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Generalization Ability of Feature-based
Performance Prediction Models:

A Statistical Analysis across Benchmarks
Ana Nikolikj, Ana Kostovska, Gjorgjina Cenikj, Carola Doerr, and Tome Eftimov

Abstract—This study examines the generalization ability of
algorithm performance prediction models across various bench-
mark suites. Comparing the statistical similarity between the
problem collections with the accuracy of performance prediction
models that are based on exploratory landscape analysis features,
we observe that there is a positive correlation between these two
measures. Specifically, when the high-dimensional feature value
distributions between training and testing suites lack statistical
significance, the model tends to generalize well, in the sense
that the testing errors are in the same range as the training
errors. Two experiments validate these findings: one involving
the standard benchmark suites, the BBOB and CEC collections,
and another using five collections of affine combinations of BBOB
problem instances.

Index Terms—meta-learning, single-objective optimization,
generalization, performance prediction

I. INTRODUCTION

Automated algorithm configuration [1], [2] and selec-
tion [3], [4] are gaining a lot of attention in evolutionary
computation. In most cases, they are performed by using
supervised Machine Learning (ML) predictive models that
use the feature representation of a problem instance (i.e.,
its characteristics) as input data and predict the performance
of a specific algorithm (instance) achieved on that problem
instance. However, one of the main drawbacks presented
in these learning tasks is the low generalization ability of
the predictive models. That is, the models tend to fail to
provide accurate predictions for problem instances whose
feature representation is underrepresented or not presented in
the training data. For example, Škvorc et al. [5] showed that
a random forest (RF) model trained on the BBOB suite of
the COCO environment [6] yields poor results when tested on
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with Computer Systems Department, Jožef Stefan Institute, 1000 Ljubljana,
Slovenia.

Ana Kostovska (Email:ana.kostovska@ijs.si) is with the Department of
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the artificially generated problem instances from [7] and vice-
versa. Kostovska et al. [8] show that an automated algorithm
selector which is based on performance prediction models
trained on the BBOB benchmark suite, cannot generalize
on problem instances that are part of the Nevergrad’s YAB-
BOB [9] benchmark suite.

By using feature representation of problem instances, sev-
eral studies [10]–[15] perform complementary analyses of dif-
ferent benchmark suites in the feature space. However, all the
analyses are descriptive, trying to understand the similarities
and differences between the problem instances across different
benchmark suites without quantifying the similarities on a
benchmark suite level. Nikolikj et al. [16] have explored how
well a performance predictive model can adapt based on the
benchmark suite coverage. Empirical meta-features for each
suite have been created by clustering instances across all suites
and examining their similarities. The findings indicated that
when two benchmark suites share similar empirical coverage,
an ML model trained on one can perform well on the other.

Our contribution: In this study, we investigate the gener-
alization ability of a performance prediction model through a
statistical measure assessing the similarity of coverage among
benchmark suites. Unlike the previous published empirical ap-
proach, which involved condensing high-dimensional bench-
mark data into a lower-dimensional space using clustering to
define meta-representations for each suite, we directly utilize
the raw benchmark suite data from the high-dimensional space
– representing all instances with meta-features. Employing a
statistical test allows us to compare suite coverage distribu-
tions in their original high-dimensional space without losing
information through conversion to a lower-dimensional space,
as done previously. To assess patterns between the feature
landscape and performance realms, we trained a predictive
model for a specific optimization algorithm on one benchmark
suite and evaluated it on another. The results imply that
statistical insights from the feature landscape can anticipate
how well a model extends to various suites. When the
high-dimensional feature landscape distributions of training
and testing suites are not statistically significant, the model
archives good performance on the testing suite preserving an
error within the training error range. These conclusions arise
from two experiments: one encompassing typical benchmark
suites for algorithm evaluation and another that employed
sampling to generate five new artificial benchmark suites from



problem instances.
Outline: Section II presents an overview of complementary

analyses performed across different benchmark suites. Sec-
tion III introduces the workflow used to estimate and evaluate
the generalization ability of a predictive model across different
benchmark suites. The experimental design is explained in
Section IV, followed by a discussion of key results in Sec-
tion V. Section VI concludes the paper.

Data and code availability: The data and the code involved
in this study are available at [17].

II. RELATED WORK

Most of the studies performed in the direction of per-
formance prediction of single-objective black-box optimiza-
tion algorithms rely on Exploratory Landscape Analysis
(ELA) [18] to calculate features that describe the properties
of the problem instances. ELA is a set of mathematical and
statistical techniques that use a sample of candidate solutions
from the problem instance decision space, generated using
a certain sampling technique. They can be calculated using
the R programming language package called “flacco” [19].
A recent version of the package has also been published in
Python [20]. These features have been used in several studies
for complementary analysis between the benchmark suites.

Zhang and Halgamuge analyze the similarity of continu-
ous problem instances by representing them with algorithm
performance [10]. The results indicate that the problem in-
stances from different problem classes exhibit similarities in
performance and that low-dimensional instances could also
share performance similarities with their high-dimensional
counterparts. Škvorc et al. [11] analyze the complementary
of BBOB and CEC benchmark suites by representing the
problem instances using ELA features and further visualizing
them with the t-distributed stochastic neighbor embedding
(tSNE) method [21] in lower dimensions. The results show
that the benchmark suites have different distributions over
the landscape feature space. Muñoz and Smith Miles [12]
use genetic programming to generate new problem instances
with controllable characteristics to increase the coverage of
the problem landscape. The results demonstrate that the newly
generated problem instances are more challenging for the
algorithms to solve than the well-known benchmark suites.
Eftimov et al. [13] perform a correlation analysis of the
projection of the ELA feature representations into the sub-
space obtained by a singular value decomposition, between
the BBOB problem instances and the HappyCat and HGbat
problem instances. Cenikj et al. [14] present an approach,
SELECTOR, for selecting diverse problem instances based
on their ELA feature representation. They evaluate different
sampling heuristics, one based on clustering and two based
on graph embeddings. The results show that regardless of
the choice of sampling heuristic, the approach leads to a
reproducible statistical comparison of algorithm performance.
Long et al. [15] have provided a detailed analysis of landscape
properties and algorithm performance across BBOB problem
instances.

Previous studies have explored the complementarity of
benchmark suites empirically, without directly linking it to
predictive model generalization. A recent study found that
when benchmark suites share similar empirical coverage [16],
training a model on one suite yields good generalization on
another. However, this depends on the meta-representation
used. Our study addresses this by examining a statistical
measure based on raw problem landscape data.

III. STATISTICAL MEASURE FOR ACCESSING SIMILARITY
OF BENCHMARK SUITES

Consider a scenario involving m benchmark suites, each
comprising varying numbers of problem instances. From this
pool, one of the m suites is selected to serve as the training
set for the supervised ML predictive model (M), while the
remaining m − 1 suites are utilized for testing purposes. To
evaluate the model M’s generalization ability across diverse
benchmark suites used for testing, we outline the following
workflow:

1) Establishing a unified meta-representation at the individual
problem instance level involves characterizing instances across
all benchmark suites using a shared set of n meta-features,
describing their landscape properties. This approach ensures
that all selected problem instances are mapped into the same
n-dimensional vector space. With this representation, each
benchmark suite can be represented as a matrix BSk×n, where
k is the number of instances that are part of a benchmark suite
(which can be different for different benchmark suites).

2) Once each benchmark suite is represented by its matrix,
we can use a statistical test to compare the high-dimensional
coverage distributions between two of them (one used for
training and the other for testing). To this end, a statistical
test for comparing high-dimensional distributions should be
utilized. A category of consistent, distribution-free tests appli-
cable to high-dimensional spaces relies on nearest neighbors
using the Euclidean distance metric [22], [23]. Szekely and
Rizzo introduced the multivariate E test, demonstrating its
universal consistency against all alternatives (not necessarily
continuous) possessing finite second moments. Notably, the
computational complexity of this test remains independent
of dimensionality or sample size, making it a formidable
contender among nearest-neighbor tests. Findings highlighted
in [24] suggest that the multivariate E test stands out as one of
the most robust tests available for analyzing high-dimensional
data, which makes it a good choice for our analysis.

Let us assume that two benchmark suites are involved,
Pk1×n and Qk2×n, where p1, p2, . . . , pk1 and q1, q2, . . . , qk2

are problem instances represented by n landscape meta-
features (i.e., vectors in Rn) that belong to the two benchmark
suites respectively. The multivariate E test statistic between



them is defined as:
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The initial double sum in the equation above indicates the
distance between problem instances from the benchmark
suites, while the subsequent double sums delineate the internal
distances within each benchmark suite (P and Q). The test
statistic follows a degenerate two-sample V-statistic [25] –
readers interested in the mathematical details of the test are
invited to confer [24].
3) The outcome of this comparison yields a p-value, serving as
an indicator to ascertain whether a difference exists or not in
the coverage distribution between the two benchmark suites. If
there is no statistical difference, there is a high likelihood that a
performance predictive model trained on one of the benchmark
suites can be also utilized and generalize the results on the
other benchmark suite and vice-versa.

IV. EXPERIMENTAL DESIGN

We begin this section by detailing the benchmark suites
chosen for conducting two experiments. Additionally, we
include details on the performance and problem landscape data
and we provide details on training the performance prediction
models.

Benchmark suites: As mentioned before, we conduct two
experiments where we perform statistical analysis of the
generalization ability of the performance prediction models
across various benchmark suits.

First experiment: The first experiment statistically assesses
the generalization ability of predictive models across four
widely-used benchmark suites: BBOB (COCO) [6], CEC 2013
[26], CEC 2014 [27], and CEC 2015 [28]. BBOB comprises
24 problem classes, from which we use five instances each.
The CEC 2013, CEC 2014, and CEC 2015 benchmark suites
contain 28, 30, and 15 problems, respectively. Finally, for
CEC 2013, we ended up with 27 problems. This is because
three problems (specifically, the 3rd, 7th, and 20th problems)
were excluded due to missing data arising from the landscape
feature calculation process, as detailed later in this section.
The experiment considers problems with D = 10 numerical
decision variables.

Second experiment: The second set of experiments uses
statistical analyses to assess how predictive models generalize
on artificially generated benchmark suites. Demonstrating the
impact of a more strategic training data selection, we generate
these suites by using instances created as affine recombinations
of pairs of BBOB problem instances, as introduced in [29].
The experiment focuses on a fixed problem dimensionality of

D = 5. This choice allows us to re-use available performance
data.

To ensure a representative and diverse set of problem
instances from those generated through affine recombinations,
we apply the SELECTOR methodology [14]. This involves
converting benchmark problem instances into a graph format,
where nodes represent individual problems and an edge is cre-
ated if the cosine similarity between their meta-representations
is 0.9 or higher. The Maximal Independent Set (MIS) al-
gorithm [30] is used to select instances, ensuring diversity
by making sure selected instances have a pairwise cosine
similarity less than 0.9. Since the MIS algorithm is stochastic,
we repeat the process five times, resulting in five benchmark
suites: BS1, BS2, BS3, BS4, and BS5. They contain 56, 57,
56, 55, and 53 problem instances respectively, with minimal
overlap between instances across the benchmarks. The sole
instance of overlap occurs between the first and second bench-
mark suites and between the third and fifth benchmark suites,
each involving a single problem instance.

Performance data: For the first experiment, we analyze
performance data from a portfolio of three algorithms, the
Covariance Matrix Adaption Evolutionary Strategy (CMA-
ES) [31], the Real Space Particle Swarm Optimization
(PSO) [32], and of Differential Evolution (DE) [33], respec-
tively. Their implementations are taken from the Nevergrad
library [34], with each algorithm being configured to its default
hyper-parameter setting. We fix both the budget and the target.
The computational budget for executing the algorithms is
limited to 100,000 function evaluations. We also set a target
precision threshold at 10−8. The algorithm terminates upon
either exhausting its allocated budget or when achieving the
target precision, defined as the absolute difference f(xbest)−f∗

between the quality of the best-found solution xbest and that of
a global optimum f∗ := infx f(x). The experiments are run
using the IOHexperimenter [35] environment, for convenience
of accessing the BBOB functions and for logging the search
trajectories in a standardized way. Due to the stochastic nature
of the algorithms, 30 independent runs of each algorithm on
each problem instance have been performed. Finally, the me-
dian target precision across 30 repetitions has been calculated.

In the second experiment, the same algorithms are used,
this time evaluated on the affine functions and with a budget
of 10,000 function evaluations. Similar to the first experiment,
25 independent runs have been performed of each algorithm
on each problem instance and we calculate the median target
precision across 25 repetitions.

Problem landscape data: The landscape characteristics of
the problems are represented using publicly available ELA
features. Specifically, for the first experiment, we utilize the
64 ELA features available from [36]. These feature values
were computed using the Improved Latin Hypercube Sampling
(iLHS) method [37], with a sample size of 800D = 8, 000 and
repeated 30 times. The median value of each feature across
30 repetitions was calculated and used. The choice of a larger
sample size was deliberate to minimize the randomness inher-
ent in the feature extraction process. For the second experi-



TABLE I: Comparative statistical analysis of high-dimensional
feature-space distributions between paired benchmark suites,
scaling based on the collection listed in the row. Presenting
p-values; values ≤ .005 are marked with an *.

BBOB CEC2013 CEC2014 CEC2015
BBOB / 0.005∗ 0.005∗ 0.005∗

CEC2013 0.035∗ / 0.105 0.005∗

CEC2014 0.005∗ 0.245 / 0.690
CEC2015 0.005∗ 0.205 0.490 /

ment, we utilized the 14 ELA features available from [29]. The
calculation of these feature values was carried out employing
Sobol’ sampling, with a sample size of 250×D = 1, 250, and
repeated 30 times. Same as the first experiment, the median
value of each feature across 30 repetitions was calculated and
used.

Comparing benchmark suite distribution: The statistical
comparisons have been performed using the R programming
language. To compare the distributions of high-dimensional
data the multivariate E test is used, which is a part of the
“energy” package [38].

Predictive models: For each benchmark suite, we train
a Random Forest (RF) regression model to predict the al-
gorithm’s performance, measured by the target precision
achieved with the 100,000 (first experiment) and 10,000
function evaluations (second experiment), respectively. Instead
of predicting the median target precision for each problem
instance in the original space, we train the models in log space.
This is the value we are predicting with the ML models. We
use the default implementation of the RF regressor from the
scikit-learn package in Python. The performance of each of the
trained models is evaluated on the other benchmark suites (that
have not been used for training the model) and we report the
median absolute error (MDAE) across all problem instances
in the test benchmark suite. We analyze the obtained results to
examine whether the patterns identified in the coverage matrix
are similarly reflected in the performance of the automated
algorithm performance prediction model. For this experiment,
the feature values are scaled by subtracting the mean and
scaling to unit variance, using the scikit-learn package. The
parameters used for the scaling are learned using the training
suite and then applied to the test suite.

V. RESULTS AND DISCUSSION

A. First experiment

Table I displays the p-values obtained from the statistical
comparison of feature-space distributions across various pairs
of benchmark suites. Here, we only consider the feature
space of the problem, disregarding the performance of the
algorithms.

Note also that we consider here pairwise comparisons,
not multiple ones. The comparison matrix is not symmetric,
caused by the scaling procedure explained above (which
depends on the training set, i.e., here the set in the row).

From this table, we observe that the feature-space distribu-
tion of the BBOB benchmark suite exhibits statistical signifi-

TABLE II: The MDAE during training of the RF model within
every benchmark suite for the algorithms CMA-ES, PSO, and
DE.

Algorithm BBOB CEC2013 CEC2014 CEC2015
CMA 0.033 0.261 0.234 0.228
PSO 0.055 0.173 0.223 0.208

DE 0.033 0.231 0.201 0.279

cance when (individually) compared to CEC2013, CEC2014,
and CEC2015, respectively, suggesting that a performance
predictive model trained on BBOB data will likely yield higher
errors than the training error when utilized for predictions
on CEC2013, CEC2014, and CEC2015. For the CEC2013
suite, no statistical significance is observed when compared
to CEC2014, however, statistical significance has been noted
when compared to the BBOB and the CEC2015 suites. These
findings suggest that a model trained using CEC2013 will
demonstrate good predictive performance when applied to
CEC2014. However, the prediction errors are likely to in-
crease when this model is used for predictions on BBOB and
CEC2015 benchmark suites. For CEC2014 and CEC2015,
please confer the table.

To determine if the statistical patterns observed in the
feature landscape space are consistent in the performance
space, Fig 1 showcases the MDAE (calculated as the median of
the absolute differences between the predicted values and the
ground truth value (i.e., log from the median target precision))
of the RF predictive model. This model is trained using one
benchmark suite indicated in the rows of the heatmap and
tested on the remaining three benchmark suites (columns
of the heatmap). This analysis is conducted independently
for three algorithms (CMA-ES, DE, and PSO). Additionally,
Table II displays the training errors of the RF models for each
benchmark suite individually, so we can further analyze if the
testing errors are in the same ranges as the training errors.

Here are the outcomes derived from assessing performance
predictive models for three algorithms across individual bench-
mark suites:
BBOB – The models trained on BBOB consistently yield
larger errors (compared to the training errors) across all
benchmark suites for PSO and CMA-ES, aligning with the
anticipated outcomes based on the feature space observations.
However, for DE, the errors display variability across the
benchmark suites, a trait that might be influenced by the
specific behavior of the DE algorithm. CEC2013 – Training
models on CEC2013 result in comparable testing errors across
all benchmark suites and algorithms. However, in line with
the statistical pattern observed in the feature space indicating
smaller errors on CEC2014, it is not clearly visible. CEC2014
– The models trained using CEC2014 exhibit anticipated larger
errors when evaluated on BBOB. Regarding evaluations on
CEC2015, all algorithms showcase smaller errors, in line
with the statistical patterns observed in the feature space.
Specifically, when evaluating on CEC2013, the PSO and
DE algorithms reflect the statistical pattern observed in the



(a) CMA (b) DE (c) PSO

Fig. 1: Heatmap showing the MDAE of an RF model when predicting the performance of a) CMA, b) DE, and c) PSO, on
BBOB, CEC2013, CEC2014, CEC2015, and CEC2017. Rows indicate the training benchmark suite and columns indicate the
benchmark suite of the model was evaluated on.

(a) bbob (b) cec2013 (c) cec2014 (d) cec2015

(e) bbob (f) cec2013 (g) cec2014 (h) cec2015

(i) bbob (j) cec2013 (k) cec2014 (l) cec2015

Fig. 2: Box-plots showing the AE (Absolute error) of an RF model when predicting the performance of a-d) CMA, e-h) DE,
and i-l) PSO. Subplot titles name the training benchmark suite, with one box plot showing train AEs and others depicting
corresponding test AEs.

feature space, whereas CMA exhibits errors more akin to
those obtained on BBOB, differing from the feature space
pattern. CEC2015 – Across all three algorithms, we observe
a consistency between the outcomes depicted in the landscape
feature space and the evaluation of predictive models. Lower
errors are evident in CEC2013 and CEC2014, whereas they
notably rise in BBOB.

To support our findings, instead of using MDAE (aggregated
errors across the entire test suite), we have included box
plots displaying absolute errors for individual instances from

a specific set of an RF model predicting the performance of
CMA, DE, and PSO. Subplot titles denote the benchmark suite
used for model training, with one box plot illustrating training
absolute errors and the others depicting corresponding test
absolute errors (Fig 2).

The statistical patterns observed in the feature space for
BBOB, CEC2014, and CEC2015, generally align with the
evaluation of algorithm prediction models. However, this ex-
pectation does not hold as strongly for the CEC2013 bench-
mark suite. Additionally, in examining this result, we assess



the performance distribution of individual algorithms within
each benchmark suite. This involves conducting separate pair-
wise comparisons of performance distributions across diverse
benchmark suites for each algorithm. Fig. 3 displays the p-
values resulting from comparing an algorithm’s performance
distributions by using the two-sample Kolomogorov-Smornov
test across pairs of benchmark suites. Each row and column
represent benchmark suites used in the pairwise comparison.
The heatmaps are in the upper triangle due to the symmetric
nature of the comparisons.

If we revisit the CEC2014 case study, the statistical obser-
vation in the feature landscape space compared to CEC2013
suggests that these models exhibit generalization ability. How-
ever, this is true for the PSO and DE, while it is not in the
case for CMA. Upon analyzing the performance distribution
comparison, we observe that there is no statistically significant
difference between the performance distributions of DE across
CEC2014 and CEC2013, the same is true for PSO. However,
examining CMA reveals a statistical significance in its per-
formance distributions between CEC2014 and CEC2013. This
outcome indicates that despite the statistical similarity found
in the feature landscape space of these benchmark suites,
such similarity is not evident in the performance space of
the CMA algorithm. This outcome suggests that the chosen
ELA feature portfolio might lack the capability to detect varied
CMA behavior, which is not the case for DE and PSO. In the
future, we aim to identify specific meta-features tailored to
individual algorithms or their respective families. This could
involve conducting feature selection on the ELA features or
creating and assessing alternative landscape features [39], [40].

B. Second experiment

Table III illustrates the p-values acquired through the pair-
wise comparisons between two selected benchmark suites,
where one suite is utilized for training and the other for testing
the model. The outcomes revealed no statistically significant
differences among the pairs, as anticipated. This aligns with
our expectations because all chosen benchmark suites were
sampled using the same technique – SELECTOR. Based on
the results, we anticipate that models trained on one selected
benchmark suite will demonstrate good generalization ability
when tested on another selected benchmark suite.

TABLE III: Comparative statistical analysis of high-
dimensional feature-space distributions between paired bench-
mark suites artificially sampled from AFFINE problems (pre-
senting p-values).

BS1 BS2 BS3 BS4 BS5
BS1 / 0.86 0.97 0.56 0.92
BS2 0.90 / 0.47 0.51 1.00
BS3 0.99 0.88 / 0.94 0.95
BS4 0.98 0.89 0.99 / 0.97
BS5 0.93 1.00 1.00 0.98 /

Fig 4 presents the MDAE of an RF model in predicting the
performance of CMA, DE, and PSO across benchmark suites
selected from the affine problem instances. Rows represent the
training benchmark suite, while columns indicate the evaluated

benchmark suite for the model. Based on the findings pro-
vided, we can infer that consistent smaller errors are observed
among the tested pairs of benchmark suites, mirroring the
outcomes showcased in the feature landscape space (i.e., the
high-dimensional distributions within the feature landscape
space of the benchmark suites show no statistical signifi-
cance.). Moreover, to illustrate that the testing errors are in
similar ranges with the training errors, Table IV displays the
training errors of the RF model within each artificially selected
benchmark suite from the affine problems for the algorithms
Diagonal CMA, PSO, and DE.

TABLE IV: The errors during training of the RF model within
every benchmark suite artificially sampled from the affine
problems for the algorithms Diagonal CMA, PSO, and DE.

Algorithm SB1 SB2 SB3 SB4 SB5
CMA 0.0619 0.051 0.0890 0.039 0.046
PSO 0.098 0.076 0.081 0.114 0.095

DE 0.045 0.022 0.046 0.044 0.043

C. Discussion

Since the data used in this study has been taken from
another study, we provide a discussion about the results
obtained here and the previous results reported. The main
difference is the measures used to estimate the generalization
ability. In the other study, empirical measures have been
introduced. All problem instances from various benchmark
suites are aggregated, represented by the same meta-features,
and subsequently clustered. To evaluate the similarity among
the benchmark suites, a coverage matrix is computed. This
matrix quantifies the percentage of problem instances from
each suite represented within each cluster. Next, it establishes
the benchmark suite meta-representation by utilizing the dis-
tribution percentages of instances from each benchmark suite
across all clusters. This facilitates the comparison between
the meta-representations of two benchmark suites by using
similarity measures (e.g., cosine similarity), where one is
utilized to train the performance predictive model and the
other for testing purposes. Here, instead of using empirical
measures, statistical measures are used to estimate the gener-
alization ability. This means that a high-dimensional statistical
test is utilized to compare the raw benchmark suite data
– all problem instances represented by their meta-features,
without sacrificing information by converting it into a lower-
dimensional space, as was done in the empirical case.

When empirical measures are employed [16], it becomes
evident that all CEC benchmark suites exhibit substantial
similarity, displaying minimal differences in the feature space.
However, employing innovative statistical measures enables
the identification of finer disparities among them, enhancing
the accuracy of our expectations regarding model performance
errors. Looking ahead, as these measures possess distinct
natures and are not directly comparable, employing ensemble
techniques can combine their perspectives, leveraging their
differing views of the same data.



(a) CMA (b) DE (c) PSO

Fig. 3: Heatmap that visualizes the p-values obtained by comparing an algorithm’s performance distributions among pairs
of benchmark suites (a) CMA, b) DE c) PSO). Rows and columns depict benchmark suites in paired comparisons. Upper
triangle heatmaps show symmetry. A two-sample Kolmogorov-Smirnov test (p-value ¡ 0.05) indicates significant differences
in algorithm performance between benchmark suites.

(a) CMA (b) DE (c) PSO

Fig. 4: Heatmap showing the MDAE of an RF model when predicting the performance of a) CMA, b) DE, and c) PSO on
the benchmark suites sampled from the affine problems. Rows indicate the training benchmark suite and columns indicate the
benchmark suite of the model was evaluated on.

VI. CONCLUSIONS

This study examined how well a performance predictive
model can adapt to new scenarios. We used statistical tests
to compare suite coverage distributions in their original high-
dimensional feature landscape. By training a model on one
benchmark suite and testing it on another, we found that
statistical similarities in feature landscape patterns can indicate
the model’s generalizability. When the distributions between
training and testing suites show no significant difference,
the model effectively generalizes, maintaining a similar error
range.

In our future work, we plan to conduct a comprehensive
experiment using a wider range of algorithms, including
Nevergrad [34], to see if the insights gained from the feature
landscape analysis extend to broader algorithmic families.
Our study demonstrated that performance prediction models

built on ELA features effectively generalize across the three
tested algorithms. Next, we will explore additional feature
landscape meta-features, such as topological features [39] and
those derived from deep neural network architectures [40],
comparing them with ELA features to enhance predictive
accuracy. Finally, we aim to evaluate these measures in an
active learning setting, using them to determine if a model is
suitable for new instances or if further training and fine-tuning
are necessary.
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