
Journal of Computational and Applied Mathematics 456 (2025) 116235

A
0
(

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Application of a metric for complex polynomials to bounded
modification of planar Pythagorean-hodograph curves
Rida T. Farouki a, Marjeta Knez b,c,∗, Vito Vitrih d,e, Emil Žagar b,c

a Mechanical & Aerospace Engineering, University of California, Davis, CA 95616, USA
b Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia
c Institute of Mathematics, Physics and Mechanics, Jadranska 19, Ljubljana, Slovenia
d Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper, Slovenia
e Andrej Marušič Institute, University of Primorska, Muzejski trg 2, Koper, Slovenia

A R T I C L E I N F O

MSC:
65D05
65D07
65D17

Keywords:
Complex polynomial
Inner product
Norm
Metric
Pythagorean-hodograph curve
Bounded modification

A B S T R A C T

By interpreting planar polynomial curves as complex-valued functions of a real parameter, an
inner product, norm, metric function, and the notion of orthogonality may be defined for such
curves. This approach is applied to the complex pre-image polynomials that generate planar
Pythagorean-hodograph (PH) curves, to facilitate the implementation of bounded modifications
of them that preserve their PH nature. The problems of bounded modifications under the
constraint of fixed curve end points and end tangent directions, and of increasing the arc length
of a PH curve by a prescribed amount, are also addressed.

1. Introduction

In the complex model [1] for planar PH curves, points (𝑥, 𝑦) in the Euclidean plane are identified with the complex values
𝑥+i 𝑦. A planar PH curve 𝐫(𝑡) for 𝑡 ∈ [ 0, 1] may be generated from a complex pre-image polynomial 𝐰(𝑡) by integrating the hodograph
expression 𝐫′(𝑡) = 𝐰2(𝑡). This guarantees that the components of 𝐫′(𝑡) = 𝑥′(𝑡)+i 𝑦′(𝑡) satisfy [2] the polynomial Pythagorean condition

𝑥′2(𝑡) + 𝑦′2(𝑡) = 𝜎2(𝑡),

where 𝜎(𝑡) = |𝐫′(𝑡)| = |𝐰(𝑡)|2 is the parametric speed of 𝐫(𝑡) — the derivative d𝑠∕d𝑡 of the curve arc length 𝑠 with respect to the
parameter 𝑡.

Planar PH curves admit an exact computation of quantities such as arc lengths and offset curves [3], that necessitate use of
numerical approximation for ‘‘ordinary’’ polynomial curves. However, their non-linear nature entails more sophisticated construction
algorithms, and renders a posteriori shape modification a difficult task. To address this latter problem, it is important to first formulate
a measure of ‘‘how close’’ two PH curves are, i.e., to specify a metric for the space of all planar PH curves.

There are several different possible ways to measure the distance between two planar curves. The standard measure is the
Hausdorff distance — a distance measure between two curves considered as sets of points in R2. However, one can find examples
of curves that have a small Hausdorff distance but are still very different. Another measure is the Fréchet distance, which avoids
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the aforementioned issue with the Hausdorff distance but is, in general, more complicated to compute [4–6]. A particular Fréchet
distance was considered in [7].

Although a polynomial PH curve can be expressed in Bézier form, it is difficult to modify it using its control polygon, since any
erturbation of the control polygon will typically yield a non-PH curve. In the case of planar quintic PH curves, one can freely choose
wo of the five control-polygon legs, the remaining three being expressed in terms of the chosen legs and the roots of a quadratic
r quartic equation [8]. Another method of controlling a planar PH curve is by the Gauss–Legendre (or rectifying) control polygon,
ntroduced in [9]. This scheme always generates a PH curve for any rectifying polygon, but there exist multiple PH curves for a
iven polygon. A simple scheme to select the best curve among the multitude of these PH curves was proposed in [10]. Recently, a
omplete classification of PH quintics with respect to their global shape has been considered in [11], and this may help understand
he possible modifications of planar quintic PH curves. In [12], the problem of identifying the planar quintic PH curve ‘‘closest’’ to
given Bézier curve, that has the same endpoints (and possibly also end tangents), has been analyzed. The distance measure used

n this context is based on the sum of the squared differences between pairs of corresponding control points of the two curves.
The complex representation of planar PH curves offers another possible means of efficiently measuring the distance between

wo PH curves, in terms of the standard concepts of inner products and norms from functional analysis [13]. By introducing a
ound on the distance between an original and modified pre-image polynomial, it is possible to characterize the set of changes to
ts coefficients that define the shape modifications to a planar PH curve that do not compromise its PH nature. The focus of the
ethodology presented herein is on the planar PH curves, although the approach may be adaptable to the spatial PH curves [14,15]

nd the many other formulations of PH curves with distinctive properties that have been proposed (see [3] and references therein).
The remainder of this paper is organized as follows. Section 2 introduces the basic concepts of an inner product, norm, and

metric for the space of all polynomials in a real variable 𝑡 ∈ [ 0, 1 ] with complex coefficients. Section 3 then shows that this
metric allows an angle between such polynomials to be defined, and gives examples of orthogonal plane curves specified as complex
polynomial functions of a real parameter. Section 4 discusses the application of these concepts to planar PH curves, and it is
observed that to maintain the PH nature, modifications should be made to the pre-image polynomial instead of directly to the
curve. Modifications satisfying a prescribed bound on the distance between the original and modified pre-image polynomials are
discussed in Section 5, and modifications that preserve the end tangents or end points of PH curves are also formulated. Section 6
shows how complex polynomials orthogonal to a specified pre-image polynomial may be used to modify PH curve arc lengths.
Finally, Section 7 summarizes the contributions of this study and suggests further possible avenues of investigation.

2. Metric space of complex polynomials

We begin by reviewing some elementary concepts from functional analysis — inner products, norms, and metrics (see [13] for
a thorough treatment).

Definition 1. Let 𝐮(𝑡), 𝐯(𝑡) ∈ C[𝑡] be complex polynomials in the real variable 𝑡 ∈ [ 0, 1 ]. Their complex-valued inner product is
defined by

⟨𝐮, 𝐯⟩ = ∫

1

0
𝐮(𝑡) 𝐯(𝑡) d𝑡.

Definition 2. For any complex polynomial 𝐰(𝑡) ∈ C[𝑡], the above inner product induces a norm specified by

‖𝐰‖ =
√

⟨𝐰,𝐰⟩ . (1)

A metric, or distance function on C[𝑡], can be defined in terms of the norm (1) as

distance(𝐮, 𝐯) = ‖𝐮 − 𝐯‖ . (2)

Since

‖𝐮 − 𝐯‖2=∫

1

0
(𝐮(𝑡) − 𝐯(𝑡))(𝐮(𝑡) − 𝐯(𝑡)) d𝑡

=∫

1

0
|𝐮(𝑡)|2 + |𝐯(𝑡)|2 − 2Re(𝐮(𝑡)𝐯(𝑡)) d𝑡

=‖𝐮‖2 + ‖𝐯‖2 − 2Re(⟨𝐮, 𝐯⟩) ,

we have

distance(𝐮, 𝐯) =
√

‖𝐮‖2 + ‖𝐯‖2 − 2Re(⟨𝐮, 𝐯⟩).

Note that distance(𝐮, 𝐯) = 0 if and only if 𝐮(𝑡) ≡ 𝐯(𝑡). The metric (2) can define the distance between planar curves.

Definition 3. Let 𝐫(𝑡) and 𝐬(𝑡) be two planar curves, regarded as complex functions of a real parameter 𝑡 ∈ [ 0, 1 ]. We define
√

‖𝐫‖2 + ‖𝐬‖2 − 2Re(⟨𝐫, 𝐬⟩).
2

distance(𝐫, 𝐬) =
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Some elementary cases of distances are noted in the following lemma.

emma 1. Let 𝐫(𝑡) and 𝐬(𝑡) be planar curves. Then:

1. If 𝐬(𝑡) is a translate of 𝐫(𝑡) by the complex value 𝐝, distance(𝐫, 𝐬) = |𝐝|.
2. If 𝐬(𝑡) is a rotation of 𝐫(𝑡) by angle 𝜃, distance(𝐫, 𝐬) = 2 (1 − cos 𝜃) ‖𝐫‖.
3. If 𝐬(𝑡) is a scaling of 𝐫(𝑡) by the factor 𝑐, distance(𝐫, 𝐬) = |1 − 𝑐 ∣ ‖𝐫‖.

Proof. The proof follows from Definitions 1–3 and some elementary computations with complex numbers. □

In some contexts it may be desirable for distance(𝐫, 𝐬) to reflect only the differences of shape, and discount considerations of
position, orientation, and scaling. If 𝐫(0) = 𝐬(0) = 0, this can be achieved by a rotation/scaling transformation that makes the vectors
𝐫(1) − 𝐫(0) and 𝐬(1) − 𝐬(0) coincident.

The preceding ideas were briefly mentioned in the problem of constructing spatial 𝐶2 closed loops with prescribed arc lengths
using PH curves [16] — the solutions can be characterized in terms of two complex polynomials 𝐮(𝑡), 𝐯(𝑡) satisfying ‖𝐮‖ = ‖𝐯‖ =
∕
√

2, ⟨𝐮, 𝐯⟩ = 0, and thus distance(𝐮, 𝐯) = 1.

3. Orthogonal planar curves

Since |Re(⟨𝐮, 𝐯⟩) | ≤ ‖𝐮‖ ‖𝐯‖ from the Cauchy–Schwarz inequality, an angle 𝜃 ∈ [ 0, 𝜋 ] between 𝐮 and 𝐯 may be defined by

cos 𝜃 =
Re(⟨𝐮, 𝐯⟩)
‖𝐮‖ ‖𝐯‖

,

nd we thereby obtain the cosine rule

distance2(𝐮, 𝐯) = ‖𝐮‖2 + ‖𝐯‖2 − 2 ‖𝐮‖ ‖𝐯‖ cos 𝜃.

efinition 4. Two complex polynomials 𝐮 and 𝐯 are orthogonal if cos 𝜃 = 0 — i.e., Re(⟨𝐮, 𝐯⟩) = 0. In this case we have
istance(𝐮, 𝐯) =

√

‖𝐮‖2 + ‖𝐯‖2, and we write 𝐮 ⟂ 𝐯.

Although the focus herein is on PH curves, the above principles apply to any planar curves represented as complex-valued
polynomial functions of a real variable, an approach to the study of planar curves promoted by Zwikker [17]. If 𝐫(𝑡) and 𝐬(𝑡) are

ézier curves of degree 𝑚 and 𝑛, with control points 𝐩0,… ,𝐩𝑚 and 𝐪0,… ,𝐪𝑛, the product 𝐫(𝑡) 𝐬(𝑡) can be expressed [18] as

𝐫(𝑡) 𝐬(𝑡) =
𝑚+𝑛
∑

𝑘=0
𝐳𝑘
(

𝑚 + 𝑛
𝑘

)

(1 − 𝑡)𝑚+𝑛−𝑘𝑡𝑘,

with

𝐳𝑘 =
min(𝑚,𝑘)
∑

𝑗=max(0,𝑘−𝑛)

(𝑚
𝑗

)( 𝑛
𝑘−𝑗

)

(𝑚+𝑛
𝑘

)
𝐩𝑗 𝐪𝑘−𝑗 , 𝑘 = 0,… , 𝑚 + 𝑛 . (3)

Since the definite integral of every Bernstein basis function of degree 𝑚 + 𝑛 over [ 0, 1 ] is simply 1∕(𝑚 + 𝑛 + 1), the inner product of
𝐫(𝑡) and 𝐬(𝑡) is

⟨𝐫, 𝐬⟩ =
𝐳0 +⋯ + 𝐳𝑚+𝑛

𝑚 + 𝑛 + 1
.

Thus, for given control points 𝐩0,… ,𝐩𝑚 of 𝐫(𝑡), the orthogonality condition Re(⟨𝐫, 𝐬⟩) = 0 amounts to a single linear constraint on
the real and imaginary parts of the control points 𝐪0,… ,𝐪𝑛 of 𝐬(𝑡), so the dimension of the subspace of degree 𝑛 curves 𝐬(𝑡) that are
orthogonal to 𝐫(𝑡) is 2 𝑛 + 1. To explore this subspace in more detail, we set

(𝑟𝑥(𝑡), 𝑟𝑦(𝑡)) = (Re(𝐫(𝑡)), Im(𝐫(𝑡))) , (𝑠𝑥(𝑡), 𝑠𝑦(𝑡)) = (Re(𝐬(𝑡)), Im(𝐬(𝑡))),

and define

𝑑(𝑡) ∶= Re(𝐫(𝑡) 𝐬(𝑡)) = 𝑟𝑥(𝑡)𝑠𝑥(𝑡) + 𝑟𝑦(𝑡)𝑠𝑦(𝑡) ,

𝑐(𝑡) ∶= Im(𝐫(𝑡) 𝐬(𝑡)) = 𝑠𝑥(𝑡)𝑟𝑦(𝑡) − 𝑠𝑦(𝑡)𝑟𝑥(𝑡) .

Regarding 𝐫(𝑡), 𝐬(𝑡) as vector functions, 𝑑(𝑡) is their dot product and 𝑐(𝑡) is the component of the cross product orthogonal to the
(𝑥, 𝑦) plane. Moreover, Re(⟨𝐫, 𝐬⟩) and Im(⟨𝐫, 𝐬⟩) are the integrals of 𝑑(𝑡) and 𝑐(𝑡) over 𝑡 ∈ [ 0, 1 ].

To construct orthogonal curves, it is convenient to employ an orthonormal polynomial basis. We choose here the Legendre basis
on 𝑡 ∈ [ 0, 1 ] which may be expressed in terms of the Bernstein basis [19] as

𝐿𝑘(𝑡) =
√

2𝑘 + 1
𝑘
∑

(−1)𝑘+𝑖
(

𝑘
)

𝑏𝑘𝑖 (𝑡) , 𝑏𝑘𝑖 (𝑡) =
(

𝑘
)

(1 − 𝑡)𝑘−𝑖𝑡𝑖.
3

𝑖=0 𝑖 𝑖
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These basis functions satisfy

∫

1

0
𝐿𝑗 (𝑡)𝐿𝑘(𝑡) d𝑡 = 𝛿𝑗𝑘,

here 𝛿𝑗𝑘 is the Kronecker delta, and the first few instances are

𝐿0(𝑡)=1 ,

𝐿1(𝑡)=
√

3 (2 𝑡 − 1) ,

𝐿2(𝑡)=
√

5 (6 𝑡2 − 6 𝑡 + 1) ,

𝐿3(𝑡)=
√

7 (20 𝑡3 − 30 𝑡2 + 12 𝑡 − 1) .

For any given curve 𝐫(𝑡), 𝑡 ∈ [ 0, 1 ] of degree 𝑚 we consider the problem of constructing curves 𝐫⟂(𝑡), of the same degree, that are
rthogonal to 𝐫(𝑡). The results are given in the following theorem.

heorem 1. Let a given curve 𝐫(𝑡) and a curve 𝐫⟂(𝑡) orthogonal to it be expressed in the Legendre basis as

𝐫(𝑡) =
𝑚
∑

𝑘=0
𝑎𝑘,1𝐿𝑘(𝑡) + i

𝑚
∑

𝑘=0
𝑎𝑘,2𝐿𝑘(𝑡) , 𝐫⟂(𝑡) =

𝑚
∑

𝑘=0
𝑏𝑘,1𝐿𝑘(𝑡) + i

𝑚
∑

𝑘=0
𝑏𝑘,2𝐿𝑘(𝑡) , (4)

and let

𝒂 = (𝑎0,1, 𝑎0,2, 𝑎1,1, 𝑎1,2,… , 𝑎𝑚,1, 𝑎𝑚,2)𝑇 ∈ R2𝑚+2, 𝒃 = (𝑏0,1, 𝑏0,2, 𝑏1,1, 𝑏1,2,… , 𝑏𝑚,1, 𝑏𝑚,2)𝑇 ∈ R2𝑚+2 (5)

be the vectors of the real and imaginary parts of their coefficients. Moreover, let

𝑄 = 𝐼 − 2
𝒈𝑇𝒈

𝒈𝒈𝑇 , 𝒈 = 𝒂 + sign(𝑎0,1) ‖𝒂‖2 𝒆1 , 𝒆1 = (1, 0,… , 0)𝑇 , (6)

be a (2𝑚 + 2) × (2𝑚 + 2) orthogonal (Householder reflection) matrix, with columns 𝒒𝑗 , 𝑗 = 1, 2,… , 2𝑚 + 2. Then any vector

𝒃 =
2𝑚+2
∑

𝑘=2
𝜉𝑘−1𝒒𝑘 , 𝜉1,… , 𝜉2𝑚+1 ∈ R, (7)

identifies a curve 𝐫⟂(𝑡) of the form (4), that is orthogonal to 𝐫(𝑡). Moreover, the columns of 𝑄 also define curves that are pairwise orthogonal.

Proof. By the orthonormality of the Legendre basis polynomials, we have

Re(⟨𝐫, 𝐫⟂⟩) = ∫

1

0

𝑚
∑

𝑘=0
𝑎𝑘,1𝐿𝑘(𝑡)

𝑚
∑

𝓁=0
𝑏𝓁,1𝐿𝓁(𝑡) +

𝑚
∑

𝑘=0
𝑎𝑘,2𝐿𝑘(𝑡)

𝑚
∑

𝓁=0
𝑏𝓁,2𝐿𝓁(𝑡) d𝑡 =

𝑚
∑

𝑘=0
𝑎𝑘,1𝑏𝑘,1 + 𝑎𝑘,2𝑏𝑘,2.

Thus, identifying the coefficients 𝑏𝑘,1 + i 𝑏𝑘,2, 𝑘 = 0, 1,… , 𝑚, of an orthogonal curve is equivalent to finding the set of 2𝑚+1 linearly
independent vectors 𝒃 of the form (5) that are orthogonal to the vector 𝒂 with respect to the Euclidean inner (or dot) product in R2𝑚+2.
The basis of the orthogonal complement 𝒂⟂ follows from the extended QR decomposition 𝒂 = 𝑄𝑅, where 𝑄 is a (2𝑚 + 2) × (2𝑚 + 2)
orthogonal matrix, defined by (6), and 𝑅 = (‖𝒂‖2 , 0,… , 0)𝑇 . Here ‖⋅‖2 is the standard Euclidean norm. Thus, any vector (7) identifies
a curve 𝐫⟂(𝑡) of the form (4), that is orthogonal to 𝐫(𝑡). Since the columns of 𝑄 are pairwise orthogonal, the columns of 𝑄 clearly
also define curves that are pairwise orthogonal. □

Example 1. Consider the vector 𝒂 =
(

𝛼0, 0, 0, 𝛼1, 𝛼2, 0, 0, 𝛼3
)

that defines the curve

𝐫(𝑡) = 𝛼0𝐿0(𝑡) + 𝛼2𝐿2(𝑡) + i (𝛼1𝐿1(𝑡) + 𝛼3𝐿3(𝑡)),

with Bézier control points

𝐩0 = 𝛼0 +
√

5 𝛼2 − i (
√

3 𝛼1 +
√

7 𝛼3) = 𝐩3,

𝐩1 = 𝛼0 −
√

5 𝛼2 − i

(

𝛼1
√

3
− 3

√

7 𝛼3

)

= 𝐩2.

n this case, we obtain

𝑄 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

− 𝛼0
𝛼 0 0 − 𝛼1

𝛼 − 𝛼2
𝛼 0 0 − 𝛼3

𝛼
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

− 𝛼1
𝛼 0 0 1 −

𝛼21
𝛼2+𝛼0𝛼

− 𝛼1𝛼2
𝛼2+𝛼0𝛼

0 0 − 𝛼1𝛼3
𝛼2+𝛼0𝛼

− 𝛼2
𝛼 0 0 − 𝛼1𝛼2

𝛼2+𝛼0𝛼
1 −

𝛼22
𝛼2+𝛼0𝛼

0 0 − 𝛼2𝛼3
𝛼2+𝛼0𝛼

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

− 𝛼3 0 0 − 𝛼1𝛼3 − 𝛼2𝛼3 0 0 1 −
𝛼23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

,

4

⎣ 𝛼 𝛼2+𝛼0𝛼 𝛼2+𝛼0𝛼 𝛼2+𝛼0𝛼 ⎦
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where 𝛼 = ‖𝒂‖2. From columns 2, 3, 6, 7, we see that any curve of the form

𝐫⟂(𝑡) = 𝛽1𝐿1(𝑡) + 𝛽3𝐿3(𝑡) + i (𝛽0𝐿0(𝑡) + 𝛽2𝐿2(𝑡)) (8)

is orthogonal to 𝐫(𝑡). The Bézier control points of such a curve are

𝐪0 = −
√

3 𝛽1 −
√

7 𝛽3 + i (𝛽0 +
√

5 𝛽2) = −𝐪3,

𝐪1 = −
𝛽1
√

3
+ 3

√

7 𝛽3 + i(𝛽0 −
√

5 𝛽2) = −𝐪2.

Columns 4, 5, 8 of 𝑄 define three additional linearly-independent orthogonal curves, that are symmetric about the real axis. As an
illustrative example, consider the case

𝛼0 = 1, 𝛼1 = −2
√

3, 𝛼2 =
√

5, 𝛼3 =
√

7.

Fig. 1 shows the curve 𝐫(𝑡) (black) and four curves 𝐫⟂(𝑡) orthogonal to it, corresponding to the columns 4 (red), 5 (green) and 8
blue) of 𝑄, multiplied by the norm of 𝐫(𝑡), while the purple curve is defined by (8) with

𝛽0 = −1, 𝛽1 = 3, 𝛽1 = −2, 𝛽3 = −4.

ig. 1 also shows the graphs of Re(𝐫(𝑡) 𝐫⟂(𝑡)) for these four curves, which exhibit equal areas above and below the 𝑡-axis.

xample 2. The cubic curve

𝐫(𝑡) = 7 𝑏31(𝑡) +
16
3

𝑏32(𝑡) + i
(20
3

𝑏31(𝑡) −
11
3

𝑏32(𝑡) +
19
3

𝑏33(𝑡)
)

is a PH curve, since 𝐫′(𝑡) = [ 5 𝑏10(𝑡) − 3 𝑏11(𝑡) + i
(

2 𝑏10(𝑡) − 5 𝑏11(𝑡)
)

]2. From its Legendre coefficients, we obtain the vector

𝒂 =

(

37
12

, 7
3
,−

√

3
12

,
13

√

3
30

,−
37

√

5
60

,

√

5
6

,

√

7
28

,
4
√

7
15

)

,

and columns 2–8 of its QR decomposition define 7 orthogonal curves 𝐫⟂,𝑘(𝑡), 𝑘 = 1,… , 7. We compute their linear combination

𝐫⟂(𝑡) =
7
∑

𝑘=1
𝜉𝑘 𝐫⟂,𝑘(𝑡),

o that 𝐫⟂(𝑡) is a PH curve. To equate the number of equations and unknowns 𝜉1,… , 𝜉7 we also require 𝐫⟂(0) = 0, and 𝐫⟂(𝑡) to have
a prescribed parametric speed, 𝜎(𝑡) = 20−40 𝑡+38 𝑡2. The resulting non-linear system has six different solutions, illustrated in Fig. 2.
Note that the prescribed 𝜎(𝑡) implies that curves 𝐫(𝑡) and 𝐫⟂(𝑡) all have the same arc length, namely 38∕3.

4. Planar Pythagorean-hodograph curves

Planar PH curves 𝐫(𝑡) are generated from complex pre-image polynomials 𝐰(𝑡) by integrating the derivative or hodograph
𝐡(𝑡) ∶= 𝐫′(𝑡) = 𝐰2(𝑡). If 𝐰(𝑡) is of degree 𝑚, specified in Bernstein form as

𝐰(𝑡) =
𝑚
∑

𝑘=0
𝐰𝑘𝑏

𝑚
𝑘 (𝑡) , (9)

the hodograph may be written as

𝐡(𝑡) =
2𝑚
∑

𝑘=0
𝐡𝑘𝑏2𝑚𝑘 (𝑡),

with coefficients determined [18] by using (3) as

𝐡𝑘 =
min(𝑚,𝑘)
∑

𝑗=max(0,𝑘−𝑚)

(𝑚
𝑗

)( 𝑚
𝑘−𝑗

)

(2𝑚
𝑘

)

𝐰𝑗𝐰𝑘−𝑗 , 0 ≤ 𝑘 ≤ 2 𝑚 . (10)

he Bézier control points of the PH curve of degree 𝑛 = 2𝑚 + 1 constructed by integrating 𝐫′(𝑡) are then given by

𝐩𝑘+1 = 𝐩𝑘 +
𝐡𝑘

2𝑚 + 1
, 𝑘 = 0,… , 𝑛 − 1 , (11)

here we henceforth assume 𝐩0 = 0 as the integration constant.
We focus mainly on the planar PH quintics, generated from a quadratic pre-image polynomial (9), which are widely considered

o be the lowest-order PH curves appropriate to free-form design applications. The control points of the Bézier form

𝐫(𝑡) =
5
∑

𝐩𝑘𝑏5𝑘(𝑡),
5

𝑘=0
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Fig. 1. Left: the curve 𝐫(𝑡) in Example 1 is indicated in black, and four curves 𝐫⟂(𝑡) orthogonal to it are shown in red, green, blue, and purple. Right: the graphs
of Re(𝐫(𝑡) 𝐫⟂(𝑡)) for these four curves.

Fig. 2. The cubic PH curve 𝐫(𝑡) (black) in Example 2, together with the six PH curves 𝐫⟂(𝑡) orthogonal to it (shown in different colors) that possess the same
tart point (0, 0) and have the prescribed parametric speed 𝜎(𝑡).

re

𝐩1 = 𝐩0 +
1
5
𝐰2
0 , 𝐩2 = 𝐩1 +

1
5
𝐰0𝐰1 ,

𝐩3 = 𝐩2 +
1
5
2𝐰2

1 + 𝐰0𝐰2

3
,

𝐩4 = 𝐩3 +
1
5
𝐰1𝐰2 , 𝐩5 = 𝐩4 +

1
5
𝐰2
2 .

Planar PH quintics are typically constructed as solutions to a first-order Hermite interpolation problem [20] for specified end
points 𝐫(0), 𝐫(1) and end derivatives 𝐫′(0), 𝐫′(1). It is not feasible to modify their shape a posteriori by manipulating the control points,
since this will ordinarily compromise their PH nature. Modifications that preserve the PH property of a curve should be made to its
pre-image polynomial, rather than directly to the PH curve. The metric will, therefore, be primarily used to measure the distance
6

between an original and modified pre-image polynomial of the PH curve it generates.
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5. Perturbation of pre-image polynomials

A key application of the metric for complex polynomials is to provide a means to make ‘‘modest’’ shape changes to PH curves
hat preserve the PH property. To achieve this, modifications must be made to the pre-image polynomial. We consider perturbations
𝐰(𝑡) to a given pre-image polynomial 𝐰(𝑡) that, for a prescribed bound 𝛥, satisfy

distance(𝐰,𝐰 + 𝛿𝐰) = ‖𝛿𝐰‖ ≤ 𝛥 . (12)

The perturbed pre-image polynomial determines a perturbed PH curve with control points 𝐩𝑘 displaced to 𝐩𝑘 + 𝛿𝐩𝑘 for 𝑘 = 1,… , 𝑛.
The perturbations 𝛿𝐩𝑘 may be obtained by replacing 𝐰𝑘 by 𝐰𝑘 + 𝛿𝐰𝑘 in (10) and (11), and they determine a perturbation 𝛿𝐫(𝑡),
whose norm provides a measure of the difference between the modified and original curves.

Henceforth, we use the Legendre and Bernstein forms of both 𝐰(𝑡) and 𝛿𝐰(𝑡) interchangeably. Whereas the former provides
more concise formulations, the latter is the standard representation scheme in computer aided geometric design and offers simpler
implementation of certain constraints, such as the preservation of initial/final tangent directions.

The following lemma [19] describes the transformation between these two representations, which is known to be numerically
quite stable.

Lemma 2. For a polynomial 𝑝(𝑡) of degree 𝑛 expressed in the Legendre and Bernstein bases on [ 0, 1 ] as

𝑝(𝑡) =
𝑛
∑

𝑘=0
𝑐𝑘𝐿𝑘(𝑡) =

𝑛
∑

𝑗=0
𝑑𝑗 𝑏

𝑛
𝑗 (𝑡),

the coefficients 𝑪 = (𝑐0,… , 𝑐𝑛)𝑇 and 𝑫 = (𝑑0,… , 𝑑𝑛)𝑇 are related according to 𝑫 = 𝑀𝑛𝑪 , where 𝑀𝑛 is the (𝑛 + 1) × (𝑛 + 1) matrix with
elements

𝑀𝑛,𝑗𝑘 =

√

2𝑘 + 1
(𝑛
𝑗

)

min 𝑗,𝑘
∑

𝑖=max(0,𝑗+𝑘−𝑛)
(−1)𝑘+𝑖

(

𝑘
𝑖

)(

𝑘
𝑖

)(

𝑛 − 𝑘
𝑗 − 𝑖

)

, 0 ≤ 𝑗, 𝑘 ≤ 𝑛,

whose inverse 𝑀−1
𝑛 has elements

𝑀−1
𝑛,𝑗𝑘 =

√

2𝑗 + 1
𝑛 + 𝑗 + 1

(

𝑛
𝑘

) 𝑗
∑

𝑖=0
(−1)𝑖+𝑗

(𝑗
𝑖

)(𝑗
𝑖

)

(𝑛+𝑗
𝑘+𝑖

)
, 0 ≤ 𝑗, 𝑘 ≤ 𝑛.

Note that the columns of the matrix 𝑀𝑛 are orthogonal, and the spectral norms are equal to

‖

‖

𝑀𝑛
‖

‖2 = 𝜎max
(

𝑀𝑛
)

=

√

(2𝑛 + 1)
(

2𝑛
𝑛

)

, ‖

‖

‖

𝑀−1
𝑛

‖

‖

‖2
= 𝜎max

(

𝑀−1
𝑛

)

= 1
√

𝑛 + 1
. (13)

Example 3. For the linear, quadratic, and cubic pre-image polynomials of cubic, quintic, and septic PH curves, the matrices 𝑀𝑛
and their inverses are

𝑀1 =

[

1 −
√

3
1

√

3

]

, 𝑀−1
1 =

[ 1
2

1
2

−
√

3
6

√

3
6

]

,

𝑀2 =

⎡

⎢

⎢

⎢

⎣

1 −
√

3
√

5
1 0 −2

√

5
1

√

3
√

5

⎤

⎥

⎥

⎥

⎦

, 𝑀−1
2 =

⎡

⎢

⎢

⎢

⎣

1
3

1
3

1
3

−
√

3
6 0

√

3
6

√

5
30 −

√

5
15

√

5
30

⎤

⎥

⎥

⎥

⎦

,

𝑀3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 −
√

3
√

5 −
√

7

1 −
√

3
3 −

√

5 3
√

7

1
√

3
3 −

√

5 −3
√

7
1

√

3
√

5
√

7

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑀−1
3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
4

1
4

1
4

1
4

− 3
√

3
20 −

√

3
20

√

3
20

3
√

3
20

√

5
20 −

√

5
20 −

√

5
20

√

5
20

−
√

7
140

√

7
140 − 3

√

7
140

√

7
140

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

In the Legendre form, the pre-image polynomial (9) is expressed in terms of coefficients 𝐜0,… , 𝐜𝑚 as

𝐰(𝑡) =
𝑚
∑

𝑘=0
𝐜𝑘𝐿𝑘(𝑡) , (14)

and the Bernstein coefficients can be recovered from the Legendre coefficients through the relations

𝐰𝑗 =
𝑚
∑

𝑀𝑚,𝑗𝑘 𝐜𝑘 , 𝑗 = 0,… , 𝑚 , (15)
7

𝑘=0
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from which the Bézier control points (11) may be determined. The Legendre and Bernstein forms of the perturbation polynomial
are

𝛿𝐰(𝑡) =
𝑚
∑

𝑘=0
𝛿𝐜𝑘𝐿𝑘(𝑡) =

𝑚
∑

𝑗=0
𝛿𝐰𝑗𝑏

𝑚
𝑗 (𝑡) . (16)

The relations (15) also hold for 𝛿𝐰𝑗 in terms of 𝛿𝐜𝑘, i.e.,

𝛿𝑾 = 𝑀𝑚 𝛿𝑪 , 𝛿𝑾 ∶= (𝛿𝐰0,… , 𝛿𝐰𝑚)𝑇 , 𝛿𝑪 ∶= (𝛿𝐜0,… , 𝛿𝐜𝑚)𝑇 . (17)

In the Legendre form, the norm of the perturbation 𝛿𝐰(𝑡) is clearly equal to

‖𝛿𝐰‖ =
√

|𝛿𝐜0|2 +⋯ + |𝛿𝐜𝑚|2 = ‖𝛿𝑪‖2 , (18)

where ‖ ⋅ ‖2 again denotes the standard Euclidean norm. The next lemma follows directly from this equality.

Lemma 3. Writing the perturbation coefficients of (16) in the Legendre form as

𝛿𝐜𝑘 = 𝜌𝑘 exp(i𝜑𝑘), 𝑘 = 0,… , 𝑚 , (19)

the inequality (12), i.e., ‖𝛿𝐰‖ ≤ 𝛥, is for any given 𝛥 satisfied if and only if
√

√

√

√

𝑚
∑

𝑘=0
𝜌2𝑘 ≤ 𝛥.

or perturbations of equal magnitude 𝜌 ∶= 𝜌0 = ⋯ = 𝜌𝑚 the inequality (12) is fulfilled iff 𝜌 ≤ 𝛥∕
√

𝑚 + 1.

The next lemma reveals simple sufficient conditions to satisfy (12) in the case of the Bernstein representation.

emma 4. Let the coefficients of 𝛿𝐰 in the Bernstein form be expressed as

𝛿𝐰𝑘 = 𝑟𝑘 exp(i𝜙𝑘) , 𝑘 = 0,… , 𝑚 . (20)

f
√

√

√

√

𝑚
∑

𝑘=0
𝑟2𝑘 ≤

√

𝑚 + 1𝛥

or a given 𝛥, then the inequality (12), i.e., ‖𝛿𝐰‖ ≤ 𝛥, is satisfied. In the case of equal-magnitude perturbations, 𝑟 ∶= 𝑟0 = ⋯ = 𝑟𝑚, the
simple choice 𝑟 ≤ 𝛥 implies that (12) holds true.

Proof. In the Bernstein form ‖𝛿𝐰‖ may be expressed, using (17) and (18), as

‖𝛿𝐰‖ = ‖𝑀−1
𝑚 𝛿𝑾 ‖2.

Since

‖𝑀−1
𝑚 𝛿𝑾 ‖2 ≤ ‖𝑀−1

𝑚 ‖2 ‖𝛿𝑾 ‖2,

where ‖𝑀−1
𝑚 ‖2 is the matrix norm induced by the Euclidean vector norm (spectral norm), which is equal to the largest singular

value 𝜎max
(

𝑀−1
𝑚

)

= 1∕
√

𝑚 + 1 (see (13)), any choice of coefficients 𝛿𝑾 such that ‖𝛿𝑾 ‖2 ≤
√

𝑚 + 1𝛥 ensures (12) for any given 𝛥.
The equality ‖𝛿𝑾 ‖2 =

√

∑𝑚
𝑘=0 𝑟

2
𝑘 completes the proof. □

The Legendre representation allows us to express in a simple way the sufficient and necessary condition for (12) to hold true.
On the other hand, for the Bernstein representation, Lemma 4 provides a simple sufficient condition, but to express a necessary
condition is much more complicated, as shown in the next remark, which reveals strict bounds in the case of equal-magnitude
perturbations for low degree cases.

Remark 1. Let the coefficients of 𝛿𝐰 in the Bernstein form be expressed by (20) with 𝑟 ∶= 𝑟0 = ⋯ = 𝑟𝑚. The inequality (12) is
satisfied if and only if

‖𝛿𝐰‖ =

√

𝛷01 + 2
√

3
𝑟 ≤ 𝛥 ,

‖𝛿𝐰‖ =

√

3𝛷01 +𝛷02 + 3𝛷12 + 8
√

15
𝑟 ≤ 𝛥 , (21)

‖𝛿𝐰‖ =

√

10𝛷01 + 4𝛷02 +𝛷03 + 9𝛷12 + 4𝛷13 + 10𝛷23 + 32
√

𝑟 ≤ 𝛥 ,
8

70
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for 𝑚 = 1, 2, 3, respectively, which follow from straightforward computations using the matrices in Example 3 and the notation
𝛷𝑖𝑗 ∶= cos(𝜙𝑖 − 𝜙𝑗 ). In each case, the factors multiplying 𝑟 in (21) are bounded from above by 1.

From Eq. (18), we see that the Euclidean norm of Legendre perturbation coefficients is equal to the norm of the perturbation.
However, for the Bernstein coefficients, we only have an upper bound

‖𝛿𝑾 ‖2 = ‖

‖

𝑀𝑚𝛿𝑪‖

‖2 ≤ ‖

‖

𝑀𝑚
‖

‖2 ‖𝛿𝑪‖2 =

√

(2𝑚 + 1)
(

2𝑚
𝑚

)

‖𝛿𝐰‖ . (22)

Note that usually (see, e.g., Lemma 4) the norm ‖𝛿𝑾 ‖2 is much lower then this bound.
It remains to analyze the distance between the original and the modified PH curve in terms of the bound (12) on the pre-image

perturbation. Let the original pre-image 𝐰(𝑡) be given by (9) and let the perturbation (16) be such that ‖𝛿𝐰‖ ≤ 𝛥 for some chosen
𝛥. The difference between the modified PH curve

�̃�(𝑡) = ∫

𝑡

0
(𝐰(𝜏) + 𝛿𝐰(𝜏))2 d𝜏 + �̃�0

and the original PH curve is

𝛿𝐫(𝑡) = �̃�(𝑡) − 𝐫(𝑡) = ∫

𝑡

0
𝛿𝐡(𝜏) d𝜏 + 𝛿𝐩0, 𝛿𝐡(𝑡) ∶= 2𝐰(𝑡)𝛿𝐰(𝑡) + 𝛿𝐰(𝑡)2, 𝛿𝐩0 ∶= �̃�0 − 𝐩0, (23)

where 𝛿𝐩0 depends on the choice of the integration constant and not on the perturbation in the pre-image space. The next theorem
provides a simple upper bound for the norm of 𝛿𝐫(𝑡).

Theorem 2. The distance between the original and the modified PH curve can be bounded from above by

‖𝛿𝐫‖ ≤ |𝛿𝐩0| + 2 ‖𝑾 ‖∞ ‖𝛿𝑾 ‖∞ + ‖𝛿𝑾 ‖

2
∞,

where 𝑾 = (𝐰0,… ,𝐰𝑚)𝑇 and 𝛿𝑾 = (𝛿𝐰0,… , 𝛿𝐰𝑚)𝑇 are vectors of Bernstein coefficients of 𝐰(𝑡) and 𝛿𝐰(𝑡), given by (9) and (16), and

‖𝑾 ‖∞ = max
𝑗=0,…,𝑚

|𝐰𝑗 |, ‖𝛿𝑾 ‖∞ = max
𝑗=0,…,𝑚

|𝛿𝐰𝑗 |

are the infinity vector norms.

Proof. We use the notation

𝛿𝐫(𝑡) =
2𝑚+1
∑

𝑘=0
𝛿𝐩𝑘𝑏2𝑚+1𝑘 (𝑡), 𝛿𝑷 ∶= (𝛿𝐩0,… , 𝛿𝐩2𝑚+1)𝑇 , 𝛿𝐡(𝑡) =

2𝑚
∑

𝑘=0
𝛿𝐡𝑘𝑏2𝑚𝑘 (𝑡), 𝛿𝑯 ∶= (𝛿𝐡0,… , 𝛿𝐡2𝑚)𝑇 ,

where the Bernstein coefficients are by (23) related as

𝛿𝐩𝑘 = 𝛿𝐩0 +
1

2𝑚 + 1

𝑘−1
∑

𝑗=0
𝛿𝐡𝑗 , 𝑘 = 1, 2… , 2 𝑚 + 1.

With the same arguments as in the proof of Lemma 4, we obtain

‖𝛿𝐫‖ = ‖

‖

‖

𝑀−1
2𝑚+1𝛿𝑷

‖

‖

‖2
≤ ‖

‖

‖

𝑀−1
2𝑚+1

‖

‖

‖2
‖𝛿𝑷 ‖2 =

1
√

2𝑚 + 2
‖𝛿𝑷 ‖2 ≤ max

𝑘=0,…,2𝑚+1
|𝛿𝐩𝑘| = ‖𝛿𝑷 ‖∞.

So the distance between the original and modified PH curves can be bounded from above by the infinity vector norm of 𝛿𝑷 . Since

|𝛿𝐩𝑘| ≤ |𝛿𝐩0| +
1

2𝑚 + 1

𝑘−1
∑

𝑗=0
|𝛿𝐡𝑗 | ≤ |𝛿𝐩0| +

1
2𝑚 + 1

2𝑚
∑

𝑗=0
|𝛿𝐡𝑗 | ≤ |𝛿𝐩0| + max

𝑗=0,…,2𝑚
|𝛿𝐡𝑗 |

for any 𝑘, we have ‖𝛿𝑷 ‖∞ ≤ |𝛿𝐩0|+ ‖𝛿𝑯‖∞. Applying the formula (3), we see that the Bernstein coefficients of 𝛿𝐡(𝑡) = 2𝐰(𝑡)𝛿𝐰(𝑡) +
𝐰(𝑡)2 are equal to

𝛿𝐡𝑘 =
min(𝑚,𝑘)
∑

𝑗=max(0,𝑘−𝑚)

(𝑚
𝑗

)( 𝑚
𝑘−𝑗

)

(2𝑚
𝑘

)

(

2𝐰𝑗 𝛿𝐰𝑘−𝑗 + 𝛿𝐰𝑗 𝛿𝐰𝑘−𝑗
)

, 𝑘 = 0,… , 2 𝑚.

Moreover, applying (3) for constant polynomials and the partition of unity property gives
min(𝑚,𝑘)
∑

𝑗=max(0,𝑘−𝑚)

(𝑚
𝑗

)( 𝑚
𝑘−𝑗

)

(2𝑚
𝑘

)

= 1 for all 𝑘 = 0,… , 2 𝑚,

which directly implies that

|𝛿𝐡𝑘| ≤ 2 max
𝑗=0,…,𝑚

|𝐰𝑗 | max
𝑗=0,…,𝑚

|𝛿𝐰𝑗 | +
(

max
𝑗=0,…,𝑚

|𝛿𝐰𝑗 |

)2

for any 𝑘 = 0, 1,… , 2𝑚, and the proof is complete. □
9
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Corollary 1. Suppose that ‖𝛿𝐰‖ ≤ 𝛥, and choose the integration constant so that 𝛿𝐩0 = 0. Since ‖𝛿𝑾 ‖∞ ≤ ‖𝛿𝑾 ‖2 we obtain

‖𝛿𝐫‖ ≤ 2 𝑐(𝑚)𝛥 ‖𝑾 ‖∞ + (𝑐(𝑚)𝛥)2 ,

here 𝑐(𝑚) is a constant, that depends only on the degree 𝑚, and can by (22) be taken as 𝑐(𝑚) =
√

(2𝑚 + 1)
(2𝑚
𝑚

)

. Under the assumptions
of Lemma 4 we can lower the upper bound by taking 𝑐(𝑚) =

√

𝑚 + 1, or 𝑐(𝑚) = 1 in the case of equal-magnitude perturbations.

Although the upper bound in Corollary 1 may be much higher than the value of the distance ‖𝛿𝐫‖, it shows that the distance
etween the original and the modified PH curve goes to zero when 𝛥 goes to zero, provided that |𝛿𝐩0| is zero or also converges to
ero.

.1. Preservation of curve end tangent directions

Although the Bernstein form is more involved in terms of strictly satisfying the bound ‖𝛿𝐰‖ = 𝛥, it provides a simple means
o preserve the directions of the curve end derivatives 𝐫′(0) = 𝐰2

0 and 𝐫′(1) = 𝐰2
𝑚 by, for example, choosing 𝜙0 = arg(𝐰0) and

𝑚 = arg(𝐰𝑚), leaving 𝜙1,… , 𝜙𝑚−1 and 𝑟0,… , 𝑟𝑚 as free parameters — subject to (12) and (20) — to manipulate the curve shape. On
he other hand, with the Legendre form and the perturbations (19), the equality ‖𝛿𝐰‖ = 𝛥 can be simply satisfied by, e.g., choosing
0 = ⋯ = 𝜌𝑚 = 𝛥∕

√

𝑚 + 1, but the analogous method for preserving the end derivative directions incurs the complicated conditions

arg(𝐰0) = arg

[ 𝑚
∑

𝑘=0
𝑀𝑚,0𝑘 ei𝜑𝑘

]

, arg(𝐰𝑚) = arg

[ 𝑚
∑

𝑘=0
𝑀𝑚,𝑚𝑘 ei𝜑𝑘

]

. (24)

The following example illustrates these considerations.

Example 4. Consider the quadratic pre-image polynomial 𝐰(𝑡) specified by Bernstein coefficients

𝐰0 = 5 + 2 i, 𝐰1 = −3 − 4 i, 𝐰2 = 5 + i,

with corresponding Legendre coefficients

𝐜0 =
7
3
− 1

3
i, 𝐜1 = −

√

3
6

i, 𝐜2 =
8
√

5
15

+
11

√

5
30

i,

on which we impose perturbations of the form (19) and (20) for 𝑚 = 2 with equal magnitudes 𝑟 = 𝑟0 = 𝑟1 = 𝑟2 and 𝜌 = 𝜌0 = 𝜌1 = 𝜌2,
satisfying (12) with equality and 𝛥 = 0.25. With the Bézier representation, the end tangent directions are preserved by choosing
𝜙0 = arg(𝐰0) = arctan(2∕5) and 𝜙2 = arctan(1∕5). For 𝜙1 = 0, 𝜋∕4, 𝜋∕2, 3𝜋∕4 we obtain from (21) the 𝑟 values for which ‖𝛿𝐰‖ = 0.25
as 𝑟 = 0.25245, 0.25661, 0.29620, 0.39083, respectively. Fig. 3 depicts the original and four modified PH quintics, all satisfying
‖𝛿𝐰‖ = 0.25 — their distances from the original PH quintic are 0.29691, 0.30096, 0.29884, 0.28626, respectively. Also shown is the
envelope of the family of all possible perturbed curves with the prescribed end tangents, for 𝑟 = 0.25. Note that all the curves have
been shifted so that the centroids of their Bézier control points are coincident.

With the Legendre representation, the bound ‖𝛿𝐰‖ = 0.25 is attained, for any angles 𝜑0, 𝜑1, 𝜑2, if and only if 𝜌 = 0.25∕
√

3. To
also preserve the end tangent directions, these angles must be chosen (see (24)) so as to satisfy

arg (ei𝜑0 −
√

3 ei𝜑1 +
√

5 ei𝜑2 ) = arctan(2∕5) ,

arg (ei𝜑0 +
√

3 ei𝜑1 +
√

5 ei𝜑2 ) = arctan(1∕5) .

For each of the values 𝜑0 = 0, 𝜋∕4, 𝜋∕2, 3𝜋∕4, four distinct (𝜑1, 𝜑2) solutions were identified, defining four different perturbations of
the quintic PH curve. Fig. 4 compares the original PH curve with a representative perturbed PH quintic from each of the sets of four
solutions. The modified PH quintics have distances 0.19350, 0.22553, 0.23572, 0.22451 from the original PH curve. The envelope
of the family of modified curves for all 𝜑0 values and all solutions is also shown (all the curves are shifted so the centroids of their
Bézier control points are coincident).

In the preceding discussion, the perturbations incur a global change in the curve. In particular, the curve end points change, which
may be undesirable in common design contexts. Perturbations to the pre-image polynomials that preserve the curve endpoints are
addressed next.

5.2. Preservation of curve end points

To eliminate non-essential freedoms, it is customary to consider construction of PH curves in canonical form [12,21] such that
𝐫(0) = 0 and 𝐫(1) = 1. The mapping of a PH curve with prescribed end points to and from canonical form can be achieved using
a simple translation/rotation/scaling transformation. Thus, we confine our attention to canonical-form PH curves in investigating
perturbations that preserve the curve end points. Taking 𝐫(0) = 0 by choice of the integration constant, 𝐫(1) = 1 is achieved through
the condition

1
𝐫′(𝑡) d𝑡 =

1
𝐰2(𝑡) d𝑡 = 𝐫(1) − 𝐫(0) = 1 . (25)
10
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Fig. 3. Left: The prescribed quintic PH curve (blue), with four instances modified using the Bernstein basis (different colors), whose pre-images satisfy ‖𝛿𝐰‖ = 0.25,
s described in Example 4. Right: The envelope of the family of all perturbed curves with preserved end tangent directions for 𝑟 = 0.25.

Fig. 4. Left: The prescribed quintic PH curve (blue) with four instances modified using the Legendre basis (different colors), whose pre-images satisfy ‖𝛿𝐰‖ = 0.25,
as described in Example 4. Right: The envelope of the family of all perturbed curves with preserved end tangent directions for 𝜌 = 0.25∕

√

3.

n the Bernstein and Legendre representations (9) and (14) of the pre-image polynomial 𝐰(𝑡), we set 𝑪 = (𝐜0,… , 𝐜𝑚)𝑇 and
𝑾 = (𝐰0,… ,𝐰𝑚)𝑇 . As in (17), the connection between these coefficients is defined by 𝑾 = 𝑀𝑚𝑪 (see Lemma 2). It is easy to
ee that, for the Legendre form (14), the constraint (25) reduces to

𝑪𝑇𝑪 =
𝑚
∑

𝑘=0
𝐜2𝑘 = 1 , (26)

.e., the Legendre coefficients correspond to points on the unit sphere in C𝑚+1. Setting 𝑪 = 𝑪𝑅 + i𝑪𝐼 , where 𝑪𝑅,𝑪𝐼 ∈ R𝑚+1, we note
hat Eq. (26) is satisfied if and only if

‖𝑪𝑅‖
2
2 − ‖𝑪𝐼‖

2
2 = 1 and 𝑪𝑇

𝑅 𝑪𝐼 = 0 .

rom 𝑪 = 𝑀−1
𝑚 𝑾 , the constraint (25) expressed in terms of the Bernstein coefficients becomes

𝑚
∑

𝑘=0
𝐜2𝑘 = 𝑪𝑇𝑪 = (𝑀−1

𝑚 𝑾 )𝑇 (𝑀−1
𝑚 𝑾 ) = 𝑾 𝑇 (𝑀−1

𝑚 )𝑇𝑀−1
𝑚 𝑾 = 1. (27)

etting 𝐺𝑚 = (𝑀−1
𝑚 )𝑇𝑀−1

𝑚 , we obtain for 𝑚 = 1, 2, 3 the (𝑚 + 1) × (𝑚 + 1) matrices with elements 𝑔𝑚,𝑗𝑘 for 0 ≤ 𝑗, 𝑘 ≤ 𝑚 as

𝐺1 =
1
6

[

2 1
1 2

]

, 𝐺2 =
1
30

⎡

⎢

⎢

⎣

6 3 1
3 4 3
1 3 6

⎤

⎥

⎥

⎦

, 𝐺3 =
1
140

⎡

⎢

⎢

⎢

⎢

⎣

20 10 4 1
10 12 9 4
4 9 12 10
1 4 10 20

⎤

⎥

⎥

⎥

⎥

⎦

,

and in the cases 𝑚 = 1, 2, 3 Eq. (27) then reduces to

𝐰2
0 + 𝐰2

1 + 𝐰1𝐰0 = 3,

3𝐰2
0 + 3𝐰2

2 + 2𝐰2
1 + 3 (𝐰0 + 𝐰2)𝐰1 + 𝐰0𝐰2 = 15 ,

10 (𝐰2
0 + 𝐰2

3) + 6 (𝐰2
1 + 𝐰2

2) + 10 (𝐰0𝐰1 + 𝐰2𝐰3) + 4 (𝐰2𝐰0 + 𝐰1𝐰3) + 𝐰3𝐰0 + 9𝐰1𝐰2 = 70 .

To ensure that the conditions (26) and (27) are fulfilled upon substituting 𝐜𝑘 → 𝐜𝑘 + 𝛿𝐜𝑘 and 𝐰𝑘 → 𝐰𝑘 + 𝛿𝐰𝑘 for 𝑘 = 0,… , 𝑚, the
coefficients 𝛿𝐜𝑘 and 𝛿𝐰𝑘 must satisfy

𝑚
∑

𝑘=0
𝛿𝐜2𝑘 + 2

𝑚
∑

𝑘=0
𝐜𝑘 𝛿𝐜𝑘 = 𝛿𝑪𝑇 (𝛿𝑪 + 2𝑪) = 0 , (28)

nd

𝛿𝑾 𝑇𝐺𝑚(𝛿𝑾 + 2𝑾 ) =
𝑚
∑

𝑗=0

𝑚
∑

𝑘=0
𝑔𝑚,𝑗𝑘 𝛿𝐰𝑗 (𝛿𝐰𝑘 + 2𝐰𝑘) = 0 , (29)

or the prescribed 𝐜𝑘 and 𝐰𝑘 values satisfying (26) and (27). In addition, the perturbations must satisfy the bounds ‖𝛿𝑪‖2 ≤ 𝛥 and
𝑀−1

𝑚 𝛿𝑾 ‖2 ≤ 𝛥. Writing 𝛿𝑪 = 𝛿𝑪𝑅 + i 𝛿𝑪𝐼 , the condition (28) is equivalent to two scalar equations in the real vectors 𝛿𝑪𝑅 and 𝛿𝑪𝐼 ,
amely

‖𝛿𝑪𝑅‖
2
2 − ‖𝛿𝑪𝐼‖

2
2 + 2 𝛿𝑪𝑇

𝑅𝑪𝑅 − 2 𝛿𝑪𝑇
𝐼 𝑪𝐼 = 0 ,

𝑇 𝑇 𝑇 (30)
11

𝛿𝑪𝑅 𝛿𝑪𝐼 + 𝛿𝑪𝑅𝑪𝐼 + 𝛿𝑪𝐼 𝑪𝑅 = 0 .
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Writing 𝛿𝑾 = 𝛿𝑾𝑅 + i 𝛿𝑾 𝐼 , we have 𝛿𝑾𝑅 = 𝑀𝑚 𝛿𝑪𝑅 and 𝛿𝑾 𝐼 = 𝑀𝑚 𝛿𝑪𝐼 , so these equations can also be expressed in terms of
𝛿𝑾𝑅 and 𝛿𝑾 𝐼 .

In general, the identification of perturbations 𝛿𝐰 that maintain the perturbed curve in canonical form and satisfy ‖𝛿𝐰‖ = 𝑑 ≤ 𝛥
for some chosen 𝑑 entails the solution of a rather complicated non-linear system. The next lemma proposes a simple sufficient way
to determine such perturbations.

Lemma 5. Suppose that 𝐰(𝑡) of degree 𝑚 ≥ 2 is expressed in the Legendre basis (14) and induces the PH curve in canonical form. Further,
assume that 𝛿𝐰(𝑡) is given by (16) with Legendre coefficients (19) for which the angles are all the same, i.e., 𝜑 ∶= 𝜑0 = ⋯ = 𝜑𝑚. Then
‖𝛿𝐰‖ = 𝑑 for some chosen 𝑑, and the modified PH curve is in canonical form for any angle 𝜑 if and only if the radii 𝜌𝑘, 𝑘 = 0, 1,… , 𝑚,
satisfy one quadratic and two linear equations:

𝑚
∑

𝑘=0
𝜌2𝑘 = 𝑑2 , (31)

and

𝑑2 cos (2𝜑) + 2
𝑚
∑

𝑘=0
𝜌𝑘(cos(𝜑) Re(𝐜𝑘) − sin(𝜑) Im(𝐜𝑘)) = 0 ,

𝑑2 sin (2𝜑) + 2
𝑚
∑

𝑘=0
𝜌𝑘(cos(𝜑) Im(𝐜𝑘) + sin(𝜑) Re(𝐜𝑘)) = 0 .

(32)

roof. The quadratic equation follows directly from (18) and (19). Using the assumption 𝜑 = 𝜑0 = ⋯ = 𝜑𝑚 it is straightforward to
ompute that

‖𝛿𝑪𝑅‖
2
2 − ‖𝛿𝑪𝐼‖

2
2 =

𝑚
∑

𝑘=0
𝜌2𝑘 cos (2𝜑) , 𝛿𝑪𝑇

𝑅𝛿𝑪𝐼 = 1
2

𝑚
∑

𝑘=0
𝜌2𝑘 sin (2𝜑).

Eqs. (32) follow then directly from (30) which are sufficient and necessary to obtain the canonical form of the modified PH curve. □

The following example demonstrates the construction given in Lemma 5.

Example 5. Consider the quadratic pre-image polynomial with Legendre coefficients

𝐜0 = 2 − i, 𝐜1 = 1 + 2 i, 𝐜2 = −1 + 0 i,

satisfying (26). We choose 𝑑 = 0.1 for perturbations of the form (19) with 𝜑0 = ⋯ = 𝜑𝑚 = 𝜑 for any 𝜑 ∈ (−𝜋, 𝜋 ]. From (32) we
obtain

𝜌1 =
𝜌0
2

−
sin(𝜑)
400

, 𝜌2 =
5𝜌0
2

−
sin(𝜑)
400

+
cos(𝜑)
200

,

and (31) reduces to a quadratic equation for 𝜌0, namely

15
2

𝜌20 +
5 cos(𝜑) − 3 sin(𝜑)

200
𝜌0 +

cos(2𝜑) − 2 sin(2𝜑) − 1597
160000

= 0,

hich has a positive discriminant for any 𝜑. Thus, there are always two admissible perturbations 𝛿𝐰. For 𝜑 = 0 they are shown in
ig. 5 (left, red and green curves), together with the original (blue) curve, and the envelope of all solutions for 𝜑 ∈ (−𝜋, 𝜋 ].

With the Legendre representation, it is easy to construct perturbations 𝛿𝐰(𝑡) that preserve endpoints of the given curve, while the
ézier representation is more convenient for preserving end tangent directions. The constraints on the coefficients of 𝛿𝐰(𝑡) imposed
y preserving endpoints and end tangent directions, coupled with the non-linear dependence of ‖𝛿𝐰‖ on those coefficients, make it
ifficult to formulate schemes that guarantee an a priori satisfaction of the bound (12). As a practical solution for PH quintics, we
onsider here coefficients 𝛿𝐰0 = 𝑟 exp(i𝜙0) and 𝛿𝐰2 = 𝑟 exp(i𝜙2), where 𝜙0 = arg(𝐰0) and 𝜙2 = arg(𝐰2), for a prescribed 𝑟 value, to
reserve the end tangent directions. Preservation of the endpoints can then be achieved by solving the 𝑚 = 2 instance of Eq. (29) for
0,𝐰1,𝐰2 values that define a canonical-form PH quintic, as a quadratic equation in 𝛿𝐰1. Since this incurs modest computational
ffort, it is amenable to real-time user modification of 𝑟 to ensure satisfaction of (12). However, adding the constraint ‖𝛿𝐰‖ = 𝑑
or some 𝑑 ≤ 𝛥 adds one non-linear equation, but since the whole non-linear system is algebraic, it is possible to compute all the
olutions using a computer algebra system.

xample 6. Consider a canonical-form PH quintic defined by a quadratic pre-image polynomial with Bernstein coefficients

𝐰0 = 𝐰2 =
√

2 +

√

2
2

i ,

𝐰1 =

√

5(9 +
√

97) − 6
√

2
4

−

√

−27 + 5
√

97 + 6
√

10(
√

97 − 9)

4
i .
12
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Fig. 5. Left: The perturbed PH quintics (red and green) for ‖𝛿𝐰‖ = 0.1, with the same end points as the quintic PH curve (blue) in Example 5, defined by 𝜑 = 0.
The envelope of all the solutions for 𝜑 ∈ (−𝜋, 𝜋 ] is also shown (light blue). Right: The modified PH quintic curves that preserve end points and end tangent
irections, as described in Example 6, as ‖𝛿𝐰‖ varies.

Fig. 6. Left: The given canonical-form PH quintic (blue) with two modifications (red, green) that preserve the endpoints and tangent directions for a fixed
𝑟 = 0.2, as described in Example 6. Right: The modified curves satisfying ‖𝛿𝐰‖ ≤ 0.25 as 𝑟 varies.

o preserve the end tangent angles 𝜃0 = arg(𝐰0) and 𝜃2 = arg(𝐰2), we set 𝛿𝐰0 = 𝑟 exp(i 𝜃0), 𝛿𝐰2 = 𝑟 exp(i 𝜃2) for some chosen 𝑟, and
ompute 𝛿𝐰1 from Eq. (29) for 𝑚 = 2. With 𝑟 = 0.2 we obtain two solutions

𝛿𝐰1 = −0.33476348 − 0.29109547 i , 𝛿𝐰1 = −5.05586773 + 1.05285093 i.

he corresponding ‖𝛿𝐰‖ values are 0.102659, 1.802944. Fig. 6 (left) shows the resulting curves. The first solution (red curve) is
vidently a very reasonable modification of the original curve (blue), preserving its endpoints and end tangents. Although the second
olution (green curve) also has this property, it exhibits tight loops — a common feature [20,21] among the multiple solutions to PH
uintics that satisfy given constraints — and is discarded based on the large ‖𝛿𝐰‖ value. The perturbed curves with ‖𝛿𝐰‖ ≤ 0.25 for
= −0.4,−0.3,… , 0.3, 0.4 are shown (red curves) in Fig. 6 (right) together with the two curves (gray) having ‖𝛿𝐰‖ = 0.25, obtained

or 𝑟 = −0.52962446 and 𝑟 = 0.47220859.
Choosing the pre-image polynomial defined in Example 5, with Bernstein coefficients

𝐰0 = (2 −
√

3 −
√

5) − (1 + 2
√

3) i , 𝐰1 = 2
(

1 +
√

5
)

− i , 𝐰2 = (2 +
√

3 −
√

5) + (2
√

3 − 1) i

nd the choices 𝑟 = −0.5,−0.4,… , 0.4, 0.5, the modified quintic PH curves that preserve endpoints and end tangent directions, and
atisfy ‖𝛿𝐰‖ ≤ 0.25 are shown (red curves) in Fig. 5 (right) together with the two curves (gray) having ‖𝛿𝐰‖ = 0.25, obtained for
𝑟 = −0.59313245 and 𝑟 = 0.60204179.

6. Modification of PH curve arc lengths

The total arc length 𝑆 of a planar PH curve 𝐫(𝑡) is intimately related to the norm of its pre-image polynomial 𝐰(𝑡), since

𝑆 = ∫

1

0
𝜎(𝑡) d𝑡 = ∫

1

0
|𝐰(𝑡)|2 d𝑡 = ‖𝐰‖2 .

The arc length 𝑆 can be changed by a specified amount 𝛿𝑆 > 0 by choosing 𝛿𝐰(𝑡) to have the norm
√

𝛿𝑆 and to be orthogonal to
𝐰(𝑡), since

1
|𝐰(𝑡) + 𝛿𝐰(𝑡)|2 d𝑡 = ‖𝐰‖2 + ‖𝛿𝐰‖2 + 2Re(⟨𝐰, 𝛿𝐰⟩),
13
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where ‖𝐰‖2 = 𝑆, ‖𝛿𝐰‖2 = 𝛿𝑆, and Re(⟨𝐰, 𝛿𝐰⟩) = 0 when 𝐰(𝑡) and 𝛿𝐰(𝑡) are orthogonal. We focus here on the Legendre representation

𝐰(𝑡) =
𝑚
∑

𝑘=0
𝐜𝑘𝐿𝑘(𝑡) and 𝛿𝐰(𝑡) =

𝑚
∑

𝑘=0
𝛿𝐜𝑘𝐿𝑘(𝑡)

of the pre-image polynomial and its perturbation. Recalling the notation from Section 5.2 we set 𝐜𝑘 = 𝑐𝑘,1 + i 𝑐𝑘,2 and form, as in
Theorem 1, the real vectors

𝐚 = (𝑐0,1, 𝑐0,2, 𝑐1,1, 𝑐1,2,… , 𝑐𝑚,1, 𝑐𝑚,2)𝑇 and 𝐠 = 𝐚 + sign(𝑐0,1)‖𝐚‖2(1, 0,… , 0)𝑇 . (33)

The second through last columns of the (2𝑚 + 2) × (2𝑚 + 2) matrix 𝑄 = (𝑞𝑗,𝑘)2𝑚+2𝑗,𝑘=1 defined in terms of 𝐚 and 𝐠 in (33) by the formula
(6) then identify the coefficients of the polynomials

𝐛𝑘(𝑡) =
𝑚
∑

𝑗=0
𝐛𝑘,𝑗𝐿𝑗 (𝑡) , 𝐛𝑘,𝑗 ∶= 𝑞2𝑗+1,𝑘+1 + i 𝑞2𝑗+2,𝑘+1, 𝑘 = 1, 2,… , 2𝑚 + 1,

that form the orthonormal basis for degree 𝑚 complex polynomials orthogonal to 𝐰(𝑡) with norms ‖𝐛𝑘‖ = 1, 𝑘 = 1, 2,… , 2𝑚 + 1.
Thus, for any real values 𝛾1, 𝛾2,… , 𝛾2𝑚+1 a perturbation polynomial of the form

𝛿𝐰(𝑡) =
2𝑚+1
∑

𝑘=1
𝛾𝑘𝐛𝑘(𝑡) (34)

is orthogonal to 𝐰(𝑡) and has norm ‖𝛿𝐰‖ =
√

𝛾21 + 𝛾22 +⋯ + 𝛾22𝑚+1. Thus, by assigning values 𝛾1, 𝛾2,… , 𝛾2𝑚+1 that satisfy

𝛾21 + 𝛾22 +⋯ + 𝛾22𝑚+1 = 𝛿𝑆 , (35)

the perturbed pre-image polynomial 𝐰(𝑡) + 𝛿𝐰(𝑡) generates a PH curve with arc length 𝑆 + 𝛿𝑆.
To ensure that the modified curve has the same endpoints as the given PH curve 𝐫(𝑡), assumed to be in canonical form, 𝛿𝐰(𝑡)

ust also satisfy the condition (28), which can be reduced to the quadratic equation
2𝑚+1
∑

𝑗,𝑘=1
𝐟𝑗,𝑘𝛾𝑗𝛾𝑘 +

2𝑚+1
∑

𝑘=1
𝐟𝑘𝛾𝑘 = 0, where 𝐟𝑗,𝑘 ∶=

𝑚
∑

𝓁=0
𝐛𝑗,𝓁𝐛𝑘,𝓁 , 𝐟𝑘 ∶= 2

𝑚
∑

𝓁=0
𝐛𝑘,𝓁𝐜𝓁 , (36)

in 𝛾1,… , 𝛾2𝑚+1. Eq. (35) and the real and imaginary parts of Eq. (36) constitute a system of three quadratic equations for 2𝑚 + 1
factors 𝛾1,… , 𝛾2𝑚+1 in (34), which allows one to fix 2 𝑚−2 of them, and then solve the system using Newton–Raphson iterations or
some other algebraic solver.

Remark 2. If we denote by 𝑄𝑅 the sub-matrix of 𝑄 with rows 1, 3,… , 2𝑚+1 and columns 2, 3,… , 2𝑚+2, and by 𝑄𝐼 the sub-matrix
of 𝑄 with rows 2, 4,… , 2𝑚 + 2 and columns 2, 3,… , 2𝑚 + 2, and we define the complex matrix 𝑸 = 𝑄𝑅 + i𝑄𝐼 , the vector 𝛿𝑪 of
the coefficients of 𝛿𝐰 can be expressed as 𝛿𝑪 = 𝑸𝜸 for 𝜸 = (𝛾1, 𝛾2,… , 𝛾2𝑚+1)𝑇 , which gives a more compact representation of (36),
namely

𝜸𝑇𝑭𝜸 + 2 𝜸𝑇𝑸𝑪 = 0 , 𝑭 ∶= 𝑸𝑇𝑸.

Example 7. Consider the PH quintic specified by the pre-image polynomial in Example 6, with arc length 𝑆 = 1.23740482. The
complex matrix 𝑸, defined in Remark 2, is

𝑸 =
⎡

⎢

⎢

⎣

0.048391 + 0.998792 i 0 0 −0.148557 + 0.003707 i −0.305920 + 0.007634 i
0 1 i 0 0

0.003707 + 0.007634 i 0 0 0.988619 − 0.023436 i −0.023436 + 0.951738 i

⎤

⎥

⎥

⎦

.

The perturbation 𝛿𝐰(𝑡) in (34) is expressed in terms of the five parameters 𝛾1 … , 𝛾5. Fixing two of them and choosing 𝛿𝑆 = 0.01, the
remaining parameters may be computed as the solution of Eqs. (35)–(36). For 𝛾4 = 𝛾5 = 0 four solutions are identified:

(𝛾1, 𝛾2, 𝛾3) = (0.0047585271,±0.074073623,∓0.067010856) ,

(𝛾1, 𝛾2, 𝛾3) = (−0.0047585271,±0.074073623,±0.067010856) .

Fixing 𝛾2 = 𝛾3 = 0 the system has only two solutions:

(𝛾1, 𝛾4, 𝛾5) = (−0.032364637, 0.094555975, 0.0034202026) ,

(𝛾1, 𝛾4, 𝛾5) = (0.030467676,−0.094859055, 0.0085720767) .

Using these values, the Legendre coefficients of 𝛿𝐰(𝑡) follow from 𝛿𝑪 = 𝑸𝜸. The resulting PH quintics with increased arc length,
generated by the modified pre-image polynomials 𝐰(𝑡) + 𝛿𝐰(𝑡), are shown in Fig. 7.
14
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Fig. 7. The PH quintic from Example 6 (blue), together with PH quintics (different colors) with arc lengths increased by 𝛿𝑆 = 0.01, sharing the same endpoints,
computed by fixing 𝛾4 = 𝛾5 = 0 (left) and 𝛾2 = 𝛾3 = 0 (right).

Fig. 8. The PH quintic from Example 8 (blue), together with PH quintics (red, green) with arc lengths increased by 𝛿𝑆 = 0.01, sharing the same endpoints,
computed by fixing 𝛾4 = 𝛾5 = 0 (left) and 𝛾2 = 𝛾3 = 0 (right).

Example 8. As a final example, we choose the PH quintic specified by the pre-image polynomial in Example 5, with arc length
𝑆 = 11, and follow the same steps as in the previous example. For the choice 𝛿𝑆 = 0.01 and 𝛾4 = 𝛾5 = 0 there are two solutions,

(𝛾1, 𝛾2, 𝛾3) = (−0.068622784, 0.069792544,−0.020491812) ,

(𝛾1, 𝛾2, 𝛾3) = (0.068681604,−0.069717905, 0.020548745) ,

shown in Fig. 8 (left). Fixing 𝛾2 = 𝛾3 = 0, we obtain

(𝛾1, 𝛾4, 𝛾5) = (−0.034621641,−0.083559293,−0.042651924) ,

(𝛾1, 𝛾4, 𝛾5) = (0.031439019, 0.083161950, 0.045778578) .

The corresponding curves are shown in Fig. 8 (right).

7. Closure

Interpreting planar polynomial curves as complex-valued functions of a real parameter 𝑡 ∈ [ 0, 1 ] facilitates the introduction of
an inner product, norm, and metric function that permit measurement of curve magnitudes and of the distances and angles between
curves. The concept of orthogonal curves is then possible, leading to a procedure to construct a basis spanning all planar curves
that are orthogonal to a given planar curve.

These concepts were applied to the complex pre-image polynomials that define planar Pythagorean-hodograph (PH) curves, to
develop schemes that allow bounded modifications of a given PH curve, without compromising its PH nature. Specializations of
these schemes that accommodate the preservation of curve endpoints and end tangents have also been presented, and the use of
an orthogonal basis for a given PH curve pre-image polynomial to achieve a desired change in the arc length of the PH curve was
demonstrated.

The methodology presented herein may also be generalized to the planar Pythagorean-hodograph splines [22] or to the spatial
Pythagorean-hodograph curves through the quaternion representation [14,15], and preliminary results have already been reported
in [23]. A further domain of interest concerns the possible adaptation of the methodology from curves to parametric surfaces, defined
as vector quaternion polynomial functions of two parameters over triangular or rectangular domains.

Data availability

The data are described in the manuscript.
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