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Importance of BBO in ML

● Hyperparameter Tuning
○ It enables efficient search in hyperparameter spaces, crucial for maximizing model 

performance.
● Robustness to Uncertainty

○ Handles noisy or unknown objective functions.
● Versatility Across Domains

○ Applicable in various ML tasks like reinforcement learning, neural architecture search, and 
model selection.

● Handling High-Dimensional Spaces
○ Designed to explore large search spaces efficiently, crucial in ML.



Motivation

● Automated algorithm selection requires the application of machine learning 
(ML) models to the optimization domain, lies at the intersection of optimization 
and ML

● Similar tasks and challenges as the AutoML community
● Representation learning methodologies and analytical approaches from one 

domain could be transferred to the other
● Opportunities for mutual learning and collaboration



Problem Definition

● An optimization function p, is given by: p : X → Y, where X ⊆ Rd is the 
decision and Y ⊆ Rm the objective space. In this context, x ∈ X is referred 
to as a candidate solution. 

● This tutorial is focused on single-objective optimization (SOO), i.e., m=1.



Algorithm Selection

● Aims to identify the best algorithm (from an existing set of algorithms) to solve 
a given problem

● Leverage algorithm complementarity instead of looking for a single algorithm 
which works best across all problems



Algorithm Selection Pipeline



Algorithm Selection in Numerical Black-Box Optimization

What types of 
optimization problems 
will be included in our 

problem portfolio?

Which algorithms will be 
incorporated into 

our algorithm portfolio?

Selection of a 
problem portfolio

Selection of an 
algorithm portfolio

Algorithm selector 
(AS) 

AS approaches:
❖ (Pairwise-)regression
❖ (Pairwise-)classification
❖ …

ML methods:
❖ RandomForest
❖ XGBoost
❖ TabPFN
❖ FTTransformer
❖ …

No significant difference 
in performance of 

different ML models and 
AS approaches for 

BBOB!!! [1]

How do we represent
optimization problems

and algorithms in
 vector form?

Feature 
Representation

❖ Problem features
❖ Algorithm features
❖ Problem-algorithm 

trajectory features



Problem Features

● Exploratory Landscape Analysis
● Topological Landscape Analysis
● Features based on deep learning



Problem Features

● Calculated on the basis of a 
problem sample 

● Candidate solutions are 
artificially sampled using 
some sampling technique 
(Random Sampling, Latin 
Hypercube Sampling, Sobol 
Sampling)

● Each candidate solution is 
evaluated to obtain its 
objective function value



ELA - Convexity features

● Based on differences in the 
objective values of a point which 
is a linear combination of two 
randomly sampled points and the 
convex combination of the 
objective values of the two 
sampled points.

Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., & Rudolph, G. (2011, July 12). Exploratory landscape analysis. Proceedings of the 13th Annual Conference on Genetic 
and Evolutionary Computation. Presented at the GECCO ’11: Genetic and Evolutionary Computation Conference, Dublin Ireland. doi:10.1145/2001576.2001690



ELA - Distribution features

Skewness, kurtosis, and the number 
of peaks of the distribution of the 
objective function values, based on a 
kernel density estimation of the initial 
design’s objective values.

Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., & Rudolph, G. (2011, July 12). Exploratory landscape analysis. Proceedings of the 13th Annual Conference on Genetic 
and Evolutionary Computation. Presented at the GECCO ’11: Genetic and Evolutionary Computation Conference, Dublin Ireland. doi:10.1145/2001576.2001690



ELA - Local search features

● Local search features - extracted by running a local search algorithm and hierarchically 
clustering the considered solutions in order to approximate problem properties. For instance, 
the number of clusters is an indicator of multi-modality, while the cluster sizes are related to 
the basin sizes around the local optima. 

Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., & Rudolph, G. (2011, July 12). Exploratory landscape analysis. Proceedings of the 13th Annual Conference on Genetic 
and Evolutionary Computation. Presented at the GECCO ’11: Genetic and Evolutionary Computation Conference, Dublin Ireland. doi:10.1145/2001576.2001690



ELA - Cell mapping features

Discretize the continuous decision space
using a pre-defined number of blocks
Categorizes cells into attractor, periodic, 
transient and uncertain cells

Example features:
gcm.mean.pcells = 0.04 (relative number of periodic cells)
gcm.mean.tcells = 0.96 (relative number of transient cells)
gcm.mean.best_attr.prob = 1 (probability of finding the attractor 
with the best objective value)

Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J.-Q., Grimme, C., Rudolph, G., Bischl, B., & Trautmann, H. (2014). Cell Mapping Techniques for Exploratory Landscape 
Analysis. In Advances in Intelligent Systems and Computing (pp. 115–131). Springer International Publishing. https://doi.org/10.1007/978-3-319-07494-8_9



ELA - Cell mapping features

Angle features: Take into consideration the angle between the vectors connecting the center of 
each cell to the best and worst value within a cell

Comparing three neighbouring cells allows to draw conclusions on the local convexity 

Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J.-Q., Grimme, C., Rudolph, G., Bischl, B., & Trautmann, H. (2014). Cell Mapping Techniques for Exploratory Landscape 
Analysis. In Advances in Intelligent Systems and Computing (pp. 115–131). Springer International Publishing. https://doi.org/10.1007/978-3-319-07494-8_9



Other ELA feature groups

● Levelset features split samples into two classes based on whether the value of the objective 
function falls above or below a certain threshold. Linear, quadratic, and mixture discriminant 
analysis is used to predict whether the objective values fall below or exceed the calculated 
threshold. The intuition behind this is that multi-modal functions should result in several 
unconnected sublevel sets for the quantile of lower values, which can only be modeled by 
the mixture discriminant analysis method. The extracted low-level features are based on the 
distribution of the resulting misclassification errors of each classifier. 

● Metamodel features - fit regression models to the sampled data and use the coefficients 
and accuracy of the model to describe the problem

● Curvature features estimate the gradient and Hessians from samples of the function and 
use their magnitudes to quantify the curvature

Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., & Rudolph, G. (2011, July 12). Exploratory landscape analysis. Proceedings of the 13th Annual Conference on Genetic 
and Evolutionary Computation. Presented at the GECCO ’11: Genetic and Evolutionary Computation Conference, Dublin Ireland. doi:10.1145/2001576.2001690



ELA feature calculation - Flacco

● Available as a python and R package
● Flacco GUI: https://flacco.shinyapps.io/flacco/

Kerschke, P., & Trautmann, H. (2019). Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package Flacco. In 
Studies in Classification, Data Analysis, and Knowledge Organization (pp. 93–123). Springer International Publishing. https://doi.org/10.1007/978-3-030-25147-5_7

Prager, R. P., & Trautmann, H. (2024). Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python. In Evolutionary Computation (pp. 
1–6). MIT Press. https://doi.org/10.1162/evco_a_00341

https://doi.org/10.1007/978-3-030-25147-5_7


Topological Landscape Analysis

● Uses methods from Topological Data Analysis to extract features
● Captures the existence of different topological structures in a point cloud
● Process:

○ Sampling
○ Pairwise calculation of distances between samples
○ Generation of persistence diagram and image

Petelin, G., Cenikj, G., & Eftimov, T. (2024). TinyTLA: Topological landscape analysis for optimization problem classification in a limited sample setting. Swarm and Evolutionary 
Computation, 84(101448), 101448. doi:10.1016/j.swevo.2023.101448



Topological Landscape Analysis

● Captures the existence of different topological structures in a point cloud

Petelin, G., Cenikj, G., & Eftimov, T. (2024). TinyTLA: Topological landscape analysis for optimization problem classification in a limited sample setting. Swarm and Evolutionary 
Computation, 84(101448), 101448. doi:10.1016/j.swevo.2023.101448



Topological Landscape Analysis

Petelin, G., Cenikj, G., & Eftimov, T. (2024). TinyTLA: Topological landscape analysis for optimization problem classification in a limited sample setting. Swarm and Evolutionary 
Computation, 84(101448), 101448. doi:10.1016/j.swevo.2023.101448



Fitness map features

● Process: 
○ Generate candidate solutions using Latin Hypercube sampling
○ Calculate fitness map as a 2D image with a single channel in the [0,1] range
○ Normalize objective solution values
○ Map candidate solutions to a Cartesian plane based on decision variables and objective 

values.
● Model: CNN (ShuffleNet v2) 
● Task: algorithm selection of 32 CMAES configurations
● Data: BBOB benchmark, 124 instances per problem
● Weakness: Potential information loss when different candidate solutions are mapped to the 

same pixel.

Prager, R. P., Vinzent Seiler, M., Trautmann, H., & Kerschke, P. (2021). Towards Feature-Free Automated Algorithm Selection for Single-Objective Continuous Black-Box Optimization. In 
2021 IEEE Symposium Series on Computational Intelligence (SSCI). 2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE. 
https://doi.org/10.1109/ssci50451.2021.9660174



Fitness map features - Extension to higher dimensions

● Adaptation of the fitness map approach for high-dimensional data using dimensionality 
reduction techniques

● Task: Evaluated for the task of predicting high-level features of BBOB problem instances 
(multimodality, global structure, funnel structure, etc).

● Data: BBOB benchmark, 150 instances per problem, D = {2, 3, 5, 10}.
● Weakness: trade-off between information loss for larger dimensions or growing sparsity for 

smaller one

Seiler, M. V., Prager, R. P., Kerschke, P., & Trautmann, H. (2022). A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fitness 
landscapes. Proceedings of the Genetic and Evolutionary Computation Conference, 657–665. Presented at the Boston, Massachusetts. doi:10.1145/3512290.3528834



Fitness map features - Extension to higher dimensions

● Exploration of Point Cloud Transformers 
● Modified point cloud transformers to operate on the node of the kNN-graph; Embedding each 

candidate solution into its local neighborhood.

Seiler, M. V., Prager, R. P., Kerschke, P., & Trautmann, H. (2022). A collection of deep learning-based feature-free approaches for characterizing single-objective continuous fitness 
landscapes. Proceedings of the Genetic and Evolutionary Computation Conference, 657–665. Presented at the Boston, Massachusetts. doi:10.1145/3512290.3528834



Doe2Vec

● Process:
○ Generate candidate solutions using Latin Hypercube / Sobol sampling
○ Objective solution values are re-scaled within the range of [0,1] and used as input 

features to train the VAE
● Data: Functions generated using a random function generator
● Task: Predicting high-level properties of BBOB problem instances (multimodality, global 

structure, funnel structure, etc).

Van Stein, B., Long, F. X., Frenzel, M., Krause, P., Gitterle, M., & Bäck, T. (2023). DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis. Proceedings of the 
Companion Conference on Genetic and Evolutionary Computation, 515–518. Presented at the Lisbon, Portugal. doi:10.1145/3583133.3590609



Doe2Vec

BBOB functions and 
their most similar 
random function in 
terms of Doe2Vec 
features

Van Stein, B., Long, F. X., Frenzel, M., Krause, P., Gitterle, M., & Bäck, T. (2023). DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis. Proceedings of the 
Companion Conference on Genetic and Evolutionary Computation, 515–518. Presented at the Lisbon, Portugal. doi:10.1145/3583133.3590609



Doe2Vec 

Reconstructions of 
2D BBOB function 
using the Doe2Vec 
VAE

Van Stein, B., Long, F. X., Frenzel, M., Krause, P., Gitterle, M., & Bäck, T. (2023). DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis. Proceedings of the 
Companion Conference on Genetic and Evolutionary Computation, 515–518. Presented at the Lisbon, Portugal. doi:10.1145/3583133.3590609



Doe2Vec 

Classification 
results:
macro F1

Van Stein, B., Long, F. X., Frenzel, M., Krause, P., Gitterle, M., & Bäck, T. (2023). DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis. Proceedings of the 
Companion Conference on Genetic and Evolutionary Computation, 515–518. Presented at the Lisbon, Portugal. doi:10.1145/3583133.3590609



TransOptAS

● Process:
○ Generate candidate solutions using Latin Hypercube sampling
○ Train transformer model, which given samples of the optimization function, predicts 

algorithm performance
● Data: Functions generated using a random function generator
● Task: Algorithm selection

Cenikj, G., Petelin, G., & Eftimov, T. (2024). TransOptAS: Transformer-Based Algorithm Selection for Single-Objective Optimization. In Proceedings of the Genetic and Evolutionary 
Computation Conference Companion (pp. 403–406). GECCO ’24 Companion: Genetic and Evolutionary Computation Conference Companion. ACM. 
https://doi.org/10.1145/3638530.3654191



DeepELA

● Process:
○ Generate candidate solutions using Latin Hypercube sampling
○ Self-supervised training of transformer model to produce representations of optimization 

problems which are invariant to problem transformations
● Data: Functions generated using a random function generator
● Tasks: Predicting high-level properties of BBOB problems; Algorithm selection

Seiler M.V., Kerschke P., Trautmann H. 2024. Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single- and Multi-Objective Continuous 
Optimization Problems https://arxiv.org/abs/2401.01192



DeepELA

The input undergoes a k-Nearest-Neighborhood (kNN) embedding with the goal of 
incorporating the local neighborhood of every xi ∈ X

A token is every member of x ∈ X alongside its k nearest neighbors

Seiler M.V., Kerschke P., Trautmann H. 2024. Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single- and Multi-Objective Continuous 
Optimization Problems https://arxiv.org/abs/2401.01192



DeepELA

● Student-teacher training strategy with a shared backbone acting as a feature 
generator

● The training strategy revolves around providing distinct, augmented versions 
of the same objective instance to both the teacher and student. Here, the 
teacher generates target projections from which the student gleans insights. 

● The loss function aims to maximize the covariance between an instance’s 
online- and target projection and to minimize it between different instances

Seiler M.V., Kerschke P., Trautmann H. 2024. Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single- and Multi-Objective Continuous 
Optimization Problems https://arxiv.org/abs/2401.01192



Application: Selection of diverse benchmark problem 
instances

● Instance selection using clustering
● Instance selection using graph theory 

algorithms
○ Dominating sets
○ Maximal independent sets

● Improved benchmark datasets for training 
ML models and performing statistical 
analysis

Cenikj, G., Lang, R. D., Engelbrecht, A. P., Doerr, C., Korošec, P., & Eftimov, T. (2022, 
July). Selector: selecting a representative benchmark suite for reproducible statistical 
comparison. In Proceedings of The Genetic and Evolutionary Computation 
Conference (pp. 620-629).



Applications
Application: Per-Instance Algorithm Selection



Application: Explainable Algorithm Footprint

Nikolikj, A., & Eftimov, T. (2024, July). Comparing Solvability Patterns of 
Algorithms across Diverse Problem Landscapes. In Proceedings of the Genetic 
and Evolutionary Computation Conference Companion (pp. 143-146).

Nikolikj, A., Džeroski, S., Muñoz, M. A., Doerr, C., Korošec, P., & Eftimov, 
T. (2023, July). Algorithm Instance Footprint: Separating Easily Solvable 
and Challenging Problem Instances. In Proceedings of the Genetic and 
Evolutionary Computation Conference (pp. 529-537).



Algorithm features

● Based on source code
● Based on performance
● Based on Shapley values of performance predictive model
● Via Knowledge Graph



Algorithm features based on source code

Extracting algorithm features from source code

Props: May be used to compare different programing implementation of the algorithms and further investigate which one has better 
performance

Cons:

● Parameter Sensitivity: These features are ineffective for automated algorithm configuration or parameter tuning, as parameter 
differences are typically evident only during execution, not in the code.

● Implementation Dependency: Features extracted from the source code are highly dependent on the programming language 
and the specific implementation, leading to potential discrepancies even for the same algorithm.

Pulatov, D., Anastacio, M., Kotthoff, L., & Hoos, H. (2022, September). Opening the black box: Automated software analysis for algorithm selection. In International Conference on Automated 
Machine Learning (pp. 6-1). PMLR.



Algorithm features based on performance
Calculating Perfromance2vec

● Vector representations consists of performance metric on a set of benchmark problems.

Metrics:

● Simple: Mean or Median across multiple runs 
● Complex: Deep Statistical Comparison ranking or …

Props:

● Facilitates algorithm comparison through performance vectors.

Cons:

● Biased to the selected portfolio of benchmark problems

Eftimov, T., Popovski, G., Kocev, D., & Korošec, P. (2020, July). Performance2vec: a step further in explainable stochastic optimization algorithm performance. In Proceedings of the 2020 
Genetic and Evolutionary Computation Conference Companion (pp. 193-194).



Algorithm features based on performance

17 algorithms were compared using 22 
benchmark problems from BBOB 2009 
(dimension 10). Hierarchical clustering was 
applied to Performance2Vec embeddings 
(columns) and benchmark problem 
embeddings (rows). The matrix was 
reorganized to group similar algorithms and 
problems together. Colors indicate rankings 
from 1 (best) to 17 (worst). Ranking 
distributions for each algorithm and problem 
are shown.

Eftimov, T., Popovski, G., Kocev, D., & Korošec, P. (2020, July). Performance2vec: a step further in explainable stochastic optimization algorithm performance. 
In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion (pp. 193-194).



Algorithm features based on Shapley values of performance 
predictive models
Learning features:

● Derived from the importance 
of problems  features using 
explainability performance 
predictive methods.

● SHAP method applied for 
feature importance.

○ Calculated to determine 
the contribution of each 
feature to performance.

○ Global level: Across a 
set of problem 
instances.

○ Local level: On 
individual problem 
instances.

Nikolikj, A., Lang, R., Korošec, P., & Eftimov, T. (2022, November). Explaining differential evolution performance through problem landscape 
characteristics. In International Conference on Bioinspired Optimization Methods and Their Applications (pp. 99-113). Cham: Springer International 
Publishing.



Algorithm features based on Shapley values of 
performance predictive models

Props:
● Encodes interactions between problem features and algorithm performance.
● Used to find similar algorithm behaviors with the assumption that the predictive models are behave 

similarly.

Cons: 
● Depends on the selected problem features portfolio
● Depends on the selected benchmark problem instances

Nikolikj, A., Lang, R., Korošec, P., & Eftimov, T. (2022, November). Explaining differential evolution performance through problem landscape 
characteristics. In International Conference on Bioinspired Optimization Methods and Their Applications (pp. 99-113). Cham: Springer International 
Publishing.

30d 100d             500d



Algorithm features via Knowledge Graph

Learning  Features:

● Leverage interactions with entities in the 
optimization domain.

● Knowledge Graph (KG) methodology:
● Nodes Represent:

○ Problem Instances: 
Problem class, high-level 
features, ELA features.

○ Algorithms: Parameters.
● Linking Criteria: Algorithm solves 

problem instance within a 
specified error.

OPTION KG

Kostovska, A., Vermetten, D., Džeroski, S., Panov, P., Eftimov, T., & Doerr, C. (2023, April). Using knowledge graphs for performance prediction of 
modular optimization algorithms. In International Conference on the Applications of Evolutionary Computation (Part of EvoStar) (pp. 253-268). 
Cham: Springer Nature Switzerland.



Algorithm features via Knowledge Graphs
Embedding Representation:

● Use KG embeddings to derive algorithm and 
problem instance representations.

● Produces Algorithm Features or Problem 
Instance Features.

● Problem Instance Features:
○ Distinct from low-level landscape 

features.
○ Integrate landscape data and algorithm 

performance interaction.

Kostovska, A., Vermetten, D., Džeroski, S., Panov, P., Eftimov, T., & Doerr, C. (2023, April). Using knowledge graphs for performance prediction of 
modular optimization algorithms. In International Conference on the Applications of Evolutionary Computation (Part of EvoStar) (pp. 253-268). 
Cham: Springer Nature Switzerland.

Props:
● Encodes interactions between problem features and algorithm performance  by also involving the graph 

neighbourhood.
Cons: 

● Depends on the data stored in the KG



Selection of complementary algorithm portfolio

Kostovska, A., Cenikj, G., Vermetten, D., Jankovic, A., Nikolikj, A., Skvorc, U., ... & Eftimov, T. (2023, December). PS-AAS: Portfolio Selection for Automated Algorithm Selection in 
Black-Box Optimization. In International Conference on Automated Machine Learning (pp. 11-1). PMLR.



Selection of complementary algorithm portfolio

x-axis: the best possible loss of the portfolio = the difference between the 
portfolio's VBS and the VBS of the full set of 324 algorithms.
y-axis: the loss of the AS = the difference in performance between the algorithm it 
selects and the VBS of the portfolio it can choose from.



Problem-Algorithm Trajectory Features

● Based on internal algorithm parameters
● Trajectory-based ELA
● Iterative-based ELA
● DynamoRep
● Opt2Vec
● Local Optima Networks and variants
● Probing trajectories



Trajectory-based features Based on Internal Algorithm 
Parameters

● Calculating features:
○ Time-series features extracted from internal 

parameters that are adjust during the 
optimization process.

○ Employed the tsfresh library for feature 
extraction.

● Application: 
○ Time-series features helped identify 

configurations of modular CMA-ES variants.
○ Step size, Best-so-far value, Evolution path, 

Conjugate evolution path, Square root of 
diagonal of covariance matrix eigenvalues

de Nobel, J., Wang, H., & Baeck, T. (2021, June). Explorative data analysis of time series based algorithm features of CMA-ES variants. In Proceedings of 
the Genetic and Evolutionary Computation Conference (pp. 510-518).

Props: Capture the behaviour of the algorithm

Cons: Lack of comprehensive comparison of different time series 
features



Trajectory-based ELA features
Calculating Features: 

● ELA features calculated  from populations (candidate solutions and corresponding function values) observed 
during optimization rather than candidate solutions obtained with a standard sampling techniques.

Jankovic, A., Eftimov, T., & Doerr, C. (2021). Towards feature-based performance regression using trajectory data. In Applications of Evolutionary Computation: 
24th International Conference, EvoApplications 2021, Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings 24 (pp. 601-617). Springer 
International Publishing.



Trajectory-based ELA features
Applications:

● Fixed-Budget Performance Prediction: Applied to CMA-ES performance prediction.
● Per-Run Algorithm Selection: Used in warm-starting to decide on switching algorithm instances.

Props:
● Info about the interaction across problem and algorithms (personalization).

Cons: 
● Does not capture the longitudinal aspect of solutions within algorithm iterations.

Jankovic, A., Eftimov, T., & Doerr, C. (2021). Towards feature-based performance regression using trajectory data. In Applications of Evolutionary Computation: 
24th International Conference, EvoApplications 2021, Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings 24 (pp. 601-617). Springer 
International Publishing.



Iterative-based ELA features

Calculating Features: 

● ELA features calculated  from a single population (candidate solutions and corresponding function values), one 
iteration observed during optimization.

Applications:

● Problem and dimension being solved - < 40% accuracy.
● Online algorithm performance improvement prediction - small improvements against a time series baseline 

model.

Props:
● Info about the a single timestamp of the optimization process, can easily be combined with ML models that will 

capture the longitudinality of the search process.

Cons: 
● ELA features are sensitive on small sample sizes, which in this case is the dimension of the population.

Korošec, P., & Eftimov, T. (2024). Opt2Vec-a continuous optimization problem representation based on the algorithm's behavior: A case study on problem 
classification. Information Sciences, 680, 121134.



DynamoRep features

● Calculating Features:
○ Constructed by concatenating 

statistics from each population.
○ Statistics extracted per 

iteration:
■ Minimum, maximum, 

mean, and standard 
deviation.

■ Applied to decision 
variables and objective 
function values.

○ For an algorithm with n 
iterations on a problem 
instance of dimension d.

■ Representation size = 
4n(d + 1).

DynamoRep features generated from the trajectories of one run of the DE 
algorithm on the first instance of the first two 3d problem classes (sphere 
and ellipsoidal functions) from the BBOB benchmark suite.



DynamoRep features
● Applications:

○ Problem Classification: Detect the problem class being solved. 
○ Algorithm Classification: Identify the algorithm solving the problem instance.

● Props:
○ DynamoRep features are much cheaper to compute compared to state-of-the-art Exploratory 

Landscape Analysis (ELA) features.
○ Despite lower computational cost, DynamoRep features yield results comparable to those achieved 

with ELA features, calculated at each iteration of the algorithm's execution.

● Cons:
○ Limited expressiveness
○ Representation size grows with number of iterations and problem dimension, may require 

dimensionality reduction as preprocessing step

Cenikj, G., Petelin, G., Doerr, C., Korošec, P., & Eftimov, T. (2023, July). Dynamorep: trajectory-based population dynamics for classification of black-box 
optimization problems. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 813-821).



Opt2Vec features
Learning Features:

● Analyze populations considered by 
an algorithm in each iteration.

● Scale candidate solutions and 
objective function values.

● Use autoencoders to embed 
information from each population 
(single iteration).

Korošec, P., & Eftimov, T. (2024). Opt2Vec-a continuous optimization problem representation 
based on the algorithm's behavior: A case study on problem classification. Information Sciences, 
680, 121134.



Opt2Vec features
Applications:

● Problem and dimension classification
● Online algorithm performance improvement prediction - improvements against a time series baseline model 

and iterative ELA.

Props:

● Capture features specific to parts of the search space explored at a particular iteration.
● Crucial for optimizing dynamic algorithms efficiently.
● First representation that takes into consideration the optimization problem dimension

Cons:

● Depends on the data used to  train the autoencoder 

Korošec, P., & Eftimov, T. (2024). Opt2Vec-a continuous optimization problem representation based on the algorithm's behavior: A case study on problem 
classification. Information Sciences, 680, 121134.



Local Optima Networks (LONs) and variants
● LONs Overview:

○ Simplified model for discrete fitness 
landscapes.

○ Nodes represent local optima; edges represent 
search transitions via exploration operators.

○ Capture the number, distribution, and 
connectivity patterns of local optima.

● Variants:
○ Monotonic LONs (MLONs): Only consider 

transitions with non-deteriorating fitness.
○ Compressed MLONs (CMLONs): Group 

nodes with the same fitness in MLONs to 
account for neutrality.

○ Search Trajectory Network (STNs): Nodes 
represent different states in the optimization 
trajectory, not limited to local optima

LON of Rastrigin function

Adair, J., Ochoa, G., & Malan, K. M. (2019, July). Local optima networks for continuous fitness landscapes. In Proceedings of the Genetic and Evolutionary 
Computation Conference Companion (pp. 1407-1414).



Local Optima Networks (LONs) and variants

● Applications:
○ CMLONs used to visualize and analyze 24 BBOB problem classes across dimensions.
○ Network metrics and dimensionality reduction used to compare problems

● Props:
○ Nice for visualization purposes

● Cons:
○ Costly to compute

Ochoa, G., Malan, K. M., & Blum, C. (2020, April). Search trajectory networks of population-based algorithms in continuous spaces. In International 
Conference on the Applications of Evolutionary Computation (Part of EvoStar) (pp. 70-85



Probing trajectories
● Learning features :

○ Generate short trajectories by 
running an algorithm on a 
problem instance.

○ Track current fitness or 
best-so-far fitness across 
sequential iterations.

○ Extract time-series features 
from trajectories using the 
tsfresh library.

○ Or concatenate the tracked 
values from sequential 
iterations.

Renau, Q., & Hart, E. (2024, March). On the Utility of Probing Trajectories for Algorithm-Selection. In International Conference on the Applications of 
Evolutionary Computation (Part of EvoStar) (pp. 98-114). Cham: Springer Nature Switzerland.

Probing trajectories similarity



Probing trajectories

● Applications
○ Algorithm selector - comparable to trajectory ELA features

● Props:
○ Potential to be utilized for per-run algorithm selection

● Cons: 
○ Recently proposed, required more evaluations

Renau, Q., & Hart, E. (2024, March). On the Utility of Probing Trajectories for Algorithm-Selection. In International Conference on the Applications of 
Evolutionary Computation (Part of EvoStar) (pp. 98-114). Cham: Springer Nature Switzerland.



Application: Per-run Algorithm Selection

Kostovska, A., Jankovic, A., Vermetten, D., de Nobel, J., Wang, H., Eftimov, T., & Doerr, C. (2022, August). Per-run algorithm selection with warm-starting using 
trajectory-based features. In International Conference on Parallel Problem Solving from Nature (pp. 46-60). Cham: Springer International Publishing.

Vermetten, D., Wang, H., Sim, K., & Hart, E. (2023, April). To switch or not to switch: predicting the benefit of switching between algorithms based on trajectory 
features. In International Conference on the Applications of Evolutionary Computation (Part of EvoStar) (pp. 335-350). Cham: Springer Nature Switzerland.



Application: Trajectory features for DAC with Reinforcement 
Learning

Train 
instance 
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🤖 Select.
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Data
📃 RL

Policy
🤖Train 

RL 
Agent

Eval.
RL 

Agent

select inst.
with
SELECTOR

Train 
RL 

Agent

Standard training pipeline Instance selection Retraining

● From full problem instance set to subselection by using trajectory features of the reinforcement 
agents

● Raw and tsfresh features calculated using actions and rewards
● Better generalization of the RL for DAC on test instances

Benjamins, C., Cenikj, G., Nikolikj, A., Mohan, A., Eftimov, T., & Lindauer, M. (2024, July). Instance Selection for Dynamic Algorithm Configuration with 
Reinforcement Learning: Improving Generalization. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 563-566).



Landscape of studies grouped based on different features

Cenikj, G., Nikolikj, A., Petelin, G., van Stein, N., Doerr, C., & Eftimov, T. (2024). A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective 
Continuous Optimization. arXiv preprint arXiv:2406.06629.



Open Challenges

- Sensitivity to problem transformations, sample size and sampling method
- Problem benchmarks
- Generalizability



Open Challenges: Sensitivity

- Some features are sensitive to transformations of the problem (scaling/shifting)
- Most of the features are sensitive to the size of the sample and the method of sampling the 

candidate solutions
- Holistic approach looking including different features portfolio



Open Challenges: Problem Benchmarks

- Lack of problem benchmarks which are representative of real-world problems, and have sufficient 
diversity and size for training ML models

- The most commonly used BBOB benchmark contains only 24 problems, from which various 
instances can be generated (low diversity)

- Problem generators are being explored



Open Challenges: Generalizability

Petelin, G., Cenikj, G. (2024). On Generalization of ELA feature groups. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '24 Companion). 
Association for Computing Machinery, New York, NY, USA, 419–422. https://doi.org/10.1145/3638530.3654124



Open Challenges: Generalizability



Questions


