
This is the Author-Accepted Version of the paper:

Carolin Benjamins, Gjorgjina Cenikj, Ana Nikolikj, Aditya Mohan, Tome Eftimov, and Marius Lindauer. 

2024. Instance Selection for Dynamic Algorithm Configuration with Reinforcement Learning: Improving 

Generalization. In Proceedings of the Genetic and Evolutionary Computation Conference Companion 

(GECCO '24 Companion). Association for Computing Machinery, New York, NY, USA, 563–566. 

https://doi.org/10.1145/3638530.3654291 

"© Association for Computing Machinery 2024. This is the author's version of the work. It is 

posted here for your personal use. Not for redistribution. The definitive Version of Record was 

published in GECCO '24 Companion: Proceedings of the Genetic and Evolutionary Computation 

Conference Companion https://doi.org/10.1145/3638530.3654291."

https://doi.org/10.1145/3638530.3654291
https://doi.org/10.1145/3638530.3654291
https://dl.acm.org/doi/proceedings/10.1145/3638530
https://dl.acm.org/doi/proceedings/10.1145/3638530


Instance Selection for Dynamic Algorithm

Configuration with Reinforcement Learning:

Improving Generalization

Carolin Benjamins
Leibniz University Hannover

Germany
Gjorgjina Cenikj

Jožef Stefan Institute
Slovenia

Ana Nikolikj
Jožef Stefan Institute

Slovenia
Aditya Mohan

Leibniz University Hannover
Germany

Tome Eftimov
Jožef Stefan Institute

Slovenia
Marius Lindauer

Leibniz University Hannover
Germany

September 9, 2024

Abstract

Dynamic Algorithm Configuration (DAC) addresses the challenge of
dynamically setting hyperparameters of an algorithm for a diverse set of
instances rather than focusing solely on individual tasks. Agents trained
with Deep Reinforcement Learning (RL) offer a pathway to solve such
settings. However, the limited generalization performance of these agents
has significantly hindered the application in DAC. Our hypothesis is that
a potential bias in the training instances limits generalization capabilities.
We take a step towards mitigating this by selecting a representative subset
of training instances to overcome overrepresentation and then retraining
the agent on this subset to improve its generalization performance. For
constructing the meta-features for the subset selection, we particularly

1



account for the dynamic nature of the RL agent by computing time series
features on trajectories of actions and rewards generated by the agent’s
interaction with the environment. Through empirical evaluations on the
Sigmoid and CMA-ES benchmarks from the standard benchmark library
for DAC, called DACBench, we discuss the potentials of our selection
technique compared to training on the entire instance set. Our results
highlight the efficacy of instance selection in refining DAC policies for
diverse instance spaces.

Keywords: dynamic algorithm configuration, reinforcement learning, in-
stance selection, generalization

1 Introduction

DAC offers an automated solution to the task of setting algorithm hyperpa-
rameters dynamically, by determining well-performing hyperparameter sched-
ules or policies. One way to learn such policies is through RL biedenkapp-
ecai20a,adriaensen-jair22a. While conceptually appealing, RL algorithms have
the notorious tendency to significantly overfit their training environments [Zhang et al.(2018),
Justesen et al.(2022), Kirk et al.(2023)]. As a consequence, RL methods for
DAC suffer from a lack of generalization to instances not seen during training,
thereby limiting their applicability.

We take a step towards improving the generalization performance of RL
policies on new test instances by subselecting representative training instances
using SELECTOR [Cenikj et al.(2022)]. To capture the dynamic nature of RL,
we use trajectory-based representations generated by the RL algorithm after
training on the full instance set.

Train
Instance

Set

Train
RL

Agent
RL Policy

Eval
RL

Agent

Rollout
Data SELECTOR Subselected

Instances

Train
RL

Agent

More
General
Policy

Figure 1: Our proposed flow of subselecting representative instances with SE-
LECTOR for DAC with RL

Concretely, we make the following contributions: i) For DAC with RL, we
present a principled framework to select representative instances to train on
to improve generalization to the instance space; ii) we propose a new domain-
agnostic approach for generating instance meta-features that encode the dy-
namics of the DAC problem; iii) we demonstrate superior performance training
on the subselected instance set; iv) we analyze the selected instances; and v) we
provide an insight on how to use the framework SELECTOR.

Reproducibility: Code and data is available here: https://github.com/automl/instance-
dac.

2



2 Related Work

Two cornerstones of our work are: using RL to learn policies for DAC; and
improving the performance of RL methods through instance subselection.

Therefore, we split out related work into works concerning each of these
points in the following paragraphs.

DAC and Contextual MDPs. DAC, although originally introduced as a
term by biedenkapp-ecai20a, has existed as a disparate set of ideas in traditional
algorithm configuration [Lagoudakis and Littman(2000), Lagoudakis and Littman(2001),
Pettinger and Everson(2002), Sharma et al.(2019)]. Follow-up work has applied
these methods to learn step-size adaptation in CMA-ES [Shala et al.(2020)] and
learning to select heuristics in the FastDownward planner [Speck et al.(2021)].
eimer-ijcai21a consolidate these approaches into a benchmark suite, called DACbench,
that we use to study our approach. adriaensen-jair22a further provide a thor-
ough empirical comparison between DAC methods along with traditional al-
gorithm configuration methods on DACBench. In this work, we particularly
focus on the subset of methods for DAC that use RL, first formalized by
biedenkapp-ecai20a as a Contextual RL problem [Hallak et al.(2015)], where
the RL agent – the solver – interacts with the environment – the algorithm –
by setting its hyperparameters. Using this framework, different instances can
be modeled as separate MDPs that differ in transition dynamics and rewards,
forming a contextual MDP (cMDP). Learning an optimal policy in cMDPs re-
quires additional contextual information [Benjamins et al.(2023)] that can help
identify, if not characterize, the MDP in which the agent is operating. Ide-
ally, we want sufficiently rich contextual information related to structural prop-
erties of the MDP to help the agent generalize to wider distributions of in-
stances [Kirk et al.(2023), Mohan et al.(2024)]. For MDPs that differ in their
transition dynamics, improving generalization may require information related
to transition dynamics, which cannot be obtained without interacting with
the MDP [Grünewälder et al.(2012), Seo et al.(2020), Guo et al.(2022)]. Conse-
quently, attempts to characterize cMDPs generally focus on learning features by
interacting with the environment instead of hand-crafting them [Han and Wu(2022),
Shi et al.(2022)].

We focus on a similar problem for DAC by first characterizing the cMDP
with which the agent interacts using the trajectories of the agent itself instead
of hand-crafted meta-features. We then use this characterization to generate
an instance subset that improves the generalization capabilities of the solver,
sharing similarities with other methods that exploit structural similarities be-
tween MDPs for similar objectives [Kirk et al.(2023), Benjamins et al.(2023),
Mohan et al.(2024)].

Instances Selection. In ML, the choice of benchmark data instances included
in the analysis significantly influences the experimental design and statistical
analysis of performance data. Evaluating the same set of algorithm instances on

3



different sets of benchmark data may yield varying outcomes [Cenikj et al.(2022)].
Consequently, biased performance analysis, favoring the selection of bench-
mark data instances in support of the winning algorithm, can inadvertently
misleadingly present experimental results, compromising result generalization.
Ng [Ng(2022)] recently emphasized the necessity of transitioning from big data
to good data in industries where extensive datasets are lacking. Good data refers
to representative learning data or datasets with unbiased and diverse charac-
teristics, enhancing the generalization of machine learning models. Previous re-
search in this direction involves representing data instances with meta-features
and employing unsupervised learning techniques or graph algorithms to select
representative learning data. These studies encompass the performance assess-
ment of univariate time-series classification [Eftimov et al.(2022)], evaluating
the performance of black-box single-objective optimization algorithms [Cenikj et al.(2022)],
and training an enhanced regression model for food and biomedical prediction
tasks [Ispirova et al.(2024)]. The majority of research in this area typically fo-
cuses on choosing instances based on meta-features derived from their landscape
characteristics, specifically within the feature space, neglecting the performance
of the algorithms. However, numerous published studies on evolutionary algo-
rithms emphasize that there is no assurance of a correlation between landscape
instance features and performance. In particular, similar landscape features may
result in vastly different algorithm performances [Nikolikj et al.(2023), Long et al.(2023)].
This effect might be enhanced in our case of the dynamic behavior of the RL
agent we would like to capture. Our work focuses on selecting a subset of avail-
able instances using dynamic trajectory-based features in DAC with RL, which
can potentially lower the regret over the optimal policy on the test instance.

3 Preliminaries

In this section, we briefly summarize the concepts that form the basis of our
method. We start with an introduction to fundamental concepts in RL. We
then formally connect the RL problem to DAC using the cMDP framework. We
finally describe the instance selection strategy that we employ in our method.

3.1 RL and MDPs

Deep RL deals with sequential decision-making problems, where an agent in-
teracts with an environment, modeled as an MDP, represented as a tuple M =
⟨S,A, P,R, ρ, T ⟩. At each time step t, an agent observes the state st ∼ S of the
environment and chooses an action at ∼ A using a policy πθ(at | st) – a Deep
Neural Network (DNN) with weights θ – to transition into a new state st+1.
The environment transitions are modeled as a function P : S ×A → S, and for
each transition, the agent receives a reward according to the reward function
R : S ×A×S → R. The MDP is additionally characterized by the initial state
distribution ρ0(s0) : S → R+, and the maximal horizon T .

The agent’s objective is to learn an optimal policy π∗ ∈ Π that maximizes

4



the expected discounted sum of rewards G:

π∗ ∈π∈Π Es0∼ρ

[
G(π, s0)

]
. (1)

Policy gradient methods sutton-nips99a maximize an iterative objective J(θ)
that depends on the gradient ∇θ of the policy weights. In this work, we use the
well-established policy-gradient algorithm PPO [Schulman et al.(2017)] as the
RL agent.

3.2 DAC with RL

Figure 2: In DAC, we configure an algorithm’s hyperparameters dynamically
for a given instance set representing the tasks to solve.

DAC [Biedenkapp et al.(2020)] aims to improve a target algorithm’s perfor-
mance through dynamic control of its hyperparameters λ ∈ Λ. One way to for-
malize the DAC problem is through Contextual MDPs (cMDPs) [Hallak et al.(2015),
Biedenkapp et al.(2020)] extending the MDP presented before: A cMDP is a
tuple MI = ⟨S,A, Pi, Ri, ρ⟩i∈, where is a set of instances. In other words,
a cMDP is a collection of MDPs that differ in their transition dynamics and
reward functions. The state s ∈ S observed by the DAC agent is the informa-
tion about an algorithm , such as the progress. The actions a ∈ A change the
current hyperparameter configuration λ (i.e., Λ = A)1 and the instances are
different tasks that need to be solved. A policy π receives the algorithm’s state
and outputs hyperparameters λ ∈ Λ, maximizing an instance-specific reward
Ri : S × Λ → R. The implicit transition function Pi : S × Λ → S corresponds
to the algorithm behavior.

3.3 Performance Assessment and SELECTOR

A particularly challenging aspect of general algorithm configuration is the se-
lection of appropriate instances to measure performance. To be able to do so,

1Besides directly changing the hyperparameter configurations, RL policies could also learn
to modify the configuration by, e.g., multiplying a factor to the current hyperparameter values.

5



we first need an appropriate characterization mechanism for these instances
involving a set of meta-features.

The SELECTOR methodology [Cenikj et al.(2022)] selects a representative
subset of instances from a large pool of instances with the explicit goal of max-
imizing the representativeness and minimizing the redundancy in the selected
subset. It involves three steps:

[label=()]Compute a meta-representation of each data instance Construct
a similarity graph of the data instances, where the nodes are the in-
stances, and they are connected with an edge if the similarity of their
meta-representations exceeds a predefined threshold. Depending on this
threshold, the number of edges in the graph varies, as does the number
of selected instances. Apply a graph algorithm to select a subset of nodes
that are diverse, representative, and non-redundant. This can be accom-
plished using the Dominating Set (DS) or the Maximal Independent Set
(MIS) [Esfahanian(2013), Byskov(2003)] algorithm. The DS algorithm se-
lects a subset of the instances such that every node that is not selected is
similar to at least one node in the selected subset. On the other hand, the
MIS algorithm selects instances in such a way that it ensures that there
is no pair of nodes in the selected subset that is similar to each other.

4 Method

The goal of our study is to improve the generalization of an RL agent in DAC,
as measured by the performance of a policy on a test set of target instances.
1 shows the outline of our method. Overall, we use SELECTOR to sample
a subset of representative training instances, to which we then allocate more
training resources. We fix the total number of times the RL agent interacts
with the environment before the subselection and after the subselection to be
the same. This means for the same training budget, we train on fewer but more
representative instances after subselection.

To enable this workflow, we start by training an RL agent on the train
instance set . A key element is using meta-features based on the data from
the trajectory generated by the RL agent as it interacts with the algorithm.
We do this by evaluating the trained agent on the train instance set and pro-
ducing rollout trajectories, specifically the actions taken by the agent and the
reward received for each action. This data encodes the agent’s behavior for each
training instance. We feed these meta-feature data for all training instances to
SELECTOR, which subselects instances from the train instance set to form the
reduced, subselected instance set ⊆. Intuitively, these instances capture the
essential aspects of the dynamics observed by the agent during training and
should, therefore, enable better generalization. We finally train the RL agent
again on the subselected instance set to obtain the final policy, which we can
subsequently evaluate on the held-out test set of instances.

6



Meta-Feature Representations SELECTOR requires the representation of
data instances (in our case, episodes from training the RL agent) to be numer-
ical features. In prior work, instance meta-features were obtained via a manual
approach [Bischl et al.(2016)], possibly not always reflecting the agent’s inter-
action with the environment. Our approach, however, uses features from the
data generated by the agent as it interacts, thus capturing the agent’s dynamic
behavior. We explore the following representations:

Raw Representations are the raw actions and rewards observed during
training. These representations are constructed by simply concatenating the
sequence of actions taken by the agent and the corresponding rewards obtained
in each iteration.

Catch22 Representation are time-series features extracted from the raw
actions and rewards observed during training. These features capture a broad
spectrum of time-series characteristics, including the distribution of values in
the time series, linear and nonlinear temporal autocorrelation properties, scal-
ing of fluctuations, and other relevant properties. Another advantage to using
time-series features is the ability to characterize and compare variable-length
episodes. We use the catch22 [Lubba et al.(2019)] library to extract 22 time-
series features from the observed sequences of actions and rewards together with
mean and standard deviation, resulting in 24 features. Note that we could use
any other time-series features.

Both representations (raw and catch22) can also be combined with instance
features describing the problem instance and are not directly related to the
behavior of the RL agent. An example of such features can be the slope and
shift of a sigmoid problem instance.

SELECTOR We execute the SELECTOR methodology using the different
aforementioned representations to represent the instances from the training set.
We use the Dominating Sets (DS; [Esfahanian(2013)]) and Maximal Indepen-
dent Set (MIS; [Byskov(2003)]) algorithms with different similarity thresholds,
specifically, 0.7, 0.8, 0.9, and 0.95.

5 Experiments

For evaluating our method, we rely on the benchmark library DACBench [Eimer et al.(2021)],
which features DAC benchmarks from different AI domains. We first cover the
evaluation protocol, then the DAC benchmarks used, Sigmoid and CMA-ES,
and finally, detail the training of the RL agent.

Evaluation Protocol Our overall objective is to assess the generalization
performance on the test instance set . Therefore, we evaluate the agent trained
on the full, original train instance set and the agent trained on the subselected
set ⊆ once again on the test instance set . For an empirical upper limit to
performance on the test instance set, we additionally train Instance-Specific
Agents (ISAs). Each ISA is an RL agent trained on one instance of the test

7



instance set and evaluated on that specific instance, serving as a reference. This
construction of ISA exploits the notorious property of the RL agents to overfit
their training instance: Each ISA demonstrates the possible reward that an RL
agent can accumulate when trained solely on this instance. In other words, they
serve as an empirical performance upper bound that should be hard to achieve
for a DAC agent being trained across a variety of training instances. In addition,
we also compare to RL agents trained on 5 random subsets of 10% of the train
instance set , which is a similar fraction of instances selected by SELECTOR.

We perform experiments on the Sigmoid benchmark, where a Sigmoid curve
with varying slope and shift should be approximated, and on CMA-ES, where
the step-size σ is adapted. In the following paragraphs, we further explain these
benchmarks.

Sigmoid This benchmark challenges DAC agents to approximate a Sigmoid
function in different dimensions. It is an artificial white-box benchmark that was
proposed to study DAC with full control over the application [Biedenkapp et al.(2020)].
A Sigmoid function is characterized by its shift and slope and has function
values between 0 and 1. Actions are discrete and evenly space the interval
[0, 1]. For example, for an action space of 5 actions, the actions would be
a ∈ {0, 0.25., 0.5, 0.75, 1}. We approximate Sigmoids in two dimensions, with 5
and 10 actions, respectively. The state features consists of the remaining budget,
the shift and slope for each dimension, and the action for each dimension. The
difficulty of the problem can be increased by increasing the dimensionality. The
training and test instance sets comprise 300 instances of two-dimensional Sig-
moids.

CMA-ES CMA-ES (Covariance Matrix Adaption Evolution Strategy) hansen-
eda06a is an evolutionary algorithm for continuous black-box problems which
can be non-linear and non-convex. In DACBench [Eimer et al.(2021)], the step-
size σ ∈ [0, 10] of CMA-ES can be adapted, which is a continuous action space.
Others adapt the step-size via a heuristic [Igel et al.(2007), Hansen(2008)] or
guided policy search [Shala et al.(2020)]. As a state, the RL agent receives the
generation size, the current step-size σ, the remaining optimization budget, as
well as the function and instance ID. The reward is the negative minimum func-
tion value observed so far since CMA-ES is a minimizer and the RL agent is a
maximization algorithm. The train and test instance set comprises ten synthetic
blackbox optimization benchmarking (BBOB) functions [Hansen et al.(2020)] –
Sphere, Ellipsoidal, Rastrigin, Büche-Rastrigin, Linear Slope, Attractive Sector,
Step Ellipsoidal, original and rotated Rosenbrock and Ellipsoidal. All of these
functions are either separable or have low or moderate conditioning, except for
the last one with high conditioning, ∈ R10. The train set features four instances
of each function, and the test set one instance.

Training Details We repeat our training and evaluation pipeline for 10 ran-
dom seeds. Our training details are as follows: We train a PPO [Schulman et al.(2017)]

8



0.44 0.45 0.46 0.47
ISA
full

random
selector

Median

0.44 0.45 0.46 0.47

IQM

0.45 0.46 0.47 0.48

Mean

Performance

Figure 3: Sigmoid Performance

agent for 10 000 environment steps in Sigmoid, equaling 1 000 episodes, with each
episode having a length of 10. For CMA-ES, we train the agent for 1 000 000
steps. However, here, we have variable episode lengths. We evaluate each
trained agent with 10 evaluation episodes per instance. Based on the evaluation
rollout data, we run SELECTOR 5 times and normalize the agent’s perfor-
mance per instance. We then compute bootstrapped mean, median, and IQM
with 5 000 samples using the library rliable [?] for the evaluation performance.
We additionally use fANOVA [Hutter et al.(2014)] with standard settings to an-
alyze the sensitivity of SELECTOR to its own hyperparameters, namely feature
types, the method of selection, the source of features, and the threshold.

Instance representation and selection The chosen benchmark suites en-
compass training RL in distinct environments: one involving discrete actions
(Sigmoid) and the other involving continuous actions (CMA-ES). We employ
different representations to depict the behavior of the RL agent. Based on the
actions (A) and rewards (R) recorded on evaluation rollouts, we either use the
raw (flattened) vectors for fixed-length episodes or the catch22 time-series fea-
tures for variable-length episodes. We can also concatenate action and reward
vectors (RA) and add instance features (I) if applicable.

In both benchmark suites and their respective instance representations, we
employ the SELECTOR method (both MIS and DS with similarity thresholds
∈ {0.7, 0.8, 0.9, 0.95} for creating the graph) to choose subsets of instances for
retraining the RL agent.

5.1 Results and Discussion

On both benchmarks, Sigmoid and CMA-ES, training on subselected instances
from SELECTOR generalizes better to the test instance set than training on the
full instance set, see 3 for Sigmoid and 4 for CMA-ES. First of all, this supports
our hypothesis that training an DAC agent with RL on a well-constructed subset
of instances can be better than simply training on an arbitrary instance set.
Secondly, the extraction of trajectory information is sufficiently informative to
construct this set.

Interestingly, the performance of the ISA for CMA-ES is worse than the
performance of SELECTOR. Initially, our aim was to construct ISA so that

9



0.72 0.75 0.78
ISA
full

random
selector

Median

0.69 0.72 0.75 0.78

IQM

0.66 0.69 0.72 0.75

Mean

Performance

Figure 4: CMA-ES Performance

we get an empirical approximation of a theoretical upper limit; thus our DAC
agent on SELECTOR should not be able to outperform ISA. We hypothesize
that the diversity in trajectories from multiple instances instead of only one
instance allows the optimization process of the RL agent to escape potential
local minima in policy space that the ISA agents get stuck in. This corrobo-
rates the successful methodology of learning the step size with guided policy
search [Shala et al.(2020)], where they guide the optimization and start from a
suitable point in the policy space.

Depending on the benchmark we observe different best performing variants
of SELECTOR. According to the IQM, SELECTOR with (MIS, Catch22, R,
0.7) for Sigmoid and SELECTOR with (DS, Catch22, R or RA, 0.8) for CMA-
ES performed best. So, it is important to study the hyperparameter (HP)
sensitivity of our approach. For Sigmoid the type of representation is important,
using only actions or combinations with reward yields best results. The other
HPs do not have a major impact on Sigmoid. For CMA-ES, the subselection
method on the similarity graph (DS or MIS) is the most important HP. Again,
representations using actions and rewards together works best. A reasonable
robust and general choice would be to use rewards and actions as features sources
combined with DS.

The size of the instance set shows strong variation for the threshold of SE-
LECTOR for Sigmoid, but not so much for CMA-ES, as shown in fig:thresholds.
Peaking closer into Sigmoid, fig:thresholds (right) indicates that instance fea-
tures and trajectory features are not very correlated. A small instance set with
a high threshold induces a dense graph, i.e. instances are pretty similar in
terms of instance features which does not necessarily mean trajectory features
are similar.

In addition, the instances selected by SELECTOR evenly cover the full in-
stance set, capturing the diversity that is most apparent for the second dimen-
sion (6). For CMA-ES, often only one instance of the BBOB functions 7, 8, 9 is
selected. These functions have a more complex local structure compared to the
first functions but still are similar in global structure, rendering them suitable
to represent the instance set.

Limitations and Future Work One limitation of our method is that it re-
quires training the RL agent twice as well as training SELECTOR. We plan to

10



0.7 0.8 0.9 0.95
threshold

0.0

0.5

1.0
fra

ct
io
n

benchmark
Sigmoid
CMA-ES

0.7 0.8 0.9 0.95
threshold

0.0

0.5

1.0

fra
ct
io
n

AI
R
RAI
RI
RA
A
I

Figure 5: (Left) Size of subselected instance set for different SELECTOR thresh-
olds per benchmark. (Right) Size of subselected instance sets for Sigmoid for
different representations.

0 5 10
x

0.00

0.25

0.50

0.75

1.00

y

a0

0 5 10
x

0.00

0.25

0.50

0.75

1.00
y

a1

full
selector

Figure 6: Selected instances by SELECTOR for Sigmoid. A small but diverse
set of instances is selected.

investigate the benefits that can be potentially gained from early-stopping, such
as only training the agent for half of the training budget. Potentially, the bene-
fits of SELECTOR could be attained in the same training budget as a standard
baseline agent. We additionally plan to meta-learn well-performing presets for
SELECTOR to create a truly end-to-end training and selection pipeline. Lastly,
we would like to approach handling instances also at the level of the RL algo-
rithm: For benchmarks like CMA-ES, we have problems with different reward
scales, potentially hindering learning, which we could normalize per instance.

6 Conclusion

In this work, we demonstrate the potential of instance selection in enhancing
the generalization capabilities of RL for DAC. We first train an RL agent on a
train set of instances and then generate rollout trajectories by evaluating the
trained agent on the same set of instances. Since these trajectories capture
the agent’s behavior on the training instances, we use this data to create time-

11



series features that capture the dynamic behavior of the RL policy. We then
subselect a representative set of training instances and retrain the RL agent
on these instances to obtain better generalization performance on unseen new
instances. By meticulously selecting representative instances for training, we
not only address the challenge of overrepresentation in training instances but
also demonstrate superior performance to agents trained on specific instances on
CMA-ES. Our approach marks a step forward in the application of RL to DAC,
offering a scalable solution that can adapt to the ever-changing complexities of
hyperparameter control using RL.

7 Acknowledgements

Funding in direct support of this work: Slovenian Research Agency: research
core funding No. P2-0098, young researcher grants No. PR-12393 to GC and
No. PR-12897 to AN, project No. J2-4460, and a bilateral project between
Slovenia and Germany grant No. BI-DE/23-24-003. DAAD: 57654659.

References

1.2.3.[Benjamins et al.(2023)] C. Benjamins, T. Eimer, F. Schubert, A. Mohan, S.
Döhler, A. Biedenkapp, B. Rosenhan, F. Hutter, and M. Lindauer. 2023.
Contextualize Me – The Case for Context in Reinforcement Learning.
Transactions on Machine Learning Research (2023).

[Biedenkapp et al.(2020)] A. Biedenkapp, H. F. Bozkurt, T. Eimer, F. Hutter,
and M. Lindauer. 2020. Dynamic Algorithm Configuration: Foundation of
a New Meta-Algorithmic Framework. In Proceedings of the Twenty-fourth
European Conference on Artificial Intelligence (ECAI’20), J. Lang, G. De
Giacomo, B. Dilkina, and M. Milano (Eds.). 427–434.

[Bischl et al.(2016)] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Mal-
itsky, A. Frechétte, H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and
J. Vanschoren. 2016. ASlib: A Benchmark Library for Algorithm Selection.
Artificial Intelligence 237 (2016), 41–58.

[Byskov(2003)] Jens M. Byskov. 2003. Algorithms for k-colouring and finding
maximal independent sets. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA ’03). 456–457.

[Cenikj et al.(2022)] G. Cenikj, R. Dieter Lang, A. Engelbrecht, C. Doerr, P.
Korosec, and T. Eftimov. 2022. SELECTOR: selecting a representative
benchmark suite for reproducible statistical comparison. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO’22),
J. Fieldsend (Ed.). ACM Press.

12



[Eftimov et al.(2022)] T. Eftimov, G. Petelin, G. Cenikj, A. Kostovska, G.
Ispirova, P. Korošec, and J. Bogatinovski. 2022. Less is more: Select-
ing the right benchmarking set of data for time series classification. Expert
Systems with Applications 198 (2022), 116871.

[Eimer et al.(2021)] T. Eimer, A. Biedenkapp, M. Reimer, S. Adriaensen, F.
Hutter, and M. Lindauer. 2021. DACBench: A Benchmark Library for Dy-
namic Algorithm Configuration. In Proceedings of the 30th International
Joint Conference on Artificial Intelligence (IJCAI’21), Z. Zhou (Ed.). ij-
cai.org, 1668–1674.

[Esfahanian(2013)] A. Esfahanian. 2013. Connectivity algorithms. Topics in
structural graph theory (2013), 268–281.

[Grünewälder et al.(2012)] S. Grünewälder, G. Lever, L. Baldassarre, M. Pon-
til, and A. Gretton. 2012. Modelling transition dynamics in MDPs with
RKHS embeddings. In Proceedings of the 29th International Conference on
Machine Learning (ICML’12), J. Langford and J. Pineau (Eds.). Omni-
press.

[Guo et al.(2022)] J. Guo, M. Gong, and D. Tao. 2022. A Relational Interven-
tion Approach for Unsupervised Dynamics Generalization in Model-Based
Reinforcement Learning. In Proceedings of the International Conference on
Learning Representations (ICLR’22). Published online: iclr.cc.

[Hallak et al.(2015)] A. Hallak, D. Di Castro, and S. Mannor. 2015. Contextual
Markov Decision Processes. arXiv:1502.02259 [stat.ML] (2015).

[Han and Wu(2022)] X. Han and F. Wu. 2022. Meta Reinforcement Learning
with Successor Feature Based Context. arXiv preprint arXiv:2207.14723
(2022).

[Hansen(2008)] N. Hansen. 2008. CMA-ES with Two-Point Step-Size Adapta-
tion. CoRR (2008). http://arxiv.org/abs/0805.0231

[Hansen et al.(2020)] N. Hansen, A. Auger, R. Ros, O. Mersman, T. Tušar,
and D. Brockhoff. 2020. COCO: A Platform for Comparing Continuous
Optimizers in a Black-Box Setting. Optimization Methods and Software
(2020).

[Hutter et al.(2014)] F. Hutter, H. Hoos, and K. Leyton-Brown. 2014. An Effi-
cient Approach for Assessing Hyperparameter Importance. In Proceedings
of the 31th International Conference on Machine Learning, (ICML’14),
E. Xing and T. Jebara (Eds.). Omnipress, 754–762.

[Igel et al.(2007)] C. Igel, N. Hansen, and S. Roth. 2007. Covariance Matrix
Adaptation for Multi-objective Optimization. Evolutionary Computation
15 (2007), 1–28.

13



[Ispirova et al.(2024)] G. Ispirova, T. Eftimov, S. Džeroski, and B. Seljak. 2024.
MsGEN: Measuring generalization of nutrient value prediction across differ-
ent recipe datasets. Expert Systems with Applications 237 (2024), 121507.

[Justesen et al.(2022)] N. Justesen, R. Torrado, P. Bontrager, A. Khalifa, J. To-
gelius, and S. Risi. 2022. Illuminating generalization in deep reinforcement
learning through procedural level generation. (2022).

[Kirk et al.(2023)] R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel.
2023. A Survey of Zero-shot Generalisation in Deep Reinforcement Learn-
ing. Journal of Artificial Intelligence Research (JAIR) 76 (2023), 201–264.

[Lagoudakis and Littman(2000)] M. Lagoudakis and M. Littman. 2000. Algo-
rithm Selection using Reinforcement Learning. In Proceedings of the Seven-
teenth International Conference on Machine Learning (ICML’00), P. Lan-
gley (Ed.). Morgan Kaufmann Publishers, 511–518.

[Lagoudakis and Littman(2001)] M. Lagoudakis and M. Littman. 2001. Learn-
ing to Select Branching Rules in the DPLL Procedure for Satisfiability.
Electronic Notes in Discrete Mathematics 9 (2001), 344–359.

[Long et al.(2023)] F. Long, D. Vermetten, B. van Stein, and A. Kononova.
2023. BBOB Instance Analysis: Landscape Properties and Algorithm Per-
formance Across Problem Instances. In International Conference on the Ap-
plications of Evolutionary Computation (Part of EvoStar). Springer, 380–
395.

[Lubba et al.(2019)] C. Lubba, S. Sethi, P. Knaute, S. Schultz, B. Fulcher, and
N. Jones. 2019. catch22: CAnonical Time-series CHaracteristics: Selected
through highly comparative time-series analysis. Data Mining and Knowl-
edge Discovery 33, 6 (2019), 1821–1852. https://doi.org/10.1007/s10618-
019-00647-x

[Mohan et al.(2024)] A. Mohan, A. Zhang, and M. Lindauer. 2024. Structure
in Deep Reinforcement Learning: A Survey and Open Problems. Journal
of Artificial Intelligence Research 79 (2024).

[Ng(2022)] A. Ng. 2022. Unbiggen ai. IEEE Spectrum 9 (2022).

[Nikolikj et al.(2023)] A. Nikolikj, M. Pluháček, C. Doerr, P. Korošec, and T.
Eftimov. 2023. Sensitivity Analysis of RF+clust for Leave-One-Problem-
Out Performance Prediction. In 2023 IEEE Congress on Evolutionary
Computation (CEC). 1–8.

[Pettinger and Everson(2002)] J. Pettinger and R. Everson. 2002. Controlling
genetic algorithms with reinforcement learning. In Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO’02), W. Lang-
don, E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrish-
nan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. Potter, A. Schultz,

14



J. Miller, E. Burke, and N. Jonoska (Eds.). Morgan Kaufmann Publishers,
692–692.

[Schulman et al.(2017)] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov. 2017. Proximal Policy Optimization Algorithms.
arXiv:1707.06347 [cs.LG] (2017).

[Seo et al.(2020)] Y. Seo, K. Lee, I. Gilaberte, T. Kurutach, J. Shin, and P.
Abbeel. 2020. Trajectory-wise Multiple Choice Learning for Dynamics Gen-
eralization in Reinforcement Learning. In Proceedings of the 34th Interna-
tional Conference on Advances in Neural Information Processing Systems
(NeurIPS’20), H. Larochelle, M. Ranzato, R. Hadsell, M.-F. Balcan, and
H. Lin (Eds.). Curran Associates.

[Shala et al.(2020)] G. Shala, A. Biedenkapp, N. Awad, S. Adriaensen, M. Lin-
dauer, and F. Hutter. 2020. Learning Step-Size Adaptation in CMA-ES.
In Proceedings of the Sixteenth International Conference on Parallel Prob-
lem Solving from Nature (PPSN’20) (Lecture Notes in Computer Science),
T. Bäck, M. Preuss, A. Deutz, H. Wang, C. Doerr, M. Emmerich, and
H. Trautmann (Eds.). Springer, 691–706.

[Sharma et al.(2019)] M. Sharma, A. Komninos, M. López-Ibáñez, and D.
Kazakov. 2019. Deep reinforcement learning based parameter control in
differential evolution. In Proceedings of the Genetic and Evolutionary Com-
putation Conference, M. López-Ibáñez (Ed.). ACM Press, 709–717.

[Shi et al.(2022)] W. Shi, G. Huang, S. Song, Z. Wang, T. Lin, and C. Wu.
2022. Self-Supervised Discovering of Interpretable Features for Reinforce-
ment Learning. IEEE Transactions on Pattern Analysis and Machine In-
telligence 44, 5 (2022), 2712–2724.

[Speck et al.(2021)] D. Speck, A. Biedenkapp, F. Hutter, R. Mattmüller, and
M. Lindauer. 2021. Learning Heuristic Selection with Dynamic Algorithm
Configuration. In Proceedings of the 31st International Conference on Auto-
mated Planning and Scheduling (ICAPS’21), H. H. Zhuo, Q. Yang, M. Do,
R. Goldman, S. Biundo, and M. Katz (Eds.). AAAI.

[Zhang et al.(2018)] C. Zhang, O. Vinyals, R. Munos, and S. Bengio. 2018.
A Study on Overfitting in Deep Reinforcement Learning. arXiv preprint
arXiv:1804.06893 (2018).

15


