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Abstract
Purpose  Alkali activation process has been applied to fresh river clay-rich sediments in order to increase their mechanical 
properties and make them suitable for soil stabilization.
Materials and methods  Dredged sediments were mixed with up to 30 mass percent (ma%) of fly ash (FA) or ladle slag 
(LS) and after curing for 3 days at 60 °C, the bending and compressive strength have been determined. The mixtures which 
exhibited the highest strengths were further optimized for being used in soil stabilization. For this purpose, the sediment 
was stabilized with 4 ma% of quicklime (QL) and after 1 h 30 ma% of FA with alkali activator was added and cured for 1, 
7 and 28 days.
Results  The stabilized sediment has a significantely better geomechanical performance in comparison with the sediment 
alone. Stabilizing the dredged sediment using alkali activation technology provides high enough strengths to eventually make 
it suitable for anti-flood embankments.
Conclusions  The results confirmed the suitability of the investigated technology for soil stabilization.
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1  Introduction

Alkali-activated materials (AAMs) have attracted much 
attention in the last decade as they are competitive materi-
als to bricks, mortar, or concrete and can be used in a variety 
of construction applications. AAMs are cured pastes made 
by mixing an aluminosilicate-rich powder (precursor) with 
alkaline solutions (activators). Amorphous aluminosilicates 
are dissolved by alkaline solutions (water glass, NaOH, 
KOH, etc.), followed by a polycondensation reaction that 
results in a two- or three-dimensional polymer network. The 
basic result of the polymerization is a hardening of the AAM 
binders (Provis 2018). Numerous natural aluminosilicate 
materials are suitable as precursors for the alkali activation 

process, as are some waste materials (fly ash, bottom ash, 
bio-based ash and various slags). Various dredged sediments 
can also be an interesting alternative for the synthesis of 
AAMs due to their clayey composition. In recent years, the 
alkali-activated technology has rapidly entered the field of 
soil stabilization (Rivera et al. 2020; Hanein et al. 2022; Wu 
et al. 2022a; Maheepala et al. 2022; Miraki et al. 2022; Chen 
et al. 2023; Huang et al. 2023).

Dredged sediments are formed at dredging operations and 
are usually disposed of in landfills or used as fill material. 
They can be beneficially used for substitution of virgin raw 
materials, for remediation of contaminated sites, for creat-
ing new or expanding existing land (reclamation), for crea-
tion of habitat to support aquatic organisms and wetlands to 
improve the natural value of the environment (restoration) 
or for reinforcement for defence against floods and extreme 
climatic events (resiliency) (CEDA 2019). However, their 
high water content and poor geomechanical properties make 
them unsuitable for many construction applications. Alkali 
activation is a promising technology to improve the proper-
ties of dredged sediments and make them suitable for soil 
stabilization purposes. For example, a study by Brahim et al. 
(2022) found that an alkali activation of dredged sediments 
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with NaOH resulted in a significant increase in compressive 
strength and a decrease in porosity. Alkali activation has also 
been found to reduce the water absorption of dredged sedi-
ments and improve their durability and resistance to chemi-
cal attack. Similarly, a study by Gokul et al. (2021) found 
that the alkali activation of soft soil with NaOH resulted in a 
significant increase in the compressive and shear strength of 
the soil. A study by Wang et al. (2023a) found that an alkali 
activation of soft soil with NaOH led to an improvement in 
soil stability, as evidenced by an increase in the cohesion 
and friction angle of the soil. In addition, alkali activation 
was found to improve the durability of soft soils and reduce 
their susceptibility to weathering. A study by Min et al. 
(2022) showed the alkali activation of soft soils with NaOH 
or Na2SiO3 significantly improve the freeze–thaw resistance. 
Alkali activation has also been shown to be an effective 
method for reducing the environmental impact of soft soils 
by immobilizing contaminants and reducing the leachability 
of contaminants. A study by Komaei et al. (2023) found that 
the alkali activation of soft soils can effectively reduce the 
leachability of heavy metals.

The main reactive phases in sediments are aluminosili-
cate (clay) minerals. Their reactivity is closely related to 
the solubility of Si and Al in alkali media (Werling et al. 
2022). Clay based materials are commonly pretreated by 
calcination at around 800 °C to increase the Si/Al solubil-
ity ratio and improve efficiency of the alkali activation 
(D’Elia et al. 2018). Simultaneously the organic matter, 
which may also affect the reactivity (Wattez et al. 2021), is 
removed. The solubility of Si and Al in sediments S1 and 
S10 in 10 M KOH and 10 M NaOH has been determined 
in previous study, as a reference values for proving the 
increase of Si and Al solubility after calcination (Žibret 
et al. 2023). For S1 the solubility of Si was 115 mg/l in 
10 M NaOH and 94 mg/l in 10 M KOH and the solubility 
of Al was 46 mg/l in 10 M NaOH and 34 mg/l in 10 M 
KOH. For S10 the solubility of Si was 134 mg/l in 10 M 
NaOH and 105 mg/l in 10 M KOH and the solubility of 
Al was 54 mg/l in 10 M NaOH and 36 mg/l in 10 M KOH 
(Žibret et al. 2023). Alkali activation of uncalcined illite 
based clay materials is also possible, but it results in lower 
quality materials (Marsh et al. 2018), which may be suit-
able only for specific applications, which require lower 
compressive strengths, like for example “lean concrete” 
layer between soil and foundation concrete, road sub-base 
layer or for lean roller compacted concrete for construction 
of river dams (Gouvas and Orfanos 2014; Ohwofasa et al. 
2023; Chandrashekhar et al. 2019). Lean concrete mixtures 
are mainly based on Ordinary Portland Cement (OPC), the 
mechanical properties of lean concrete can be improved 
by adding FA or slags. Because alkali activation of soils 
decreases the porosity and has ability to immobilize con-
taminants, the use of alkali activated materials for “lean 

concrete” layers between soil and foundation concrete may 
effectively protect the main foundation from the impacts of 
soil. However, there is a lack of studies investigating the 
application of alkali activated materials as lean concrete 
layers. A few papers are foucsing on roller compacted geo-
polymer concrete (Rahman and Khattak 2021; Patel et al. 
2022), which showed higher mechanical properties than 
similar OPC based concrete (Rahman and Khattak 2021).

Hydropower plants face challenges due to the deposi-
tion of sediments in their reservoirs (Parker et al. 2007), 
reducing their water storage i.e. their capacity for electric-
ity production. Sediment deposition can also cause opera-
tional and maintenance issues, affecting the performance 
of turbines and other components. Large quantities of 
sediments accumulating at hydropower plant dams world-
wide is recognized as one of the most challenges issues in 
hydro power plant management; only in Slovenia approxi-
mately 50,000 m3 are accumulated annually. The present 
study features sediments from the river Drava in Slovenia. 
Drava Power Plants Maribor (DEM), with eight large and 
five small hydro power plants, is one of Slovenia`s larg-
est hydropower plant companies with water reservoirs of 
a total capacity of 72.4 million m3. It produces almost a 
quarter of the total electricity produced in Slovenia. The 
largest reservoir on the Slovenian part of the Drava River 
is Lake Ptuj. Sediments are excavated or pumped to loca-
tions within the water body in the safe way i.e. without 
effecting the river flow or causing environmental threats. 
Most of the sediment is deposited along the banks of the 
Drava River and on artificially created islands within the 
limited space of the river. Therefore, it is necessary to 
find new solutions for using these sediments i.e. in the 
construction sector (Basson 2009). Drava river sediments 
are carbonate-rich illite clay sediments, and contain frag-
ments of various stratigraphic units (Šoster et al. 2017) 
and some residues of Pb/Zn ores exploited upstream (Šajn 
et al. 2011; Žibret et al. 2018). Despite their elevated Pb 
and Zn content, the sediments meet the criteria for use 
in clay based sector (Ducman et al. 2022) but are also 
usefull as a precursor for AAM after calcination (Žibert 
et al. 2023).

In this study first the compressive strength (after 3 days 
of curing) of alkali activated uncalcined dredger river sedi-
ments with addition of FA or ladle slag were determined in 
order to evaluate the potential suitability for its application 
as “lean conctere” layer. Further investigations have been 
made towards assessing untreated sediments with additions 
of slags and FA for soil stabilization purposes. In previous 
studies sediments were stabilized with 8 mass percent (ma%) 
of QL which was enough for the reaching sufficient perfor-
mance (Ducman et al. 2022). In the presented research the 
alkali activation technology is used to decrease the amount 
of QL and further stabilize the soil.
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2 � Materials and methods

2.1 � Materials

AAMs were prepared using two main precursors: 10 years 
deposited Ptuj Lake sediment (S10) and one year deposited 
Ptuj Lake sediment (S1). The precursors S10 or S1 were 
replaced by 0, 10, 20 or 30 ma% of either coal combustion 
FA from a local thermal power plant (FA1; Traven et al. 
2021) or ladle slag obtained from the desulfurization pro-
cesses at the second stage of steel refining (LS; Češnovar 
et al. 2019). Two batches of FA with a small variation in 
their chemical composition (Table 1) were used.

LS was ground to a grain size below 125 µm using a 
vibrating disk mill Labor-Scheibenschwingmühle TS.250 
(Siebtechnik GmbH, Mülheim an der Ruhr, Germany), while 
the FA was used as received. The sediments S10 and S1 
were ground to pass a 90 µm sieve.

The activating solutions were prepared by mixing 
the Na-water glass (Geosil 34,417: 27.5 ma% SiO2 and 
16.9 ma% Na2O) with 10 M NaOH or the K-water glass 
(Betol K 5020 T: 30.1 ma% SiO2 and 18.5 ma% K2O) with 
10 M KOH. Both water glasses had a mass ratio of SiO2/
M2O = 1.63 (where M represents Na and/or K), while the 
molar ratio was different, namely SiO2/M2O = 1.68 in Na-
water glass and SiO2/M2O = 2.55 in K-water glass.

Optimal mixture was further improved by quick lime 
(QL; CL 90 S, InterCal).

2.2 � Methods

The loss on ignition (LOI) of the precursors at 950  °C 
was determined according to SIST EN 196–2 (2013). The 
oxide compositions was determined by ARL PERFORM’X 
sequential X-ray fluorescence (XRF) Spectrometer (Thermo 
Fisher Scientific Inc., Ecublens, Switzerland) using the 

UniQuant 5 software (Thermo Fisher Scientific Inc., 
Walthem, MA, USA). The measurement was performed 
on fused beads, which were prepared by mixing the ignited 
sample with Fluxana (Li-tetraborate and Li-metaborat mixed 
in a mass ratio of 1:1) at a ratio of 1:10. To prevent gluing 
the melt to the Pt crucible some LiBr(l) (50 ml H2O and 7.5 g 
of LiBr(s) from Sigma Aldrich) was added to the mixture 
before melting.

AAMs were produced by the reaction of precursors 
(Table 1) with a sodium silicate or potassium silicate solu-
tion. The prepared AAM mixtures are stated in Table 2. 
The activating solution was mixed with precursors to form 
a homogeneous paste, which was subsequently cast in sili-
cone moulds (20 × 20 × 80 mm) and cured for 3 days at 60 °C 
and R.H. = 50%. After three days, the bending (σBS) and 
compressive (σCS) strengths were measured using a ToniP-
RAX (ToniTechnik, Berlin, Germany) at a force rate of 0.05 
kN s−1. The geometric density (ρ) has been also determined.

A mixture with 30 ma% FA was selected for further 
optimization of soil stabilization, as it showed the highest 
strength in laboratory tests.

The sediment from Lake Ptuj was tested to determine 
the geomechanical properties, including its initial moisture 
content—w (SIST EN 17892–1 2015), specific gravity—
gs, (SIST EN 17892–3  2016), liquid and plastic limits 
wL, wp (SIST EN 17892–12 2018), consistency Index (Ic) 
SIST EN 17892–12 (2018), particle size distribution (SIST 
EN 17892–4 2017) and permeability k (SIST EN 17892-
11  2019). Strength properties were evaluated using the 
unconfined compression strength test (UCS) in accordance 
with SIST EN 13286–41 (2022). Compacted cylindrical 
samples with a diameter of 105  mm and a height of 
115 mm were used for testing. The standard Proctor test 
(SPT) following SIST EN 13286–2 (2010) was employed 
to determine the optimum water content (wopt) and the 
maximum dry density (ρd,max). For assessing shear resistance, 
the friction angle (ϕ) and cohesion (c) were determined 
as per SIST EN 17892–10, while the oedometer modulus 
(Eoed) was measured following SIST EN 17892–5 (2017). 
Furthermore, the California bearing ratio (CBR1) was 
determined according to SIST EN 13286–47 (2022), and the 
bearing ratio of saturated samples (CBR2) was calculated to 
estimate vertical swelling. The natural sediment (S1) was 
used for the furter mixtures withough sieving.

A Na-activated AAM mixture where FA replaced 30 ma% 
of S1 was further optimized for soil stabilization, using a 
new, large FA2 batch from the same provider (Table 1). 
The sediment with a water content of 43 ma% was used in 
all mixtures and pretreated with QL; one series of samples 
with 8 ma% of QL and the second with 4 ma% of QL which 
reduce the water content (Wu et al. 2022b). The used QL 
has a CaO purity > 90%. To obtain a homogeneous mixture, 
the wet sediments were mixed for 5 min in a 20-l Gostol 

Table 1   Main oxide composition of the used precursors (natural 
state) measured by XRF. Abbreviations: S1 – 1 year deposited river 
sediment; S10 – 10 years deposited river sediment; FA1 and FA2 – 
fly ash batches; LS – ladle slag, LOI – los on ignition

S10 S1 FA1 FA2 LS

LOI 950 °C 14.63 15.79 0.51 1.14 20.47
Na2O 1.35 1.23 1.19 0.78 0.30
MgO 4.90 5.33 2.80 2.57 23.44
Al2O3 15.44 15.78 22.98 26.25 5.25
SiO2 48.01 44.87 44.82 42.16 13.80
K2O 2.23 2.30 2.20 2.43 0.15
CaO 6.15 7.12 12.38 10.20 28.10
Fe2O3 5.36 5.49 10.65 12.16 4.70
Other 1.93 2.09 2.47 2.31 3.79
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planetary mixer, stored in plastic bags and placed in a con-
trolled curing box at the temperature of 20 °C. After 1 h 
of curing, different quantities of activating solutions were 
added and mixed again for 5 min. After mixing material was 
compacted in 3 layers according to the standard SIST EN 
13286–2 (2010), cured at 90% RH and 20 °C in a climatic 
chamber.

The UCS test was performed after 7 and 28 days of cur-
ing. The oedometer modulus and shear characteristics were 
tested after 1, 4 and 7 days of curing. The permeability was 
tested after 1, 4 and 7 days and CBR1,2 after 7 days of curing. 
The mixtures and conditions stated in Table 3 were applied.

The FTIR spectra of hardened optimized AAM mix-
ture after 1, 7, 28 and 55 days of reaction in the range from 
380 cm−1 to 4000 cm−1 were collected with a resolution of 
4 cm−1 using a PerkinElmer Spectrum Two in attenuated total 
reflection mode (Universal ATR with diamond/ZnSe crystal).

Potential changes of the mineralogical composition of the 
hardened, optimized AAM mixture after 1, 7, 28 and 55 days 
of the reaction were monitored by XRD analysis, using a 

PANalytical Empyrean X-ray diffractometer with CuKα 
radiation (wavelength CuKα1 1.54 Å). The X–ray tube was 
operated at 45 kV and 40 mA. Samples were measured from 
2θ = 4° to 70° while being spinned.

3 � Results and discussion

3.1 � Preliminary alkali activation test of sediments 
with additional slag or FA

The effect of replacing 10, 20 or 30 ma% of sediment S1 or 
S10 by FA or LS on the mechanical properties of the hard-
ened AAMs was evaluated after 3 days of curing at 60 °C. 
As different SiO2/M2O molar ratios of the Na or K-activators 
were used, the influence of the alkali activator type is not 
discussed.

The results presented in Figs. 1 and 2 indicate that 
replacing sediments by both FA and LS improves the 
mechanical properties of AAMs. In general, the addition 

Table 2   Prepared AAM 
mixtures (g)

Sample designation S10 S1 FA1 LS Geosil 34417 Betol
K5020 T

10 M NaOH 10 M KOH

pure S10 (Na) 100 - - - 55.0 - 17.5 -
S10-10FA (Na) 90 - 10 - 55.0 - 17.5 -
S10-20FA (Na) 80 - 20 - 55.0 - 17.5 -
S10-30FA (Na) 70 - 30 - 55.0 - 17.5 -
S10-10LS (Na) 90 - - 10 55.0 - 17.5 -
S10-20LS (Na) 80 - - 20 55.0 - 17.5 -
S10-30LS (Na) 70 - - 30 55.0 - 17.5 -
pure S10 (K) 100 - - - - 55.0 - 17.5
S10-10FA (K) 90 - 10 - - 55.0 - 17.5
S10-20FA (K) 80 - 20 - - 55.0 - 17.5
S10-30FA (K) 70 - 30 - - 55.0 - 17.5
S10-10LS (K) 90 - - 10 - 55.0 - 17.5
S10-20LS (K) 80 - - 20 - 55.0 - 17.5
S10-30LS (K) 70 - - 30 - 55.0 - 17.5
pure S1 (Na) - 100 - - 55.0 - 17.5 -
S1-10FA (Na) - 90 10 - 55.0 - 17.5 -
S1-20FA (Na) - 80 20 - 55.0 - 17.5 -
S1-30FA (Na) - 70 30 - 55.0 - 17.5 -
S1-10LS (Na) - 90 - 10 55.0 - 17.5 -
S1-20LS (Na) - 80 - 20 55.0 - 17.5 -
S1-30LS (Na) - 70 - 30 55.0 - 17.5 -
pure S1 (K) - 100 - - - 55.0 - 17.5
S1-10FA (K) - 90 10 - - 55.0 - 17.5
S1-20FA (K) - 80 20 - - 55.0 - 17.5
S1-30FA (K) - 70 30 - - 55.0 - 17.5
S1-10LS (K) - 90 - 10 - 55.0 - 17.5
S1-20LS (K) - 80 - 20 - 55.0 - 17.5
S1-30LS (K) - 70 - 30 - 55.0 - 17.5
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Table 3   Prepared mixtures Mixture designation Sediment 
S1
(ma%)*

Precursor 
FA2
(ma%)

Quicklime 
content
(ma%)*

Activator/ 
Precursor
Na2SiO2 + NaOH

NaOH/
Precursor

S1 100 0
S1-8QL 100 8
S1-4QL-30FA2 70 30 4
S1-8QL-30FA2 70 30 8
S1-8QL-30FA2-1 70 30 8 1.00 12
S1-8QL-30FA2-2 70 30 8 0.75 8
S1-8QL-30FA2-3 70 30 8 037 4
S1-8QL-30FA2-4 70 30 8 0.25 3
S1-8QL-30FA2-5 70 30 8 0.15 3
S1-4QL-30FA2-1 70 30 4 1.00 12
S1-4QL-30FA2-2 70 30 4 0.75 8
S1-4QL-30FA2-3 70 30 4 0.37 4
S1-4QL-30FA2-4 70 30 4 0.25 3
S1-4QL-30FA2-5 70 30 4 0.15 3

Fig. 1   Effects of FA and LS 
replacement of sediment S10 
on the mechanical properties of 
AAMs, which were prepared 
using Na (a) or K (b) activators. 
Abbreviations: σBS – bending 
strength, σCS – compressive 
strength, ρ—density
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of FA resulted in higher compressive/bending strengths 
and lower or comparable geometrical densities than when 
LS was added. The exception was the S10 sediment with 
LS and K-activators, where replacing sediment by LS 
resulted in slightly higher strengths than when FA was 
used (Fig. 1b). Similarly, the addition of LS in general 
improved the strength proportionally (Figs. 1 and 2), with 
the exception of the S1 sediment with LS and K-activators, 
where the bending and compressive strengths decreased 
after replacing 30 ma%. The incorporation of slags into 
alkali activated mortars provides additional Ca, which 
commonly results in formation of C-S–H gel and improved 
strength (Zheng et al. 2021; Žibret et al. 2023). However, 
high amounts of slags may induce cracking (Li et  al. 
2020) and consequently decreased strength. The forma-
tion of cracks accompanied by decreased strength at 30 
ma% content of LS has been already documented in our 
previous study, which was focused on alkali activation of 
calcined Drava river sediments, accompanied by detailed 
microstructural investigations (Žibret et  al. 2023). In 
AAMs from uncalcined Drava river sediments (this study) 
similar reaction mechanisms as when calcined sediments 

were used are expected. Calcination increased the reactiv-
ity of sediments (Žibret et al. 2023), which results in faster 
and more intensive polymerization reactions. The pre-
sent study primary aimed to optimize the mixture, which 
showed the highest strength, for further soil stabilization 
applications.

The addition of FA proportionally improved the bending 
and compressive strength (Figs. 1 and 2). When the Na-
activator was used, replacing 30 ma% of sediment by FA 
resulted in similar compressive strengths if S10 or S1 were 
the main precursor component, namely 18.6 MPa for S10 
(Fig. 1a) and 17.1 MPa for S1 (Fig. 2a). Similarly, when the 
K-activator was used, compressive strengths after replacing 
30 ma% FA were comparable, namely 19.9 MPa for S10 
(Fig. 1b) and 19.2 MPa for S1 (Fig. 2b).

The compressive strength of the investigated mixtures 
was primarily determined in order to assess their potential 
suitability for use as “lean concrete” layers. Following the 
classification of concrete, the lean concrete achieved a com-
pressive strength of at least 5 and less than 10 MPa (classes 
M5 and M7.5) after 28 days of curing under standard labora-
tory conditions.

Fig. 2   Effects of FA and LS 
replacement of sediment S1 on 
the mechanical properties of 
AAMs, which were prepared 
using Na (a) or K (b) activators. 
Abbreviations: σBS – bending 
strength, σCS – compressive 
strength, ρ—density
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In addition, the study aims to develop a new recipe for 
the in-situ stabilization of dredged river sediments that will 
meet the geomechanical criteria for the construction of anti-
flood river embankment. In contrast to the laboratory tests 
where alkaline activation of dry precursors was conducted 
at 60 °C, on-site construction of a flood control dam would 
be exposed to outdoor atmospheric conditions, resulting in 
slower strength development and lower ultimate compressive 
strength (Bing-hui et al. 2014).

3.2 � Optimizng mixtures for soil stabilization

River sediments are currently dredged from the bottom of 
lake Ptuj and deposited on its banks where they naturally dry. 
The moisture content of the deposited material depends on 
the drying time and weather conditions. Thus, the water con-
tent of material stored for at least 2 years is reduced to 40%, 
what has been determined when DEM obtained the Slovenian 
Technical Approval in 2022 for composites made from water 
sediments of Ptuj Lake for embankments and backfills with-
out dynamic loads. The conducted laboratory tests confirmed 
that water content of the material stored for at least 2 years 
was reduced to around 40% (STS-22/0009 2022).

In addition, environmental legislation in this area is 
expected to tighten in the coming years, which means that 
the possible use of this material in geotechnical construc-
tion should be investigated. Based on the results obtained 
on the laboratory level (3.1), further optimization for soil 
stabilizaton were perfomed on sediment from Lake Ptuj (S1) 
and replacing it by only FA. The mixture S1-30FA(Na) was 

further tested for soil stabilization with different amounts 
of QL.

3.2.1 � Geomechanical testing of the sediment

Sediment S1 was used for geomechanical testing. Due to the 
high water content of the naturally dried sediment (43 ma%), 
the geomechanical properties were insufficient (see Table 4) 
for using only naturaly dehydrated sediment in geotechnical 
structures such as road construction, embankments or even 
backfill layers. It should be emphasized that the term “water 
content” is used for the mass ratio of water and the dry mate-
rial in geotechnical engineering.

3.2.2 � Geomechanical testing of the stabilized sediment

The use of dredged sediment is very limited due to its high 
water content (Toda et al. 2020), but some dredged sediment 
can still be used in some specific hydraulic engineering pro-
jects (EcoShape 2023). However, the aim of the present work 
is to significantly improve the mechanical properties in order 
to further expand the potential use of sediment with other-
wise limited applications. A sufficient stabilization could 
only be achieved by mixing the sediment with inorganic 
binders such as QL. The reaction time between the sediment 
and QL initiated about 1 h after mixing formed gelatinous 
products (Petry and Little 2002). The tests showed that at 
least 8 ma% of quicklime were needed for soil stabiliza-
tion (Ducman et al. 2022). The use of inorganic binders, 
such as quicklime, for sediment stabilization is a common 

Table 4   Physical and 
mechanical properties of the 
naturally dried sediment from 
lake Ptuj

Property Value

Initial Moisture Content (w) (ma%) 1 43.00
Specific Gravity (γs) (mg m-3) 2.69
Liquid Limit (wL) (%) 49.10
Plastic Limit (wP) (%) 41.90
Consistency Index (Ic) (-) 0.40
Particle Size Distribution:
Particle (< 2.0 mm) (%) 90.00
Particle (< 0.063 mm) (%) 53.90
Particle (< 0.002 mm) (%) 3.80
Classification mSi
Optimum Water Content—Standard Proctor Test (wopt) (%) 29.50
Maximum Dry Density—Standard Proctor Test (ρd,max) (mg m-3) 1.33
Unconfined Composite Strength After Compaction (UCS) (MPa) 0.05
Eodometer Modulus (MPa) 2.55
Shear Resistance:
Friction Angle (f’) (°) 30.50
Cohesion (c’) (kPa) 3
Permeability (m s−1) load 200 kPa 2.60E-09
CBR1,2 1.10/0.70
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practice in geotechnical engineering. QL, or calcium oxide 
(CaO), is known for its pozzolanic properties, which allow 
a reaction with water to form calcium hydroxide (Ca(OH)2). 
This reaction leads to the development of cementitious prop-
erties, making it effective for soil stabilization (Hou and 
Al-Tabbaa 2018). The mixture successfully decreased the 
water content of the sediment, but the uniaxial compressive 
strength (UCS) was still inadequate for anti-flood embank-
ment applications. According to new Slovenian technical 
requirements, the minimum uniaxial compressive strength 
is 0.50 MPa after 7 days of curing (TSPI PG.05.300, 2023). 
The UCS of the sediment (S1) was 0.05 MPa and 0.33 MPa 
for the mixture with 8 ma% of QL (Ducman et al. 2022) after 
7 days of curing. Figure 3 shows that the UCS increased 
with respect to the precursor percentage and alkali activa-
tor (AA) binder. Similarly also Consoli et al. (2019) used 
mixure with 8 ma% lime and 25 ma% of FA to reach the 
optimum strength and durability.

In comparison with the sediment the increase of UCS 
was 660% (4 ma% QL) to 720% (8 ma% QL). The uniaxial 
compressive strength was performed after 7 days of curing.

The UCS of samples pepared with QL (4 ma% or 8 ma%), 
30 ma% of FA and a AA solution slightly increased with added 
AA solution (Fig. 3), but significantly increased when the ratio 
AA/precursor was 0.75 (S1-8QL-30FA2-2). The UCS with 4 
ma% QL is 0.93 MPa and with 8 ma% of QL 1.06 MPa after 
7 days of curing. UCS increased with 4 ma% of QL for more 
than 18 times and with 8 ma% of QL more than 21 times in 
comparison with the sediment (S1). A further augmentation of 
the AA binder quantity does not have a significant impact on 
the uniaxial compressive strength of the mixture. In compari-
son with the present research; dredged sediment with 15 ma% 
of portlant cement and 6 ma% of Na2Si03 reached 0.22 MPa 
of UCS after 7 days (Lang and Chen 2021), but for a sedi-
ment with a higher initial water content (70 ma%). The UCS 
for dredged sediment with the same water content (45 ma%) 
was 0.55 MPa after 28 days with the composite of 15 ma% of 
cement, slag, calcium oxide, anhydrous sodium metasilicate, 
magnesium oxide and nanomodifiers (Lang and Chen 2021).

The mixture S1-4QL-30FA2 was used for further research 
with an AA/precursor ratio of 0.75. The percent of QL was 
reduced from 8 to 4. This mixture showed a high enough 
uniaxial compressive strength whereas the lower quantity of 
QL has a high influence on the final price of the composite 
and a lower environmental impact.

Stabilization with an AA solution increased the soil 
strength during curing (Toda et al. 2020). With time the 
UCS of S1-4QL-30FA2 rapidly increasing for the first 
7 days (Fig. 4). After 28 days, the increase of the UCS is 24 
times higher compared to the pure sediment. In compari-
son with the mixture S1-8QL, which used only 8 ma% of 
QL binder, the increase of UCS is 4 fould. The UCS of the 

Fig. 3   Uniaxial compressive strength for mixture with 4 or 8 ma% of 
QL, 30 ma% of FA and different quantities of AA after 7 days of cur-
ing

Fig. 4   Uniaxial compressive 
strength for the mixture S10-
4QL-30FA2 and the mixture 
S10-8QL and sediment S10
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optimized mixture S1-4QL-30FA2 after 28 days of curing 
was comparable with UCS reported in similar studies, where 
AA dredged sediments with FA were used for embankment 
materials (Dungca and Codilla 2018) or compressed earth 
blocks (Brahim et al. 2022). Similar values of 28 day UCS 
tests were reported also for alkali activated industrial kaolin 
clay with FA (Turan et al. 2022) and AA dredged sediments 
with a combination of GBFS and FA (Wang et al. 2023b). 
However, the mechanical properties of the AA materials are 
closely related to the chemical composition of precursor and 
activator and to the amount of the reactive amorphous phase. 
Due to different precursor origin and composition as well 
as activator type and concentration the UCS values of the 
aforementioned studies can be only roughly compared.

Shear properties of the mixture are characterised with the 
friction angle and cohesion (Fig. 5). Adding AAM into the 
sediment increased the shear properties in comparison with 

the sediment (Žurinskas et al. 2020). Results from the shear 
strength testing demonstrated that the AAM is the most effec-
tive when the amount of clay is at least 30 ma%. The contact 
zone between the AAM and clay forms a compact layer via 
cementitious hydration products. The friction angle increased 
only for a few degress in comparison with the sediment S1 
and sediment with QL (S1-8QL). The opposite results were 
observed for the cohesion which were much higher for the 
mixture with AAM even after only one day of curing and it 
rapidly increased with time. After 7 days of curing, the cohe-
sion was 6 times higher than the cohesion of a mixture with 
QL (S1-8QL). The cohesion of S1 was only 3 kPa.

The oedometer modulus showed a very low value for the 
sediment and a higher value for the mixture S1-8QL and 
the mixture with an AAM binder S1-4Q-30FA2 (Fig. 6). 
Even after 2 days of curing, the mixture S1-4Q-30FA2 
had a higher eodometer modulus than the mixture with QL 

Fig. 5   Friction angle (ϕ) and 
cohesion (c`) for the mixture 
S1-4QL-30FA2, the mixture 
S1-8QL and sediment S10

Fig. 6   Oedometer modulus for 
mixture S1-4QL-30FA2, the 
mixture S1-8QL and the sedi-
ment S1
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(S1-8QL). Under a load of 800 kPa, the oedometer modu-
lus of mixture S1-4Q-30FA2 was 7 times higher that of the 
sediment (S1) and 3 times higher as the mixture S1-8QL 
with QL. The activator reduced the volumetric change of the 
sediment (Mavroulidou et al. 2022) and confirmed that the 
chemical substances from the waste material can success-
fully replace the traditional construction material.

The water permeability of the material is crucial in the 
construction of flood embankments; impermeable mate-
rial prevents the passage of water, ensuring its stability and 
effectiveness in flood protection. If the material is perme-
able, water can seep through the embankment, causing ero-
sion or even complete destruction of the embankment, lead-
ing to catastrophic floods (USSD 2011).

The permeability of the sediment is between 10–8 and 
10–9 m s−1, classifying it as a low permeability material 
(Fig. 7). The coefficient of water permeability depends on 
the load. With the addition of AAM, the mixture became 
impermeable (k < 10–9 m s−1) and after 7 days it was lowered 
for one order of magnitude in comparison with the sediment 
(S1) and mixture S1-8QL.

The California bearing ratio of the sediment (S1) was 
very low (CBR1 < 3%) and unsuitable for mechanical com-
paction (TSPI-P.05.200 2020). Materials suitable for com-
paction show a CBR1 > 25% which was common for the both 
mixture (S1-4QL-30FA2 and S1-8QL). Mixture S1-4QL-
30FA2 reached a CBR1 of 60% and was 50% higher in com-
parison with the mixture S1-8QL (Fig. 8). The CBR1 for the 

Fig. 7   Results of water perme-
ability coefficient of the sedi-
ment (S1), the mixture S1-8QL 
and S1-4QL-30FA2
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Fig. 8   Results of California 
bearing ratio (CBR1) and 
the bearing ratio of saturated 
samples (CBR2) of the mixtures 
S1-4QL-30FA2, the mixture 
S1-8QL and the sediment S1
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sediment (S1) was only 1.1%. In order to determine CBR2, 
the samples were saturated with water. The results indicate 
that water does not have a significant influence on the bear-
ing capacity ratio of the S1-4QL-30FA2 mixture.

Results of the geomechanical testing of the sediment (S1), 
a mixture with 8 ma% of QL (S1-8QL) and a mixture with 
4 ma% of QL and added AAM showed higher geomechani-
cal properties for the last mixture with AAM (Table 5). The 
mixture S1-4QL-30FA2 had several times higher geome-
chanical properties in comparison with the sediment and 
higher properties in comparison with the mixture containing 
sedment and 8 ma% of QL. The geomechanical properties 
are sufficient for anti-flood construction (TSPI PG.05.300 
2023) and the material is unpermeable, enableing a higher 
safety of the embankment.

3.2.3 � Gel characterization by infrared (IR) spectroscopy

For the optimized mixture S1-4QL-30FA2, the degree of 
polymerization at 1, 7, 28 and 55 days of reaction was 
monitored using FTIR (Fig. 9). According to the infrared 
analysis of the undried sample stored in sealed plastic bag, 
the vibration of the H–O-H bonds was evident by a band 
with a minimum at around 1640 cm−1, indicating unbound 
water molecules (García Lodeiro et al. 2010; Yusuf 2023). 
Due to the alkali activation of carbonate-rich illite clays a 
carbonate band was evident at around 1400 cm−1, accom-
panied with a sholder at around 875 cm−1 (D’Elia et al. 
2020). The broad band with a minimum between 955 and 
975 cm−1 is associated with the asymmetric stretching of 
Si–O-T bonds (T = Si or Al) in AAM gel (García Lodeiro 
et al. 2010; Shi et al. 2011; Kalina et al. 2023). Increasing 
the reaction time shifted the values to lower wave num-
bers (Fig. 9), which most probably indicates a progressive 
depolymerization of silicate chains and a formation of a 
C-S–H gel (Hong and Glasser 2002; Criado et al. 2008; 
García Lodeiro et  al. 2010), driven by Ca-rich phases 

(Coudert et al. 2019). The presence of the gel was fur-
ther supported by the bending vibrations of Si–O-T bonds, 
appearing at around 520 cm−1 (Fig. 9) (Yusuf 2023).

The FTIR analysis was accompanied by XRD, which 
showed that no significant mineralogical changes occurred 
during 55 days of reaction (Supplement 1).

3.2.4 � Environmental context and possible real world 
applications and implications

The study proposed an optimal lime-alkali activator binder 
for the stabilization of river dredged sediments with the 
aim of achieving sufficient mechanical properties for use 

Table 5   The properties of the sediement, mixture with 8 ma% of QL and mixture S1-4QL-30FA2 cured for 7 days

* According TSPI 05.300
a Design requirements according to the Eurocode 7
b According to TSPI 05.200–2

Uniaxial 
compressive 
strength

Shear strength Oedometer modulus Permeability CBR

Mixture designation Friction angle Coheison CBR1 CBR2

Qu (MPa) f’ (°) c’ (kPa) Eoed,200 kPa (MPa) K200kPa (m s−1) % %
S1 0.05 30.5 3 2500 2.60E-09 1.1 0.7
S1-8QL 0.30 32.0 39 12500 1.20E-09 40.0 21.0
S1-4QL-30FA2 0.93 33.0 210 41000 2.50E-10 60.0 58.0
Required value * 0,4* 32a 0a > 20000a < 1.00E-08a > 25b 7*

Fig. 9   FTIR spectra of the optimized mixture S1-4QL-30FA2 after 1, 
7, 28 and 55 days of reaction. Characteristic bands are indicating: a – 
unbound water, b, d – carbonates, c,e – aluminosilicate gel
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in flood embankment application and minimizing negative 
environmental impacts.

The amount of QL was reduced by 50% compared to 
previous blends and the precursor (FA) and alkali activator 
(AA) were added instead. Two types of AA were tested: 
potassium-based and sodium- based silicate solutions. It has 
been confirmed that a potassium silicate solution is better 
suited to achieve higher early strength, while a sodium sili-
cate solution is better suited to achieve higher strength at 
a later age. Since early strength is important for industrial 
applications so that the concrete can be demoulded earlier 
and processed efficiently, it is crucial to combine the effects 
of technical performance with those of environmental impact 
during optimization. Based on the Environmental Cost Indi-
cator (ECI) per m3, the contribution of sodium-based activa-
tors appears to be lower than that of potassium-based activa-
tors (Fig. 6 of the cited reference), but a concrete mix with 
a combination of K-silicate and Na-silicate solutions shows 
the greatest potential to reduce the ECI. A mix using only 
Na-silicate and NaOH was identified as the mix with the 
second highest potential to reduce ECI (Firdous et al. 2022).

The resulting environmental benefits are related to the 
reduction of the CO2 footprint, the decrease in energy con-
sumption and the promotion of the circular economy. As 
lime production is one of the largest anthropogenic sources 
of CO2 (Campo et al. 2021; Laveglia et al. 2022), the reduced 
use of QL in the mix can help to reduce the carbon footprint, 
which has been further limited by alkali activation (AA) of 
non-calcined river sediments, although AA usually requires 
calcination of clay-rich sediments at around 700–900 °C 
(Žibret et al. 2023). Reducing the lime content and avoiding 
calcination of sediments simultaneously contributed to lower 
energy consumption. A recent valorization of untreated 
dredged sediments as feedstock for AA has shown that AA 
reduces climate change impacts by 66% compared to OPC, 
including sediment beneficial recovery (Monteiro et al. 
2024). Finally, the construction of flood protection dams 
by AA does not require on-site transportation and associ-
ated energy consumption and emissions, which is an impor-
tant parameter in life cycle assessment (LCA) scenarios  
(Monteiro et al. 2024). The local alternative precursors such 
as dredged river sediments, can therefore effectively reduce 
the environmental costs of AAM and accelerate the indus-
trial use of such materials (Monteiro et al. 2024).

In addition to improving mechanical properties (Gokul 
et al. 2021), alkaline activation of sediments can effectively 
immobilize potentially toxic elements (PTEs) (Komaei et al. 
2023). The investigated Drava sediments show elevated 
Pb and Zn concentrations, which can be attributed to his-
torical Pb/Zn ore mining in the upstream area (Šajn et al. 
2011; Žibret et al. 2018). As elevated Pb/Zn concentrations 
have also been documented in urban rivers not associated 
with mining (Owens and Rutherford 2023), the presented 

approach of reusing river sediments with PTEs for on-
site river dams could have great potential for widespread 
application. Further research will focus on the leaching and 
durability properties of the developed material, which are 
necessary for evaluating its future real-world application for 
anti-flood embankments.

In summary, it was confirmed that alkali activation can 
be used for soil stabilization as it provides uniaxial compres-
sive strength values above 1 MPa after 28 days of reaction, 
which opens many possibilities to use this technology for 
embankments, capping layer below the road structure, anti-
flood protections, stabilization of the foundation layers, etc.

4 � Conclusions

Laboratory tests were performed with sediments dredged 
from the river Drava and FA slag, and Na- and K- activa-
tors were added in order to identified the most promissing 
mixture with regard to mechanical properties; the highest 
compressive strength was achieved by replacing sediment 
by 30 ma% of FA and using Na-water glass as the activator. 
The mixture was then further optimized for soil stabilization 
by a 4 ma% QL pretreatment.

Chemically enhanced ground improvement is gaining 
attraction in the civil engineering industry as a more sus-
tainable alternative to traditional methods like relocating 
and landfilling unsuitable construction ground. However, the 
environmental impact of conventional soil stabilizers such 
as Portland cement or lime is a concern, leading to a global 
research effort focused on innovative cementing agents.

The geomechanical research showed that adding AAM 
to the mixture with the dredged sediment improved all 
tested geomechanical properties and thus enables sediment 
to be used for embankment of backfill. The QL improved 
the geomechanical properties of the dredged sediment, but 
it remains insufficient for anti-flood ambankments. For the 
optimal binder, the amount of the QL was decreased by 50% 
and the presursor (FA) and alkali activation (AA) binder was 
added instead. The final mixture had higher geomechancal 
property values and lower permeability values, which is 
desirable for anti-flood embankments. In relation to the ini-
tial sediment, the UCS increased to 23 fold, cohesion drasti-
cally increased from 3 to 210 kPa and the oedometer modulus 
at a load of 200 kPa increased to 16 fold. The generation of 
the C-S–H gel contributed to a denser and cemented sedi-
ment matrix. The procedure involving pretreating the sedi-
ment with a minor addition of QL, followed by a stabilization 
using AAM, yielded satisfactory geomechanical properties 
suitable for the construction of an anti-flood embankment.
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