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Abstract
Research on the metabolic physiology of groundwater species, particularly regarding oxygen consumption 
rates (OCR), has made significant advancement, revealing valuable insights into the adaptations of exclusively 
groundwater-dwelling (stygobitic) species. However, a comprehensive understanding of how these metabolic 
rates scale with body mass and respond to temperature changes remains elusive. This study aims to bridge this 
gap by reviewing published data on OCR across a variety of groundwater organisms to elucidate patterns of 
metabolic rates in relation to body size and temperature. We employed a combination of literature review and 
quantitative analyses, focusing on the allometric scaling of OCR with body weight and the effect of tempera-
ture on metabolic rates. Our findings indicate that OCR scales with body weight in an allometric pattern, 
with an inter-species slope of 0.80, suggesting non-isometric scaling. Furthermore, our analysis showed that 
stygobitic species’ metabolic rates are less responsive to warming than those of non-stygobitic species at low to 
moderate temperatures. However, at higher temperatures, metabolic rates in stygobitic species decline faster 
than in non-stygobitic taxa, highlighting a potential vulnerability to global climate change. This study contrib-
utes to our understanding of the metabolic strategies of groundwater species, underscoring the need for further 
research to fully grasp the eco-evolutionary implications of these findings for groundwater conservation.
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Introduction

Metabolism encompasses the entirety of biochemical reactions within an organism, es-
sential for sustaining cellular functions and the whole biosphere (Braakman and Smith 
2013). This process, which involves deriving energy from fuel molecules, is inherently 
inefficient: a portion of the energy is invariably converted into heat, a form not prac-
tically utilizable (Balaban 2020). Endotherms, such as mammals and birds, harness 
and regulate metabolic heat to maintain stable internal body temperatures and peak 
sustained performance (Ruben 1995). In contrast, ectotherms, including invertebrates, 
reptiles, amphibians, and fish, do not rely on metabolic heat for temperature regulation, 
leading to internal temperatures that fluctuate with environmental changes (Angilletta 
2009). The metabolic rate is the energy an organism consumes over a specific period 
of time, quantifiable through calorimetry by measuring an organism’s heat loss. This 
measurement can be expressed in joules (J), calories (cal), or kilocalories (kcal) per unit 
of time (Kaiyala and Ramsay 2011). Alternatively, it can be assessed through respirom-
etry, which calculates the oxygen consumption rate as the volume of oxygen consumed 
over time (Lampert 1984). Oxygen consumption rates (OCR) vary widely across taxa, 
and can be influenced by factors such as organism’s body mass (Gillooly et al. 2001), 
environmental conditions (e.g., temperature; Hernández-León and Ikeda 2005) and 
activity level (Culver and Poulson 1971). Standard OCR are a proxy of standard meta-
bolic rates (SMR), which refer to the metabolic rates measured under conditions of 
rest, tranquility, absence of stress, and fasting (Angilletta 2009). Typically, SMR scale 
with body mass in both endothermic and ectothermic species (Gillooly et al. 2001). 
This relationship is represented by the allometric law (West et al. 1997) in equation 1:

SMR = SMR0 × Mb (1)

Here, SMR0 is a constant that is characteristic of the kind of organism, M is the 
organism’s body mass, and b is the scaling exponent dictating the relationship’s slope. 
The equation 1 can be conveniently log-transformed as in equation 2:

log(SMR) = logSMR0 + blogM (2)

where: b > 1 indicates that SMR increase at a faster rate than mass; b < 1 indicates that 
SMR increase at a slower rate than mass and b = 1 indicates isometry, i.e. SMR scale 
proportionally with mass. For organisms to stay in energy balance, metabolism can 
only vary in proportion to their surface area (Rubner 1883). Kleiber (1932) experi-
mentally found a (close to) 3/4 exponent to describe the relationship between meta-
bolic rate and body mass. Notably, many invertebrate taxa exhibit a mass exponent b 
in the range of 0.66–0.80, a shared characteristic whose underlying reason remains 
elusive (Hoppeler and Weibel 2005).

Temperature has profound effects on chemical and biochemical reactions and aero-
bic metabolism at the cellular level, thereby shaping the metabolic rates of ectotherms 
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(Schulte et al. 2015). Within permissive thermal ranges, which are temperatures condu-
cive to long-term survival, an increase of +10 °C often leads to a doubling or tripling of 
metabolic rates (Dell et al. 2011). This effect can be quantified using Q10 (the factorial 
change in metabolic rates resulting from a 10 °C increase) or by Ea (Arrhenius activa-
tion energy; Cossins and Bowler 1987). For most ectotherms, Ea typically ranges from 
0.5 to 0.8 eV (= 48.26 to 77.22 kJ/mol; Q10 = 2 or 3), equating to a 7–12% increase in 
metabolic rates per degree Celsius (Dell et al. 2011). Initially, in ectotherms, warming 
positively affects physiological processes like developmental speed, mobility and egg 
production (MacLean et al. 2019). However, excessive warming accelerates aging and 
senescence, and beyond a critical temperature threshold, heat-related failure can occur 
rapidly, with severe consequences (Brown et al. 2004). The physiological causes of heat 
failure in ectotherms, potentially including protein denaturation, oxygen limitation, cel-
lular excitability loss and membrane dysfunction, are not fully understood (Brown et al. 
2004). The severity of temperature stress depends on both the temperature and duration 
of exposure, with thermal tolerance limits significantly influencing species distributions 
(Rezende et al. 2014). According to the metabolic theory of ecology, metabolic rate var-
ies with body mass and temperature as a result of internal physical constraints (Glazier 
et al. 2020). However, various ecological factors may also affect metabolic rate and its 
scaling with body mass. Glazier et al. (2020), for example, have shown that the effect of 
temperature on the ontogenetic scaling of resting metabolic rate of the freshwater am-
phipod Gammarus minus depends critically on habitat differences in predation regime.

Groundwater habitats, typically oligotrophic and devoid of light, feature stable 
temperatures and chemical conditions, which reduce the need for rapid physiological 
adaptations (Di Lorenzo et al. 2023). Stygobitic species (i.e., species that are unable 
to complete their life cycle outside of groundwater habitats; Culver et al. 2023), have 
been shown to generally exhibit lower metabolic rates than their surface water coun-
terparts (Hüppop 1986; Hervant et al. 1997; Di Lorenzo et al. 2015). However, a few 
studies have demonstrated the opposite pattern. Simčič and Sket (2019) observed that 
the OCR did not differ significantly between species or subspecies of the same genus 
from surface and subterranean habitats, but still they responded differently to tempera-
ture changes. Undoubtedly, our current understanding of metabolic variations across 
groundwater metazoans and their surface water relatives is limited. A comprehensive 
review of the OCR of stygobitic species is still lacking. Additionally, the influence of 
environmental factors, like temperature, on OCR in stygobitic species and their com-
pliance with allometric scaling principles represent significantly underexplored areas. 
Gaining a better understanding of the physiological performance of subterranean or-
ganisms is of paramount importance, especially in the face of climate change (Vacca-
relli et al. 2023). The persistence of species with poor dispersal abilities and high habi-
tat specialization, such as groundwater species, will strongly rely on their physiological 
capacity to cope with environmental changes (Pallarés et al. 2020).

We aim to address the knowledge gaps in understanding the patterns of meta-
bolic rates in groundwater species by reviewing the published data reporting on OCR 
of these organisms. The specific objectives are testing, for groundwater organisms, 
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the validity of existing models on metabolic rates’ dependencies on a) body size and 
b) temperature. Since the whole-body metabolic rate is central to the understanding 
of physiological as well as of ecological function of species, this review endeavors to 
enhance our understanding of the metabolic physiology of groundwater organisms, 
offering insights for their effective conservation and management efforts.

Material and methods

Data collection

We systematically searched and collected data from both peer-reviewed and grey litera-
ture sources. We conducted the literature search using the Web of Science platform, 
applying a set of pre-defined criteria. Our selection criteria were specifically designed 
to target studies quantifying metabolic rates in groundwater metazoans by measuring 
OCR. Following preliminary investigations in December 2023, various search terms 
were trialed, leading to the consensus adoption of the search string: TS = (“oxygen con-
sumption rate*” OR “metabolic rate*” OR metabolism) AND TS = (groundwater OR 
stygob* OR subterranean). The initial search in December 2023 yielded 2,236 papers. 
We meticulously examined the complete content of each identified article and thor-
oughly scrutinized the reference lists within these articles to identify any supplementary 
pertinent sources. Additionally, our research approach extended beyond Web of Sci-
ence, encompassing an unstandardized exploration of gray literature sources. Half of the 
studies retrieved from the literature focused on microbiology, engineering, agronomy, 
and other topics not pertinent to environmental science and ecology. Of the remaining 
studies, 14% were on terrestrial subterranean species, 10% on marine species, and 24% 
lacked quantitative OCR measurements (e.g., studies on metabolites). Following the 
screening phase, we identified 23 papers. In the next step, we meticulously reviewed 
the full text of each paper and extracted various key data points, including the type 
of publication, year of study, geographic and taxonomic scope, type of groundwater 
habitat, life history traits, morphometric data, field observations, acclimation data, and 
measurements of OCR. Additionally, we extracted data for non-stygobitic species that 
were examined in some of the papers for comparative purposes. Whenever the results 
of OCR measurements were not reported in tables or in text, we employed a web-based 
plot digitizer tool (https://automeris.io/WebPlotDigitizer) to extract OCR data from 
plots and images when the data were presented only graphically.

We obtained a total 291 OCR measurements from 23 studies (see the Results sec-
tion for more details). To address our research questions on metabolic scaling and the 
impact of temperature on metabolic rates, we created two sub-datasets. For detailed 
information on these datasets, please refer to the relevant paragraphs in the subsequent 
sections. We converted all obtained data on OCR to a standard unit of μL O2/mg DW/ 
hour (DW = dry weight). In cases where dry weight was not reported, we estimated it 
to be 15% of the wet mass, based on the methodology used by Wilhelm et al. (2006) 

https://automeris.io/WebPlotDigitizer
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for two amphipod species, which was in turn based on Taylor et al. (2003). This conver-
sion was applied because approximately 70% of the records with indicated wet weight 
pertained to amphipod species. Oxygen mass (in μg O2) and oxygen in moles (μmol 
O2) were converted into volume (μL O2) using a conversion factor of 1.43 (Gnaiger 
1983; Peters 1983) and 22.4 (Lampert 1984), respectively. We applied no temperature 
corrections, as we recorded the temperatures at which each study was conducted.

Metabolic scaling

To investigate the relationship between body weight and OCR, we compiled a data set 
of 10 stygobitic species and 64 measurements. We collected data on 2 copepod species 
[Diacyclops belgicus Kiefer, 1936 and Moraria sp.], 3 isopod species [Proasellus lusitanicus 
(Frade, 1938); Stenasellus virei Dollfus, 1897; Asellus aquaticus cavernicolus Racovitza, 
1925], 4 amphipod species [Niphargus rhenorhodanensis Schellenberg, 1937; Niphargus 
virei Chevreux, 1896; Niphargus krameri Schellenberg, 1935; Niphargus stygius (Schiödte, 
1847)], and one amphibian species [Proteus anguinus Laurenti, 1768]. We included data 
only from studies that measured adult specimens at rest that had fasted for no more than 
15 days prior to measurements and were not exposed to additional stressors (e.g., temper-
ature stress, anoxia). We excluded studies where the experimental temperatures exceeded 
the species’ permissive ranges, thereby ensuring data at temperatures consistent with their 
native habitats. Some authors referred to the OCR of resting, fasted animals without ad-
ditional stressors as “standard metabolic rates” (e.g., Di Lorenzo and Galassi 2017), while 
others termed them “routine metabolic rates” (e.g., Simčič and Sket 2019). This variation 
in terminology probably stems from differences among species in their levels of random 
activity during respirometry trials. However, previous research has shown no discernible 
effect of author classification on metabolic scaling with body weight for other taxa (Kil-
len et al. 2010; Boyce et al. 2020). We considered the specified OCR values in this study 
as the most appropriate proxies for standard metabolic rates, defined as metabolic rates 
measured under conditions of rest, tranquility, absence of stress, and fasting (Angilletta 
2009). To prevent bias from multiple measurements per species, we included only one 
OCR value per species per study, as suggested by Clarke and Johnston (1999). To obtain 
one OCR value per species, when multiple data points existed for a species within a study, 
we used the median values to minimize the impact of potential outliers.

We used a linear model to examine the expected allometric relationship between 
species DW (in mg) and OCR (in μL O2/h × ind.). We log-transformed OCR and 
DW values. We assessed the normality of the residuals using both a Shapiro-Wilk test 
and visual inspection of QQ-plot (Suppl. material 1: fig. S1).

Temperature effects

We compiled data from the literature for 19 stygobitic species and 288 measurements 
to assess the dependence of metabolic rate estimated from OCR on temperature. 
Collected data included 2 copepod species [D. belgicus and Moraria sp.], 6 isopod 
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species [P. lusitanicus; Proasellus valdensis (Chappuis, 1948); Proasellus sp. 1 (gr. cavati-
cus); Proasellus sp. 2 (gr. cavaticus); S. virei; A. aquaticus cavernicolus)], 7 amphipod spe-
cies [N. rhenorhodanensis; N. virei; N. krameri; N. stygius; Stygobromus sp.; Stygobromus 
pecki (Holsinger, 1967); Gammarus acherondytes Hubricht & Mackins, 1940)], 2 de-
capod species [Procambarus franzi Hobbs & Lee, 1976, Procambarus pallidus (Hobbs, 
1940)], one amphibian species [P. anguinus] and a fish species [Astyanax mexicanus 
(De Filippi, 1853)]. Aquatic subterranean organisms must cope with periodic oxygen 
deficiency in their habitats, which can sometimes involve rapid changes from nor-
moxia (> 3 mg/L O2) to hypoxia (in the range of 0.3 to 3 mg/L O2) or even anoxia 
(< 0.3 mg/L O2; Malard and Hervant 1999). Previous studies have demonstrated that 
they are resistant to hypoxia, although they cannot survive severe hypoxia (dissolved 
oxygen < 0.01 mg/L O2) for more than two days (Malard and Hervant 1999). Accord-
ingly, the OCR values in our dataset were quite comparable in normoxia and hypoxia 
for some species. For this reason we included data for OCR measured in both nor-
moxic and hypoxic conditions. This approach allowed us to capture the physiological 
responses of these organisms to the varying oxygen levels they naturally experience. As 
in the metabolic scaling analyses, we analysed all data collectively, without differen-
tiation into standard or routine categories. We included in the calculation the OCR 
(in μL O2/mg DW × h) and the incubation temperatures at which the animals were 
acclimatised for at least 5 days prior measurements. For an illustrative presentation of 
compiled data regarding the dependence of metabolic rate on temperature, we divided 
all OCR into 11 temperature classes with an interval of 3 degrees, from -2 °C to 30 °C, 
and calculated mean and standard deviation (SD) for the stygobitic and non-stygobitic 
groups of species (Suppl. material 1: table S1).

The thermodynamic response of the OCR over the entire temperature range 
was calculated in terms of the Arrhenius activation energy (Ea), which describes the 
influence of temperature on the metabolic rate. An estimate of Ea was derived from 
the slope of the Arrhenius plot of the natural logarithm of the OCR against the 
reciprocal of the absolute temperature (Robinson and Williams 1993) according to 
the equation 3:

Ea = −RgcS (3)

where Ea is expressed in kJ/ mol, Rgc is the gas constant (8.314 J/ mol × K), and S 
is the slope of the Arrhenius plot. We calculated the slope separately for low (from 
-2 °C to 18 °C) and high (from 19 °C to 30 °C) temperature ranges, as the mean 
OCR increases up to the 16–18 °C temperature class and after that decreases with 
temperature (Suppl. material 1: table S1). For comparative analysis, we conducted 
the same assessments of the relationship between temperature and metabolic rates 
using comparable data obtained from 12 non-stygobitic species concurrently sourced 
from the same literature. We compiled data from the literature for: 1 copepod species 
[Eucyclops serrulatus (Fischer, 1851)], 4 amphipod species [Gammarus fossarum Koch, 
1836; Gammarus lacustris G.O. Sars, 1863; Synurella sp.; Niphargus zagrebensis S. 
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Karaman, 1950], 2 isopod species [Asellus aquaticus aquaticus Linnaeus, 1758; Asel-
lus aquaticus carniolicus Sket, 1965], 2 decapod species [Procambarus pictus (Hobbs, 
1940), Procambarus clarkii (Girard, 1852)], 1 cyprinodontiformes [Poecilia mexicana 
Steindachner, 1863], 1 Cypriniformes [Gobio occitaniae Kottelat & Persat, 2005] 
and 1 Characiformes [Psalidodon fasciatus (Cuvier, 1819)]. Since most of the data 
come from studies in which OCR was measured at only one or two temperatures, we 
pooled the data of all stygobitic or non-stygobitic species into two groups to assess 
the general trend in the relationship between OCR and temperature for stygobionts 
and compare it with the relationship for non-stygobionts, as data sets of both groups 
were obtained using the same approach. We compared the slopes of the Arrhenius 
plots between stygobitic and non-stygobitic species using ANCOVA to ascertain if 
there were significant differences in the Ea of the two groups. We used a Shapiro-
Wilk test to assess the normal distribution of the data, and a Levene’s test to examine 
the equality of variances. We performed all statistical analyses using SPSS 20.0 (SPSS 
Inc., Chicago, Illinois, USA).

Results

We collected 23 papers originating from Nearctic (Canada, USA, Mexico), and 
Palearctic Regions (France, Portugal, Spain, Italy, Slovenia) (Fig. 1). Publication 
years spanned from 1971 to 2023, showing a notable uptick starting in 2000 (Fig. 
1). We gathered 291 OCR measurements across five taxonomic classes, encompass-
ing 37 species (Table 1), of which 23 were stygobitic (186 measurements) and 14 
non-stygobitic (105 measurements). Within the stygobitic taxa, the order Amphi-
poda was the most studied with 11 species and 106 OCR measurements, followed 
by the order Isopoda, with 7 species and 54 measurements (Fig. 1). Studies in-
vestigating the impact of temperature on the OCR of stygobitic taxa focused on 
the orders Harpacticoida, Cyclopoida, Isopoda, and Amphipoda (Fig. 1). However, 
only amphipods were examined regarding the effects of both warming and cool-
ing (Fig. 1). The stygobitic species examined in this study were primarily collected 
from caves, followed by karst springs and alluvial aquifers, with no hyporheic spe-
cies included (Fig. 1). The 291 records of OCR, also including type of groundwa-
ter habitat, life history traits, morphometric data, field observations, acclimation 
data, and measurements of OCR is available in Figshare (https://doi.org/10.6084/
m9.figshare.25564377.v4) in Excel (.xlsx) format with read.me text file describing 
metadata. We reported the average OCR per species in Table 1. Dry weight ranged 
from 0.001 to 3185 mg (Table 1).

For 25 out of the 37 species in this study, the collection site temperature was below 
or equal to 18 °C (Table 1). Mean OCR, measured in μL O2/h × mg DW, varied among 
species, ranging from 0.043 (Astyanax mexicanus) to 6.7 (D. belgicus) for stygobitic spe-
cies, and from 0.13 (Gobio occitaniae) to 14.86 (Gammarus lacustris) for non-stygobitic 
species (Table 1). In the analyzed data set, non-stygobitic species demonstrated higher 

https://doi.org/10.6084/m9.figshare.25564377.v4
https://doi.org/10.6084/m9.figshare.25564377.v4


Tiziana Di Lorenzo et al  /  Subterranean Biology 49: 53–74 (2024)60

Figure 1. Geographic distribution of the 23 studies included in our dataset (a), with the timeline of 
publication years (b). N indicates the number of studies per country. The lower portion of the panel shows 
the distribution of the 186 OCR (oxygen consumption rate) measurements derived from these studies 
for stygobitic species (c). Icons provide a breakdown of the number of species per taxonomic order, and 
details on studies that examined the effects of warming and cooling. Information on the number of OCR 
measurements categorized by habitat type is also depicted (caves, springs and alluvial aquifers).
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Table 1. Mean values of oxygen consumption rates per taxon. E = ecology (SB: stygobitic; nSB: non-sty-
gobitic; NA- not well defined); DW = mean dry weight (mg); T (temperature of the collection site; °C); OCR 
(mean oxygen consumption rates in μL O2/h × mg DW); reference number as in Suppl. material 1: table S2.

Taxa E DW T OCR REF
Copepoda
Diacyclops belgicus SB 0.001 15.0 6.722 16,17
Eucyclops serrulatus nSB 0.003 15.0 8.025 16
Moraria sp. SB 0.001 8.0 1.122 23
Malacostraca
Asellus aquaticus nSB 2.41 11.0 1.159 4,5
Asellus aquaticus carniolicus nSB 7.26 10.0 0.383 18
Asellus aquaticus cavernicolus SB 4.37 10.0 0.283 18
Gammarus acherondytes SB 8.93 12.9 1.311 10
Gammarus fossarum nSB 4.58 11.0 0.734 4,5,8,9,11,13
Gammarus lacustris nSB 1.20 12.0 14.867 6
Gammarus minus nSB 2.347 1
Gammarus troglophilus nSB 18.46 12.9 2.979 10
Niphargus krameri SB 2.24 10.0 0.467 9
Niphargus rhenorhodanensis SB 1.91 11.3 0.420 4,5,8
Niphargus stygius SB 4.92 10.0 0.931 9,11,13,18,21
Niphargus virei SB 13.81 11.3 0.247 4,5,12
Niphargus zagrebensis nSB 4.10 11.0 1.860 18,21
Proasellus lusitanicus SB 4.70 17.0 0.043 22
Proasellus sp. 1 (gr. cavaticus) SB 9.9 0.516 15
Proasellus sp. 2 (gr. cavaticus) SB 11.0 0.579 15
Proasellus valdensis (PV1) SB 11.7 0.638 15
Proasellus valdensis (PV2) SB 6.3 0.525 15
Procambarus clarkii nSB 3184.50 19.0 2.770 2
Procambarus franzi SB 714.00 18.0 1.500 2
Procambarus pallidus SB 1737.00 19.0 0.450 2
Procambarus pictus nSB 537.00 16.0 3.220 2
Stenasellus virei SB 1.68 11.0 0.397 4,5
Stygobromus sp. SB 1.20 7.0 6.089 4
Stygobromus pecki SB 2.01 23.0 0.493 20
Stygonectes emarginatus SB 1.793 1
Stygonectes spinatus SB 2.653 1
Stygonectes tenuis potamacus SB 2.673 1
Synurella sp. nSB 1.07 23.0 4.853 20
Amphibia
Proteus anguinus SB 2625.00 12.8 0.065 7,19
Teleostei
Astyanax mexicanus SB 0.043 19
Gobio occitaniae nSB 0.137 19
Psalidodon fasciatus nSB 937.50 25.0 1.818 3
Actinopterygii
Poecilia mexicana nSB 38.10 25.0 2.333 14

OCRs compared to their stygobitic congeners in the genera Asellus, Niphargus and 
Procambarus (Table 1). This trend, however, was not observed in the genus Gammarus, 
where the pattern differed (Table 1). The OCRs of stygobitic cyclopoids appear to be 
approximately six times higher than those of stygobitic harpacticoids, both belonging 
to the class Copepoda (Table 1).
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Body mass explained most of the linear variation in OCR (R2 = 0.908). In detail, 
the model (Fig. 2) showed a slope (b) of 0.80 (95% CI: 0.72–0.98, SE: 0.09, p = 
0.00005) with an intercept of -0.39 (95% CI: -0.57 – -0.21, SE: 0.07, p < 0.00001).

The Arrhenius plots of ln OCR against the reciprocal of the absolute temperature are 
shown for the stygobitic and non-stygobitic species in Fig. 3a and Fig. 3b, respectively. 
The response of stygobitic species to increasing temperature followed the classic bell-
shaped profile (Fig. 3a), while the lack of data for non-stygobitic species made this re-
sponse less conspicuous (in 5 cases only one data point was provided for a given tempera-
ture class; Fig. 3b). The Ea for the low temperature range (from -2 to 18 °C) was 94.7 
± 20.3 kJ/mol for the stygobitic species and 132.2 ± 35.3 kJ/mol for the non-stygobitic 
ones. In the high temperature range (from 19 to 30 °C), the value was -232.7 ± 63.1 kJ/
mol for the stygobitic species and -83.6 ± 48.1 kJ/mol for the non-stygobitic ones. The 
comparison of the slopes between stygobites and non-stygobites showed no statistically 
significant difference in the response of the OCR to temperature changes (Table 2).

Figure 2. Oxygen consumption rates (in μL O2 /ind × h) as function of body weight (dry weight in mg) 
in stygobitic species.
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Figure 3. Arrhenius plots of oxygen consumption rates (OCR), in μL O2/mg DW × h for (a) stygobitic 
and (b) non-stygobitic species.

Table 2. Results of ANCOVA for the comparison of the slopes between stygobites and non-stygobites (Group) 
using reciprocal of absolute temperature (Temp) and group as factors, analyzed for two temperature ranges.

df MS F p
Temp range -2–18 °C
Group 1 1.296 0.889 0.347
Temp 1 44.052 30.222 <0.001
Group × Temp 1 1.161 0.796 0.373
Error 231 1.458
Corrected Total 234
Temp range 19–30 °C
Group 1 3.918 3.573 0.065
Temp 1 17.200 15.684 <0.001
Group × Temp 1 3.722 3.394 0.071
Error 49 1.097
Corrected total 52
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Discussion

Our analysis of oxygen consumption rates across groundwater organisms has unveiled 
significant insights into the metabolic physiology of both stygobitic and non-stygobitic 
species. This research highlighted a substantial increase in related studies since the year 
2000, reflecting the escalating scientific interest in understanding the complex dynam-
ics of groundwater fauna (Koch et al. 2024). The research efforts have been notably 
focused on specific taxa, such as Amphipoda, underscoring interest in the ecological 
and physiological adaptations of this order, further evidenced by recent research (e.g., 
Premate and Fiser 2024). Additionally, the investigation into the effects of tempera-
ture on OCR, especially regarding amphipods, emphasizes the significance of tem-
perature—particularly in the context of global warming—as a pivotal environmental 
factor influencing metabolic rates in groundwater ecosystems (Vaccarelli et al. 2023). 
The focus on studying species from caves highlights the importance of these habitats 
in researching subterranean fauna, being caves more directly and easily accessible. Yet, 
the lack of stygobitic species from the hyporheic zones from this research underscores 
a significant gap. It would be important to address this omission, particularly given the 
integral connection between groundwater and surface water ecosystems (Sacco et al. 
2024). The range of OCR reflects the metabolic diversity among groundwater com-
munities. These variations are crucial for understanding the ecological roles and adap-
tations of these species to subterranean life. Notably, non-stygobitic species exhibited 
higher OCRs compared to their stygobitic counterparts in certain genera, except for 
Gammarus. This pattern indicates the presence of divergent metabolic strategies, pos-
sibly mirroring adaptations to different ecological niches and evolutionary responses 
to the energetically constrained subterranean habitats (Hose et al. 2022). The finding 
that stygobitic cyclopoids exhibit OCRs roughly six times higher than those of har-
pacticoids, despite both belonging to the class Copepoda, underscores considerable 
metabolic variability among closely related groups. This variability indicates that the 
metabolic rates of groundwater species are determined by a complex array of factors 
extending beyond temperature and body mass.

Our analyses revealed that OCR of stygobitic species scale with body weight fol-
lowing an allometric pattern, with a slope of 0.80. This indicates that OCR do not scale 
isometrically; in other words, metabolic rates do not double when the body weight 
doubles. This scaling pattern is consistent with findings in crustaceans (e.g., Ivlevla 
1980; Glazier et al. 2010) and other surface taxa, both aquatic and terrestrial (Peters 
1983; Schmidt-Nielsen 1984; Calder 1996). Several reasons underpin non-isometric 
scaling, encompassing heat exchanges with the environment (larger animals have a 
lower surface area relative to their volume, which reduces the energy required per unit 
of weight to maintain body temperature), energy transportation (the circulatory and 
respiratory systems do not scale linearly with size) and cellular and mitochondrial fac-
tors (White and Kearney 2013). If other underlying reasons remain elusive (Hoppeler 
and Weibel 2005), the principle of allometric scaling of metabolic rates stands as a cor-
nerstone in the realm of biological scaling. It encapsulates the optimization of energy 
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utilization across a spectrum of organism sizes, including those inhabiting groundwa-
ter environments, which appear to adhere to this universal pattern without deviation.

A significant portion of the intra-specific metabolic rates’ variation can also be ex-
plained by differences in the mass. Shokri et al. (2019) demonstrated that individual 
metabolic rates scale allometrically with body mass in three species of surface amphi-
pods. However, the intra-specific slopes were in the range of 0.32–0.36. This indicates 
a moderate mass-depended variation of metabolic rates within an individual species, 
which can allow it to broaden its ecological niche, contributing to greater functional 
diversity. Noteworthy, OCR appears to be mass-independent in certain stygobitic 
species (Hose et al. 2022), as observed in studies on D. belgicus (Di Lorenzo et al. 
2015), P. lusitanicus (Di Lorenzo and Reboleira 2022) and G. acherondytes (Wilhelm 
et al. 2006). This pattern (described as ametric in Di Lorenzo et al. 2015) has been 
regarded as an adaptive trait to energy-limited groundwater habitats, where individu-
als may increase in size without increasing in their metabolic rates. This phenom-
enon likely occurs because weight gain is attributed to metabolically inactive reserves 
(stored fats, water, or other substances that add to the weight but do not participate 
in respiration) as body mass increases. Stygobitic species possess larger fat reserves 
compared to their surface-dwelling relatives (Hüppop 1986; Culver et al. 1995). This 
trait allows stygobitic species to endure prolonged periods without food by relying on 
stored energy (Hervant et al. 1997), thereby enhancing their resilience to the chal-
lenges posed by their habitats (Di Lorenzo et al. 2023 and references therein). On the 
other hand, the low metabolic variability among individuals of the same species may 
heighten population vulnerability and diminish the resilience to deviations from the 
norm, such as those stemming from anthropogenic disturbances (Hose et al. 2022). 
Further studies are necessary to confirm whether this trait is shared among stygobitic 
species or not.

The Arrhenius activation plots, which illustrate the effect of temperature on 
organisms over the range -2 to 30 °C, showed a temperature break in the OCR 
for both stygobitic and non- stygobitic species that were included in our study 
according to the procedure described in the Methods. Lower Ea values observed 
in stygobitic species compared to non-stygobitic ones within the low temperature 
range (-2–18 °C) indicate that the OCR of stygobitic species increase less with 
increasing temperature. This implies that the metabolic rates of stygobitic spe-
cies are less responsive to temperature changes than that of non-stygobitic species. 
These findings align with previous research examining the response of potential 
metabolic activity, determined as a proxy for cellular respiration, to temperature 
changes in N. stygius (Simčič and Sket 2019). The reason for the relatively stable 
metabolic potential could be the reduction in costs for mitochondrial biosynthesis 
and degradation. The observed pattern could be also related to the low resource 
availability in subterranean habitats. Furthermore, the cost of maintaining a higher 
number of mitochondria, e.g. maintaining proton gradients and aerobic enzyme 
capacities, would contribute to an increase in basal metabolic rate (Rolfe et al. 
1999; Pörtner 2002). As a result, this increase would lead to a shift in the energy 
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balance, which would have an unfavorable effect on the accumulation of energy re-
serves for growth and reproduction (Lannig et al. 2003). Biochemical indicators of 
metabolic activity are key components of biochemical metabolic pathways that are 
directly or indirectly linked to processes important for performance, growth and/
or reproduction. The basic premise for their use is that adjustments in the rates of 
physiological processes are necessary to balance metabolic demand with available 
energy supply (Dahlhoff 2004).

The Ea values for stygobitic species within -2 to 18 °C (94.7 ± 20.3 kJ/mol) are 
in the range of values reported by Mermillod-Blondin et al. (2013) for three isopod 
species of the genus Proasellus that colonize groundwater habitats with stable tem-
peratures (annual temperature amplitude <1 °C) and by Simčič and Sket (2019) for 
the hypogean population of A. aquaticus cavernicolus. However, the Ea values in this 
study (0.98 eV and 1.3 eV for -2 to 18 °C and -2.41 and -0.86 eV for 18 to 30 °C, 
stygobitic and non-stygobitic species), exceed the average 0.48 eV reported for 314 
aquatic and terrestrial ectothermic species (fishes, crustaceans, mollusks, amphib-
ians and insects) within their permissive temperature range (0 to 40 °C; Jorgensen 
et al. 2022). This suggests that the temperature ranges we investigated in this study 
might not entirely fall within the permissive thermal range for the species analyzed. 
The high Ea values observed in our study implies that climate change could escalate 
heat-related energy expenditure for stygobitic and non-stygobitic species, with po-
tential severe outcomes, as observed in many other ectothermic species (Jorgensen 
et al. 2022). Our findings suggest that even modest global warming scenarios may 
impose greater metabolic impairments on stygobitic species compared to non-sty-
gobitic ones, in line with results of a recent meta-analysis on the effects of climate 
change on subterranean ecosystems (Vaccarelli et al. 2023). In fact, in the high 
temperature range (18–30 °C), the Arrheinius plot showed faster decline in OCR 
in stygobitic species than in non-stygobitic species. This indicates that hypogean 
species have a less efficient enzyme system at higher temperatures than epigean spe-
cies. This might be due to the inactivation of respiratory enzymes that limit enzy-
matic processes outside their usual temperature range, leading to an irreversible loss 
of functions (Yurista 1999), as thermal tolerance is subject to phenotypic alteration 
within genetically defined limits (Cuculescu et al. 1998). Enzyme structure and 
function are highly sensitive to temperature variations, whether these changes occur 
rapidly or over evolutionary timescales (Angilletta 2009). The adaptive responses to 
these stresses have played a significant role in biological evolution (Clarke 2017). 
Studies have demonstrated that temperature impacts on enzyme properties estab-
lish the thermal optima and tolerance limits of metabolic functions, which are 
crucial for the survival and performance of organisms (Angilletta 2009). It appears 
that stygobitic species are less capable of maintaining optimal activity at higher 
temperatures, indicating a greater sensitivity to elevated temperatures compared to 
non-stygobitic species. The discrepancy indicates that surface species may possess 
a more effective molecular defense mechanism against thermal stress compared to 
subterranean counterparts. Most probably due to the fact that non-stygobitic spe-
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cies live in environments with high fluctuations in water temperatures. Previous 
studies have shown that there are variations in the genes associated with responses 
to thermal stress between subterranean and surface-dwelling terrestrial species, with 
a notably larger number of genes showing differential expression in surface taxa, 
suggesting a more robust heat shock response capability (Beasley-Hall et al. 2022). 
Although this has not yet been specifically demonstrated for aquatic subterranean 
species, it carries implications regarding the reduced thermal tolerance of stygobitic 
organisms at the molecular level.

Our review highlighted that the studies aiming towards understanding of the in-
fluence of temperature on metabolic rates of stygobitic species remain disconnected 
from broader ecological considerations such as energy budgets, food web dynamics 
and ecosystem functioning. Metabolic heat production and loss, critical in energy 
transfer efficiency between trophic levels, are yet to be fully integrated into these stud-
ies. The reports of such effects on metabolic scaling usually focus on single factors, 
such as comparison in metabolism between stygobitic and non-stygobitic species, the 
investigation of different species responses under different temperature acclimation 
and under different experimental set-ups (hypoxia/normoxia; starvation, exposure to 
pollutants) or investigation of metabolic rates of species from different localities or 
habitats, while understanding the possibility of significant interactive effects between 
multiple factors requires further studies.

This study provides insights in the metabolism of groundwater species, though 
there are potential limitations and areas that could benefit from further research. 
Extracting relevant data for our study was hindered by the inconsistent reporting 
of experiments, which frequently omitted detailed information on body size and 
weight. We bridged these gaps with calculations and estimations. Nonetheless, the 
assumption made on computation of the dry weight and the inclusion in the data-
set of species that have not yet been described represent a limitation of our study. 
We also acknowledge potential limitations of our approach aimed at assessing the 
effect of temperature on the metabolic rates of groundwater species. Pooling data 
from different species into broad groups (stygobitic and non-stygobitic) might mask 
species-specific variations, potentially leading to an oversimplified interpretation 
of the data. Additionally, certain species are overrepresented in specific tempera-
ture classes, leading to a potential uneven comparison between the two ecological 
groups. The potential bias toward frequently studied species and regions signals the 
direction toward studies should expand in the future. Additionally, while this study 
explores the influence of environmental factors, such as temperature on OCR, more 
research is needed to understand the metabolic strategies of stygobitic species fully. 
Future research should focus on lesser-studied habitats, including hyporheic zones 
and employ experimental approaches to assess environmental stressors on metabolic 
rates. Integrating energy budgets, food web dynamics and ecosystem functioning 
into metabolic studies will provide a deeper understanding of groundwater species’ 
resilience and inform conservation strategies against anthropogenic impacts and 
climate change.
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Conclusion

Our investigation inquired into the metabolic rates of groundwater organisms, fo-
cusing on the relationship between oxygen consumption rates (OCR), body weight 
and temperature. We uncovered an allometric scaling of OCR with body weight and 
revealed a distinct thermal sensitivity between stygobitic and non-stygobitic species, 
underscoring a nuanced vulnerability to changing temperatures. However, the reli-
ance on existing literature may introduce biases towards more frequently studied spe-
cies and regions, potentially skewing the universality of our conclusions. Moreover, 
the varied methodological approaches across studies present challenges in data stand-
ardization, emphasizing the need for uniform reporting standards in future metabolic 
rate research. The implications of our findings are potentially far-reaching, providing 
insights for the conservation and management of groundwater ecosystems, particu-
larly in the face of global climate change. For example, understanding the metabolic 
responses of stygobitic species to temperature changes can inform conservation strate-
gies to protect these species in regions predicted to experience significant warming 
(Shokri et al. 2022). However, to build upon our work, research should expand to 
include lesser-studied groundwater habitats and employing experimental approaches 
to directly assess the impact of environmental stressors on metabolic rates. Such en-
deavors would enrich our comprehension of subterranean life’s resilience and adapt-
ability, informing strategies to safeguard these vital ecosystems against anthropogenic 
impacts and climatic shifts.
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