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Abstract. We extend the concept of a G-Drazin inverse from the set Mn

of all n× n complex matrices to the set R
D of all Drazin invertible elements in

a ring R with identity. We also generalize a partial order induced by G-Drazin
inverses from Mn to the set of all regular elements in R

D, study its properties,
compare it to known partial orders, and generalize some known results.

1. Introduction

Generalized inverses and induced partial orders were initially often stud-
ied on real and complex matrices. Their development was stimulated by,
among other things, a wealth of applications, e.g., in statistics, the theory
of differential equations, and numerical analysis, to name but a few (see,
e.g., [4,15,17]). Recently, many of those concepts were extended from matri-
ces to rings (satisfying suitable additional conditions) [7,13,24,25,29]. In the
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present paper we follow this trend and generalize a G-Drazin inverse and its
induced partial order.

Throughout the paper, the term ring means an associative ring with
identity 1. Let R be a ∗-ring, i.e., a ring equipped with involution ∗. One of
the first among generalized inverses was introduced independently by Moore,
Bjerhammar, and Penrose [2,19,23] on Mn, the ∗-ring of all n× n complex
matrices. An element a ∈ R is said to be Moore–Penrose invertible if there
exists x ∈ R that satisfies the following four equations:

(1.1) axa = a, xax = x, (ax)∗ = ax, (xa)∗ = xa.

If such x exists, it is unique and we write x = a† and call it the Moore–

Penrose inverse of a. There are many applications of the Moore–Penrose
inverse and in some of them one may get by with a weaker type of a gen-
eralized inverse (see, e.g., [6,27]). For a ring R, we say that a ∈ R has an
inner generalized inverse or {1}-inverse a− ∈ R if x = a− satisfies the first
equation in (1.1), i.e., aa−a = a. In this case we say that a is a regular ele-
ment in R. We denote the set of all {1}-inverses of a by a{1} and by R(1)

the set of all regular elements in R. If every element in R is regular, then
we say that R is a von Neumann regular ring. The Moore–Penrose inverse
has on the one hand many properties, that, in general, a {1}-inverse does
not have, but on the other hand, it is often easier to find a {1}-inverse than
the Moore–Penrose inverse.

Let R be a ring. If x = a♯ satisfies the first two equations in (1.1) and
commutes with a ∈ R, then we call a♯ the group inverse of a (see [11]). It
turns out that the group inverse is a special case of an inverse known as the
Drazin inverse that has many applications in the theories of control theory
[3], finite Markov chains [4], singular differential and difference equations [4],
cryptography [10], and iterative methods in numerical analysis [15]. We say
that an element a ∈ R has a Drazin inverse x = aD ∈ R if

(1.2) ax = xa, x = ax2, ak = ak+1x

for some non-negative integer k. Note that for k = 0 we define a0 = 1. If
a has a Drazin inverse aD, then we say that a is Drazin invertible and the
smallest non-negative integer k in (1.2) is called the Drazin index i(a) of
a. It is well known that there is at most one x = aD such that (1.2) holds
(see [8]). If i(a) ≤ 1, the Drazin inverse x of a is the group inverse of a.
We denote by RD and R♯ the subsets of all Drazin invertible and group
invertible elements in R, respectively, and let R(1,D) = RD ∩R(1).

Campbell and Meyer noted in [4] that it could be sometimes difficult
to compute the Drazin invese of A ∈ Mn and that one way to lessen this
problem is to look for a generalized inverse that would play the same role
for AD as {1}-inverses play for A†. Therefore they introduced the following
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generalized inverse: For A ∈ Mn with i(A) = k we say that X ∈ Mn is a

weak Drazin inverse of A if XAk+1 = Ak. A special kind of a weak Drazin
inverse called a G-Drazin (or GD) inverse was defined by Wang and Liu in
[28]. We now extend [28, Definition 1.1] to rings.

Definition 1.1. Let R be a ring and let a ∈ RD with i(a) = k. We say
that x = aGD is a G-Drazin (or GD) inverse of a if

axa = a, xak+1 = ak, ak+1x = ak.

In general, the G-Drazin inverse of a ∈ RD, if it exists, is not unique
[28]. We denote the set of all G-Drazin inverses of a ∈ RD by a{GD}.

With all of the mentioned generalized inverses we may define relations
on R. For a, b ∈ R we say that a is below b with respect to the minus relation
and write

(1.3) a ≤− b if a−a = a−b and aa− = ba−

for some a− ∈ a{1}. It turns out (see [9]) that this relation is a partial order
on R(1). There are many equivalent definitions of the minus partial order
(see, e.g., [22]). Moreover, we may extend this partial order to a more gen-
eral setting of rings or even semigroups [18]. Let R be a ring. For a, b ∈ R
we write

(1.4) a ≤− b if a = xb = by and xa = a

for some x, y ∈ R. It turns out that this is indeed a partial order for any
ring R (see [18]) and that definitions (1.3) and (1.4) are equivalent on R(1).

The sharp partial order ≤♯ was introduced in [16] on the set of all n× n
matrices over a field F which have the group inverse. This order was gen-
eralized in [13] and independently in [25] to rings. Namely, for a ∈ R♯ and
b ∈ R, we write

(1.5) a ≤♯ b if a♯a = a♯b and aa♯ = ba♯.

It was shown in [13] that ≤♯ is indeed a partial order on R♯.
In [28] a new matrix partial order was introduced on Mn in terms of

G-Drazin inverses. Namely, for A,B ∈ Mn we say that A is below B under
the G-Drazin order if there exist G-Drazin inverses AGD

1 and AGD
2 of A such

that

AGD
1 A = AGD

1 B and AAGD
2 = BAGD

2 .

It was proved in [28] that this relation is indeed a partial order. It is the
aim of this paper to generalize and study the G-Drazin partial order to the
set RD of all Drazin invertible elements in a unital ring R. The paper is
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structured as follows. In the second section we recall the concept of the core-
nilpotent decomposition and present some definitions and auxiliary results.
In the third section we study G-Drazin invertibility in rings, characterize
G-Drazin inverses, and also describe the set of all G-Drazin inverses of a
given a ∈ R(1,D). In the fourth section we introduce the G-Drazin relation
on rings, present some characterizations of this relation, and then show that
it is indeed a partial order on the set R(1,D) of all Drazin invertible, regu-
lar elements in a ring R. We then extend the concept of G-Drazin partial
order to the set of all Drazin invertible elements in a ring and compare the
G-Drazin partial order to some known partial orders.

2. Preliminaries

Let from now on R be a ring (i.e., an associative ring with identity 1).
Denote by N (R) the set of all nilpotent elements in R. Koliha gave in [12]
an equivalent definition of the Drazin inverse. Namely, for a, b ∈ R, (1.2) is
equivalent to

(2.1) ab = ba, b = ab2, a− a2b ∈ N (R).

Moreover, the index i(a) of a is equal to the nilpotency index of a− a2b.
Suppose a ∈ RD . It is known (see [26]) that then

(2.2) a = c+ n

where c ∈ R♯, n ∈ N (R) with index of nilpotency equal to i(a), and cn =
nc = 0. Then c is called the core part of a and n the nilpotent part of a.
Since c♯cc♯ = c♯ and c♯c = cc♯, it follows c♯n = 0 = nc

♯

, and therefore it is
easy to see by (2.1) that aD = c#. Since the Drazin inverse of every element
in R is unique if it exists, we may conclude that c and n from (2.2) are
unique. In fact,

(2.3) c = a2aD and n = a− a2aD.

We refer to c+ n as the core-nilpotent decomposition of a.
For a, b ∈ RD, let a = ca + na and b = cb + nb be the core-nilpotent de-

compositions of a and b respectively, where ca is the core part of a, cb is the
core part of b, na is the nilpotent part of a, and nb is the nilpotent part of
b. The element a is said to be below the element b under the Drazin order if
ca ≤♯ cb. When this happens, we write a ≤D b (see [14, Definition 4]). Note
that the Drazin order is in fact a pre-order. Namely, since the sharp order
(1.5) is a partial order on the set of all group invertible elements in a general
ring with identity, it clearly follows that the Drazin order is reflexive and
transitive however it is not anti-symmetric (see [17, Example 4.4.5]). The
following result which was proved in [14] will be used in the continuation.
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Proposition 2.1. Let a, b ∈ RD . The following statements are then
equivalent.

(i) a ≤D b.
(ii) aaD = baD = aDb.
(iii) akb = bak = ak+1 where k = i(a).
(iv) akb = bak = ak+1 for some integer k ≥ 0.

If for p ∈ R, p2 = p, then p is said to be an idempotent. The equality 1 =
e1 + e2 + · · ·+ en, where e1, e2,. . . , en are idempotents in R and eiej = 0 for
i 6= j, is called a decomposition of the identity of R. Let 1 = e1+ e2+ · · ·+ en
and 1 = f1 + f2 + · · · + fn be two decompositions of the identity of R. We
have

x = 1 · x · 1 = (e1 + e2 + · · · + en)x(f1 + f2 + · · · + fn) =
n
∑

i,j=1

eixfj .

Then any x ∈ R can be uniquely represented in the following matrix form:

x =





x11 · · · x1n
...

. . .
...

xn1 · · · xnn





e×f

where xij = eixfj ∈ eiRfj . With e× f we emphasize the use of the de-
compositions of the identity 1 = e1 + e2 + · · ·+ en on the left side and
1 = f1 + f2 + · · · + fn on the right side of x = 1 · x · 1. If x = (xij)e×f and
y = (yij)e×f , then x+ y = (xij + yij)e×f . Moreover, if 1 = g1 + · · · + gn is
another decomposition of the identity of R and z = (zij)f×g, then, by the
orthogonality of the idempotents involved, xz =

(
∑n

k=1 xikzkj
)

e×g
. Thus,

if we have decompositions of the identity of R, then the usual algebraic op-
erations in R can be interpreted as simple operations between appropriate
n× n matrices over R. When n = 2 and p, q ∈ R are idempotents, we may
write

x = pxq + px(1− q) + (1− p)xq + (1− p)x(1− q) =

[

x11 x12
x21 x22

]

p×q

.

Here x11 = pxq, x12 = px(1− q), x21 = (1− p)xq, and x22 = (1− p)x(1− q).
Let a ∈ R and let a◦ denote the right annihilator of a, i.e., the set a◦ =

{x ∈ R : ax = 0}. Similarly we denote the left annihilator ◦a of a, i.e., the
set ◦a = {x ∈ R : xa = 0}. Suppose that p, q ∈ R are such idempotents that
◦a = ◦p and a◦ = q◦. Observe (or see [7, Lemma 2.2]) that ◦p = R(1− p)
and q◦ = (1− q)R. It follows that then a = paq, i.e.,

(2.4) a =

[

a 0
0 0

]

p×q

.
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Let a ∈ RD, p = aaD , and let a = ca+na be the core-nilpotent decompo-
sition of a. Observe that then p is an idempotent and that (see [14, Section
2])

(2.5) a =

[

ca 0
0 na

]

p×p

.

Here the index of nilpotency of na equals i(a) = k. Note that

(2.6) p = aaD = (ca + na)c
#
a = cac

#
a .

We end this section with an auxiliary result which was proved in [14].

Proposition 2.2. Let a ∈ RD, p = aaD , and let a = ca + na, be the

core-nilpotent decomposition of a. For b ∈ RD, we have a ≤D b if and only

if

b =

[

ca 0
0 t

]

p×p

where t ∈ (1− p)R(1− p).

3. G-Drazin invertibility in rings

In this section we study and characterize G-Drazin inverses of elements
in rings. First, let us use the core-nilpotent decomposition to derive the
matrix form of a G-Drazin inverse of a ∈ R(1,D).

Lemma 3.1. Let a ∈ R(1,D), p = aaD, and let a = ca + na be the core-

nilpotent decomposition of a. Then aGD is a G-Drazin inverse of a if and
only if

aGD =

[

c
♯
a 0
0 n−

a

]

p×p

where n−
a ∈ na{1}.

Proof. Let i(a) = k and let first

b =

[

c
♯
a 0
0 n−

a

]

p×p

with n−
a ∈ na{1}. Then

aba =

[

ca 0
0 na

]

p×p

[

c
♯
a 0
0 n−

a

]

p×p

[

ca 0
0 na

]

p×p
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=

[

cac
♯
aca 0
0 nan

−
a na

]

p×p

=

[

ca 0
0 na

]

p×p

= a.

We have

bak+1 =

[

c
♯
ac

k+1
a 0
0 n−

a n
k+1
a

]

p×p

and ak =

[

cka 0
0 nk

a

]

p×p

.

By (1.2) and since nk
a = 0, we obtain bak+1 = ak. Similarly, we get that

ak+1b = ak. Thus, b ∈ a{GD}.
Conversely, let x ∈ a{GD} and write

x =

[

x1 x2
x3 x4

]

p×p

.

From xak+1 = ak we obtain
[

x1 x2
x3 x4

]

p×p

[

ck+1
a 0
0 0

]

p×p

=

[

x1c
k+1
a 0

x3c
k+1
a 0

]

p×p

=

[

cka 0
0 0

]

p×p

and so x1c
k+1
a = cka and x3c

k+1
a = 0. By the first equation, we have

x1c
k+1
a

(

c♯a
) k+1

= cka
(

c♯a
)k+1

,

hence x1cac
♯
a = c

♯
a, and so by (2.6) x1p = c

♯
a. Since x1 ∈ Rp, x1 = c

♯
a. The

second equation yields that x3c
k+1
a (c♯a)k+1 = 0 and hence x3cac

♯
a = 0. By

(2.6), x3p = 0 and since x3 ∈ Rp, we have x3 = 0. From ak+1x = ak we sim-

ilarly get ck+1
a x2 = 0 and thus (c♯a)k+1ck+1

a x2 = 0. So, 0 = c
♯
acax2 = px2 and

since x2 ∈ pR, x2 = 0. From axa = a we now obtain

[

cax1ca 0
0 nax4na

]

p×p

=

[

ca 0
0 na

]

p×p

and therefore nax4na = na. Thus,

x =

[

c
♯
a 0
0 x4

]

p×p

where x4 ∈ na{1}. �

The equivalence between statements (i) and (ii) of the next result recov-
ers [5, Corollary 2.1] which was proved using corresponding matrix decom-
positions.
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Theorem 3.2. Let a ∈ RD with i(a) = k and x ∈ R. The following
statements are equivalent :

(i) x = aGD.
(ii) axa = a and akx = xak.
(iii) axa = a and aDx = xaD.
(iv) axa = a and aDax = xaDa.
(v) axa = a and a2aDx = xa2aD.

Proof. For x = aGD, we know that axa = a and ak+1x = ak = xak+1.
So,

akx = aD(ak+1x) = aDak = akaD = xak+1aD = xak,

i.e., (ii) holds.
If axa = a and akx = xak, then ak+1x = a(akx) = axak = ak and simi-

larly xak+1 = ak. Hence, x = aGD and (i) is satisfied.
The rest of the equivalences follow as in [20, Corollary 4.3]. �

We can also characterize G-Drazin invertibility by idempotents.

Theorem 3.3. Let a ∈ RD with i(a) = k. The following statements are
equivalent :

(i) a{GD} 6= ∅.
(ii) There exist idempotents p, q ∈ R such that pR = aR, Rq = Ra and

akp = ak = qak.
(iii) There exist idempotents p, q ∈ R such that pR = aR, Rq = Ra and

aDp = qaD.
Moreover, for arbitrary a− ∈ a{1}, qa−p ∈ a{GD}, that is,

q · a{1} · p ⊆ a{GD}.

Proof. Assume that x = aGD. Set p = ax and q = xa. Then p = p2,
q = q2, pR = axR = aR, Rq = Rxa = Ra and akp = ak+1x = ak = xak+1 =
qak.

Let (ii) hold. Since pR = aR, then a = pa and p = av, for some v ∈ R,
which gives ava = a and so a is regular. Denote by x = qa−p, for a− ∈ a{1}.
Further, p = av = aa−(av) = aa−p, and, by Rq = Ra, a = aq and q = qa−a.
Thus, axa = (aq)a−pa = (aa−p)a = pa = a,

xak+1 = qa−pak+1 = qa−ak+1 = qak = ak

= akp = akaa−p = ak+1qa−p = ak+1x

which yields that x ∈ a{GD}.
The equivalence (i) ⇔ (iii) follows similarly (see also [20]). �

Let a ∈ RD , with i(a) = k, and let a = ca + na be the core-nilpotent de-
composition of a. We have nk

a = 0 and thus al = cla for every l ≥ k. So, for
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every l ≥ k, al has the group inverse (c♯a)l and hence al ∈ R♯ ⊆ R(1). We

now describe the set of all G-Drazin inverses of a ∈ R(1,D) and extend [21,
Corollary 3.11(ii)].

Theorem 3.4. Let a ∈ R(1,D) with i(a) = k. Then

a{GD} = {a−aa− + (1− a−a)aD + aD(1− aa−) + u− aDau(1− aa−)

−(1− a−a)uaaD − a−auaa− : u ∈ R is arbitrary}

for some a− ∈ a{1} and (ak+1)− ∈ (ak+1){1}.

Proof. For

x = a−aa− + (1− a−a)aD + aD(1− aa−) + u

− aDau(1− aa−)− (1− a−a)uaaD − a−auaa−,

where u ∈ R, we can verify that axa = a, xak+1 = ak and ak+1x = ak. So,
x ∈ a{GD}.

Now, we derive the general solution for the system of equations axa = a,
xak+1 = ak, and ak+1x = ak. According to [1, p. 52], the equation axa = a
has the general solution

(3.1) x = a−aa− + y − a−ayaa−,

for an arbitrary y ∈ R. Substituting (3.1) in xak+1 = ak, we obtain

(3.2) (1− a−a)yak+1 = (1− a−a)ak.

Since 1− a−a ∈ (1− a−a){1}, by [1, p. 52], (3.2) yields

(3.3) y = (1− a−a)ak(ak+1)− + z − (1− a−a)zak+1(ak+1)−

for an arbitrary z ∈ R. Using ak+1x = ak, (3.1), and (3.3), it follows

(3.4) ak+1z(1− aa−) = ak(1− aa−).

Applying [1, p. 52] and 1− aa− ∈ (1− aa−){1}, the general solution to (3.4)
is

(3.5) z = (ak+1)−ak(1− aa−) + u− (ak+1)−ak+1u(1− aa−),

for an arbitrary u ∈ R. From (3.1), (3.3), and (3.5), one can see that

x = a−aa− + (1− a−a)aD + aD(1− aa−) + u

− aDau(1− aa−)− (1− a−a)uaaD − a−auaa−. �
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4. G-Drazin partial order in rings

Let us extend the G-Drazin order to rings.

Definition 4.1. Let R be a ring and let a ∈ RD and b ∈ R. We say
that a is below b under the G-Drazin order and write a ≤GD b if there exist
G-Drazin inverses aGD

1 and aGD
2 of a such that

(4.1) aGD
1 a = aGD

1 b and aaGD
2 = baGD

2 .

Remark 4.2. For G-Drazin inverses aGD
1 , aGD

2 of a ∈ RD, observe that
by Definition 1.1, aGD

2 aaGD
1 ∈ a{GD}. If (4.1) holds, then

aGD
2 aaGD

1 a = aGD
2 aaGD

1 b and aaGD
2 aaGD

1 = baGD
2 aaGD

1

and therefore we may equivalently reformulate Definition 4.1 as follows:
a ≤GD b if there exists a G-Drazin inverse aGD of a such that

aGDa = aGDb and aaGD = baGD.

Corollary 4.3. Let a ∈ RD and b ∈ R. The following statements are

equivalent.
(i) a ≤GD b.
(ii) a = baGDa = aaGDb for some aGD ∈ a{GD}.

Proof. By Remark 4.2, if a ≤GD b, there exists aGD ∈ a{GD} such that
aGDa = aGDb and aaGD = baGD. Hence, a = aaGDa = aaGDb and analo-
gously a = baGDa.

Suppose that a = baGDa = aaGDb for some aGD ∈ a{GD}. Then, for x =
aGDaaGD, we have x ∈ a{GD}, ax = aaGDaaGD = aaGD = baGDaaGD = bx
and similarly xa = xb. �

With the next theorem we characterize the G-Drazin order in terms of
core-nilpotent decomposition.

Theorem 4.4. Let a ∈ R(1,D), p = aaD, b ∈ R, and let a = ca + na be

the core-nilpotent decomposition of a. Then a ≤GD b if and only if

b =

[

ca 0
0 b4

]

p×p

where na ≤− b4.

Proof. Let

b =

[

ca 0
0 b4

]

p×p
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with na ≤
− b4. There exists n

−
a ∈ na{1} such that n−

a na = n−
a b4 and nan

−
a =

b4n
−
a . Let

aGD =

[

c
♯
a 0
0 n−

a

]

p×p

.

By Lemma 3.1, aGD ∈ a{GD}. Also,

aGDa =

[

c
♯
aca 0
0 n−

a na

]

p×p

=

[

c
♯
aca 0
0 n−

a b4

]

p×p

= aGDb

and similarly aaGD = aGDb. Thus, a ≤GD b.
Conversely, let a ≤GD b and

b =

[

b1 b2
b3 b4

]

p×p

.

There exists aGD ∈ a{GD} such that aGDa = aGDb and aaGD = baGD. By
Lemma 3.1 there exists n−

a ∈ na{1} such that

aGD =

[

c
♯
a 0
0 n−

a

]

p×p

.

Then aGDa = aGDb yields

[

c
♯
aca 0
0 n−

a na

]

p×p

=

[

c
♯
ab1 c

♯
ab2

n−
a b3 n−

a b4

]

p×p

and so c
♯
aca = c

♯
ab1, c

♯
ab2 = 0, and n−

a na = n−
a b4. Since b1, b2 ∈ pR, we have

ca = cac
♯
ab1 = pb1 = b1 and 0 = cac

♯
ab2 = pb2 = b2. From aaGD = baGD we

get
[

cac
♯
a 0

0 nan
−
a

]

p×p

=

[

b1c
♯
a b2n

−
a

b3c
♯
a b4n

−
a

]

p×p

.

Thus, b3c
♯
a = 0 and since b3 ∈ Rp, 0 = b3c

♯
aca = b3p = b3. Also, nan

−
a = b4n

−
a .

Therefore,

b =

[

ca 0
0 b4

]

p×p

where na ≤− b4. �

The G-Drazin order ≤GD can also be characterized by idempotents.
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Theorem 4.5. Let a ∈ RD with i(a) = k and let b ∈ R. The following

statements are equivalent :
(i) a ≤GD b.
(ii) There exist idempotents p, q ∈ R such that pR = aR, Rq = Ra, akp =

ak = qak and pb = a = bq.
(iii) There exist idempotents p, q ∈ R such that pR = aR, Rq = Ra,

aDp = qaD and pb = a = bq.

Proof. Using Remark 4.2, the assumption a ≤GD b implies that there
exists x ∈ a{GD} such that xa = xb and ax = bx. As in the proof of The-
orem 3.3, we observe that p = ax and q = xa satisfy pR = aR, Rq = Ra,
akp = ak = qak. Also, pb = a(xb) = axa = a and bq = (bx)a = axa = a, and
hence (i) implies (ii).

Assume that (ii) holds. According to Theorem 3.3, x = qa−p ∈ a{GD},
for a− ∈ a{1}. Since q is an idempotent, a = bq implies a = aq, and thus
ax = (aq)a−p = aa−p = bqa−p = bx. Similarly, xa = ab, that is, a ≤GD b.

In an analogous manner, we prove that (i) ⇔ (iii). �

Since every G-Drazin inverse of a ∈ RD is also its inner generalized in-
verse, it follows by (1.3) and Definition 4.1 that the G-Drazin order implies
the minus order, i.e., if a ≤GD b for a ∈ RD and b ∈ R, then a ≤− b. We
will present some constraints under which the converse is true. Let us first
prove an auxiliary result.

Lemma 4.6. Let a ∈ R(1,D), p = aaD, b ∈ R, and let a = ca + na be the

core-nilpotent decomposition of a. Let b = b1 + b4 for some b1 ∈ pRp and

b4 ∈ (1− p)R(1− p). If a ≤− b, then b1 = ca and na ≤− b4.

Proof. Since a ≤− b, there exists x ∈ R such that axa = a, xa = xb,
and ax = bx. Let

x =

[

x1 x2
x3 x4

]

p×p

.

By axa = a, we get

[

cax1ca cax2na

nax3ca nax4na

]

p×p

=

[

ca 0
0 na

]

p×p

and therefore cax1ca = ca and nax4na = na. Multiplying the former equa-

tion first from the left and next from the right by c
♯
a we obtain

cax1p = p = px1ca,
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and since x1 ∈ pRp, we get cax1 = x1ca and x1 = x1cax1. Thus, x1 = c
♯
a.

Since b =

[

b1 0
0 b4

]

p×p

, we have by xa = xb,

(4.2)

[

c
♯
aca x2na

x3ca x4na

]

p×p

=

[

c
♯
ab1 x2b4

x3b1 x4b4

]

p×p

and by ax = bx,

(4.3)

[

cac
♯
a cax2

nax3 nax4

]

p×p

=

[

b1c
♯
a b1x2

b4x3 b4x4

]

p×p

.

It follows that p = c
♯
aca = c

♯
ab1 and p = cac

♯
a = b1c

♯
a. So, c♯ab1 = b1c

♯
a. Since

b1, c
♯
a ∈ pRp, we also have b1 = b1c

♯
ab1 and c

♯
a = c

♯
ab1c

♯
a. Thus, b1 =

(

c
♯
a

) ♯
= ca.

By (4.2) and (4.3) we also get x4na = x4b4 and nax4 = b4x4, and since
nax4na = na, we establish that na ≤− b4. �

Theorem 4.7. Let a ∈ R(1,D), i(a) = k, and b ∈ RD. The following

statements are equivalent.
(i) a ≤GD b.
(ii) a ≤− b and a ≤D b.
(iii) a ≤− b and akb = bak.
(iv) a ≤− b, ◦(ak) ⊆ ◦(bak), and (ak)◦ ⊆ (akb)◦.

Proof. Let us first show that (i) implies (ii)–(iv). Let a ≤GD b. Then
a ≤− b. Let a = ca + na be the core-niplotent decomposition of a and let
p = aaD. By Theorem 4.4, we may write

a =

[

ca 0
0 na

]

p×p

and b =

[

ca 0
0 b4

]

p×p

where na ≤− b4. Since nk
a = 0, we have

(4.4) ak+1 = akb = bak

and therefore by Proposition 2.1, a ≤D b. It follows that (i) implies (ii) and
(iii). Let sak = 0 = akz for some s, z ∈ R. By (4.4), 0 = sak+1 = sbak and
similarly 0 = akbz. Therefore, (i) also implies (iv).

As above, let from now on a have the form (2.5) and let us first prove
that (ii) implies (i). So, suppose a ≤− b and a ≤D b. By Proposition 2.2,

b =

[

ca 0
0 b4

]

p×p
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where b4 ∈ (1− p)R(1− p). Lemma 4.6 implies then that na ≤− b4. There-
fore, by Theorem 4.4, a ≤GD b.

To show that (iii) implies (i), assume a ≤− b and akb = bak. Let

b =

[

b1 b2
b3 b4

]

p×p

.

Since nk
a = 0, we get

[

ckab1 ckab2
0 0

]

p×p

=

[

b1c
k
a 0

b3c
k
a 0

]

p×p

and thus ckab2 = 0 and b3c
k
a = 0. Multiplying the first equation from the left

and the second equation from the right by (c♯a)k we get pb2 = 0 = b3p. Since
b2 ∈ pR and b3 ∈ Rp, b2 = b3 = 0. Lemma 4.6 then yields that b1 = ca and
na ≤− b4, and so by Theorem 4.4, a ≤GD b.

Assume now that (iv) holds. Again, let

b =

[

b1 b2
b3 b4

]

p×p

.

Since nk
a = 0 and thus ak = cka ∈ pRp, we have (1− p)ak = 0 and therefore,

by assumption, (1− p)bak = 0. So,

0 =

[

0 0
0 1− p

]

p×p

[

b1 b2
b3 b4

]

p×p

[

cka 0
0 0

]

p×p

=

[

0 0
(1− p)b3c

k
a 0

]

p×p

and hence

0 = (1− p)b3c
k
a(c

♯
a)

k = (1− p)b3p
k = (1− p)b3p.

Since b3 ∈ (1− p)Rp, b3 = 0. Similarly, ak(1− p) = 0 and thus, by assump-
tion, akb(1− p) = 0 which yields 0 = pb2(1− p) = b2. Therefore,

b =

[

b1 0
0 b4

]

p×p

and hence again by Lemma 4.6 and Theorem 4.4, a ≤GD b. �

With Theorems 4.4 and 4.7 we generalized [28, Theorem 3.4]. The
G-Drazin order ≤GD is clearly a reflexive relation on R(1,D). Suppose
a ≤GD b and b ≤GD a for some a, b ∈ R(1,D). Since then statement (ii) of
Theorem 4.7 implies a ≤− b and b ≤− a, it follows that a = b. So, the
G-Drazin order is an antisymmetric relation on R(1,D). Both, the minus
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order ≤− and the Drazin order ≤D are transitive relations and therefore,
again by Theorem 4.7, the G-Drazin order is also a transitive relation. We
thus have the following result.

Theorem 4.8. The G-Drazin order ≤GD is a partial order on R(1,D).

Remark 4.9. Note that each of the statements (ii), (iii), (iv) of Theo-
rem 4.7 together with the definition (1.4) of the minus partial order, which
holds in a general ring R with identity, allows us to extend the G-Drazin
partial order from the set R(1,D) to the set RD. For example, we may de-
fine in this more general setting the G-Drazin partial order as follows. Let
a ∈ RD and b ∈ R. Then a ≤GD b when a ≤− b and a ≤D b. It turns out
that such a partial order has already been defined (but not much studied)
in [14, Section 5]. It is called the S-minus partial order (see also [17]).

Recall that the Drazin order ≤D is a pre-order on RD. Namely, the
failure of anti-symmetry is due to the fact that the Drazin order ignores
the nilpotent parts in the core-nilpotent decomposition. As a modification
of the Drazin order so that the nilpotent parts are also involved another
partial order was introduced on the set of all all n× n matrices over a field
F in [17] and later extended in [14] to RD . In what follows, we use (1.4) as
the definition of the minus partial order.

Definition 4.10. Let a, b ∈ RD and let a = ca + na and b = cb + nb be
the core-nilpotent decompositions of a and b respectively, where ca is the
core part of a, cb is the core part of b, na is the nilpotent part of a, and nb

is the nilpotent part of b. The element a is said to be below the element b
under the C-N partial order if ca ≤♯ cb and na ≤− nb. When this happens,
we write a ≤♯,− b.

With [14, Theorem 6] it was proved that the C-N partial order implies
the minus partial order, i.e., if for a, b ∈ RD , a ≤♯,− b, then a ≤− b. It fol-
lows by statement (ii) of Theorem 4.7 that the C-N partial order implies
the above extension of the G-Drazin partial order (i.e., the S-minus partial
order) to the set of all Drazin invertible elements in a ring. The converse im-
plication is in general not true and some constraints under which the S-minus
partial implies the C-N partial order were presented in [14].
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