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Importance of BBO in ML

Hyperparameter Tuning
o It enables efficient search in hyperparameter spaces, crucial for maximizing model
performance.
Robustness to Uncertainty
o Handles noisy or unknown objective functions.
Versatility Across Domains
o Applicable in various ML tasks like reinforcement learning, neural architecture search, and
model selection.
Handling High-Dimensional Spaces
o Designed to explore large search spaces efficiently, crucial in ML.



Motivation

e Automated algorithm selection requires the application of machine learning
(ML) models to the optimization domain, lies at the intersection of optimization
and ML

e Similar tasks and challenges as the AutoML community

e Representation learning methodologies and analytical approaches from one
domain could be transferred to the other

e Opportunities for mutual learning and collaboration



Problem Definition

e An optimization function p, is given by: p : X — Y, where X € R%is the
decision and Y & R™ the objective space. In this context, x € X is referred
to as a candidate solution.

e This tutorial is focused on single-objective optimization (SOO), i.e., m=1.



Algorithm Selection

Aims to identify the best algorithm (from an existing set of algorithms) to solve
a given problem

e Leverage algorithm complementarity instead of looking for a single algorithm
which works best across all problems



Algorithm Selection Pipeline
Problemo\ Algorithm —._i_

Portfolio Portfolio

Differential Eyolution,

Sphere,
Ellipsoidal... Evolutionary

"""" Algorithm Evaluation bbbt

Fixed-budget

Fixed-target | i
problem trajectory aé%c:jr:::r;m
sar?ples data

code / definition

Problem-Algorithm

Trajectory Features Algorithm Features

Problem Features

DynamoRep, Ppt2Vec... Source code features...

ELA, Doe2Vgce, TLA,
TransOpt... h

Legend

—>» Mandatory pipeline steps
to obtain the target of the

Machine Learning

machine learning model
performance

data

----- » Optional pipeline steps
related to the input of the Performance Prediction (Regression)
machine learning model Best algorithm selection (Classification)
(feature calculation) Algorithm ranking




Algorithm Selection in Numerical Black-Box Optimization
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Problem Features

e Exploratory Landscape Analysis
e TJopological Landscape Analysis
e Features based on deep learning



Problem Features

Calculated on the basis of a
problem sample

Candidate solutions are
artificially sampled using
some sampling technique
(Random Sampling, Latin
Hypercube Sampling, Sobol
Sampling)

Each candidate solution is
evaluated to obtain its
objective function value
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ELA - Convexity features

e Based on differences in the
objective values of a point which
is a linear combination of two
randomly sampled points and the
convex combination of the
objective values of the two
sampled points.
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Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., & Rudolph, G. (2011, July 12). Exploratory landscape analysis. Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation. Presented at the GECCO '11: Genetic and Evolutionary Computation Conference, Dublin Ireland. doi:10.1145/2001576.2001690




ELA - Distribution features

Skewness, kurtosis, and the number
of peaks of the distribution of the
objective function values, based on a
kernel density estimation of the initial
design’s objective values.
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and Evolutionary Computation. Presented at the GECCO '11: Genetic and Evolutionary Computation Conference, Dublin Ireland. doi:10.1145/2001576.2001690
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ELA - Local search features

e Local search features - extracted by running a local search algorithm and hierarchically
clustering the considered solutions in order to approximate problem properties. For instance,
the number of clusters is an indicator of multi-modality, while the cluster sizes are related to
the basin sizes around the local optima.
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Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., & Rudolph, G. (2011, July 12). Exploratory landscape analysis. Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation. Presented at the GECCO '11: Genetic and Evolutionary Computation Conference, Dublin Ireland. doi:10.1145/2001576.2001690



ELA - Cell mapping features

Discretize the continuous decision space
using a pre-defined number of blocks
Categorizes cells into attractor, periodic,
transient and uncertain cells

Example features:

gcm.mean.pcells = 0.04 (relative number of periodic cells)
gcm.mean.tcells = 0.96 (relative number of transient cells)
gcm.mean.best_attr.prob = 1 (probability of finding the attractor
with the best objective value)

Cell Coordinate (2nd Dimension)

Cell Coordinate (1st Dimension)

Kerschke, P., Preuss, M., Hernandez, C., Schitze, O., Sun, J.-Q., Grimme, C., Rudolph, G., Bischl, B., & Trautmann, H. (2014). Cell Mapping Techniques for Exploratory Landscape
Analysis. In Advances in Intelligent Systems and Computing (pp. 115—131). Springer International Publishing. https://doi.org/10.1007/978-3-319-07494-8_9

Cell ID (2nd Dimension)



ELA - Cell mapping features

Angle features: Take into consideration the angle between the vectors connecting the center of
each cell to the best and worst value within a cell

Comparing three neighbouring cells allows to draw conclusions on the local convexity
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Kerschke, P., Preuss, M., Hernandez, C., Schitze, O., Sun, J.-Q., Grimme, C., Rudolph, G., Bischl, B., & Trautmann, H. (2014). Cell Mapping Techniques for Exploratory Landscape
Analysis. In Advances in Intelligent Systems and Computing (pp. 115-131). Springer International Publishing. https://doi.org/10.1007/978-3-319-07494-8 9



Other ELA feature groups

e |evelset features split samples into two classes based on whether the value of the objective
function falls above or below a certain threshold. Linear, quadratic, and mixture discriminant
analysis is used to predict whether the objective values fall below or exceed the calculated
threshold. The intuition behind this is that multi-modal functions should result in several
unconnected sublevel sets for the quantile of lower values, which can only be modeled by
the mixture discriminant analysis method. The extracted low-level features are based on the
distribution of the resulting misclassification errors of each classifier.

e Metamodel features - fit regression models to the sampled data and use the coefficients
and accuracy of the model to describe the problem

e Curvature features estimate the gradient and Hessians from samples of the function and
use their magnitudes to quantify the curvature

Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., & Rudolph, G. (2011, July 12). Exploratory landscape analysis. Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation. Presented at the GECCO '11: Genetic and Evolutionary Computation Conference, Dublin Ireland. doi:10.1145/2001576.2001690



ELA feature calculation - Flacco

e Available as a python and R package
e Flacco GUI: https://flacco.shinyapps.io/flacco/

Kerschke, P., & Trautmann, H. (2019). Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package Flacco. In
Studies in Classification, Data Analysis, and Knowledge Organization (pp. 93—123). Springer International Publishing. https://doi.org/10.1007/978-3-030-25147-5_7

Prager, R. P., & Trautmann, H. (2024). Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python. In Evolutionary Computation (pp.
1-6). MIT Press. https://doi.org/10.1162/evco_a_00341


https://doi.org/10.1007/978-3-030-25147-5_7

Topological Landscape Analysis

e Uses methods from Topological Data Analysis to extract features
e Captures the existence of different topological structures in a point cloud
e Process:

o Sampling

o Pairwise calculation of distances between samples

o Generation of persistence diagram and image

Petelin, G., Cenikj, G., & Eftimov, T. (2024). TinyTLA: Topological landscape analysis for optimization problem classification in a limited sample setting. Swarm and Evolutionary
Computation, 84(101448), 101448. doi:10.1016/j.swevo.2023.101448



Topological Landscape Analysis

e Captures the existence of different topological structures in a point cloud
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Petelin, G., Cenikj, G., & Eftimov, T. (2024). TinyTLA: Topological landscape analysis for optimization problem classification in a limited sample setting. Swarm and Evolutionary
Computation, 84(101448), 101448. doi:10.1016/j.swevo.2023.101448
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Fitness map features

e Process:

O

©)
@)
@)

Generate candidate solutions using Latin Hypercube sampling

Calculate fitness map as a 2D image with a single channel in the [0,1] range

Normalize objective solution values

Map candidate solutions to a Cartesian plane based on decision variables and objective
values.

Model: CNN (ShuffleNet v2)

Task: algorithm selection of 32 CMAES configurations

Data: BBOB benchmark, 124 instances per problem

Weakness: Potential information loss when different candidate solutions are mapped to the

same pixel.

Prager, R. P., Vinzent Seiler, M., Trautmann, H., & Kerschke, P. (2021). Towards Feature-Free Automated Algorithm Selection for Single-Objective Continuous Black-Box Optimization. In
2021 IEEE Symposium Series on Computational Intelligence (SSCI). 2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE.
https://doi.org/10.1109/ssci50451.2021.9660174



Fitness map features - Extension to higher dimensions

e Adaptation of the fithess map approach for high-dimensional data using dimensionality
reduction techniques

e Task: Evaluated for the task of predicting high-level features of BBOB problem instances
(multimodality, global structure, funnel structure, etc).
Data: BBOB benchmark, 150 instances per problem, D = {2, 3, 5, 10}.
Weakness: trade-off between information loss for larger dimensions or growing sparsity for
smaller one

Seiler, M. V., Prager, R. P., Kerschke, P., & Trautmann, H. (2022). A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fithness
landscapes. Proceedings of the Genetic and Evolutionary Computation Conference, 657-665. Presented at the Boston, Massachusetts. doi:10.1145/3512290.3528834



Fitness map features - Extension to higher dimensions

e Exploration of Point Cloud Transformers

e Modified point cloud transformers to operate on the node of the kNN-graph; Embedding each

candidate solution into its local neighborhood.
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Seiler, M. V., Prager, R. P., Kerschke, P., & Trautmann, H. (2022). A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fithness
landscapes. Proceedings of the Genetic and Evolutionary Computation Conference, 657—665. Presented at the Boston, Massachusetts. doi:10.1145/3512290.3528834



Doe2Vec

e Process:
o Generate candidate solutions using Latin Hypercube / Sobol sampling
o Objective solution values are re-scaled within the range of [0,1] and used as input
features to train the VAE
e Data: Functions generated using a random function generator
e Task: Predicting high-level properties of BBOB problem instances (multimodality, global
structure, funnel structure, etc).

Van Stein, B., Long, F. X., Frenzel, M., Krause, P., Gitterle, M., & Back, T. (2023). DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis. Proceedings of the
Companion Conference on Genetic and Evolutionary Computation, 515-518. Presented at the Lisbon, Portugal. doi:10.1145/3583133.3590609



Doe2Vec

BBOB functions and
their most similar
random function in
terms of Doe2Vec
features
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Van Stein, B., Long, F. X., Frenzel, M., Krause, P., Gitterle, M., & Back, T. (2023). DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis. Proceedings of the
Companion Conference on Genetic and Evolutionary Computation, 515-518. Presented at the Lisbon, Portugal. doi:10.1145/3583133.3590609



Doe2Vec
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Van Stein, B., Long, F. X., Frenzel, M., Krause, P., Gitterle, M., & Back, T. (2023). DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis. Proceedings of the
Companion Conference on Genetic and Evolutionary Computation, 515-518. Presented at the Lisbon, Portugal. doi:10.1145/3583133.3590609




Doe2Vec

d Task |AE-24 AE-32 VAE-24 VAE-32 ELA |PCA* rMC#* Transformer* | ELA-VAE-32

Classification multimodal | 0.875 0.849 0.877 0856 0984|0.994 0971  0.991 0.991
results: 2 global struct.| 0.903 0904 0902 0889 0983/0.992 0965  0.991 0.998
macro F1 funnel 0985 0974 0956 0978 1.000/0.999 0995  1.000 1.000
multimodal | 0.908 0903 0.880 0.889 0.963]|0.897 0947  0.991 0.998

5 global struct.| 0.838 0.828 0.810 0793 1.000/0.807 0859  0.978 1.000

finiel 1.000 1.000 0996 0991 1.000/0.990 0989  1.000 1.000

multimodal | 0.877 0.813 0.844 0838 1.000(0.839 0952  0.974 1.000

10 global struct.| 0.794 0737 0.783 0745 0902|0.774 0911  0.963 0.991

funnel 0.998 0993 0997 0993 0972|0977 0991  1.000 0.997

multimodal | 0.726 0.722 0700 0.694 0970 - - _ 0.991

20 global struct.| 0.689 0.621 0.606 0.626 0972| - - ] 0.997

finnel 0993 0982 0985 0982 1.000| - - : 1.000

Van Stein, B., Long, F. X., Frenzel, M., Krause, P., Gitterle, M., & Back, T. (2023). DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis. Proceedings of the
Companion Conference on Genetic and Evolutionary Computation, 515-518. Presented at the Lisbon, Portugal. doi:10.1145/3583133.3590609



TransOptAS

e Process:
o Generate candidate solutions using Latin Hypercube sampling
o Train transformer model, which given samples of the optimization function, predicts
algorithm performance
e Data: Functions generated using a random function generator
e Task: Algorithm selection
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Cenikj, G., Petelin, G., & Eftimoy, T. (2024). TransOptAS: Transformer-Based Algorithm Selection for Single-Objective Optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (pp. 403-406). GECCO 24 Companion: Genetic and Evolutionary Computation Conference Companion. ACM.
https://doi.org/10.1145/3638530.3654191



DeepELA

e Process:
o Generate candidate solutions using Latin Hypercube sampling
o Self-supervised training of transformer model to produce representations of optimization
problems which are invariant to problem transformations
e Data: Functions generated using a random function generator
e Tasks: Predicting high-level properties of BBOB problems; Algorithm selection
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Seiler M.V., Kerschke P., Trautmann H. 2024. Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single- and Multi-Objective Continuous
Optimization Problems https://arxiv.org/abs/2401.01192



DeepELA

The input undergoes a k-Nearest-Neighborhood (kNN) embedding with the goal of
incorporating the local neighborhood of every x. € X

A token is every member of x € X alongside its k nearest neighbors
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Seiler M.V., Kerschke P., Trautmann H. 2024. Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single- and Multi-Objective Continuous
Optimization Problems https://arxiv.org/abs/2401.01192



DeepELA

e Student-teacher training strategy with a shared backbone acting as a feature
generator

e The training strategy revolves around providing distinct, augmented versions
of the same objective instance to both the teacher and student. Here, the
teacher generates target projections from which the student gleans insights.

e The loss function aims to maximize the covariance between an instance’s
online- and target projection and to minimize it between different instances

Seiler M.V., Kerschke P., Trautmann H. 2024. Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single- and Multi-Objective Continuous
Optimization Problems https://arxiv.org/abs/2401.01192



Application: Selection of diverse benchmark problem
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Application: Per-Instance Algorithm Selection
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Application: Explainable Algorithm Footprint

BBOB
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Nikolikj, A., & Eftimov, T. (2024, July). Comparing Solvability Patterns of
Algorithms across Diverse Problem Landscapes. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion (pp. 143-146).

Nikolikj, A., DZeroski, S., Mufioz, M. A., Doerr, C., Korosec, P., & Eftimoy,
T. (2023, July). Algorithm Instance Footprint: Separating Easily Solvable
and Challenging Problem Instances. In Proceedings of the Genetic and

Evolutionary Computation Conference (pp. 529-537).



Algorithm features

Based on source code

Based on performance

Based on Shapley values of performance predictive model
Via Knowledge Graph



Algorithm features based on source code

Extracting algorithm features from source code

Props: May be used to compare different programing implementation of the algorithms and further investigate which one has better
performance

Cons:

e Parameter Sensitivity: These features are ineffective for automated algorithm configuration or parameter tuning, as parameter
differences are typically evident only during execution, not in the code.

e Implementation Dependency: Features extracted from the source code are highly dependent on the programming language
and the specific implementation, leading to potential discrepancies even for the same algorithm.

Pulatov, D., Anastacio, M., Kotthoff, L., & Hoos, H. (2022, September). Opening the black box: Automated software analysis for algorithm selection. In International Conference on Automated
Machine Learning (pp. 6-1). PMLR.



Algorithm features based on performance

Calculating Perfromance2vec
e \ector representations consists of performance metric on a set of benchmark problems.

Metrics:

e Simple: Mean or Median across multiple runs
e Complex: Deep Statistical Comparison ranking or ...

Props:
e Facilitates algorithm comparison through performance vectors.
Cons:

e Biased to the selected portfolio of benchmark problems

Eftimov, T., Popovski, G., Kocey, D., & Korosec, P. (2020, July). Performance2vec: a step further in explainable stochastic optimization algorithm performance. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference Companion (pp. 193-194).



Algorithm features based on performance

17 algorithms were compared using 22
benchmark problems from BBOB 2009
(dimension 10). Hierarchical clustering was
applied to Performance2Vec embeddings
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from 1 (best) to 17 (worst). Ranking
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Eftimov, T., Popovski, G., Kocev, D., & KoroSec, P. (2020, July). Performance2vec: a step further in explainable stochastic optimization algorithm performance.
In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion (pp. 193-194).



Algorithm features based on Shapley values of performance
predictive models

Learning features: x,
e Derived from the importance | jnttanose " Sy arals g
of problems features using : 7
explainability performance AT Jost bate
predictive methods. - Features
e SHAP method applied for !
feature importance. g @;} n@l 7
o Calculated to determine Train Data ML Model Evaluation e mader
the contribution of each _ ]
feature to performance. ~Algorithm

Performance
o Global level: Across a Kb

§et of problem i1 T ——
instances. e .. Algorithm

o Local level: On
!nd|V|duaI problem o
Instances. Instance

Global Feature }
Importance ,

Shapley meta-
representation

Nikolikj, A., Lang, R., KoroSec, P., & Eftimov, T. (2022, November). Explaining differential evolution performance through problem landscape
characteristics. In International Conference on Bioinspired Optimization Methods and Their Applications (pp. 99-113). Cham: Springer International
Publishing.



Algorithm features based on Shapley values of
performance predictive models

Props:
e Encodes interactions between problem features and algorithm performance.

e Used to find similar algorithm behaviors with the assumption that the predictive models are behave

similarly.

Cons:
e Depends on the selected problem features portfolio
e Depends on the selected benchmark problem instances
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Nikolikj, A., Lang, R., KoroSec, P., & Eftimov, T. (2022, November). Explaining differential evolution performance through problem landscape

characteristics. In International Conference on Bioinspired Optimization Methods and Their Applications (pp. 99-113). Cham: Springer International
Publishing.



Algorithm features via Knowledge Graph

Learning Features:

e Leverage interactions with entities in the
optimization domain.
e Knowledge Graph (KG) methodology:
e Nodes Represent:
o  Problem Instances:
Problem class, high-level
features, ELA features.
o  Algorithms: Parameters.
e Linking Criteria: Algorithm solves
problem instance within a
specified error.
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high conditioning
and unimodal

‘<—is-a<—'
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.
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Kostovska, A., Vermetten, D., DZeroski, S., Panoyv, P., Eftimoy, T., & Doerr, C. (2023, April). Using knowledge graphs for performance prediction of
modular optimization algorithms. In International Conference on the Applications of Evolutionary Computation (Part of EvoStar) (pp. 253-268).

Cham: Springer Nature Switzerland.



Algorithm features via Knowledge Graphs

. . " et Learned
Embedding Representation: e Gt embeddings
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. . = / \ o Re(/sziag(r)t) = >
problem instance representations. 3 N P d-1 3 W) o (00650.114.01150003
. = 2 =R . [h):. [tl; 8
e Produces Algorithm Features or Problem \ /\ | 2 ely, [k [hl-[tl) =
i =0 [-0.081,-0.136,-0.091,-0.062]
Instance Features. ComplEx scoring layer
e Problem Instance Features:
o Distinct from low-level landscape TestKe o B2 pick the triplet
ith the high
features. § f3_i2 scivei— —5 izglgl_ixz .78 * wi SCC?re|g er
o Integrate landscape data and algorithrm ~ § \? 2> \ 4
performance interaction. = con_2 conf_2 B2 e  po
o —not-solved—> e ZEZ;Z IE2x =035 —solved>»

Props:
e Encodes interactions between problem features and algorithm performance by also involving the graph
neighbourhood.

Cons:
e Depends on the data stored in the KG

Kostovska, A., Vermetten, D., DZeroski, S., Panoyv, P., Eftimoy, T., & Doerr, C. (2023, April). Using knowledge graphs for performance prediction of
modular optimization algorithms. In International Conference on the Applications of Evolutionary Computation (Part of EvoStar) (pp. 253-268).

Cham: Springer Nature Switzerland.



Selection of complementary algorithm portfolio

Meta-representation: SHAP
Threshold: 0.8

ZS)
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Meta-representation: SHAP
Threshold: 0.6
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Meta-representation: p2v
Threshold: 0.6

Meta-representation: p2v
Threshold: 0.8

Meta-representation: SHAP
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Meta-representation: p2v
Threshold: 0.97

Kostovska, A., Cenikj, G., Vermetten, D., Jankovic, A., Nikolikj, A., Skvorc, U., ... & Eftimoy, T. (2023, December). PS-AAS: Portfolio Selection for Automated Algorithm Selection in

Black-Box Optimization. In International Conference on Automated Machine Learning (pp. 11-1). PMLR.



Selection of complementary algorithm portfolio

Log Portfolio Size
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x-axis: the best possible loss of the portfolio = the difference between the
portfolio's VBS and the VBS of the full set of 324 algorithms.

y-axis: the loss of the AS = the difference in performance between the algorithm it
selects and the VBS of the portfolio it can choose from.



Problem-Algorithm Trajectory Features

Based on internal algorithm parameters
Trajectory-based ELA

lterative-based ELA

DynamoRep

Opt2Vec

Local Optima Networks and variants
Probing trajectories



Trajectory-based features Based on Internal Algorithm
Parameters

e Calculating features: 80 |
o  Time-series features extracted from internal
parameters that are adjust during the 601
optimization process.
o  Employed the tsfresh library for feature 401
extraction.

20|

e Application:

: . . . -20 |
o  Time-series features helped identify
configurations of modular CMA-ES variants. _ao)
o  Step size, Best-so-far value, Evolution path,
Conjugate evolution path, Square root of b
diagonal of covariance matrix eigenvalues
-80 -60 -40 -20 0 20 40 60 80
Props: Capture the behaviour of the algorithm e TPA i jiiroradpainaioe
Standard « MSR Active « ThresholdConvergence
Elitist Orthogonal « Sobol « EqualWeights

Cons: Lack of comprehensive comparison of different time series
features

de Nobel, J., Wang, H., & Baeck, T. (2021, June). Explorative data analysis of time series based algorithm features of CMA-ES variants. In Proceedings of
the Genetic and Evolutionary Computation Conference (pp. 510-518).



Trajectory-based ELA features

Calculating Features:

e ELA features calculated from populations (candidate solutions and corresponding function values) observed
during optimization rather than candidate solutions obtained with a standard sampling techniques.

Landscape
Features

Feature
Computation

Problem
Instances

Per-run
Algorithm

Performance

Trajectory- Regression Selection
based @
feature @ \ @

extraction &
(per-run)

Algorithm
Performance

Algorithm
Execution

Algorithm
Portfolio

Jankovic, A., Eftimoy, T., & Doerr, C. (2021). Towards feature-based performance regression using trajectory data. In Applications of Evolutionary Computation:
24th International Conference, EvoApplications 2021, Held as Part of EvoStar 2021, Virtual Event, April 7-9, 2021, Proceedings 24 (pp. 601-617). Springer

International Publishing.



Trajectory-based ELA features

Applications:

e Fixed-Budget Performance Prediction: Applied to CMA-ES performance prediction.
e Per-Run Algorithm Selection: Used in warm-starting to decide on switching algorithm instances.

Props:
e Info about the interaction across problem and algorithms (personalization).

Cons:
e Does not capture the longitudinal aspect of solutions within algorithm iterations.

Jankovic, A., Eftimoy, T., & Doerr, C. (2021). Towards feature-based performance regression using trajectory data. In Applications of Evolutionary Computation:
24th International Conference, EvoApplications 2021, Held as Part of EvoStar 2021, Virtual Event, April 7-9, 2021, Proceedings 24 (pp. 601-617). Springer
International Publishing.



lterative-based ELA features

Calculating Features:

e ELA features calculated from a single population (candidate solutions and corresponding function values), one
iteration observed during optimization.

Applications:

e Problem and dimension being solved - < 40% accuracy.
e Online algorithm performance improvement prediction - small improvements against a time series baseline

model.

Props:
e Info about the a single timestamp of the optimization process, can easily be combined with ML models that will

capture the longitudinality of the search process.

Cons:
e ELAfeatures are sensitive on small sample sizes, which in this case is the dimension of the population.

KoroSec, P., & Eftimov, T. (2024). Opt2Vec-a continuous optimization problem representation based on the algorithm's behavior: A case study on problem
classification. Information Sciences, 680, 121134.



DynamoRep features

Calculating Features:

o  Constructed by concatenating
statistics from each population.

o  Statistics extracted per
iteration:

s Minimum, maximum,
mean, and standard
deviation.

m  Applied to decision
variables and objective
function values.

o  For an algorithm with n
iterations on a problem
instance of dimension d.

m  Representation size =
4n(d + 1).

Algorithm: DE, Problem: 1, Instance: 1, Seed: 200
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DynamoRep features generated from the trajectories of one run of the DE
algorithm on the first instance of the first two 3d problem classes (sphere
and ellipsoidal functions) from the BBOB benchmark suite.



DynamoRep features

e Applications:
o Problem Classification: Detect the problem class being solved.
o Algorithm Classification: |dentify the algorithm solving the problem instance.

e Props:
o DynamoRep features are much cheaper to compute compared to state-of-the-art Exploratory
Landscape Analysis (ELA) features.
o Despite lower computational cost, DynamoRep features yield results comparable to those achieved
with ELA features, calculated at each iteration of the algorithm's execution.

e Cons:
o Limited expressiveness
o Representation size grows with number of iterations and problem dimension, may require
dimensionality reduction as preprocessing step

Cenikj, G., Petelin, G., Doerr, C., KoroSec, P., & Eftimoyv, T. (2023, July). Dynamorep: trajectory-based population dynamics for classification of black-box
optimization problems. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 813-821).
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Opt2Vec features

Applications:
e Problem and dimension classification
e Online algorithm performance improvement prediction - improvements against a time series baseline model
and iterative ELA.

Props:

e Capture features specific to parts of the search space explored at a particular iteration.
e Crucial for optimizing dynamic algorithms efficiently.
e First representation that takes into consideration the optimization problem dimension

Cons:

e Depends on the data used to train the autoencoder

Koro$ec, P., & Eftimov, T. (2024). Opt2Vec-a continuous optimization problem representation based on the algorithm's behavior: A case study on problem
classification. Information Sciences, 680, 121134.



Local Optima Networks (LONs) and variants

e LONSs Overview:
o  Simplified model for discrete fitness :
landscapes. §
o  Nodes represent local optima; edges represent ‘
search transitions via exploration operators. *~o
o  Capture the number, distribution, and
connectivity patterns of local optima.

.
9

e Variants:

o  Monotonic LONs (MLONSs): Only consider
transitions with non-deteriorating fitness.

o Compressed MLONs (CMLONSs): Group
nodes with the same fithess in MLONSs to
account for neutrality.

o Search Trajectory Network (STNs): Nodes
represent different states in the optimization
trajectory, not limited to local optima

LON of Rastrigin function

Adair, J., Ochoa, G., & Malan, K. M. (2019, July). Local optima networks for continuous fitness landscapes. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (pp. 1407-1414).



Local Optima Networks (LONs) and variants

e Applications:
o CMLONSs used to visualize and analyze 24 BBOB problem classes across dimensions.
o Network metrics and dimensionality reduction used to compare problems

e Props:
o Nice for visualization purposes

e Cons:
o Costly to compute

Ochoa, G., Malan, K. M., & Blum, C. (2020, April). Search trajectory networks of population-based algorithms in continuous spaces. In International
Conference on the Applications of Evolutionary Computation (Part of EvoStar) (pp. 70-85



Probing trajectories

e Learning features :

o Generate short trajectories by
running an algorithm on a
problem instance.

o Track current fithess or
best-so-far fitness across
sequential iterations.

o Extract time-series features
from trajectories using the
tsfresh library.

o  Or concatenate the tracked
values from sequential
iterations.
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Renau, Q., & Hart, E. (2024, March). On the Ultility of Probing Trajectories for Algorithm-Selection. In International Conference on the Applications of
Evolutionary Computation (Part of EvoStar) (pp. 98-114). Cham: Springer Nature Switzerland.



Probing trajectories

e Applications
o  Algorithm selector - comparable to trajectory ELA features

e Props:
o Potential to be utilized for per-run algorithm selection
e Cons:

o Recently proposed, required more evaluations

Renau, Q., & Hart, E. (2024, March). On the Utility of Probing Trajectories for Algorithm-Selection. In International Conference on the Applications of
Evolutionary Computation (Part of EvoStar) (pp. 98-114). Cham: Springer Nature Switzerland.



Application: Per-run Algorithm Selection
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Kostovska, A., Jankovic, A., Vermetten, D., de Nobel, J., Wang, H., Eftimov, T., & Doerr, C. (2022, August). Per-run algorithm selection with warm-starting using
trajectory-based features. In International Conference on Parallel Problem Solving from Nature (pp. 46-60). Cham: Springer International Publishing.

Vermetten, D., Wang, H., Sim, K., & Hart, E. (2023, April). To switch or not to switch: predicting the benefit of switching between algorithms based on trajectory
features. In International Conference on the Applications of Evolutionary Computation (Part of EvoStar) (pp. 335-350). Cham: Springer Nature Switzerland.



Application: Trajectory features for DAC with Reinforcement

Learning
e From full problem instance set to subselection by using trajectory features of the reinforcement
agents

e Raw and tsfresh features calculated using actions and rewards
e Better generalization of the RL for DAC on test instances

Train Train : Eval. select inst. Train ;
@ o . (m oo
e S R e B T A
set Agent Y Agent SELECTOR ’ Agent Y
Standard training pipeline Instance selection Retraining

Benjamins, C., Cenikj, G., Nikolikj, A., Mohan, A., Eftimov, T., & Lindauer, M. (2024, July). Instance Selection for Dynamic Algorithm Configuration with
Reinforcement Learning: Improving Generalization. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 563-566).



Landscape of studies grouped based on different features

Features
Problem landscape features

ELA

TLA

Fitness Map + CNNs

Point Cloud Transformer
DoE2Vec

TransOpt

Deep-ELA

Algorithm features

Source Code

Performance

Explainable Prediction Models
Internal Algorithm Parameters
KG embeddings
Trajectory-based features
Trajectory-ELA

DynamoRep

Opt2vec

Iterative-ELA

LON

Probing trajectories

Problem classification

[971, [43], [47], [37], [50]
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[38]
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77
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Learning tasks

Algorithm selection
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[531,[103]

[85], [86]
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Cenikj, G., Nikolikj, A., Petelin, G., van Stein, N., Doerr, C., & Eftimov, T. (2024). A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective
Continuous Optimization. arXiv preprint arXiv:2406.06629.



Open Challenges

- Sensitivity to problem transformations, sample size and sampling method
- Problem benchmarks
- Generalizability



Open Challenges: Sensitivity

- Some features are sensitive to transformations of the problem (scaling/shifting)

- Most of the features are sensitive to the size of the sample and the method of sampling the
candidate solutions

- Holistic approach looking including different features portfolio



Open Challenges: Problem Benchmarks

- Lack of problem benchmarks which are representative of real-world problems, and have sufficient
diversity and size for training ML models

- The most commonly used BBOB benchmark contains only 24 problems, from which various
instances can be generated (low diversity)

- Problem generators are being explored



Open Challenges: Generalizability

ELA feature groups
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Petelin, G., Cenikj, G. (2024). On Generalization of ELA feature groups. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO 24 Companion).
Association for Computing Machinery, New York, NY, USA, 419-422. https://doi.org/10.1145/3638530.3654124
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Questions



