
𝐸 × (𝑃−

𝐸 ∩𝐿′
𝑁 )

)
≤ 𝜇+

𝑄
(𝐸 ×𝐿′

𝑁 ) + 𝜇
−
𝑄(𝐸 ×𝐿′

𝑁 )

= |𝜇𝑄|(𝐸 ×𝐿′
𝑁 ).

(16)

Combining inequalities (15) and (16) gives

‖𝜆𝐸 ×𝜑𝐸‖𝑇𝑉 ≤ |𝜇𝑄|(𝐸 ×𝐿′
𝑁 ),

and similarly we obtain

‖𝜓𝐸 × 𝜆𝐸‖𝑇𝑉 ≤ |𝜇𝑄|(𝐾 ′
𝑁 ×𝐸).

These two inequalities imply

∞∑
𝑖=0

‖𝜆(𝑎𝑁𝑖 ,𝑏𝑁𝑖 ) ×𝜑(𝑎𝑁𝑖 ,𝑏
𝑁
𝑖 )‖𝑇𝑉 +

∞∑
𝑗=0

‖𝜓(𝑐𝑁𝑗 ,𝑑
𝑁
𝑗 ) × 𝜆(𝑐𝑁𝑗 ,𝑑𝑁𝑗 )‖𝑇𝑉 +

∞∑
𝑖=0

∞∑
𝑗=0

‖‖‖𝜇𝑄((𝑎𝑁𝑖 , 𝑏𝑁𝑖 ) × (𝑐𝑁𝑗 , 𝑑
𝑁
𝑗 )

)
⋅ 𝜆(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 ) × 𝜆(𝑐𝑁𝑗 ,𝑑𝑁𝑗 )

‖‖‖𝑇𝑉
≤

∞∑
𝑖=0

|𝜇𝑄|((𝑎𝑁𝑖 , 𝑏𝑁𝑖 ) ×𝐿′
𝑁

)
+

∞∑
𝑗=0

|𝜇𝑄|(𝐾 ′
𝑁 × (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
+

∞∑
𝑖=0

∞∑
𝑗=0

|||𝜇𝑄((𝑎𝑁𝑖 , 𝑏𝑁𝑖 ) × (𝑐𝑁𝑗 , 𝑑
𝑁
𝑗 )

)|||
≤

∞∑
𝑖=0

|𝜇𝑄|((𝑎𝑁𝑖 , 𝑏𝑁𝑖 ) ×𝐿′
𝑁

)
+

∞∑
𝑗=0

|𝜇𝑄|(𝐾 ′
𝑁 × (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
+

∞∑
𝑖=0

∞∑
𝑗=0

|𝜇𝑄|((𝑎𝑁𝑖 , 𝑏𝑁𝑖 ) × (𝑐𝑁𝑗 , 𝑑
𝑁
𝑗 )

)
= |𝜇𝑄|(𝐾𝑁 ×𝐿′

𝑁 ) + |𝜇𝑄|(𝐾 ′
𝑁 ×𝐿𝑁 ) + |𝜇𝑄|(𝐾𝑁 ×𝐿𝑁 )

= |𝜇𝑄|((𝐾𝑁 × 𝕀) ∪ (𝕀 ×𝐿𝑁 )
)
<∞.

(17)

Since the vector space of all finite measures equipped with the total variation norm is a Banach space, this implies that the sum in 
equation (13) converges in the total variation norm and 𝜇𝑁 is a finite signed measure. □

We can now prove that quasi-copulas 𝑄𝑁 induce signed measures. For every 𝑁 ≥ 1 define a finite signed measure

𝜇𝑁 = 𝜇𝑁 + 𝜇𝑁,

where 𝜇𝑁 and 𝜇𝑁 are given in equations (13) and (14). We show with a direct calculation that measure 𝜇𝑁 is induced by 𝑄𝑁 .
9

Lemma 13. For every 𝑁 ≥ 1 quasi-copula 𝑄𝑁 induces signed measure 𝜇𝑁 .
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Proof. For any (𝑥, 𝑦) ∈ 𝕀2 we use equations (13) and (14) to get

𝜇𝑁
(
[0, 𝑥] × [0, 𝑦]

)
=

∞∑
𝑖=0

𝜆
(
[0, 𝑥] ∩ (𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 )

)
𝜆((𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ))

⋅ 𝜇𝑄
(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × ([0, 𝑦] ∩𝐿′

𝑁 )
)

+
∞∑
𝑗=0
𝜇𝑄

(
([0, 𝑥] ∩𝐾 ′

𝑁 ) × (𝑐𝑁𝑗 , 𝑑
𝑁
𝑗 )

)
⋅
𝜆
(
[0, 𝑦] ∩ (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
𝜆((𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 ))

+
∞∑
𝑖=0

∞∑
𝑗=0
𝜇𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
⋅
𝜆
(
[0, 𝑥] ∩ (𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 )

)
𝜆((𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ))

⋅
𝜆
(
[0, 𝑦] ∩ (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
𝜆((𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 ))

+ 𝜇𝑄
(
([0, 𝑥] × [0, 𝑦]) ∩ (𝐾 ′

𝑁 ×𝐿′
𝑁 )

)
.

(18)

We consider four cases, depending on where the point (𝑥, 𝑦) lies.
Case 1: 𝑥 ∉ 𝐾𝑁 and 𝑦 ∉ 𝐿𝑁 . On Fig. 2 this corresponds to (𝑥, 𝑦) ∈ 𝑅1 ∪ 𝑅3 ∪ 𝑅7 ∪ 𝑅9. In this case 𝑥 is not contained in any 

(𝑎𝑁𝑖 , 𝑏
𝑁
𝑖 ) and 𝑦 is not contained in any (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 ) so equation (18) becomes

𝜇𝑁
(
[0, 𝑥] × [0, 𝑦]

)
=

∑
(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )⊆[0,𝑥]

𝜇𝑄
(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × ([0, 𝑦] ∩𝐿′

𝑁 )
)
+

∑
(𝑐𝑁𝑗 ,𝑑

𝑁
𝑗 )⊆[0,𝑦]

𝜇𝑄
(
([0, 𝑥] ∩𝐾 ′

𝑁 ) × (𝑐𝑁𝑗 , 𝑑
𝑁
𝑗 )

)
+

∑
(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )⊆[0,𝑥]

∑
(𝑐𝑁𝑗 ,𝑑

𝑁
𝑗 )⊆[0,𝑦]

𝜇𝑄
(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
+ 𝜇𝑄

(
([0, 𝑥] × [0, 𝑦]) ∩ (𝐾 ′

𝑁 ×𝐿′
𝑁 )

)
= 𝜇𝑄

(
([0, 𝑥] ∩𝐾𝑁 ) × ([0, 𝑦] ∩𝐿′

𝑁 )
)
+ 𝜇𝑄

(
([0, 𝑥] ∩𝐾 ′

𝑁 ) × ([0, 𝑦] ∩𝐿𝑁 )
)

+ 𝜇𝑄
(
([0, 𝑥] ∩𝐾𝑁 ) × ([0, 𝑦] ∩𝐿𝑁 )

)
+ 𝜇𝑄

(
([0, 𝑥] × [0, 𝑦]) ∩ (𝐾 ′

𝑁 ×𝐿′
𝑁 )

)
= 𝜇𝑄

(
([0, 𝑥] × [0, 𝑦]) ∩ (𝐾𝑁 ×𝐿′

𝑁 )
)
+ 𝜇𝑄

(
([0, 𝑥] × [0, 𝑦]) ∩ (𝐾 ′

𝑁 ×𝐿𝑁 )
)

+ 𝜇𝑄
(
([0, 𝑥] × [0, 𝑦]) ∩ (𝐾𝑁 ×𝐿𝑁 )

)
+ 𝜇𝑄

(
([0, 𝑥] × [0, 𝑦]) ∩ (𝐾 ′

𝑁 ×𝐿′
𝑁 )

)
.

Since

(𝐾𝑁 ×𝐿′
𝑁 ) ∪ (𝐾 ′

𝑁 ×𝐿𝑁 ) ∪ (𝐾𝑁 ×𝐿𝑁 ) ∪ (𝐾 ′
𝑁 ×𝐿′

𝑁 ) = 𝕀2

and this union is disjoint, we conclude

𝜇𝑁
(
[0, 𝑥] × [0, 𝑦]

)
= 𝜇𝑄

(
[0, 𝑥] × [0, 𝑦]

)
=𝑄(𝑥, 𝑦). (19)

By equation (10) this is equal to 𝑄𝑁 (𝑥, 𝑦) because 𝑥 ∈𝐾 ′
𝑁

and 𝑦 ∈𝐿′
𝑁

.
Case 2: 𝑥 ∈ 𝐾𝑁 and 𝑦 ∉ 𝐿𝑁 . On Fig. 2 this corresponds to (𝑥, 𝑦) ∈ 𝑅2 ∪ 𝑅8. We may assume without loss of generality that 

𝑥 ∈ (𝑎𝑁0 , 𝑏
𝑁
0 ) since the order of the intervals in equation (11) is arbitrary. On the other hand, 𝑦 is not contained in any (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 ). By 

splitting [0, 𝑥] × [0, 𝑦] =
(
[0, 𝑎𝑁0 ] × [0, 𝑦]

)
∪
(
(𝑎𝑁0 , 𝑥] × [0, 𝑦]

)
, we infer that equation (18) can be written as

𝜇𝑁
(
[0, 𝑥] × [0, 𝑦]

)
= 𝜇𝑁

(
[0, 𝑎𝑁0 ] × [0, 𝑦]

)
+
𝜆((𝑎𝑁0 , 𝑥])

𝜆((𝑎𝑁0 , 𝑏
𝑁
0 ))

⋅ 𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) ×

(
[0, 𝑦] ∩𝐿′

𝑁

))
+

∑
(𝑐𝑁𝑗 ,𝑑

𝑁
𝑗 )⊆[0,𝑦]

𝜇𝑄
((
(𝑎𝑁0 , 𝑥] ∩𝐾

′
𝑁

)
× (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)

+
∑

(𝑐𝑁𝑗 ,𝑑
𝑁
𝑗 )⊆[0,𝑦]

𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
⋅
𝜆((𝑎𝑁0 , 𝑥])

𝜆((𝑎𝑁0 , 𝑏
𝑁
0 ))

+ 𝜇𝑄
((
(𝑎𝑁0 , 𝑥] × [0, 𝑦]

)
∩ (𝐾 ′

𝑁 ×𝐿′
𝑁 )

)
Note that 𝑎𝑁0 ∉𝐾𝑁 , so we may use Case 1 to evaluate the first term in the above expression. Using equation (19), the first term is 
equal to 𝜇𝑁

(
[0, 𝑎𝑁0 ] ×[0, 𝑦]

)
=𝑄(𝑎𝑁0 , 𝑦). Furthermore, the last term and the first of the two sums 

∑
(𝑐𝑁𝑗 ,𝑑

𝑁
𝑗 )⊆[0,𝑦] are equal to 0 because 
10

(𝑎𝑁0 , 𝑥] ⊆𝐾𝑁 . Hence,
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𝜇𝑁
(
[0, 𝑥] × [0, 𝑦]

)
=𝑄(𝑎𝑁0 , 𝑦) +

𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅ 𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × ([0, 𝑦] ∩𝐿′

𝑁 )
)

+
𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅
∑

(𝑐𝑁𝑗 ,𝑑
𝑁
𝑗 )⊆[0,𝑦]

𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
=𝑄(𝑎𝑁0 , 𝑦) +

𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅ 𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × ([0, 𝑦] ∩𝐿′

𝑁 )
)

+
𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅ 𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × ([0, 𝑦] ∩𝐿𝑁 )

)
=𝑄(𝑎𝑁0 , 𝑦) +

𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅ 𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × [0, 𝑦]

)
.

(20)

Finally, by continuity of 𝑄 we can express

𝜇𝑁
(
[0, 𝑥] × [0, 𝑦]

)
=𝑄(𝑎𝑁0 , 𝑦) +

𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

(
𝑄(𝑏𝑁0 , 𝑦) −𝑄(𝑎

𝑁
0 , 𝑦)

)
=
𝑏𝑁0 − 𝑥

𝑏𝑁0 − 𝑎𝑁0
𝑄(𝑎𝑁0 , 𝑦) +

𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

𝑄(𝑏𝑁0 , 𝑦).

By equation (10) this is equal to 𝑄𝑁 (𝑥, 𝑦) because 𝑥 ∈𝐾𝑁 and 𝑦 ∈𝐿′
𝑁

.
Case 3: 𝑥 ∉ 𝐾𝑁 and 𝑦 ∈ 𝐿𝑁 . On Fig. 2 this corresponds to (𝑥, 𝑦) ∈ 𝑅4 ∪ 𝑅6. This case is treated similarly as Case 2. Assuming 

𝑦 ∈ (𝑐𝑁0 , 𝑑
𝑁
0 ), we obtain

𝜇𝑁
(
[0, 𝑥] × [0, 𝑦]

)
=
𝑑𝑁0 − 𝑦

𝑑𝑁0 − 𝑐𝑁0
𝑄(𝑥, 𝑐𝑁0 ) +

𝑦− 𝑐𝑁0
𝑑𝑁0 − 𝑐𝑁0

𝑄(𝑥,𝑑𝑁0 ),

which is again equal to 𝑄𝑁 (𝑥, 𝑦) by equation (10).
Case 4: 𝑥 ∈𝐾𝑁 and 𝑦 ∈𝐿𝑁 . On Fig. 2 this corresponds to (𝑥, 𝑦) ∈𝑅5. We may assume without loss of generality that 𝑥 ∈ (𝑎𝑁0 , 𝑏

𝑁
0 )

and 𝑦 ∈ (𝑐𝑁0 , 𝑑
𝑁
0 ). By splitting [0, 𝑥] × [0, 𝑦] = ([0, 𝑥] × [0, 𝑐𝑁0 ]) ∪ ([0, 𝑥] × (𝑐𝑁0 , 𝑦]), we infer that equation (18) can be written as

𝜇𝑁
(
[0, 𝑥] × [0, 𝑦]

)
= 𝜇𝑁

(
[0, 𝑥] × [0, 𝑐𝑁0 ]

)
+

∞∑
𝑖=0

𝜆
(
[0, 𝑥] ∩ (𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 )

)
𝜆((𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ))

⋅ 𝜇𝑄
(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) ×

(
(𝑐𝑁0 , 𝑦] ∩𝐿

′
𝑁

))
+ 𝜇𝑄

((
[0, 𝑥] ∩𝐾 ′

𝑁

)
× (𝑐𝑁0 , 𝑑

𝑁
0 )

)
⋅
𝜆((𝑐𝑁0 , 𝑦])

𝜆((𝑐𝑁0 , 𝑑
𝑁
0 ))

+
∞∑
𝑖=0
𝜇𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × (𝑐𝑁0 , 𝑑

𝑁
0 )

)
⋅
𝜆
(
[0, 𝑥] ∩ (𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 )

)
𝜆((𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ))

⋅
𝜆((𝑐𝑁0 , 𝑦])

𝜆((𝑐𝑁0 , 𝑑
𝑁
0 ))

+ 𝜇𝑄
((
[0, 𝑥] × (𝑐𝑁0 , 𝑦]

)
∩ (𝐾 ′

𝑁 ×𝐿′
𝑁 )

)
.

Note that 𝑐𝑁0 ∉𝐿𝑁 , so by Case 2, using equation (20), the first term in the above expression is equal to

𝜇𝑁
(
[0, 𝑥] × [0, 𝑐𝑁0 ]

)
=𝑄(𝑎𝑁0 , 𝑐

𝑁
0 ) +

𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅ 𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × [0, 𝑐𝑁0 ]

)
.

Furthermore, the last term and the first of the two sums 
∑∞
𝑖=0 are equal to 0 because (𝑐𝑁0 , 𝑦] ⊆𝐿𝑁 . Hence,

𝜇𝑁
(
[0, 𝑥] × [0, 𝑦]

)
=𝑄(𝑎𝑁0 , 𝑐

𝑁
0 ) +

𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅ 𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × [0, 𝑐𝑁0 ]

)
+
𝑦− 𝑐𝑁0
𝑑𝑁0 − 𝑐𝑁0

⋅ 𝜇𝑄
(
([0, 𝑥] ∩𝐾 ′

𝑁 ) × (𝑐𝑁0 , 𝑑
𝑁
0 )

)
+
𝑦− 𝑐𝑁0
𝑑𝑁0 − 𝑐𝑁0

⋅
∞∑
𝑖=0
𝜇𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × (𝑐𝑁0 , 𝑑

𝑁
0 )

)
⋅
𝜆
(
[0, 𝑥] ∩ (𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 )

)
𝜆((𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ))

.

11

We can simplify the last sum, also using 𝑥 ∈ (𝑎𝑁0 , 𝑏
𝑁
0 ), to obtain
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𝜇𝑁
(
[0, 𝑥] × [0, 𝑦]

)
=𝑄(𝑎𝑁0 , 𝑐

𝑁
0 ) +

𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅ 𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × [0, 𝑐𝑁0 ]

)
+
𝑦− 𝑐𝑁0
𝑑𝑁0 − 𝑐𝑁0

⋅ 𝜇𝑄
(
([0, 𝑥] ∩𝐾 ′

𝑁 ) × (𝑐𝑁0 , 𝑑
𝑁
0 )

)
+
𝑦− 𝑐𝑁0
𝑑𝑁0 − 𝑐𝑁0

⋅
∑

(𝑎𝑁𝑖 ,𝑏
𝑁
𝑖 )⊆[0,𝑥]

𝜇𝑄
(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × (𝑐𝑁0 , 𝑑

𝑁
0 )

)
+
𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅
𝑦− 𝑐𝑁0
𝑑𝑁0 − 𝑐𝑁0

⋅ 𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × (𝑐𝑁0 , 𝑑

𝑁
0 )

)
.

(21)

Note that ⋃
(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )⊆[0,𝑥]

(𝑎𝑁𝑖 , 𝑏
𝑁
𝑖 ) = [0, 𝑥] ∩

(
𝐾𝑁 ⧵ (𝑎𝑁0 , 𝑥]

)
and 𝐾 ′

𝑁 ∪
(
𝐾𝑁 ⧵ (𝑎𝑁0 , 𝑥]

)
= 𝕀 ⧵ (𝑎𝑁0 , 𝑥],

so we may combine the second and third row of equation (21) to get

𝜇𝑁
(
[0, 𝑥] × [0, 𝑦]

)
=𝑄(𝑎𝑁0 , 𝑐

𝑁
0 ) +

𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅ 𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × [0, 𝑐𝑁0 ]

)
+
𝑦− 𝑐𝑁0
𝑑𝑁0 − 𝑐𝑁0

⋅ 𝜇𝑄
(
[0, 𝑎𝑁0 ] × (𝑐𝑁0 , 𝑑

𝑁
0 )

)
+
𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅
𝑦− 𝑐𝑁0
𝑑𝑁0 − 𝑐𝑁0

⋅ 𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × (𝑐𝑁0 , 𝑑

𝑁
0 )

)
.

The continuity of 𝑄 implies

𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × [0, 𝑐𝑁0 ])

)
=𝑄(𝑏𝑁0 , 𝑐

𝑁
0 ) −𝑄(𝑎𝑁0 , 𝑐

𝑁
0 ),

𝜇𝑄
(
[0, 𝑎𝑁0 ] × (𝑐𝑁0 , 𝑑

𝑁
0 )

)
=𝑄(𝑎𝑁0 , 𝑑

𝑁
0 ) −𝑄(𝑎𝑁0 , 𝑐

𝑁
0 ),

𝜇𝑄
(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × (𝑐𝑁0 , 𝑑

𝑁
0 )

)
=𝑄(𝑏𝑁0 , 𝑑

𝑁
0 ) −𝑄(𝑎𝑁0 , 𝑑

𝑁
0 ) −𝑄(𝑏𝑁0 , 𝑐

𝑁
0 ) +𝑄(𝑎𝑁0 , 𝑐

𝑁
0 ),

so that

𝜇𝑁
(
[0, 𝑥] × [0, 𝑦]

)
=𝑄(𝑎𝑁0 , 𝑐

𝑁
0 ) +

𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅
(
𝑄(𝑏𝑁0 , 𝑐

𝑁
0 ) −𝑄(𝑎𝑁0 , 𝑐

𝑁
0 )

)
+
𝑦− 𝑐𝑁0
𝑑𝑁0 − 𝑐𝑁0

⋅
(
𝑄(𝑎𝑁0 , 𝑑

𝑁
0 ) −𝑄(𝑎𝑁0 , 𝑐

𝑁
0 )

)
+
𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅
𝑦− 𝑐𝑁0
𝑑𝑁0 − 𝑐𝑁0

⋅
(
𝑄(𝑏𝑁0 , 𝑑

𝑁
0 ) −𝑄(𝑎𝑁0 , 𝑑

𝑁
0 ) −𝑄(𝑏𝑁0 , 𝑐

𝑁
0 ) +𝑄(𝑎𝑁0 , 𝑐

𝑁
0 )

)
=
𝑏𝑁0 − 𝑥

𝑏𝑁0 − 𝑎𝑁0
⋅
𝑑𝑁0 − 𝑦

𝑑𝑁0 − 𝑐𝑁0
⋅𝑄(𝑎𝑁0 , 𝑐

𝑁
0 ) +

𝑏𝑁0 − 𝑥

𝑏𝑁0 − 𝑎𝑁0
⋅
𝑦− 𝑐𝑁0
𝑑𝑁0 − 𝑐𝑁0

⋅𝑄(𝑎𝑁0 , 𝑑
𝑁
0 )

+
𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅
𝑑𝑁0 − 𝑦

𝑑𝑁0 − 𝑐𝑁0
⋅𝑄(𝑏𝑁0 , 𝑐

𝑁
0 ) +

𝑥− 𝑎𝑁0
𝑏𝑁0 − 𝑎𝑁0

⋅
𝑦− 𝑐𝑁0
𝑑𝑁0 − 𝑐𝑁0

⋅𝑄(𝑏𝑁0 , 𝑑
𝑁
0 ).

By equation (10) this is again equal to 𝑄𝑁 (𝑥, 𝑦) because 𝑥 ∈𝐾𝑁 and 𝑦 ∈𝐿𝑁 . □

Next step is to establish the convergence of finite signed measures 𝜇𝑁 .

Lemma 14. The sequence of measures 𝜇𝑁 converges to 𝜇𝑄 in the total variation norm.

Proof. From the proof of Lemma 12, see in particular inequality (17), it follows that

‖𝜇𝑁‖𝑇𝑉 ≤ |𝜇𝑄|((𝐾𝑁 × 𝕀) ∪ (𝕀 ×𝐿𝑁 )
)
≤ |𝜇𝑄|(𝐾𝑁 × 𝕀

)
+ |𝜇𝑄|(𝕀 ×𝐿𝑁).

When 𝑁 tends to infinity, the right-hand side converges to 0 by Lemmas 10 and 11, so the sequence of measures 𝜇𝑁 converges to 
12

the zero measure in the total variation norm. Furthermore, note that
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(𝜇𝑄 − 𝜇𝑁 )(𝐵) = 𝜇𝑄(𝐵) − 𝜇𝑄
(
𝐵 ∩ (𝐾 ′

𝑁 ×𝐿′
𝑁 )

)
= 𝜇𝑄

(
𝐵 ∩

(
(𝐾𝑁 × 𝕀) ∪ (𝕀 ×𝐿𝑁 )

))
for all 𝐵 ∈(𝕀2). So we can use equation (1) and an analogous calculation as in inequality (16) to obtain

‖𝜇𝑄 − 𝜇𝑁‖𝑇𝑉 ≤ |𝜇𝑄|((𝐾𝑁 × 𝕀) ∪ (𝕀 ×𝐿𝑁 )
)
.

Using a similar argument as for 𝜇𝑁 , we infer that the sequence 𝜇𝑄 − 𝜇𝑁 converges to the zero measure, so that 𝜇𝑁 converges to 𝜇𝑄
in the total variation norm. We conclude that the sequence of finite measures 𝜇𝑁 = 𝜇𝑁 + 𝜇𝑁 converges to 𝜇𝑄. □

3.5. Decomposition of quasi-copulas 𝑄𝑁

We have so far shown that quasi-copulas 𝑄𝑁 induce signed measures 𝜇𝑁 and the measures 𝜇𝑁 converge in the total variation 
norm to measure 𝜇𝑄, which is induced by 𝑄.

The final property of quasi-copulas 𝑄𝑁 that we need is that every 𝑄𝑁 is a linear combination of two copulas. To prove this we 
will show that each 𝑄𝑁 satisfies condition (𝑖𝑖) of Theorem 2.

Lemma 15. For every 𝑁 ≥ 1 there exist bivariate copulas 𝐴𝑁 and 𝐵𝑁 and real numbers 𝛼𝑁 and 𝛽𝑁 such that 𝑄𝑁 = 𝛼𝑁𝐴𝑁 + 𝛽𝑁𝐵𝑁 . 
Consequently, 𝜇𝑁 = 𝛼𝑁𝜇𝐴𝑁 + 𝛽𝑁𝜇𝐵𝑁 .

Proof. Fix 𝑁 ≥ 1. By Theorem 2 it suffices to prove that

𝛼𝑄𝑁 = sup
𝑛≥1

{
max
𝑘∈[2𝑛]

2𝑛
2𝑛∑
𝑙=1
𝑉𝑄𝑁 (𝑅

𝑛
𝑘𝑙)

+ , max
𝑙∈[2𝑛]

2𝑛
2𝑛∑
𝑘=1
𝑉𝑄𝑁 (𝑅

𝑛
𝑘𝑙)

+

}
<∞,

where 𝑅𝑛
𝑘𝑙
= [ 𝑘−12𝑛 , 

𝑘
2𝑛 ] × [ 𝑙−12𝑛 , 

𝑙
2𝑛 ] for all 𝑘, 𝑙 ∈ [2𝑛] and 𝑥+ = max{𝑥, 0} for all 𝑥 ∈ ℝ. Let 𝑛 ≥ 1 and 𝑘 ∈ [2𝑛]. The continuity of 𝑄𝑁

implies

𝑉𝑄𝑁 (𝑅
𝑛
𝑘𝑙)

+ = 𝜇𝑁 (𝑅𝑛𝑘𝑙)
+ = 𝜇𝑁

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × ( 𝑙−12𝑛 ,

𝑙
2𝑛 )

)+
≤ 𝜇+

𝑁

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × ( 𝑙−12𝑛 ,

𝑙
2𝑛 )

)
,

therefore

2𝑛
2𝑛∑
𝑙=1
𝑉𝑄𝑁 (𝑅

𝑛
𝑘𝑙)

+ ≤ 2𝑛
2𝑛∑
𝑙=1
𝜇+
𝑁

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × ( 𝑙−12𝑛 ,

𝑙
2𝑛 )

)
≤ 2𝑛𝜇+

𝑁

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × 𝕀

)
. (22)

Equation 𝜆𝐸 × 𝜑𝐸 = 𝜆𝐸 × 𝜑+
𝐸
− 𝜆𝐸 × 𝜑−

𝐸
implies (𝜆𝐸 × 𝜑𝐸 )+ ≤ 𝜆𝐸 × 𝜑+

𝐸
for all 𝐸 ∈ (𝕀). Similarly, (𝜓𝐸 × 𝜆𝐸 )+ ≤ 𝜓+

𝐸
× 𝜆𝐸 for all 

𝐸 ∈(𝕀). Hence, by equations (13) and (14),

𝜇+
𝑁
≤ 𝜇+

𝑁
+ 𝜇+𝑁 ≤

∞∑
𝑖=0
𝜆(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 ) ×𝜑

+
(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )

+
∞∑
𝑗=0
𝜓+
(𝑐𝑁𝑗 ,𝑑

𝑁
𝑗 )

× 𝜆(𝑐𝑁𝑗 ,𝑑𝑁𝑗 )

+
∞∑
𝑖=0

∞∑
𝑗=0
𝜇+
𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
⋅ 𝜆(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 ) × 𝜆(𝑐𝑁𝑗 ,𝑑𝑁𝑗 )

+ 𝜇+𝑁,

where we also used 𝜇𝑄
(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)+
≤ 𝜇+

𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
. This implies

𝜇+
𝑁

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × 𝕀

)
≤

∞∑
𝑖=0
𝜆(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )((

𝑘−1
2𝑛 ,

𝑘
2𝑛 )) ⋅𝜑

+
(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )
(𝕀) +

∞∑
𝑗=0
𝜓+
(𝑐𝑁𝑗 ,𝑑

𝑁
𝑗 )

(( 𝑘−12𝑛 ,
𝑘
2𝑛 )) ⋅ 𝜆(𝑐𝑁𝑗 ,𝑑𝑁𝑗 )(𝕀)

+
∞∑
𝑖=0

∞∑
𝑗=0
𝜇+
𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
⋅ 𝜆(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )((

𝑘−1
2𝑛 ,

𝑘
2𝑛 )) ⋅ 𝜆(𝑐𝑁𝑗 ,𝑑𝑁𝑗 )(𝕀)

+ 𝜇+𝑁
(
( 𝑘−12𝑛 ,

𝑘
2𝑛
)
× 𝕀).

From equations (12) and (14) we infer

𝜑+
(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )
(𝕀) ≤ 𝜇+

𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) ×𝐿

′
𝑁

)
,

𝜓+
(𝑐𝑁𝑗 ,𝑑

𝑁
𝑗 )

(( 𝑘−12𝑛 ,
𝑘
2𝑛 )) ≤ 𝜇

+
𝑄

((
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩𝐾

′
𝑁

)
× (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
,

𝜇+𝑁
(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × 𝕀

)
≤ 𝜇+

𝑄

((
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × 𝕀

)
∩ (𝐾 ′

𝑁 ×𝐿′
𝑁 )

)
= 𝜇+

𝑄

((
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩𝐾

′
𝑁

)
×𝐿′

𝑁

)
,

13

therefore
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𝜇+
𝑁

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × 𝕀

)
≤

∞∑
𝑖=0
𝜆(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )
(
( 𝑘−12𝑛 ,

𝑘
2𝑛 )

)
⋅ 𝜇+
𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) ×𝐿

′
𝑁

)
+

∞∑
𝑗=0
𝜇+
𝑄

((
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩𝐾

′
𝑁

)
× (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
+

∞∑
𝑖=0
𝜆(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )
(
( 𝑘−12𝑛 ,

𝑘
2𝑛 )

) ∞∑
𝑗=0
𝜇+
𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × (𝑐𝑁𝑗 , 𝑑

𝑁
𝑗 )

)
+ 𝜇+

𝑄

((
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩𝐾

′
𝑁

)
×𝐿′

𝑁

)
=

∞∑
𝑖=0
𝜆(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )
(
( 𝑘−12𝑛 ,

𝑘
2𝑛 )

)
⋅ 𝜇+
𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) ×𝐿

′
𝑁

)
+ 𝜇+

𝑄

((
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩𝐾

′
𝑁

)
×𝐿𝑁

)
+

∞∑
𝑖=0
𝜆(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )
(
( 𝑘−12𝑛 ,

𝑘
2𝑛 )

)
⋅ 𝜇+
𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) ×𝐿𝑁

)
+ 𝜇+

𝑄

((
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩𝐾

′
𝑁

)
×𝐿′

𝑁

)
=

∞∑
𝑖=0
𝜆(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )
(
( 𝑘−12𝑛 ,

𝑘
2𝑛 )

)
⋅ 𝜇+
𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × 𝕀

)
+ 𝜇+

𝑄

((
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩𝐾

′
𝑁

)
× 𝕀

)
=

∞∑
𝑖=0

𝜆
(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩ (𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 )

)
𝜆((𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ))

⋅ 𝜇+
𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × 𝕀

)
+ 𝜇+

𝑄

((
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩𝐾

′
𝑁

)
× 𝕀

)
.

(23)

We now consider two cases.
Case 1: ( 𝑘−12𝑛 , 

𝑘
2𝑛 ) ⊆ 𝐾𝑁 . Note that 2𝑘−12𝑛+1 ∈ ( 𝑘−12𝑛 , 

𝑘
2𝑛 ) but 2𝑘−12𝑛+1 ∉

⋃∞
𝑚=𝑛+1𝐾𝑚,𝑁 because 𝑚,𝑁 ⊆ 𝑚. Hence, 2𝑘−12𝑛+1 ∈

⋃𝑛
𝑚=0𝐾𝑚,𝑁 by 

equation (6). This implies that there exists 𝑚 with 0 ≤ 𝑚 ≤ 𝑛 and 𝐴 ∈𝑚,𝑁 such that ( 𝑘−12𝑛 , 
𝑘
2𝑛 ) intersects 𝐴. But then ( 𝑘−12𝑛 , 

𝑘
2𝑛 ) ⊆ 𝐴

because 𝐴 ∈ 𝑚 and 𝑚 ≤ 𝑛. By equation (11) we may assume without loss of generality that 𝐴 = (𝑎𝑁0 , 𝑏
𝑁
0 ). Hence, ( 𝑘−12𝑛 , 

𝑘
2𝑛 ) does not 

intersect any (𝑎𝑁𝑖 , 𝑏
𝑁
𝑖 ) with 𝑖 ≥ 1. It now follows from inequality (23) and from ( 𝑘−12𝑛 , 

𝑘
2𝑛 ) ∩𝐾

′
𝑁
= ∅ that

𝜇+
𝑁

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × 𝕀

)
≤
𝜆(( 𝑘−12𝑛 ,

𝑘
2𝑛 ))

𝜆((𝑎𝑁0 , 𝑏
𝑁
0 ))

⋅ 𝜇+
𝑄

(
(𝑎𝑁0 , 𝑏

𝑁
0 ) × 𝕀

)
,

or equivalently

2𝑛𝜇+
𝑁

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × 𝕀

)
≤
𝜇+
𝑄
(𝐴 × 𝕀)

𝜆(𝐴)
.

Since 𝐴 ∈ 𝑚,𝑁 with 𝑚 ≤ 𝑛 and the set 𝐾𝑚,𝑁 is disjoint from 
⋃𝑚−1
𝑙=0 𝐾𝑙,𝑁 , Lemma 4 and equation (2) imply that 𝐴 ∉ 𝑚,𝑁 . By 

condition (3) we have 
𝜇+
𝑄
(𝐴×𝕀)
𝜆(𝐴) ≤𝑁 ⋅ 𝜇+

𝑄
(𝕀2), hence

2𝑛𝜇+
𝑁

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × 𝕀

)
≤𝑁 ⋅ 𝜇+

𝑄
(𝕀2). (24)

Case 2: ( 𝑘−12𝑛 , 
𝑘
2𝑛 ) ⊈𝐾𝑁 . Note that each (𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) is a member of 

⋃∞
𝑛=0𝑛. Hence, we have three options for each (𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ), namely, 

(𝑖) the interval ( 𝑘−12𝑛 , 
𝑘
2𝑛 ) does not intersect (𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ), (𝑖𝑖) the interval ( 𝑘−12𝑛 , 

𝑘
2𝑛 ) is contained in (𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ), or (𝑖𝑖𝑖) the interval ( 𝑘−12𝑛 , 

𝑘
2𝑛 )

contains (𝑎𝑁𝑖 , 𝑏
𝑁
𝑖 ). By the case assumption and equation (11), option (𝑖𝑖) cannot happen, so the interval ( 𝑘−12𝑛 , 

𝑘
2𝑛 ) contains all (𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 )

that it intersects. In particular,⋃
(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )⊆( 𝑘−12𝑛 ,

𝑘
2𝑛 )

(𝑎𝑁𝑖 , 𝑏
𝑁
𝑖 ) = ( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩𝐾𝑁.

Thus, inequality (23) implies

𝜇+
𝑁

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × 𝕀

)
≤

∑
(𝑎𝑁𝑖 ,𝑏

𝑁
𝑖 )⊆( 𝑘−12𝑛 ,

𝑘
2𝑛 )

𝜇+
𝑄

(
(𝑎𝑁𝑖 , 𝑏

𝑁
𝑖 ) × 𝕀

)
+ 𝜇+

𝑄

((
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩𝐾

′
𝑁

)
× 𝕀

)
= 𝜇+

𝑄

((
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩𝐾𝑁

)
× 𝕀

)
+ 𝜇+

𝑄

((
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) ∩𝐾

′
𝑁

)
× 𝕀

)
= 𝜇+

𝑄

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × 𝕀

)
.

(25)

Furthermore, ( 𝑘−12𝑛 , 
𝑘
2𝑛 ) ∉ 𝑛,𝑁 , otherwise Lemma 4 and equation (6) would imply that ( 𝑘−12𝑛 , 

𝑘
2𝑛 ) ⊆ 𝐽𝑛,𝑁 ⊆ 𝐾𝑁 . By condition (3) this 

implies

2𝑛𝜇+
𝑄

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × 𝕀

)
=
𝜇+
𝑄

(
( 𝑘−12𝑛 ,

𝑘
2𝑛 ) × 𝕀

)
𝜆
(
( 𝑘−12𝑛 ,

𝑘
2𝑛 )

) ≤𝑁 ⋅ 𝜇+
𝑄
(𝕀2).

This, together with inequality (25), gives( )

14

2𝑛𝜇+
𝑁

( 𝑘−12𝑛 ,
𝑘
2𝑛 ) × 𝕀 ≤𝑁 ⋅ 𝜇+

𝑄
(𝕀2). (26)
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Combining inequalities (24) and (26) with inequality (22) gives

2𝑛
2𝑛∑
𝑙=1
𝑉𝑄𝑁 (𝑅

𝑛
𝑘𝑙)

+ ≤𝑁 ⋅ 𝜇+
𝑄
(𝕀2).

Since 𝑛 and 𝑘 were arbitrary, we infer

sup
𝑛≥1

{
max
𝑘∈[2𝑛]

2𝑛
2𝑛∑
𝑙=1
𝑉𝑄𝑁 (𝑅

𝑛
𝑘𝑙)

+

}
≤𝑁 ⋅ 𝜇+

𝑄
(𝕀2).

By symmetry we also obtain

sup
𝑛≥1

{
max
𝑙∈[2𝑛]

2𝑛
2𝑛∑
𝑘=1
𝑉𝑄𝑁 (𝑅

𝑛
𝑘𝑙)

+

}
≤𝑁 ⋅ 𝜇+

𝑄
(𝕀2).

Consequently, 𝛼𝑄𝑁 ≤𝑁 ⋅ 𝜇+
𝑄
(𝕀2) <∞, as required. □

Let us summarize the results of this section that we will need for the proof of Theorem 1.

Theorem 16. Let 𝑄 be a bivariate quasi-copula that induces a signed measure 𝜇𝑄 on (𝕀2). Then there exists a sequence of bivariate 
quasi-copulas 𝑄𝑁 , 𝑁 ≥ 1, such that

(𝑖) 𝑄𝑁 = 𝛼𝑁𝐴𝑁 + 𝛽𝑁𝐵𝑁 for some bivariate copulas 𝐴𝑁 and 𝐵𝑁 and some real numbers 𝛼𝑁 and 𝛽𝑁 , and

(𝑖𝑖) the sequence of induced measures 𝜇𝑁 = 𝛼𝑁𝜇𝐴𝑁 + 𝛽𝑁𝜇𝐵𝑁 converges to 𝜇𝑄 in the total variation norm.

It was shown in [7, Corollary 9 and Theorem 10] that the set of quasi-copulas which are linear combinations of two copulas 
is dense in the set of all quasi-copulas equipped with the topology induced by the supremum norm. As a direct consequence of 
Theorem 16 we obtain the following variant for the topology induced by the total variation norm of signed measures.

Corollary 17. The set of quasi-copulas which are linear combinations of two copulas is dense in the set of all measure-inducing quasi-copulas 
equipped with the total variation norm of the corresponding signed measures.

4. Proof of the main theorem

In this section we continue assuming that 𝑄 is a bivariate quasi-copula that induces a signed measure 𝜇𝑄 . By Theorem 16 we 
obtain a sequence of measures 𝜇𝑁 , induced by quasi-copulas 𝑄𝑁 , that converges to 𝜇𝑄 in the total variation norm. We will now 
convert the sequence of measures 𝜇𝑁 into a series, which will be manipulated to produce a converging series of multiples of measures 
induced by copulas. We will employ a method that was used in [7] for converting a sequence of quasi-copulas into a function series 
converging in the supremum norm. We just need to apply the method to a sequence of measures converging in the total variation 
norm.

First we construct the series

𝜇𝑄 = 𝜇1 +
∞∑
𝑁=2

(𝜇𝑁 − 𝜇𝑁−1). (27)

Partial sums of this series are measures 𝜇𝑁 , so by Theorem 16 the series converges in the total variation norm and its sum is 𝜇𝑄. 
Theorem 16 also implies that 𝑄𝑁 = 𝛼𝑁𝐴𝑁 + 𝛽𝑁𝐵𝑁 for some bivariate copulas 𝐴𝑁 and 𝐵𝑁 and some real numbers 𝛼𝑁 and 𝛽𝑁 . Note 
that 𝛼𝑁 + 𝛽𝑁 = 𝑄𝑁 (1, 1) = 1. If both 𝛼𝑁 and 𝛽𝑁 are positive, 𝑄𝑁 is a convex combination of copulas, so it is a copula itself and 
we may assume 𝛼𝑁 = 1, 𝛽𝑁 = 0, and 𝐴𝑁 =𝑄𝑁 . If at least one of 𝛼𝑁 and 𝛽𝑁 is negative, we may assume 𝛽𝑁 < 0, and consequently 
𝛼𝑁 > 1. So we have 𝛼𝑁 ≥ 1 and 𝛽𝑁 ≤ 0 for all 𝑁 ≥ 1. Furthermore,

𝜇𝑁 − 𝜇𝑁−1 = 𝛼𝑁𝜇𝐴𝑁 + 𝛽𝑁𝜇𝐵𝑁 − 𝛼𝑁−1𝜇𝐴𝑁−1
− 𝛽𝑁−1𝜇𝐵𝑁−1

= (𝛼𝑁 − 𝛽𝑁−1) ⋅
𝛼𝑁𝜇𝐴𝑁 − 𝛽𝑁−1𝜇𝐵𝑁−1

𝛼𝑁 − 𝛽𝑁−1
− (𝛼𝑁−1 − 𝛽𝑁 ) ⋅

𝛼𝑁−1𝜇𝐴𝑁−1
− 𝛽𝑁𝜇𝐵𝑁

𝛼𝑁−1 − 𝛽𝑁
for all 𝑁 ≥ 2, where 𝛼𝑁 − 𝛽𝑁−1 ≥ 1 and 𝛼𝑁−1 − 𝛽𝑁 ≥ 1. Since 𝛼𝑁 ≥ 1 and 𝛽𝑁 ≤ 0 for all 𝑁 ≥ 1, the functions

𝐷𝑁 =
𝛼𝑁𝐴𝑁 − 𝛽𝑁−1𝐵𝑁−1

𝛼𝑁 − 𝛽𝑁−1
and 𝐸𝑁 =

𝛼𝑁−1𝐴𝑁−1 − 𝛽𝑁𝐵𝑁
𝛼𝑁−1 − 𝛽𝑁

(28)

for all 𝑁 ≥ 2 are convex combinations of copulas, so they are copulas themselves. For all 𝑁 ≥ 2 denote also
15

𝜁𝑁 = 𝛼𝑁 − 𝛽𝑁−1 ≥ 1 and 𝜉𝑁 = −(𝛼𝑁−1 − 𝛽𝑁 ) ≤ −1, (29)
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so that

𝜇𝑁+1 − 𝜇𝑁 = 𝜁𝑁𝜇𝐷𝑁 + 𝜉𝑁𝜇𝐸𝑁 .

In addition, let

𝐷1 =𝐴1, 𝐸1 =𝐵1, 𝜁1 = 𝛼1, and 𝜉1 = 𝛽1. (30)

Then the series in equation (27) is expressed as

𝜇𝑄 =
∞∑
𝑁=1

(𝜁𝑁𝜇𝐷𝑁 + 𝜉𝑁𝜇𝐸𝑁 ). (31)

If we omit the parenthesis in series (31), the resulting series

𝜁1𝜇𝐷1
+ 𝜉1𝜇𝐸1

+ 𝜁2𝜇𝐷2
+ 𝜉2𝜇𝐸2

+ 𝜁3𝜇𝐷3
+ 𝜉3𝜇𝐸3

+…

is not convergent in the total variation norm. For example, evaluating it on the set 𝕀2 we obtain the series 𝜁1 +𝜉1 +𝜁2 +𝜉2 +𝜁3 +𝜉3 +…, 
which is divergent, in fact, oscillating, since 𝜁𝑁 ≥ 1 and 𝜉𝑁 ≤ −1. Before we omit the parenthesis in series (31), we need to split its 
terms into sums of terms with small enough norm, so that after omitting the parenthesis the “oscillation” will tend to 0. For every 
𝑁 ≥ 1 we choose a positive integer 𝑀𝑁 > |𝜉𝑁 |. We rewrite the series in equation (31) as

𝜇𝑄 =
∞∑
𝑁=1

𝑁𝑀𝑁∑
𝑖=1

( 𝜁𝑁
𝑁𝑀𝑁

𝜇𝐷𝑁 + 𝜉𝑁
𝑁𝑀𝑁

𝜇𝐸𝑁
)

(32)

and remove the parenthesis to obtain the series

𝜁1
1𝑀1

𝜇𝐷1
+ 𝜉1

1𝑀1
𝜇𝐸1

+ 𝜁1
1𝑀1

𝜇𝐷1
+ 𝜉1

1𝑀1
𝜇𝐸1

+…+ 𝜁1
1𝑀1

𝜇𝐷1
+ 𝜉1

1𝑀1
𝜇𝐸1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2𝑀1 terms

+ 𝜁2
2𝑀2

𝜇𝐷2
+ 𝜉2

2𝑀2
𝜇𝐸2

+ 𝜁2
2𝑀2

𝜇𝐷2
+ 𝜉2

2𝑀2
𝜇𝐸2

+…+ 𝜁2
2𝑀2

𝜇𝐷2
+ 𝜉2

2𝑀2
𝜇𝐸2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
4𝑀2 terms

+ 𝜁3
3𝑀3

𝜇𝐷3
+ 𝜉3

3𝑀3
𝜇𝐸3

+ 𝜁3
3𝑀3

𝜇𝐷3
+ 𝜉3

3𝑀3
𝜇𝐸3

+…+ 𝜁3
3𝑀3

𝜇𝐷3
+ 𝜉3

3𝑀3
𝜇𝐸3

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
6𝑀3 terms

+…

(33)

We now prove the following.

Lemma 18. The series of finite signed measures (33) converges to 𝜇𝑄 in the total variation norm.

Proof. The difference between 𝜇𝑄 and any partial sum of series (33), is of the form

Δ= 𝛿 𝜉𝑚
𝑚𝑀𝑚

𝜇𝐸𝑚 +
𝑚𝑀𝑚∑
𝑖=𝑘+1

( 𝜁𝑚
𝑚𝑀𝑚

𝜇𝐷𝑚 + 𝜉𝑚
𝑚𝑀𝑚

𝜇𝐸𝑚
)
+

∞∑
𝑁=𝑚+1

𝑁𝑀𝑁∑
𝑖=1

( 𝜁𝑁
𝑁𝑀𝑁

𝜇𝐷𝑁 + 𝜉𝑁
𝑁𝑀𝑁

𝜇𝐸𝑁
)

= 𝛿 𝜉𝑚
𝑚𝑀𝑚

𝜇𝐸𝑚 + 𝑚𝑀𝑚−𝑘
𝑚𝑀𝑚

(𝜁𝑚𝜇𝐷𝑚 + 𝜉𝑚𝜇𝐸𝑚 ) +
∞∑

𝑁=𝑚+1
(𝜁𝑁𝜇𝐷𝑁 + 𝜉𝑁𝜇𝐸𝑁 )

for some 𝑚 ≥ 1, 𝑘 ∈ [𝑚𝑀𝑚], and 𝛿 ∈ {0, 1}. We can estimate its total variation norm as follows

‖Δ‖𝑇𝑉 ≤ 𝛿 |𝜉𝑚|
𝑚𝑀𝑚

⋅ ‖‖‖𝜇𝐸𝑚‖‖‖𝑇𝑉 + 𝑚𝑀𝑚−𝑘
𝑚𝑀𝑚

⋅ ‖‖‖𝜁𝑚𝜇𝐷𝑚 + 𝜉𝑚𝜇𝐸𝑚
‖‖‖𝑇𝑉 + ‖‖‖ ∞∑

𝑁=𝑚+1
(𝜁𝑁𝜇𝐷𝑁 + 𝜉𝑁𝜇𝐸𝑁 )

‖‖‖𝑇𝑉 .
Using 𝑀𝑚 > |𝜉𝑚| and the fact that 𝜇𝐸𝑚 is a probability measure, we obtain

‖Δ‖𝑇𝑉 ≤ 𝛿
𝑚
+ ‖‖‖𝜁𝑚𝜇𝐷𝑚 + 𝜉𝑚𝜇𝐸𝑚

‖‖‖𝑇𝑉 + ‖‖‖ ∞∑
𝑁=𝑚+1

(𝜁𝑁𝜇𝐷𝑁 + 𝜉𝑁𝜇𝐸𝑁 )
‖‖‖𝑇𝑉 .

When 𝑚 tends to infinity, the first term converges to 0, the second term converges to 0 because it is the norm of a single term of a 
converging series (31), and the last term converges to 0 because it is the norm of the tail of a converging series (31). This proves that 
16

the partial sums of series (33) converge to 𝜇𝑄 in the total variation norm. □
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We are now finally ready to prove Theorem 1.

Proof of Theorem 1.

(𝑖) ⟹ (𝑖𝑖): Assume that a quasi-copula 𝑄 induces a signed measure 𝜇𝑄 on (𝕀2). Let 𝐶1, 𝐶2, 𝐶3, … be the sequence of copulas

𝐷1,𝐸1,𝐷1,… ,𝐷1,𝐸1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2𝑀1 terms

,𝐷2,𝐸2,𝐷2,… ,𝐷2,𝐸2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

4𝑀2 terms

,𝐷3,𝐸3,𝐷3,… ,𝐷3,𝐸3
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

6𝑀3 terms

,…

defined in equations (28) and (30), and let 𝛾1, 𝛾2, 𝛾3, … be the sequence of real numbers

𝜁1
1𝑀1

,
𝜉1

1𝑀1
,
𝜁1

1𝑀1
,… ,

𝜁1
1𝑀1

,
𝜉1

1𝑀1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2𝑀1 terms

,
𝜁2

2𝑀2
,
𝜉2

2𝑀2
,
𝜁2

2𝑀2
,… ,

𝜁2
2𝑀2

,
𝜉2

2𝑀2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

4𝑀2 terms

,
𝜁3

3𝑀3
,
𝜉3

3𝑀3
,
𝜁3

3𝑀3
,… ,

𝜁3
3𝑀3

,
𝜉3

3𝑀3
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

6𝑀3 terms

,…

defined in equations (29) and (30). By Lemma 18 the series 
∑∞
𝑛=1 𝛾𝑛𝜇𝐶𝑛 converges in the total variation norm to 𝜇𝑄 , which proves 

condition (𝑏). For all 𝑘 ≥ 1 and (𝑥, 𝑦) ∈ 𝕀2 we have

|||𝑄(𝑥, 𝑦) − 𝑘∑
𝑛=1
𝛾𝑛𝐶𝑛(𝑥, 𝑦)

||| = |||(𝜇𝑄 −
𝑘∑
𝑛=1
𝛾𝑛𝜇𝐶𝑛

)(
[0, 𝑥] × [0, 𝑦]

)||| ≤ |||𝜇𝑄 −
𝑘∑
𝑛=1
𝛾𝑛𝜇𝐶𝑛

|||([0, 𝑥] × [0, 𝑦]
)

≤ |||𝜇𝑄 −
𝑘∑
𝑛=1
𝛾𝑛𝜇𝐶𝑛

|||(𝕀2) = ‖‖‖𝜇𝑄 −
𝑘∑
𝑛=1
𝛾𝑛𝜇𝐶𝑛

‖‖‖𝑇𝑉 ,
Hence, the convergence of the series 

∑∞
𝑛=1 𝛾𝑛𝜇𝐶𝑛 in the total variation norm implies that the series 

∑∞
𝑛=1 𝛾𝑛𝐶𝑛 converges uniformly 

to 𝑄. This proves condition (𝑎).
(𝑖𝑖) ⟹ (𝑖): By condition (𝑏) the sum of the series 

∑∞
𝑛=1 𝛾𝑛𝜇𝐶𝑛 is a finite signed measure on (𝕀2). Denote this measure by 𝜇. As 

above, this implies that the series 
∑∞
𝑛=1 𝛾𝑛𝐶𝑛 converges uniformly to the function (𝑥, 𝑦) ↦ 𝜇

(
[0, 𝑥] × [0, 𝑦]

)
. On the other hand, this 

series converges to 𝑄 by condition (𝑎). Hence, 𝑄(𝑥, 𝑦) = 𝜇
(
[0, 𝑥] × [0, 𝑦]

)
for all (𝑥, 𝑦) ∈ 𝕀2. □

We note that if condition (𝑖) of Theorem 1 holds, then the series in condition (𝑖𝑖)(𝑏) converges to 𝜇𝑄. This implies that a measure 
induced by a bivariate quasi-copula can always be expressed as a converging sum of multiples of measures induced by bivariate 
copulas, i.e., as what we can call an infinite linear combination of measures induced by copulas.

Corollary 19. Any measure 𝜇 induced by some measure-inducing bivariate quasi-copula can be expressed as 𝜇 =
∑∞
𝑛=1 𝛾𝑛𝜇𝑛, where each 𝜇𝑛

is a measure induced by some bivariate copula, each 𝛾𝑛 is a real number, and the series converges in the total variation norm.

Clearly, the sequences 𝛾𝑛 and 𝜇𝑛 in the above representation are not unique, since we can easily interchange or even combine a 
few neighboring terms of the series to obtain a different series. If 

∑∞
𝑛=1 |𝛾𝑛| <∞ (note that ‖𝜇𝑛‖𝑇𝑉 = 1 for all 𝑛), then we can actually 

collect together all the positive and negative terms of the series and express 𝜇 as 𝜇 = 𝛼𝜇𝐴 − 𝛽𝜇𝐵 , where

𝛼 =
∑
𝛾𝑛>0

|𝛾𝑛|, 𝜇𝐴 = 1
𝛼

∑
𝛾𝑛>0

|𝛾𝑛|𝜇𝑛, 𝛽 =
∑
𝛾𝑛<0

|𝛾𝑛|, 𝜇𝐵 = 1
𝛽

∑
𝛾𝑛<0

|𝛾𝑛|𝜇𝑛.
The measures 𝜇𝐴 and 𝜇𝐵 are induced by copulas since they are (infinite) convex combinations of measures induced by copulas. So if 
the series 

∑∞
𝑛=1 𝛾𝑛 is absolutely convergent (which includes the case when the series is finite, i.e. 𝛾𝑛 = 0 for all 𝑛 large enough), then 

the quasi-copula that induces 𝜇 is a linear combination of two copulas. If 𝜇 is not induced by a linear combination of two copulas, 
then 

∑∞
𝑛=1 𝛾𝑛 must be conditionally convergent.

As another corollary to Theorem 1 we obtain the following interesting property.

Theorem 20. Let 𝑄 be a bivariate quasi-copula that induces a signed measure 𝜇𝑄 on (𝕀2). Then

𝐻(𝑥, 𝑦) =
|𝜇𝑄|([0, 𝑥] × [0, 𝑦]

)
|𝜇𝑄|(𝕀2) (34)

is a joint distribution function of two absolutely continuous random variables 𝑋 and 𝑌 with ranges in 𝕀2.

Proof. Let 𝐶𝑛 and 𝛾𝑛 be the sequences from Theorem 1, so that 𝜇𝑄 =
∑∞
𝑛=1 𝛾𝑛𝜇𝐶𝑛 . Function 𝐻 is clearly a distribution function of 

two random variables 𝑋 and 𝑌 with support in 𝕀. The cumulative distribution of 𝑋 is given by

|𝜇𝑄|([0, 𝑥] × 𝕀
)

17

𝐹𝑋 (𝑥) = |𝜇𝑄|(𝕀2) .
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Let 𝜇𝐹𝑋 be the positive measure induced by 𝐹𝑋 , i.e., 𝜇𝐹𝑋 (𝐴) =
|𝜇𝑄|(𝐴×𝕀)|𝜇𝑄|(𝕀2) for all 𝐴 ∈(𝕀). Suppose 𝐴 ∈(𝕀) satisfies 𝜆(𝐴) = 0. Let 𝑃+

and 𝑃− be the supports of measures 𝜇+
𝑄

and 𝜇−
𝑄

, respectively. Then

𝜇𝐹𝑋 (𝐴) =
|𝜇𝑄|(𝐴 × 𝕀)|𝜇𝑄|(𝕀2) =

𝜇𝑄
(
(𝐴 × 𝕀) ∩ 𝑃+)− 𝜇𝑄((𝐴 × 𝕀) ∩ 𝑃−)

|𝜇𝑄|(𝕀2)
= 1|𝜇𝑄|(𝕀2)

( ∞∑
𝑛=1
𝛾𝑛𝜇𝐶𝑛

(
(𝐴 × 𝕀) ∩ 𝑃+)− ∞∑

𝑛=1
𝛾𝑛𝜇𝐶𝑛

(
(𝐴 × 𝕀) ∩ 𝑃−)).

Since 𝜇𝐶𝑛 is a positive measure, 𝜇𝐶𝑛
(
(𝐴 × 𝕀) ∩ 𝑃+) ≤ 𝜇𝐶𝑛 (𝐴 × 𝕀) = 𝜆(𝐴) = 0 and similarly 𝜇𝐶𝑛

(
(𝐴 × 𝕀) ∩ 𝑃−) = 0 for all 𝑛 ≥ 1. Hence, 

𝜇𝐹𝑋 (𝐴) = 0. This shows that measure 𝜇𝐹𝑋 is absolutely continuous with respect to Lebesgue measure. By Radon-Nikodym theorem 
there exists a (𝕀)-measurable function 𝑓𝑋 such that 𝐹𝑋 (𝑥) = 𝜇𝐹𝑋 ([0, 𝑥]) = ∫[0,𝑥] 𝑓𝑋𝑑𝜆. Therefore, 𝑋 is absolutely continuous random 
variable with density 𝑓𝑋 . Similarly, 𝑌 is also absolutely continuous. □

Remark 21. Theorem 20 essentially states that the signed measures 𝜇1(𝐴) = |𝜇𝑄|(𝐴 × 𝕀) and 𝜇2(𝐴) = |𝜇𝑄|(𝕀 × 𝐴) are absolutely 
continuous with respect to the Lebesgue measure on 𝕀. The conclusion of Theorem 20 holds also if we replace measure |𝜇𝑄| in 
formula (34) by either 𝜇+

𝑄
or 𝜇−

𝑄
.

5. Example

We conclude this paper with an example illustrating Theorem 1 and Corollary 19. In [7, Example 13] the authors construct an 
example of a quasi-copula 𝑄, that induces a finite signed measure, but cannot be written as a linear combination of two copulas. This 
implies that its induced measure 𝜇𝑄 cannot be written as a linear combination of two measures induced by copulas. On the other 
hand, by Corollary 19, measure 𝜇𝑄 can be expressed as an infinite linear combination of measures induced by copulas. We now find 
such a representation of 𝜇𝑄.

First, we briefly recall the definition of quasi-copula 𝑄, for some additional details see [7, Example 13]. For a positive integer 𝑛 let 
𝑄𝑛 be a discrete quasi-copula defined on an equidistant mesh {0, 1

2𝑛+1 , 
2

2𝑛+1 , … , 1}2 ⊆ 𝕀2, which has mass distributed in a checkerboard 
pattern (of positive and negative values) within the central diamond-shaped area (with no mass outside this area), so that there are 
exactly (𝑛 + 1)2 squares with positive mass 1

2𝑛+1 and 𝑛2 squares with negative mass − 1
2𝑛+1 . For example, the spread of mass of 𝑄3 is 

given by the matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
7 0 0 0

0 0 1
7 − 1

7
1
7 0 0

0 1
7 − 1

7
1
7 − 1

7
1
7 0

1
7 − 1

7
1
7 − 1

7
1
7 − 1

7
1
7

0 1
7 − 1

7
1
7 − 1

7
1
7 0

0 0 1
7 − 1

7
1
7 0 0

0 0 0 1
7 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If we denote by �̂�𝑛 the bilinear extension of 𝑄𝑛 to 𝕀2, then quasi-copula 𝑄 is defined as an ordinal sum of quasi-copulas {�̂�𝑛}∞𝑛=1, 
with respect to the partition  = {𝐽𝑛}∞𝑛=1, where 𝐽𝑛 = [𝑎𝑛−1, 𝑎𝑛] and 𝑎𝑛 =

1
2 +

1
4 +… + 1

2𝑛 = 1 − 1
2𝑛 . Since the length of 𝐽𝑛 is 1

2𝑛 , the 
summand �̂�𝑛 contributes a total mass of 1

2𝑛 to the mass of 𝑄.

Denote the product copula by Π. Note that for every positive integer 𝑛 the function 𝐶𝑛 =
1
2𝑛 ((2𝑛 + 1)Π − �̂�𝑛) is clearly grounded 

and has uniform marginals. In fact, it is a copula since its mass is nowhere negative and its total mass is equal to 1. We can express

�̂�𝑛 = (2𝑛+ 1)Π − 2𝑛𝐶𝑛 =Π+ 2𝑛(Π −𝐶𝑛). (35)

For a positive integer 𝑛 denote by 𝐶𝑛 the ordinal sum with respect to partition  , where the 𝑛-th summand is 𝐶𝑛 and all other 
summands are Π. In addition, denote by 𝑃 the ordinal sum with respect to partition  , where all the summands are Π.

We claim that

𝜇𝑄 = 𝜇𝑃 + 2(𝜇𝑃 − 𝜇𝐶1 ) + 4(𝜇𝑃 − 𝜇𝐶2 ) + 6(𝜇𝑃 − 𝜇𝐶3 ) +…+ 2𝑛(𝜇𝑃 − 𝜇𝐶𝑛 ) +… (36)

Indeed, the series on the right converges in the total variation norm because the support of measure 2𝑛(𝜇𝑃 − 𝜇𝐶𝑛 ) is contained in 
𝐽𝑛 × 𝐽𝑛, so by equation (35)

‖2𝑛(𝜇𝑃 − 𝜇𝐶𝑛 )‖𝑇𝑉 = 1
2𝑛 ‖𝜇�̂�𝑛 − 𝜇Π‖𝑇𝑉 = 1

2𝑛 ⋅ 2 ⋅ (𝜇�̂�𝑛 − 𝜇Π)
+(𝕀2) = 1

2𝑛 ⋅ 2 ⋅ (𝑛+ 1)2 ⋅
( 1
2𝑛+1 −

1
(2𝑛+1)2

)
= 4𝑛(𝑛+1)2

2𝑛(2𝑛+1)2 ,

and the series 
∑∞
𝑛=1

4𝑛(𝑛+1)2
2𝑛(2𝑛+1)2 is convergent with sum ≈ 2.842. In addition, on each 𝐽𝑛 × 𝐽𝑛 the sum of the series in (36) coincides 

with 𝜇𝑄 by equation (35), because only the two terms 𝜇𝑃 and 2𝑛(𝜇𝑃 −𝜇𝐶𝑛 ) are nonzero there. This implies that the sum of the series 
18

in (36) is indeed equal to 𝜇𝑄.
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Using the trick from the proof of Lemma 18, we obtain from equation (36) the converging sum expression for 𝜇𝑄, namely

𝜇𝑄 = 𝜇𝑃 + 𝜇𝑃 − 𝜇𝐶1 + 𝜇𝑃 − 𝜇𝐶1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

4 terms

+ 1
2𝜇𝑃 − 1

2𝜇𝐶2 +
1
2𝜇𝑃 − 1

2𝜇𝐶2 +…+ 1
2𝜇𝑃 − 1

2𝜇𝐶2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

16 terms

+ 1
3𝜇𝑃 − 1

3𝜇𝐶3 +
1
3𝜇𝑃 − 1

3𝜇𝐶3 +…+ 1
3𝜇𝑃 − 1

3𝜇𝐶3
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

36 terms

+…

+ 1
𝑛
𝜇𝑃 − 1

𝑛
𝜇𝐶𝑛 +

1
𝑛
𝜇𝑃 − 1

𝑛
𝜇𝐶𝑛 +…+ 1

𝑛
𝜇𝑃 − 1

𝑛
𝜇𝐶𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
4𝑛2 terms

+…

Of course, this representation is not unique.
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