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Abstract

Cell rearrangements are fundamental mechanisms driving large-scale deformations of living

tissues. In three-dimensional (3D) space-filling cell aggregates, cells rearrange through

local topological transitions of the network of cell-cell interfaces, which is most conveniently

described by the vertex model. Since these transitions are not yet mathematically properly

formulated, the 3D vertex model is generally difficult to implement. The few existing imple-

mentations rely on highly customized and complex software-engineering solutions, which

cannot be transparently delineated and are thus mostly non-reproducible. To solve this out-

standing problem, we propose a reformulation of the vertex model. Our approach, called

Graph Vertex Model (GVM), is based on storing the topology of the cell network into a

knowledge graph with a particular data structure that allows performing cell-rearrangement

events by simple graph transformations. Importantly, when these same transformations are

applied to a two-dimensional (2D) polygonal cell aggregate, they reduce to a well-known T1

transition, thereby generalizing cell-rearrangements in 2D and 3D space-filling packings.

This result suggests that the GVM’s graph data structure may be the most natural represen-

tation of cell aggregates and tissues. We also develop a Python package that implements

GVM, relying on a graph-database-management framework Neo4j. We use this package

to characterize an order-disorder transition in 3D cell aggregates, driven by active noise and

we find aggregates undergoing efficient ordering close to the transition point. In all, our work

showcases knowledge graphs as particularly suitable data models for structured storage,

analysis, and manipulation of tissue data.

Author summary

Space-filling polygonal and polyhedral packings have been studied as physical models for

foams and living tissues for decades. One of the main challenges in the field is to mathe-

matically describe complex topological transformations of the network of cell-cell inter-

faces that are present during cell rearrangements, accompanying plastic deformations and

large-scale cellular flows. Our work addresses this challenge by storing the topology of the

network of cell-cell interfaces into a knowledge graph with a specific data structure,

uniquely defined by a metagraph. It turns out that this graph technology, also used by tech

giants such as Google and Amazon, allows representing topological transformations as
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graph transformations, that are intuitive, easy to visualize, and straight-forward to imple-

ment computationally.

Introduction

The mechanical interactions between individual cells and between the cells and their environ-

ment play a crucial role in determining the macroscopic properties and behaviors of animal

tissues on a large scale [1–7]. During embryonic development, for example, forces generated

within cellular cortices drive precise and highly orchestrated active deformations and collective

cellular flows [8–13]. The mechanical forces are transmitted across the tissue through cell-cell

contacts, which form a complex spatial network with a dynamically changing topology [14–

25]. Apart from better understanding biological processes such as development, regeneration

and disease [14, 26–28], studying the mechanical properties of cell aggregates also facilitates

the development of biomimetic materials and devices for applications in medicine, engineer-

ing, and materials science [6, 29].

Tissue-scale mechanics have been addressed by computational models that represent cells

as discrete entities with certain physical properties that phenomenologically describe the

mechanics at smaller length scales [30–39]. Recent studies compare various widely used

computational models for simulating cell assemblies including cellular automaton, cellular

Potts model, phase-field model, particle-based model, deformable-particle model, Voronoi

model, and vertex model [40–42]. While many of these approaches naturally incorporate cell

rearrangements–processes that are crucial for capturing a realistic rheological tissue response–

handling these processes computationally in the vertex model is quite challenging. In particu-

lar, the vertex model describes individual cells as polygons (2D) or polyhedra (3D) and param-

etrizes their shapes by vertex positions [43–46]. Cell-cell contacts are represented by edges in

2D and polygons in 3D and comprise an intricate network whose connectivity needs to be

computationally altered upon every cell-rearrangement event. Current state-of-the-art compu-

tational tools for vertex-model simulations offer certain solutions to simplify the implementa-

tion of these network-reconnection events, however, these methods are not easily

generalizable to 3D [25, 39].

Generally, vertex models store the topology and geometry of the tissue in a tabular form

within arrays and perform topological transformations of the cell-interface network by updat-

ing these arrays according to specified rules [47–50]. Although programming the routines that

perform these dynamic array updates is still relatively manageable for planar polygonal cell

packings and even for 3D surface packings involving polyhedral prism-like cells [51–55],

developing computer codes for simulations of 3D bulk cell aggregates poses a significantly

greater challenge. Indeed, since the pioneering work by Honda et al. [43], who first introduced

a vertex model of 3D cell aggregates, there have only been a few recent works reporting suc-

cessful attempts of coding a full 3D vertex model with dynamic cell rearrangements [56–58].

The difficulty of implementing these rearrangements with the conventional data model raises

questions about its suitability and challenges our basic understanding of rearrangements in

space-filling packings.

Nevertheless, the vertex model often offers a profound mechanistic understanding of tissue

behaviors, which is to a large extent facilitated precisely by the explicit presence of cell bound-

aries and their ability to remodel. Therefore, despite the challenges associated with cell-bound-

ary tracking during cell rearrangements, the vertex model may still be in many respects

advantageous over other models, in which cell boundaries need not be explicitly managed. For
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instance, the vertex model excels in realistically modeling large-scale three-dimensional tissue

deformations and cellular flows, that may be driven by local active forces [43, 46, 59, 60] while,

at the same time, capturing certain small-scale structural features, including single-cell shapes

and their sidedeness within the aggregate.

To address the challenges associated with the implementation of cell rearrangements in the

vertex model, we introduce a reformulation of the vertex model called Graph Vertex Model

(GVM). We discover a particular graph-data model, which allows formulating topological

transformations of cell networks as simple graph transformations. The blueprint outlining the

relationships among the components is specified through a metagraph which is designed in a

manner that topological transformations are themselves represented by graphs. This design

not only enhances their intuitive and visual understanding but also simplifies their implemen-

tation, making it accessible even to researchers with limited programming expertise. More-

over, we demonstrate that within the GVM’s data representation, a T1 transition–the basic

rearrangement event in 2D cellular tilings–emerges as a subgraph of graph transformations

representing cell rearrangements in 3D packings. This allows developing generalized computa-

tional codes that are applicable to both 2D and 3D, suggessting that GVM’s data model may be

the most natural representation of these systems. As a proof of concept, we develop an open-

source Python package neoVM, which implements GVM over a graph database, managed in

Neo4j [61, 62]. We use our new approach to study order-disorder transition in 3D cell aggre-

gates. We characterize the transition and find aggregates undergoing most efficient ordering

in the vicinity of the transition point.

Vertex model

The vertex model represents a cell aggregate by a three-dimensional packing of space-filling

polyhedral cells (Fig 1A). Cell shapes are parametrized by positions of vertices in the (x, y, z)

space:

ri ¼ ðxi; yi; ziÞ : ð1Þ

Here i = 1, . . ., Nv, where Nv is the total number of vertices.

Pairs of vertices are connected by oriented edges, defined by the indices of the constituent

vertices:

e j ¼ ½þi
ðhÞ
j ; � iðtÞj � : ð2Þ

Here iðhÞj and iðtÞj denote indices of head and tail vertices of edge j, respectively (Fig 1A), and

j = 1, . . ., Ne, with Ne being the total number of edges. The signs of the vertex indices, sðh=tÞj ¼

�1 denote head and tail vertices of the edge. While at this point these signs seem redundant,

since the order in which the indices appear in ej itself indicates the head/tail role of the corre-

sponding vertices, they will become important later on.

Polygonal cell sides are defined by oriented lists of indices of their constituent edges as

p
k
¼ ½s

ðmÞ

k jðmÞk �m¼1;:::;nðeÞk
; ð3Þ

where k = 1, . . ., Np, with Np being the total number of polygons. The nðeÞk edges in the list pk
are listed sequentially and s

ðmÞ

k ¼ �1 denotes the orientation of the μ-th edge (with index jðmÞk )

within the polygon relative to a chosen positive direction (Fig 1A).
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Similarly, cells are defined by oriented lists of indices of the nðpÞl constituent polygons as

c l ¼ ½S
ðnÞ

l kðnÞl �n¼1;:::;nðpÞl
; ð4Þ

where l = 1, . . ., Nc, with Nc being the total number of cells within the aggregate. Polygon ori-

entations S
ðnÞ

l ¼ �1, where −1 and +1 correspond to the polygon’s normal vector pointing

towards the cell center and away from the cell center, respectively (Fig 1A). The direction of

Fig 1. Geometry and topology of cell aggregates. A Cell aggregate is modeled by a space-filling packing of polyhedral

cells. Cell shapes are parametrized by vertex positions ri, which move according to mechanical forces Fi. Topology of

the cell network is specified by lists ej, pk, and cl [Eqs (2)–(4)], which store head and tail vertices of edges, oriented edges

within polygons, and oriented polygons within cells, respectively. B EV transition merges vertices of an edge into a

single vertex, whereas VT transition resolves a vertex into a triangle. VE and TV transitions are inverse transitions of

EV and VT transitions, respectively. C Polygons involved in topological transitions from panel B. D Decomposed

schematic highlighting from 3 different perspectives of polygons, edges, and vertices, in topological transitions from

panel B.

https://doi.org/10.1371/journal.pcbi.1012089.g001
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the polygon’s normal vector is defined by the right-hand-screw rule, where the fingers curl

along the chosen polygon’s positive orientation of the bounding edges (Fig 1A). In contrast to

the case of polygons, pk, polygon indices in cl need not be listed in any specific order.

Exemplary structures of cell aggregates with Nc = 128 cells are given in the online repository

of neoVM [61] and their generation is described in Methods.

The dynamics of cell-shape changes are described by simulating movements of the vertices,

driven by mechanical forces. In a model that neglects inertial effects and only considers fric-

tion of vertices with a static background, vertices follow first-order dynamics described by

Z
dri
dt
¼ � riW þ FðaÞi : ð5Þ

Here, η is the friction coefficient, W is the potential energy of the aggregate, and FðaÞi is a sys-

tem-specific active-force contribution. The potential energy is typically calculated from geo-

metric properties of cells such as surface areas of cell-cell contacts A, cell volumes V, etc. These

quantities are calculated from the vertex positions as sums over geometric elements, i.e., verti-

ces, edges, polygons (Methods).

Topological transitions

In addition to changing their shapes, cells also change their relative organization within the tis-

sue by exchanging their neighbors [43]. These reorganization events alter the topology of the

network of cell-cell contacts, thereby also affecting the interaction between the vertices. In con-

fluent cell aggregates, cells exchange their neighbors by (i) merging vertex pairs of vanishingly

short edges and (ii) resolving these vertices into new edges [63–65]. The topology of the edge

network after these transformations locally differs from the initial one. In particular, cells that

were initially separated might become neighbors, whereas pairs of initially neigboring cells

may separate.

To model cell rearrangements in 3D cell aggregates, the following elementary local topolog-

ical trasformations need to be considered (Fig 1B–1D): (i) Edge-to-vertex (EV) transition

merges vertices of a vanishingly short edge into a single 6-fold vertex, (ii) vertex-to-triangle

(VT) transition resolves a 6-fold vertex into a new triangle, (iii) triangle-to-vertex (TV) transi-

tion merges all three vertices of a triangular polygon into a single 6-fold vertex, and (iv) vertex-

to-edge (VE) transition resolves a 6-fold vertex into a new edge.

An EV followed by a VT completes an ET transition, which transforms a vanishing edge

into a triangle, formed in the perpendicular direction to the shrinking edge (Fig 1B and 1C).

After an ET transition, initially separated cells become neighbors by sharing the new triangle.

Similarly, a TV followed by a VE, completes a TE transition, which transforms a vanishing tri-

angle into an edge, formed in the perpendicular direction to the shrinking triangle (Fig 1B and

1C). After a TE transition, the neighboring cells initially sharing the triangle become separated.

We note that in a special case of an epithelial monolayer, where cells only attach to their neigh-

bors laterally but not apically and basally, EV transitions either on basal or apical edges give

rise to scutoidal cells [66, 67].

Importantly, as illustrated in Fig 1D, the basic topological transformations in fact resemble

multiple edge-to-vertex and vertex-to-edge transitions, known in 2D polygonal networks as

T1 transitions. In a T1 transition, a pair of initially neigboring polygons becomes separated,

whereas polygons from the remaining (initially separated) polygon pair become neighbors.

This similarity between 2D and 3D transformations suggests that it may be possible to unify

topological transformations in 2D and 3D space-filling packings, provided that the vertex

model’s core architecture be properly reformulated.
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The main issue with the conventional implementation of the vertex model is that vertices,

edges, polygons, and cells are stored in separate arrays (ri, ej, pk, and cl, respectively), which do

not directly encode any interconnections or relationships among their respective elements. In

particular, elements that might be spatially and topologically related are generally not stored

together in the database and accessing any high-level topology data (e.g., finding cells that

share a common vertex) requires inefficient searches over all the elements of the cell network.

To avoid these inefficient searches, the conventional vertex models store data in a highly

redundant form, where higher-level information about the topology of the cell network are

stored in addition to ej, pk, and cl (even though these higher-level information may be calcula-

ble from ej, pk, and cl). For instance, to efficiently search for cells that share a certain vertex,

lists of cells sharing a common vertex need to be stored for all vertices. Indeed, retreiving this

information from ej, pk, and cl on the fly would require highly inefficient looping over all the

cells. Due to this data redundancy, algorithms that manipulate the data arrays upon topological

transformations in a self-consistent manner are difficult to program.

Results

Knowledge graph

To overcome challenges related with implementing topological transformations in the vertex

model, we propose a new approach, based on storing the topology of the cell network into a

knowledge graph, which uses a graph- rather than a tabular data model. By construction, the

elements that are topologically related are also connected in the knowledge graph and there-

fore, any high-level information about the topology of the cell network is readily retrievable by

querying over the relevant part of the database with no need of storing any redundant data.

Knowledge graph is a graph data structure, which represents a network of real-world enti-

ties and relationships between them [68]. These data are stored in a graph database where enti-

ties and relationships are represented by nodes and links, respectively, and can, additionally,

carry multiple properties. For example, a movie database can be stored as a knowledge graph,

in which the data about actors and directors for a given movie are represented by nodes labeled

Person and Movie and relationships labeled ACTED_IN and DIRECTED. In such a knowl-

edge graph, the information that Cillian Murphy acted in the movie Oppenheimer, directed by

Christopher Nolan, can be stored as (p1:Person {name: “Cillian Murphy”})-[:
ACTED_IN]->(m:Movie {title: “Oppenheimer”})<-[:DIRECTED]-(p2:
Person {name: “Christopher Nolan”}); here nodes labeled Person and Movie
carry the name and the title properties, respectively.

The notation used here and in the following sections follows the syntax of the Cypher
graph query language [69]. It is important to note that GVM relies on general principles of dis-

crete mathematics and does not depend neither on the choice of the query language nor on the

choice of the database-management framework. Computationally implementing GVM, how-

ever, does require some basic knowledge of graph databases and query languages.

Metagraph

Real-world entities in GVM are vertices, edges, polygons, and cells and they are stored in a

knowledge graph in a hierarchical manner as nodes labeled Vertex, Edge, Polygon, and

Cell, respectively. The topology of the cell network is encoded through relationships labeled

IS_PART_OF. These relationships are directed and relate source-target node pairs, where the

entity represented by the source node is always hierarchically one level below the entity repre-

sented by the target node.
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For instance, if a specific polygon p contains a specific edge e, the nodes representing these

two entities, i.e., (p) and (e), are connected as (e)-[:IS_PART_OF]->(p). Connect-

ing equally labeled nodes (e.g., a pair of edges) is not allowed and neither is connecting nodes

carrying labels that do not follow one another hierarchically (e.g., a vertex-polygon pair). For

example, say that one of the polygon p’s vertices is vertex v. Rather than encoding the informa-

tion that v is part of p directly by a (v)-[:IS_PART_OF]->(p) connection, this informa-

tion is retrieved hierarchically from the connectivity of v and p through edges. In particular, if

v is part of p, it is also necessarily shared by two edges that are both also part of p (say e1 and

e2): (v)-[:IS_PART_OF]->(e1)-[:IS_PART_OF]->(p) and (v)-[:IS_PART_
OF]->(e2)-[:IS_PART_OF]->(p). An extra connection (v)-[:IS_PART_OF]->
(p) would be redundant and is therefore forbidden in GVM, since these two subgraphs

already imply that v is one of polygon p’s vertices.

The above rules for the construction of the GVM’s knowledge graph can be conveniently

represented by a graph, called metagraph. Much like metalanguage is a language that describes

another language, metagraph is a graph that describes another graph and can be viewed as a

blueprint for generating actual (valid) manifestations of that graph. From the above defini-

tions, it is obvious that the metagraph of GVM is (:Vertex)-[:IS_PART_OF]->(:
Edge)-[:IS_PART_OF]->(:Polygon)-[:IS_PART_OF]-> ->(:Cell) (Fig 2A).

Additionally, both nodes and relationships carry properties that encode additional informa-

tion about nodes and relationships. While nodes carry a property, id, which represents the

identification numbers i, j, k, and l of vertices, edges, polygons, and cells, respectively, the

Fig 2. Graph vertex model. A The hierarchical structure of GVM vertex!edge!polygon!cell is defined by a

metagraph. Relationships between these nodes are labeled IS_PART_OF and carry a sign property denoted by s, σ,

and S for vertex!edge, edge!polygon, and polygon!cell relationships, respectively. B A subgraph representing a

particular local cell state is obtained by pattern matching. This subgraph is then transformed by a graph transformation.

C Metagraph of graph-transformation graph connects Vertex, Edge, Polygon, and Cell nodes with green and

red relationships, indicating creation and deletion of IS_PART_OF relationships in the GVM’s knowledge graph,

respectively.

https://doi.org/10.1371/journal.pcbi.1012089.g002
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relationships are prescribed a property sign, whose value is either −1 or +1. This is a contex-

tual property, that puts the relationship’s source node into the context of the target node. In

particular, in the subgraphs of type (v:Vertex)-[r:IS_PART_OF]->(e:Edge), the

value of r.sign denotes whether vertex v is a head vertex (r.sign=+1) or a tail vertex (r.
sign=-1) of edge e [i.e., parameter s in Eq (2)]. In the subgraphs of types (e:Edge)-[r:
IS_PART_OF]->(p:Polygon) and (p:Polygon)-[r:IS_PART_OF]->(c:
Cell) the same property specifies the orientation of edge e in the context of polygon p and

polygon p in context of cell c, respectively [i.e., parameters σ and S in Eqs (3) and (4),

respectively].

Pattern matching

Transforming the graph database of GVM upon cell rearrangements requires only two steps:

(i) Data retrieval, accomplished through pattern matching and (ii) Graph transformation.

In step (i), a suitable (meta)graph pattern is utilized to query the database and identify the

nodes relevant to the transformation at hand. After the graph is traversed, instances of the

specified graph pattern are returned. These instances are further filtered, using various condi-

tional statements.

The goal of step (i) is to retrieve from the whole graph of GVM a small subgraph compris-

ing solely of the nodes representing the objects (vertices, edges, polygons, and cells) that take

part in the specific topological transformation being performed (Fig 2B). Given the unambigu-

ous definition of the graph data structure by the GVM’s metagraph (Fig 2A), the routines that

perform this step are easily reproducible. We implement these routines in Cypher and find

that each topological transition requires *10 distinct short queries, similar to the query

shown in Eq (18) to retrieve the relevant data [61].

Graph transformations

In step (ii), the subgraph matched during the pattern-matching step undergoes a transforma-

tion based on the rules of the specific cell-rearrangement event being performed.

Like the matched subgraph that is being transformed, the graph transformation itself is rep-

resented by a graph. This graph contains exactly the same nodes as the matched GVM sub-

graph, however with much fewer relationships. In particular, the relationships in the

transformation graph are of two types: (i) Green and (ii) red, indicating creations and deletions

of :IS_PART_OF relationships in the actual GVM subgraph, respectively (Fig 2C).

Compared to the convoluted codes that perform topological transformations in the conven-

tional vertex model, the task of programming the routines that perform graph topological

transformations in GVM is much less challenging. Indeed, our implementation of graph-

transformation routines in Cypher comprises of successive calls of *5 distinct short queries,

similar to examples shown in Eqs (19) and (20), which merely delete and create relationships.

Transformation of contextual properties. Values of contextual properties s, σ, and S to

be assigned to the newly created relationships are specified in the transformation graph

through the relationship property of green relationships (s0, σ0, and S0 for vertex!edge,

edge!polygon, and polygon!cell connections, respectively). Unlike the green relation-

ships, the red relationships do not carry any additional properties (Fig 2C).

Transformed values of certain contextual properties can be arbitrarily chosen, however, in

most cases they need to be figured out from the known values of other contextual properties.

Conveniently, the rules for prescribing these new values can be summarized in two compact

formulas. In particular, for a new vertex!edge relationship between nodes representing vertex
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vi and edge ej, s0i;j is calculated as

s0i;j ¼ sk;j ; ð6Þ

where k denotes vertex vk, which was part of edge ej prior to the transformation (i.e., sk,j

denotes contextual property of the relationship between nodes representing vertex vk and edge

ej prior to the transformation).

For a new edge!polygon relationship between nodes representing edge ei and polygon pj,
s0i;j is calculated as

s0i;j ¼ � s
0
k;is
0
k;lsl;j : ð7Þ

Here, vertex vk is a vertex shared by edges ei and el, which are both part of polygon pj. Addi-

tionally, among the two vertices of edge ei, vertex vk is the one that was not part of edge el prior

to the transformation (i.e., Eq (7) contains s0k;l and not sk,l). An analogous equation to Eq (7)

also holds for assigning S0ij to a newly created polygon! cell relationship.

Eqs (6) and (7) are demonstrated in the subsequent section for the case of a T1 transforma-

tion and their meaning is described in the corresponding figure caption.

T1 graph transformation

To demonstrate all steps required to perform a topological transformation in a space-filling

cell aggregate, we first turn to a 2D polygonal cellular tiling, where cells rearrange through T1

transitions. Specifically, during a T1 transition, a vanishingly short edge merges into a single

vertex, i.e., a four-way junction, which subsequently resolves into a new edge oriented roughly

in the perpendicular direction compared to the orientation of the initial edge. As any other

topological transformation, GVM performs a T1 transition in two steps as follows (Fig 3).

(i) Pattern matching performs a series of graph-database queries so as to find nodes repre-

senting elements (i.e., vertices, edges, polygons and cells) that participate in the transformation

(the initial state in Fig 3A). These queries first identify the edge that undergoes a T1 and label

it e5. Subsequently, they identify two vertices connected to e5, randomly labeling one v1 and

the other v2. Following this, they locate two polygons that share e5, labeling them p3 and p4.

Continuing, edges e1 and e2 are identified as edges connected to v1 (excluding e5) and are also

part of polygon nodes p3 and p4, respectively. Similarly, e3 and e4 are determined using the

same procedure, where the role of v1 from the previous step is now adapted by v2. Subsequent

steps involve finding polygons p1, containing both e1 and e2, followed by identifying p2, con-

taining e3 and e4.

Note that nodes representing cells (polyhedra) are missing in graphs describing a T1 transi-

tion (Fig 3). This is because polyhedra do not exist in the 2D representation of the vertex

model, where polygons themselves are interpreted as cells.

(ii) After pattern matching, graph transformations convert the initial sub-graph to the

final sub-graph, illustrated in the upper-right area of Fig 3A, employing a few transformative

operations. The detailed depiction of these graph transformations in the middle panel of Fig

3A reveals several deletions and creations of new relationships. Specifically, at the vertex and

edge level, v1! e2 and v2! e3 relationships are eliminated, while v1! e3 and v2! e2 rela-

tionships are established. Furthermore, at edges and polygons level, only e5! p3 and e5! p4

relationships are removed, while new e5! p1 and e5! p2 relationships are created. What rela-

tionships need to be deleted and created is visually represented in the graph-transformations

graph by red and green arrows, respectively.
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Finally, the newly created relationships need to be prescribed contextual properties using

Eqs (6) and (7), (Fig 3B and 3C). For instance, s0
1;3

, i.e., the sign of vertex v1 in the context of

the edge e3, is assigned a value identical to s2,3, i.e., the sign of vertex v2 in the context of e3

before transformation. In turn, determining the sign of a new edge in the context of a polygon,

e.g., e5 in the context of p1 (s0
5;1

), relies on contextual properties s0
2;5

, s0
2;2

, and σ2,1 [Eq (7)]. For a

more comprehensive understanding of the origin of Eqs (6) and (7), refer to Fig 3’s caption.

Note that all the graphs shown in Fig 3 are unique in a sense that their connectivity does

not depend on the labeling of vertices, edges, and polygons. Of course, relabeling these ele-

ments or repositioning the corresponding nodes would affect the visual representation of the

graphs, but the graphs themselves (i.e., their connectivities) would remain the same.

ET and TE graph transformations

Graph transformations describing ET and TE transitions as well as EV, VT, TV, and VE transi-

tions are obtained following the exact same procedure as in the case of T1 transition (previous

section). Fig 4 shows graph transformations for ET and TE transformations as well as the

Fig 3. Graph transformation for a T1 transition. A Graphs in the left and right columns correspond to the initial and

final cell configurations, respectively. Gray arrows represent relationships labeled IS_PART_OF. The graph in the

middle column shows the graph transformation, which includes green and red relationships, indicating relationship

creations and deletions, respectively. Additionally, the graph transformation specifies property values of the newly

created relationships. B Schematic of determining the value of contextual property for a new vertex!edge relationship

generated between vertex v1 and edge e3 (s0
1;3

). After the transformation, vertex v1 assumes the same role in the context

of edge e3 as the role of v2 in the context of e3 before the transformation (s2,3). This occurs because the edge e3 merely

replaces v2 (blue) with v1 (red). C Schematic of determining the value of contextual property for a new edge!polygon

relationship generated between edge e5 and polygon p1 (s0
5;1

). The calculation of s0
5;1

(red) relies on one of the vertices

of e5, i.e., v2 (green), and the edge linked to both v2 and p1, i.e., e2 (also depicted in green). The assignment of s0
5;1

is

determined based on the contextual properties of: (i) edge e2 in the context of polygon p1, σ2,1, (blue) and (ii) vertex v2

in contexts of edges e2, s0
2;2

, and e5, s0
2;5

, (green). In short, the contextual property s0
5;1

aligns or opposes that of σ2,1

depending on the similarity or dissimilarity of s0
2;2

and s0
2;5

.

https://doi.org/10.1371/journal.pcbi.1012089.g003
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matched subgraphs representing initial and final cell configurations. Graph transformations

for EV, VT, TV, and VE transformations are given in S1 and S2 Figs. For clarity, the graphs

representing all three states (E, T, and V) are additionally specified in a more explicit (non-pic-

torial) form in Methods.

Generalization of topological transformations

As shown in Fig 1D, the transformation patterns during ET and TE transformations are both

geometrically as well as topologically quite similar to the more simple T1 transition. This raises

a question whether topological transformations in 2D and 3D can be generalized and

described using the same, generalized, graph transformation.

Surprisingly, as depicted in Fig 5, our Graph vertex model readily resolves this question.

Indeed, when either ET or TE transformation (Fig 5 only shows the case of ET transformation)

are applied on a 2D GVM of polygonal cell aggregates, only a part of the initial subgraph is

matched, whereas the rest (shown in transparent in Fig 5) corresponds to elements (vertices,

edges, polygons, and cells) that do not exist in the 2D model due to the reduced

Fig 4. Graph transformations in a 3D vertex model of polyhedral packings. A Graph transformation of an ET

transition. B Graph transformation of an TE transition. In both panels, graphs in the left and the right column

correspond to the initial and the final cell configuration, respectively. Gray arrows represent relationships labeled IS_
PART_OF. The graphs in the middle column show graph transformations, which include green and red relationships,

indicating relationship creations and deletions, respectively. Additionally, the graph transformation specifies property

values of the newly created relationships. In each graph, the node indices increase from left to right in unit steps.

https://doi.org/10.1371/journal.pcbi.1012089.g004
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dimensionality. In turn, only the matched subgraph gets transformed and by relabelling and

repositioning the nodes, we prove that the remaining graph transformation exactly corre-

sponds to the graph transformation Tð2DÞT1
(Fig 3A), describing a T1 transition. In short, T1

graph transformation can be viewed as a subgraph of both ET and TE graph transformations.

This result generalizes topological transformations in 2D and 3D vertex models, suggesting

that it should be possible to develop a generalized computational implementation of GVM,

capable of simulating both 2D and 3D space-filling packings. Our implementation of GVM

within the neoVM package confirms this hypothesis.

Fig 5. 3D graph transformations reduce to a T1 transition when applied to a 2D vertex model. A ET

transformation when applied to a four-polygon neighborhood described by a 2D vertex model. Parts of graphs shown

in transparent are not matched because the corresponding elements do not exist in 2D. After relabeling the nodes

(panel B) and repositioning them (panel C), we observe that the matched graph transformation exactly corresponds to

Tð2DÞT1
, i.e., the graph transformation that performs a T1 transition (Fig 3).

https://doi.org/10.1371/journal.pcbi.1012089.g005
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Order-disorder transition in active tissues

As a proof of concept, we develop a custom Python package called neoVM, which manages

the GVM’s knowledge graph and its transformations in a graph database management frame-

work Neo4j (Methods).

We use neoVM, to study an order-disorder transition of cell aggregates, driven by active

tension fluctuations. In particular, we consider an aggregate of Nc = 128 cells with identical

(normalized) volumes (V0 = 1 for all cells), enclosed within a simulation box with periodic

boundary conditions. The vertex dynamics are described by Eq (5), assuming the potential

energy given by Eq (10).

In addition to the conservative and friction forces, we also include active force dipoles act-

ing along cell edges to induce active cell rearrangements. The total active force on vertex i is a

sum of forces acting along edges (i.e., tricellular junctions) sharing that same vertex:

FðaÞi ¼ �
P

lmn glmnðtÞriLlmn : ð8Þ

Here the indices lmn denote a tricellular junction (i.e., edge), shared by cells l, m, and n; Llmn is

the edge length.

The magnitudes of active force dipoles are dynamic quantities that fluctuate with time. In

particular γlmn(t) obeys Ornstein-Uhlenbeck dynamics described by

_g lmnðtÞ ¼ �
1

tm
glmnðtÞ � g0ð Þ þ xlmnðtÞ ; ð9Þ

where τm is the relaxation time scale associated with turnover dynamics of molecular motor

Myosin, γ0 is a baseline tension, whereas ξlmn(t) is Gaussian white noise with properties

hξlmn(t)i = 0 and hξlmn(t)ξopr(t0)i = (2σ2/τm)δloδmpδnrδ(t − t0); σ2 is the long-time variance of the

tension fluctuations.

We simulate the above active dynamics at different magnitudes of active noise σ, starting

with a Kelvin structure–a crystalline cell arrangement made up of truncated octahedra with 14

facets (8 regular hexagons and 6 squares). The active noise distorts the geometry of the aggre-

gates, which are no longer perfect crystals. In particular, for σ> 0 the average cell shape, quan-

tified by the shape factor q ¼ hSl=V
2=3

l il2cells (Sl and Vl are cell surface area and volume,

respectively) deviates from the Kelvin’s truncated octahedron (Fig 6A). The distorted geometry

is also seen in the width of the distribution of edge lengths, which increases with an increasing

σ–to a point where vanishingly short edges appear (Fig 6B). These edges undergo ET and TE

topological transformations, which in turn triggers cell rearrangements–a signature of a transi-

tion from a solid-like to a fluid-like behavior. This transition manifests in disordering of the

aggregate, seen in the dependence of an order parameter 1 − f14, describing the fraction of

non-14-sided polyhedra (f14 = N14/Nc), on the control parameter σ (Fig 6C). From these

results, we obtain an estimate for the transition point σ*� 0.17. Fig 6D–6H show cell configu-

rations at σ = 0, 0.2, 0.3, 0.4, and 0.5.

Next, we are interested in whether the active noise can drive the opposite effect, i.e., order-

ing. To study this, we start with a disordered cell packing, prepared in advance by packing

spheres in the simulation box, using random sequential addition and then constructing Voro-

noi partitions around sphere centers. This procedure yields a sample with the initial fraction of

14-sided polyhedra f14 = 0.234. Again, we simulate the active dynamics at different magnitudes

of the active noise σ. We find that high-σ values keep the aggregate disordered due to frequent

cell-neighbor exchanges. In contrast, a sufficiently small level of active noise drives active tissue

ordering, which is seen in decreasing 1 − f14 and narrowing of the edge-length distribution

over time (Fig 6I and 6J, respectively). At moderate σ� σ* values, the ordering is more
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efficient compared to small σ values, where the active-noise level is not sufficiently high to

allow overcoming local energy barriers for cell rearrangements. Despite a higher degree of dis-

order, the low-σ states consist of cells whose shapes are closer to the Kelvin’s regular truncated

octahedron compared to cells from the σ� σ* case, where cell shapes are perturbed due to

active noise (Fig 6K).

The rate of topological-transition events in the simulations of active cell aggregates reaches

as high as *200/time unit, which in total amounts to *105 events per simulation (Fig 6C);

note that many of these events are reversible transitions that occur multiple times while the

manipulated vertices are still located very close to one another and have not yet properly

resolved in the geometric sense. Despite this large number of reconnections, the aggregate

does not develop any nonphysical topology, e.g., an edge connecting more than two vertices or

a polygon with one missing edge, etc. This demonstrates that topological transformations in

space-filling 3D packings can indeed be implemented as graph transformations defined in Fig

4. Importantly, due to GVM’s unambiguous data structure, these transformations are relatively

straight-forward to implement and are therefore readily reproducible, which is clearly demon-

strated by the implementation of GVM within our neoVM package [61].

Fig 6. Order-disorder transition in 3D cell aggregates. A Shape parameter q for “thermalized” aggregates versus

active noise σ. B Distribution of edge lengths in thermalized aggregates for σ = 0.025, 0.2, and 0.5 (red, green, and blue

curves, respectively). C Order parameter 1 − f14 and normalized number of cell-rearrangement events n = (NET + NTE)/

Nmax versus active noise σ. D-H Thermalized aggreages at σ = 0, 0.2, 0.3, 0.4, and 0.5. I Order parameter 1 − f14 versus

time for σ = 0.01, 0.17 and 0.4 (red, green, and blue curves, respectively) during aggregate ordering. J The initial

(t = 0.001; orange curve) and final (t = 1000; magenta curve) distributions of edge lengths at σ = 0.17. K Shape

parameter q versus time for σ = 0.01, 0.17 and 0.4 (red, green, and blue curves, respectively) during aggregate ordering.

https://doi.org/10.1371/journal.pcbi.1012089.g006
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Discussion

We reformulated the vertex model of cell aggregates. The new formulation, called Graph Ver-

tex Model (GVM), is based on storing the topology of the cell network into a knowledge

graph. We discovered a particular graph data model, uniquely defined by a metagraph, which

allows formulating topological transformations of the cell network as simple and mathemati-

cally properly defined graph transformations (Fig 2). These transformations are themselves

represented by graphs and consist of only the most elementary graph operations, i.e., relation-

ship deletions and creations.

We designed graph transformations for all topological transitions which are required to

describe cell rearrangements–including edge-to-triangle (ET) and triangle-to-edge (TE) trans-

formations (Fig 4). Importantly, ET and TE transformations can be both applied to a 2D sys-

tem, where they reduce to the well-known T1 transition. We showed that this happens because

the transformation graph describing a T1 transition is in fact a subgraph of both ET and TE

transformation graphs (Figs 3 and 5). Thus, when ET or TE transformations are applied onto a

2D polygonal tiling, only the T1 subgraph is matched and the corresponding transformation

executed. This result generalizes topological transformations in 2D and 3D space-filling pack-

ings, suggesting that our proposed graph-data structure may be the most natural representa-

tion of the topology of space-filling packings. We used GVM to study active cell aggregates,

whose cell junctions are subject to fluctuating active tensions (Fig 6). In particular, we charac-

terized the order-disorder transition and found initially disordered aggregates undergoing

ordering, which is most efficient for active noise close to the transition point.

Even though the basic GVM’s data model presented here only encodes information on the

topology of the network of cell-cell interfaces, GVM already represents an important techno-

logical and conceptual step forward in computational models of tissue mechanics. This

advancement lays the foundation for the development of knowledge graphs capable of struc-

turally storing live-imaging data, such as that obtained from developing embryos, integrating

data on geometry, topology, mechanics, and biochemistry. With this aim, our ongoing work

uses GVM as a starting point to develop a comprehensive knowledge-graph database of the

early fly development. Making this database interactive and accessible online will allow collab-

orative research with the aim to progressively expand our collective knowledge base about the

mechanics of the embryonic development. Additionally, its graph data structure may even be

readily complemented with graph-compatible methods of artificial intelligence (e.g., Graph

Neural Networks).

Graph vertex model can be readily extended to describe other cell-scale events that change

the local topology of the network of cell-cell interfaces. Indeed, integrating cell division and

apoptosis into the model would allow detailed mechanistic studies of spheroid-like cell aggre-

gates as models of tumors or even embryos during the early stages of development, where cells

may still be packed within a three-dimensional aggregate [70, 71]. In the context of tumors, for

instance, investigating how the stability of the overall tumor shape depends on smaller-scale

biomechanical processes such as the cells’ effective surface tension, inhomogeneous cell prolif-

eration, and active noise at cell-cell interfaces, would allow better understanding the mechani-

cal basis of tumors’ transition to malignancy.

For more efficient simulations, capable of dealing with hundreds or even thousands of cells,

a considerable effort will also have to be devoted to developing technologies that will improve

computational efficiency of the vertex-model simulations over a graph database. While our

current implementation of GVM, neoVM [61], primarily serves as a proof of concept, it falls

short on the efficiency. The reason for this is mostly twofold: (i) The time integration of the

dynamical system is performed in Python, which is generally slower than some low-level
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programming languages, and (ii) Performing operations on the graph database managed by

Neo4j necessitates reading from and writing to the local hard drive during cell rearrange-

ments, where the database is stored. That this indeed limits the performance of neoVM, is also

seen in S4 Fig, which shows the simulation time depending on the system size. While the

dependence itself is linear, tissue activity shifts this linear dependence towards a higher offset

value following a larger number of cell-rearrangement events. This shows that cell rearrange-

ments consume most of the simulation time of neoVM, suggesting that the efficiency of

neoVM could be significanlty improved by relying on memory storage instead of accessing the

local hard drive.

Materials and methods

Initial configurations

Initial configurations (.vt3d files) used in simulations (Fig 6 and S4 Fig) are available in the git

repository of neoVM. Among these initial files, the Kelvin initial configuration is generated by

taking a unit cell from Surface evolver [72] and replicating them in all directions until the

number of cells in the aggregate reaches 128. On the other hand, the disordered initial condi-

tions are generated by putting spheres in the simulation box using random sequential addition

and, subsequently, constructing Voronoi cells around these spheres using the Voro++ package

[73].

Calculation of forces

We neglect the inertial effects so that the friction force Fðf Þi needs to counterbalance the sum of

conservative and active forces, FðcÞi and FðaÞi , respectively. This implies Fðf Þi þ FðcÞi þ FðaÞi ¼ 0,

where the conservative force FðcÞi ¼ � riW, with W being the potential energy of the system,

whereas Fðf Þi ¼ � Z _r i. Here, only friction with a static background is considered, η being the

associated friction coefficient. The active force FðaÞi can describe different system-specific active

mechanisms, e.g., active contractions of the cell membrane due to the activity of the underlying

cell cortex or traction forces [19, 20, 36, 74]. This model yields a system of first-order dynamic

equations for vertex positions given by Eq (5).

We consider a model, in which cell-cell interfaces are prescribed by effective surface ten-

sions Γlm, which include contributions of the cell cortical tension and cell-cell adhesion [75–

77]; the notation lm denotes index of a polygon shared by cells l and m. In this model, the total

potential energy of the cell aggregate reads

W ¼
X

hlmi

GlmAlm þ kV

X

l

Vl � V0ð Þ
2
; ð10Þ

where the first sum goes over all pairs of neighboring cells l and m and the second sum goes

over all the cells, κV and V0 being the cell-incompressibility constant and the preferred cell vol-

ume, respectively. Note that V0 need not be equal for all cells. In heterogeneous cell aggregates

such as tumors, a similar same energy functional could be used, but V0’s would need to be con-

sidered distributed.

By definition, the conservative force acting on vertex i is calculated as

F cð Þ
i ¼ �

X

lmh i

GlmriAlm � 2kV

X

l

Vl � V0ð ÞriVl; ð11Þ
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which further requires calculating gradients of interfacial surface areas and cell volumes as

described below.

Surface area of polygonal side k is calculated as a sum of surface areas of triangular surface

elements, kalm,μk, defined by pairs of consecutive polygon vertices rμ and rμ+1, and the poly-

gon’s center of mass

clm ¼
1

nlm

X

m2hlmi
rm : ð12Þ

Like in the previous section, Greek indices here do not denote the real vertex identification

numbers, but their sequential indices within individual polygons. The surface area of polygon

lm reads

Alm ¼
P

m2hlmi
1

2
k rm � clm
� �

� rmþ1 � clm
� �

k ð13Þ

and its gradient

riAlm ¼
P

m2hlmi
1

2
ri k rm � clm

� �
� rmþ1 � clm
� �

k¼ ð14Þ

¼
X

m2lm

½ðdim � n� 1
lm Þðrmþ1 � clmÞ þ ðn� 1

lm � diðmþ1ÞÞðrm � clmÞ� � alm;m

4 k alm;m k
; ð15Þ

where δij is the Kronecker delta.

Cell volume l is calculated as a sum of volumes of tetrahedra, defined by triangular surface

elements (rμ, rμ+1, clm) and with the fourth vertex at the origin (0, 0, 0), as

Vl ¼
P

m

X

m2hlmi

1

6
clm � rm � rmþ1

� �
: ð16Þ

Its gradient is calculated as

riVl ¼
X

m

X

m2hlmi

1

6
ri clm � rm � rmþ1

� �� �

¼
X

m

X

m2hlmi

1

6nlm
ðrm � rmþ1Þ þ

1

6
ðdimrmþ1 � diðmþ1ÞrmÞ � clm :

ð17Þ

Topological transformations

None of the topological transitions is allowed if the resulting cell configuration breaks any of

the following topological rules [51, 57]: (i) Edge pairs may not share more than one vertex, (ii)

polygon pairs may not share more than one edge and (iii) cell pairs may not share more than

one polygon. In our implementation of GVM within the neoVM packing, these conditions

seem to be rigorously imposed, since we never observe them being violated despite conducting

numerous simulations involving a large number of rearrangement events (Fig 6). If such viola-

tion were to happen, the transformation causing it would need to be immediately reversed.
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Cypher queries for pattern matching and graph transformations

The following Cypher query retrieves nodes representing the polygons that share common

edge i

MATCH ðe : EdgeÞ

WHERE e:id ¼ i

MATCH ðeÞ � ½ : IS PART OF�� > ðp : PolygonÞ

RETURN p

ð18Þ

The following Cypher query creates a new relationship IS_PART_OF between nodes

(v1) and (e3) and assigns property value s23.

CREATE ðv1Þ � ½ : IS PART OF fsign : $ s23g�� > ðe3Þ ð19Þ

The following Cypher query deletes relationship r between nodes (e5) and (p4).

MATCH ðe5Þ� ½r : IS PART OF�� > ðp4Þ

DELETE r

ð20Þ

List of relationships

For clarity, we here explicitly list relationships in graphs representing states E, T, and V (Figs 4

and 5, S1 and S2 Figs). All relationships are of type IS_PART_OF.

• [state E]: v1! e1, v1! e2, v1! e5, v1! e7, v2! e3, v2! e4, v2! e6, v2! e7, e1! p1, e1

! p4, e1! p8, e2! p2, e2! p4, e2! p6, e3! p1, e3! p5, e3! p9, e4! p2, e4! p5, e4!

p7, e5! p3, e5! p6, e5! p8, e6! p3, e6! p7, e6! p9, e7! p1, e7! p2, e7! p3, p1! c1,

p1! c2, p2! c1, p2! c3, p3! c2, p3! c3, p4! c1, p4! c4, p5! c1, p5! c5, p6! c3, p6!

c4, p7! c3, p7! c5, p8! c2, p8! c4, p9! c2, p9! c5

• [state T]: v1! e1, v1! e3, v1! e7, v1! e9, v2! e2, v2! e4, v2! e7, v2! e8, v3! e5, v3

! e6, v3! e8, v3! e9, e1! p1, e1! p4, e1! p8, e2! p2, e2! p4, e2! p6, e3! p1, e3!

p5, e3! p9, e4! p2, e4! p5, e4! p7, e5! p3, e5! p6, e5! p8, e6! p3, e6! p7, e6! p9, e7

! p4, e7! p5, e7! p10, e8! p6, e8! p7, e8! p10, e9! p8, e9! p9, e9! p10, p1! c1, p1

! c2, p2! c1, p2! c3, p3! c2, p3! c3, p4! c1, p4! c4, p5! c1, p5! c5, p6! c3, p6! c4,

p7! c3, p7! c5, p8! c2, p8! c4, p9! c2, p9! c5, p10! c4, p10! c5

• [state V]: v1! e1, v1! e2, v1! e3, v1! e4, v1! e5, v1! e6, e1! p1, e1! p4, e1! p8, e2

! p2, e2! p4, e2! p6, e3! p1, e3! p5, e3! p9, e4! p2, e4! p5, e4! p7, e5! p3, e5!

p6, e5! p8, e6! p3, e6! p7, e6! p9, p1! c1, p1! c2, p2! c1, p2! c3, p3! c2, p3! c3, p4

! c1, p4! c4, p5! c1, p5! c5, p6! c3, p6! c4, p7! c3, p7! c5, p8! c2, p8! c4, p9! c2,

p9! c5

Implementation in Python and Neo4j

As a proof of concept, we set up the GVM’s knowledge-graph database in a graph database

management framework Neo4j [62]. The core program of the vertex model is implemented

in Python and communicates with Neo4j using Py2neo client library. The time
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integration of the dynamical system is performed in Python, whereas all topological transfor-

mations are performed in Neo4j through pattern matching and graph transformations

implemented as Cypher queries [69]. Our implementation of GVM is available as an open-

source Python package, called neoVM, and is available online [61].

S3 Fig shows the schematic of neoVM’s architecture. The program is initialized by reading

the initial geometry and topology of the cell network from an input .vt3d file and storing

them into an object t of class tissue. In particular, this object stores lists of vertex,

edge, polygon, and cell objects, which encode ri, ej, pk, and cl, respectively, in a tabular

form. This is followed by generating an object db of class database, which connects to an

empty Neo4j database and fills it with the tissue data according to the rules of the GVM’s

metagraph, using function setup_DB(). The initialization is followed by a time loop, which

propagates the system forward in time by time steps Δt. At each time step, the dynamical sys-

tem [Eq (5)] is integrated between t and t + Δt [function solver()] and the program checks

whether any of the edges in the cell network meets contitions for topological transitions [func-

tion topological_transitions()]. In particular, edge j undergoes an ET transition if

it is shorter than a threshold length lth and the rate of change of its length is negative

(dlj=dt < 0), i.e., the edge is contracting. If the edge happens to be part of a triangle, a TE tran-

sition is performed on the triangle if, additionally, all edges of the triangle are shorter than lth
and the area of the triangle is decreasing (dAk/dt< 0).

For every edge/triangle, subject to a topological transition, the core program sends a

sequence of Cypher queries to the Neo4j graph database. These queries (i) perform pattern

matching to isolate a subgraph relevant for the particular transformation being performed,

and (ii) perform graph transformation on that subgraph. After graph transformations, vertex

positions are displaced such that the lengths of the newly created edges (edges e7, e8, and e9 in

Fig 1) are on the order of lnew� 1. Finally, the local structure of the arrays, encoding ri, ej, pk,
and cl, (stored in object t) are updated according to the applied transformations. This is done

by converting the altered part of the knowledge graph back into the array format using func-

tion update().

Supporting information

S1 Fig. Graph transformations of EV and VT transitions. (panels A and B, respectively).

Graphs in the left and the right column correspond to the initial and the final cell configura-

tion, respectively. Gray arrows represent relationships labeled IS_PART_OF. The graphs in

the middle column show graph transformations, which include green and red relationships,

indicating relationship creations and deletions, respectively. Additionally, the graph transfor-

mation specifies property values of the newly created relationships. In each graph, the node

indices increase from left to right in unit steps.

(TIF)

S2 Fig. Graph transformations of TV and VE transitions. (panels A and B, respectively).

Graphs in the left and the right column correspond to the initial and the final cell configura-

tion, respectively. Gray arrows represent relationships labeled IS_PART_OF. The graphs in

the middle column show graph transformations, which include green and red relationships,

indicating relationship creations and deletions, respectively. Additionally, the graph transfor-

mation specifies property values of the newly created relationships. In each graph, the node

indices increase from left to right in unit steps.

(TIF)
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S3 Fig. The algorithm underlying neoVM. A 3D cell aggregate is set up from an input .vt3d
file by function setup_from_vt3d() and then converted into a graph database, set up in

Neo4j by function setupDB(). These initialization steps then followed by a time loop,

which iterates between solver() and topological_transitions() functions. The

function solver() calculates geometric properties of cells and the associated gradients (i.e.,

conservative forces) and propagates the system forward in time. The function

topological_transitions() loops over all cell edges to find those that meet criteria

for topological transitions. For edges that meet these criteria, topological transitions are per-

formed through pattern matching and graph transformations (functions pattern_
matching() and graph_transformation(), respectively), applied directly to the

graph database. Finally, the tissue is updated accordingly by function update() and posi-

tions of vertices involved in the topological transformation are corrected by function

correct_vertex_positions().

(TIF)

S4 Fig. Performance of neoVM. Runtime duration per unit simulation time as a function of

cell count. Here, two separate data sets represent two strengths of active fluctuations, i.e., σ =

0.2 and σ = 0.4, shown in red and green dots, respectively. In both cases, simulation runtime

shows a linear dependence (in a blue dashed lines) on the size of cell aggregates.

(TIF)
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