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Summary

� Ethylene response factors (ERFs) have been associated with biotic stress in Arabidopsis,

while their function in non-model plants is still poorly understood. Here we investigated the

role of potato ERF StPti5 in plant immunity.
� We show that StPti5 acts as a susceptibility factor. It negatively regulates potato immunity

against potato virus Y and Ralstonia solanacearum, pathogens with completely different

modes of action, and thereby has a different role than its orthologue in tomato. Remarkably,

StPti5 is destabilised in healthy plants via the autophagy pathway and accumulates exclusively

in the nucleus upon infection. We demonstrate that StEIN3 and StEIL1 directly bind the StPti5

promoter and activate its expression, while synergistic activity of the ethylene and salicylic

acid pathways is required for regulated StPti expression.
� To gain further insight into the mode of StPti5 action in attenuating potato defence

responses, we investigated transcriptional changes in salicylic acid deficient potato lines with

silenced StPti5 expression. We show that StPti5 regulates the expression of other ERFs and

downregulates the ubiquitin-proteasome pathway as well as several proteases involved in

directed proteolysis.
� This study adds a novel element to the complex puzzle of immune regulation, by decipher-

ing a two-level regulation of ERF transcription factor activity in response to pathogens.

Introduction

Plants depend on a multi-layered immune system to recognise and
fight off different attackers (Zhou & Zhang, 2020; Yuan
et al., 2021b). A first layer of active plant innate immunity is
induced by conserved microbial- or pathogen-associated molecular
patterns (MAMPs or PAMPs) recognised by transmembrane pat-
tern recognition receptors (PRRs) initiating the PAMP-triggered
immunity (PTI) response (Boller & Felix, 2009). Effector-
triggered immunity (ETI) is the second and more specific defence
layer, often associated with hypersensitive response (HR)-conferred
resistance. In ETI, the microbial effectors are directly or indirectly
recognised by specific intracellular nucleotide-binding/leucine-rich-
repeat (NLR) receptors (Cui et al., 2015). Both PTI and ETI layers
function synergistically and share several signalling regulators, to
ensure a robust response of immunity (Ngou et al., 2021; Yuan
et al., 2021a). Shared pathways include mitogen-activated protein
kinase (MAPK) cascades, calcium response, reactive oxygen
species burst and hormonal signalling, which finally lead to a

transcriptional reprogramming of cells (Yuan et al., 2021b). This
last step requires a coordinated function of different transcription
factors (TFs), among which AP2/ERF, bHLH, NAC, TGA/bZIP
and WRKY are shown to play prominent roles (Tsuda & Soms-
sich, 2015; Birkenbihl et al., 2017).

Ethylene response factor (ERF) TFs are members of the large
AP2/ERF family and are defined by the presence of a single
AP2/ERF DNA interaction domain. This domain is composed
of 60 amino acids that form a 3D structure consisting of a
three-stranded anti-parallel b-sheet and an a-helix packed
approximately parallel to the b-sheet (Allen et al., 1998). ERFs
are characterised by the presence of conserved alanine and aspar-
tic acid at positions 14 and 19, respectively (Sakuma et al.,
2002). They were shown to specifically bind an AGCCGCC
motif designated as GCC-box which is found in the promoters
of many jasmonic acid (JA)/ethylene inducible pathogenesis-
related (PR) genes (Ohme-Takagi & Shinshi, 1995).

Several members of the ERF family, mostly belonging to
group IX (Nakano et al., 2006), have been linked to biotic stress
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responses in Arabidopsis (Huang et al., 2015). AtERF1 and
ORA59, for instance, confer resistance to several necrotrophic
fungi (Berrocal-Lobo et al., 2002; Berrocal-Lobo & Molina,
2004; Pr�e et al., 2008) by acting downstream of the intersection
between ethylene and JA pathways (Lorenzo et al., 2003; Pr�e
et al., 2008; Zarei et al., 2011). Moreover, ORA59 is shown to
act as a key node of salicylic acid (SA) and JA antagonistic cross-
talk (Van der Does et al., 2013). The involvement of ERFs in dis-
ease resistance against bacteria, fungi and viruses has also been
documented in crops (Feng et al., 2020). In soybean (Glycine
max), the GmERF5 and GmERF113 ERF TFs were shown to
play key roles in defence response to Phytophthora sojae (Dong
et al., 2015; Zhao et al., 2017), while in Chinese wild grapevine
(Vitis pseudoreticulata) VpERF2 and VpERF3 enhanced resis-
tance to both the biotrophic bacterial pathogen Ralstonia solana-
cearum and the oomycete Phytopthtora parasitica (Zhu
et al., 2013). In tomato, ERF TFs SlPti4, SlPti5 and SlPti6 have
been shown to be involved in disease resistance against several
pathogens. They were identified as interacting partners of the R
gene Pto product and were then characterised as TFs that recog-
nise the promoter region of genes encoding pathogenesis-related
(PR) proteins (Zhou et al., 1997). Based on these findings, Zhou
suggested they were probable components linking an R gene pro-
duct to the expression of specific defence-related genes (Zhou
et al., 1997). Overexpression of SlPti5 was shown to enhance
resistance to Pseudomonas syringae pv. tomato, a hemi biotrophic
bacteria causing the tomato bacterial speck disease (He
et al., 2001) and it was also linked to aphid resistance in tomato
(Wu et al., 2015). Later on, SlPti4 and SlPti6 were also shown to
promote plant defence against pathogenic bacteria (Gu et al.,
2002; Wang et al., 2021). A Pti5 orthologue that could improve
resistance to Verticillium dahliae has recently been identified in
wild eggplant (Solanum torvum Sw.) (Li et al., 2023).

In contrast to these positive regulators, a few ERF TFs with a
transcriptional repressive function have been identified to
increase plant susceptibility to different pathogens. Among them,
AtERF4 was found to decrease resistance to the necrotrophic fun-
gus Fusarium oxysporum in Arabidopsis, while StERF3 negatively
regulates resistance to the hemi biotroph Phytophthora infestans
in potato (Tian et al., 2015). VpERF1 can enhance susceptibility
to R. solanacearum and P. parasitica in grapevine (Zhu
et al., 2013) and OsERF922 to Magnaporthe oryzae in rice (Liu
et al., 2012). However, despite the importance of ERFs in biotic
stress responses, the function of most of them remains unknown,
especially in crops.

Here we aimed to elucidate the function of the ERF transcrip-
tional network in potato immune responses. Potato (Solanum
tuberosum L.) is the fourth most important crop in the world. It
is grown on a significant scale in 130 countries, with a gross pro-
duction value of 63.6 billion US dollars in 2016, and a yearly
production of 368 million tons in 2018 (Dolni�car, 2021). We
show that StPti5, the potato orthologue of SlPti5, that lacks a
corresponding Arabidopsis orthologue, acts as a susceptibility fac-
tor in potato. We further deciphered its regulation on transcrip-
tional and protein stability levels as well as identified its
downstream targets.

Materials and Methods

Plant material

Two potato (Solanum tuberosum L.) genotypes were used in this
study including the nontransgenic cultivar Rywal (nontransgenic,
NT), which shows hypersensitive response (HR)-conferred resis-
tance to potato virus Y (PVY), and its transgenic line, expressing
NahG and thus impaired in SA accumulation (SA reduced to
< 10% of native values; NahG) and sensitive to PVY (Baebler
et al., 2014). Potato plants were grown in stem node tissue cul-
ture in long day conditions at 22°C. Two weeks after node seg-
mentation, they were transferred to soil and kept in growth
chambers under controlled environmental conditions of 22°C,
16 h : 20°C, 8 h, light : dark, with a light intensity of
4000 lm m�2 and 60–70% relative humidity. Nicotiana
benthamiana Domin plants were grown from seeds and kept in
growth chambers under the same controlled conditions.

Hormonal treatments

For all treatments, 4-wk-old potato plants were used. SA treat-
ments were performed by spraying plants with 300 lM INA
(98% 2,6-Dichloroisonicotinic acid, Aldrich) in 1% ethanol. For
ethylene and methyl jasmonate (MeJA) treatments, plants were
sealed in airtight containers and treated with 50 ppm ethylene or
0.25 ll MeJA (95% Methyl Jasmonate, Aldrich) per l of air.
Control plants were sealed in airtight containers with no treat-
ment or sprayed with the corresponding mock solution (Support-
ing Information Dataset S1).

To inhibit ethylene signalling pathway, plants were treated
with SmartFresh (AgroFresh, Inc.) containing 0.14%
1-Methylcyclopropene (1MCP) in airtight containers. To effec-
tively release 1MCP, the treatment was performed according to
the protocol provided by the manufacturer, with an estimated
application rate of 1000 ppb (v/v) 1MCP. After 2 h of incuba-
tion, the sealed container was opened, plants were treated with
the corresponding hormones and a new bottle containing dis-
solved 1MCP was placed in the container.

Leaves were harvested 24 h after treatments and immediately
frozen in liquid nitrogen (Dataset S1).

DNA constructs

The full length StPti5 (Sotub02g020180; GenBank: XM_
006367134) cDNA was amplified from NT and cloned by Gate-
way into the b-estradiol inducible vector containing GFP
(pABinGFP; Bleckmann et al., 2010), to obtain the pABinGFP_
StPti5 construct.

Nested PCR was performed to amplify the upstream region of
StPti5, 1 kb in front of the start codon, out of the NT genomic
DNA. The amplified fragments were cloned into the pJET plas-
mid using the CloneJET PCR Cloning Kit (Thermo Scientific)
and used for further promoter analyses. The NT1 promoter
sequence (GenBank: OR750856) was introduced into the Y1H
pAbAi plasmid Clontech Laboratories, Inc. (Takara Bio USA,
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Inc., Mountain View, CA, USA), via restriction enzyme diges-
tion. A 66 bp long oligonucleotide fragment containing four tan-
dem copies of the GCC-box (GCC) and its mutated version
(GCCmut) (Wang et al., 2015) were also cloned into the Y1H
vector. The same oligonucleotide fragments fused to a minimal
promoter (Ow et al., 1987) and the NT1 promoter sequence
were likewise cloned by Gateway into the pGWB435 LUC repor-
ter plasmid (Nakagawa et al., 2007).

The coding sequences of NAC domain-containing protein 55
(StANAC55, GenBank: OR736059), MYC2 transcription factor
(StMYC, GenBank: OR736060), ETHYLENE INSENSITIVE 3
(StEIN3, Sotub01g034310), EIN3-like 1 (StEIL1, GenBank:
OR736061), EIN3-like 2 (StEIL2, GenBank: OR736062),
StPti5, TGACG-motif binding factor 2.3 (StTGA2.3, OM569619
(Toma�z et al., 2023)), TGA2.2 (StTGA2.2, OM569618 (Toma�z
et al., 2023)) and TGA2.1 (StTGA2.1, OM569617 (Toma�z
et al., 2023)) were amplified from NT and cloned into the yeast
pGADT7 vector Clontech Laboratories, Inc. (Takara Bio USA,
Inc.). StMYC2, StEIL1, StEIL2, StEIN3, StPti5 were additionally
cloned into pABinGFP (Bleckmann et al., 2010) using Gateway®

LR Clonase TM II Enzyme Mix (Invitrogen).
For silencing experiments, a part of StPti5 gene was amplified

from NT and introduced into pH7GWIWG2(II) (Karimi et al.,
2002) using Gateway technology as explained in Lukan et al.
(2020).

All constructs were verified by Sanger sequencing (Eurofins
Genomics, Ebersberg, Germany; Sanger et al., 1977; Smith
et al., 1986). Primers and double stranded oligonucleotides used
are listed in Table S1.

Pathogen inoculation and disease resistance evaluation

PVYN605, tagged with green fluorescent protein (PVY N605-
GFP) or PVYNTN (isolate NIB-NTN, AJ585342) (Jakab
et al., 1997) were used to inoculate 4 wk-old plants as described
by Baebler et al. (2009).

A constitutively luminescent Pps-lux variant of Ralstonia sola-
nacearum UY031, a highly aggressive strain on potato (Cruz
et al., 2014) was used in all experiments. Plants were inoculated
by soil drenching after mild root disruption with a 1 ml tip using
40 ml of a 108 CFU ml�1 bacterial suspension per pot as
described (de Pedro-Jov�e et al., 2021). Plants were kept in the
inoculation chamber (27°C, 12 h : 12 h, dark : light) and
symptoms were recorded over time using a 1–4 scale (1 = 25%
wilting, 4 = 100% wilting). Bacterial luminescence was used to
quantify bacterial loads in stem samples (Cruz et al., 2014).
Briefly, 0.5 cm long stem sections were excised and incubated for
30 min into a sterile 2 ml tube with 200 ll of sterile distilled
water and luminescence was measured on a luminometer (FB 12;
Berthold Detection Systems, Bad Wildbad, Germany).

Agroinfiltration of Nicotiana benthamiana

Three-wk-old N. benthamiana plants were used for transient
transformation. Constructs were introduced into electrocompe-
tent Agrobacterium tumefaciens GV3101 by electroporation and

effective transformation confirmed by colony PCR (KAPA2G
Robust HotStart; Kapa Biosystems, Inc., Roche, Wilmington,
MA, USA) (Table S1), following our previous procedures (Lukan
et al., 2018b). Cultures of the transformed cells were infiltrated
into the 2nd and 3rd fully developed bottom leaves of N.
benthamiana plants as reported previously (Lukan et al., 2018b).
Agrobacterium transformed with silencing suppressor p19 (kindly
provided by Prof. Jacek Hennig) was added to the mixture at
1 : 1 ratio for the transactivation experiments. Empty A. tumefa-
ciens GV3101 was used as a control. For colocalisation studies,
Agrobacterium transformed with nucleus marker H2B protein
tagged with red fluorescent protein (H2BRFP) (Lukan
et al., 2018b) was added to the mixture at 1 : 1 ratio. For experi-
ments on PVY-infected plants, agroinfiltration was performed
7 d postinfection (dpi).

Generation of StPti5 silenced transgenic potato plants

To obtain transgenic potato plants silenced for StPti5 expression
(shPti5 NahG), the short hairpin RNA (shRNA) construct
pH7GWIWG2_shPti5 was introduced into A. tumefaciens
LBA4404 by electroporation as in Lukan et al. (2018b). The
transformed cells were used for stable transformation of NahG as
described previously (Lukan et al., 2023) using appropriate selec-
tion media.

Gene expression analysis by quantitative PCR

Potato leaf samples (c. 150 mg) were homogenised using
FastPrep instrument (MP Biomedicals, Santa Ana, CA, USA).
Total RNA was isolated using RNeasy Plant Mini kit (Qiagen),
treated with 1.3 U DNase I (Qiagen) per lg of RNA, while
reverse transcription and quantitative polymerase chain reaction
were performed as described previously (Lukan et al., 2020).
For the analysis of StPti5-silenced plants, data obtained on ViiA
7 or 7900HT Fast Real-Time PCR instrument (Applied Bio-
systems, Thermo Fisher Scientific corporation, Waltham, MA,
USA) was normalised to cytochrome oxidase (COX ). In case of
hormonal treatment experiments, the expression of StPti5,
pathogenesis-related protein 1b (StPR1b), potato cysteine proteinase
inhibitor family 8.3 (StCPI8.3), and aminocyclopropanecarboxy-
late oxidase 4 (StACO4) were followed via high-throughput
quantitative polymerase chain reaction (Fluidigm BioMarkTM

HD System Real-Time PCR, Fluidigm) and data was normal-
ised to two endogenous control genes, COX and elongation fac-
tor 1a (EF-1). Preamplification of cDNA and gene expression
analysis using Fluidigm BioMarkTM HD System Real-Time
PCR (Fluidigm) were performed as described before (Ram�sak
et al., 2018). quantGenius (Baebler et al., 2017) was used for
relative gene expression quantification based on the standard
curve method. Welch’s t-test with the Holm–Bonferroni
method, to control the family-wise error rate (FWER) on log2
transformed data scaled to control mean, was used to determine
differentially expressed genes. For primer and probe informa-
tion and full experimental details, see Table S2, Datasets S1
and S2.
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RNA-Seq analysis

NahG and shPti5 NahG plants were sampled 3 d after mock- or
PVY N605-GFP- inoculation (Dataset S2), and total RNA was
isolated as described above, followed by cleaning step using
RNeasy MinElute Cleanup Kit (Qiagen). Stranded RNA-Seq
library preparation and HiSeq4000 100 bp paired-end sequen-
cing (Illumina) were performed by SeqMatic LLC using standard
Illumina protocols. Read quality control was performed using
FASTQC (Babraham Bioinformatics, The Babraham Institute,
Cambridge, UK) and further read analysis (merging of overlap-
ping pairs, mapping of reads to the potato genome and read
counting) was done in CLC GENOMICS v.9.1 (Qiagen) (Methods
S1). For differential expression (DE) analysis, we used two
approaches, using either CLC Genomics or R, as explained in
detail in Methods S1. Adjusted P-values < 0.05 were considered
statistically significant.

Yeast one-hybrid assay

Yeast one-hybrid (Y1H) assays were conducted using Match-
maker Gold One-hybrid technology (Clontech) as described by
the manufacturer. To create the bait reporter strain, the Y1H
Gold strain was transformed with the linearised pABAi plasmid
containing the promoter of interest using the polyethylene
glycol/LiAc-based method. After selection on SD/-Ura agar med-
ium and confirmation of the bait sequence integration by colony
PCR, the colonies were used for further transformation with the
pGADT7 constructs containing the TFs of interest. SD media
without Leucin (SD/Leu) was used as control media for transfor-
mation. Positive interactions were selected on SD/Leu agar plates
containing aureobasidin A (Aba).

Transactivation assay

To study protein–DNA interactions in planta, we performed
transient transactivation studies according to Lasierra &
Prat (2018). Leaf discs of N. benthamiana plants co-expressing
the promoter LUC reporter and b-estradiol inducible effector
cassettes, in combination with p19 (as mentioned in the previous
section), were sampled 3 d postagroinfiltration (dpa). The col-
lected discs were placed in microplate reader wells that contained
175 ll of 4 mg ml�1 d-luciferin per 50 ml Murashige & Skoog
basal salt mixture solution. For effector construct activation,
b-estradiol was added to a final concentration of 10 lM. No
inducer was added to half of the leaf discs, used as controls for
basal activity. For each effector, 18 replicates and two indepen-
dent experiments were performed. Luminescence activity was
recorded in the luminometer microplate reader LB960 (Berthold
Technologies, Bad Wildbad, Germany) c. every 30 min for at
least 24 h. Measurements were transformed to log10, and within
each time point, Wilcoxon signed-rank tests with Benjamini–
Hochberg procedure (v.0.7.2, Kassambara, 2023a) for false dis-
covery rate (FDR) was used to compare b-estradiol-treated vs
nontreated samples. Data was visualised using R (R Core

Team, 2023) packages GGPLOT2 (v.3.4.2, Wickham, 2016) and
GGPUBR (v.0.6.0, Kassambara, 2023b).

Western blot

Nicotiana benthamiana leaves previously transformed with the
StPti5_GFP fusion under b-estradiol inducible promoter
(StPti5-GFP) or with p19 only, were collected 50 h or 76 h after
the corresponding chemical treatment (to be described later).
Proteins were extracted and StPti5-GFP was pulled down and
eluted (see Methods S2 for details). After trapping, StPti5-GFP
was analysed by SDS-PAGE and western blot using anti-GFP
polyclonal antibodies (1 : 5000; Thermo Fisher Scientific) and
secondary antibodies (1 : 5000; Anti-Rabbit IgG (H + L), HRP
conjugated, Promega) (Methods S2). Chemiluminescence was
detected using Clarity Max Western ECL substrate (Bio-Rad).
Images were acquired by UVP ChemStudio system (Analytik
Jena, Jena, Germany).

Chemical treatments

To induce pABinGFP_StPti5 construct in planta, N. benthami-
ana leaves were sprayed with 10 lM b-estradiol 3dpa. At the
same time, the treated leaves were also infiltrated with 5 mM
3-methyladenine (3-MA) or 100 lMMG132 diluted in DMSO.
Control plants were infiltrated with 0.5% DMSO. Experimental
details are shown in Dataset S3.

Confocal microscopy

The presence of the fused fluorescence proteins was visualised on
the abaxial side of detached infiltrated leaves with confocal micro-
scopes Leica TCS SP5, Leica TCS LSI and Leica Stellaris 5 as
explained in Methods S3.

Images are presented as maximum projections from Z-stacks.
Z-stack size was adjusted to 10 steps to cover c. 50 lm of the tis-
sue. Image overlay of the brightfield with all channel’s maximum
projections from Z-stacks, in the case of Leica TCS SP5, or image
overlay of all channel’s maximum projections from Z-stacks, in
the case of Leica TCS LSI, was performed using LEICA LAS AF
LITE software (Leica Microsystems, Wetzlar, Germany).

Bioinformatic analysis

Potato ERF genes were previously identified by Charfeddine
et al. (2014) based on the potato gene model provided by The
Potato Genome Consortium (PGSC) (Potato Genome Sequen-
cing Consortium, 2011). We used orthologue information
included in GOMAPMAN (Ramsak et al., 2013) to link each ERF
group IX gene with identifiers from the ITAG gene model (The
Tomato Genome Consortium, 2012), as well as with informa-
tion from Potato Oligo Chip Initiative (POCI) (Kloosterman
et al., 2008).

Heatmap presenting log2FC (adjusted P-value < 0.05) of pre-
vious microarray dataset (Baebler et al., 2014) was generated
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using R (R Core Team, 2023) package GPLOTS (v.3.1.3, Warnes
et al., 2022). In case one gene was targeted by more than one
POCI probe, the most responsive POCI was prioritised to repre-
sent the corresponding StERF gene.

The amino acid sequences of ERF-IX from Arabidopsis
(Nakano et al., 2006), tomato (Solanum lycopersicum L.) (Sharma
et al., 2010; Pirrello et al., 2012) and ERF-IX potato genes
(Charfeddine et al., 2014) retrieved in our gene expression data-
set were used to build a phylogenetic tree. To determine the opti-
mal number of sequence clusters, affinity propagation clustering
(v.1.4.10, Bodenhofer et al., 2011) was conducted on mutual
pairwise similarities obtained through protein length scaled
Levenshtein distances (v.0.9.10, van der Loo, 2014). Circular
dendrogram was constructed using the R package DENDEXTEND

(v.1.17.1, Galili, 2015).
The location of the selected StPti5 potato ERF gene

(Sotub02g020180) within the potato genome and the sequence
of its promoter region were obtained from the S. tuberosum
Group Phureja DM1-3 v4.03 genome assembly (Potato Genome
Sequencing Consortium, 2011). Multiple sequence alignment of
1000 bp long promoter sequences was performed using CLC
Main Workbench 6.8.1 and MUSCLE algorithm. Analyses of tran-
scription factors binding sites in the 1600–1900 bp long promo-
ter regions were performed using TRANSFAC (Biobase) and
FOOTPRINTDB (Sebastian & Contreras-Moreira, 2014).

Results

Differential regulation of potato ERF transcription factors
during the immune response to potato virus Y

Given that group IX ERF genes have been particularly associated
with plant defence responses (Nakano et al., 2006), we investi-
gated the expression profile of members of this subfamily in
potato. We first examined transcript levels of these genes
in potato response to PVY, one of the viruses leading to the most
significant potato losses world-wide (Kreuze et al., 2020) in our
previous dataset that included the cv Rywal (nontransgenic, NT),
harbouring the Ny-1 gene and showing HR-conferred resistance,
and its susceptible transgenic counterpart deficient in SA (NahG)
(Baebler et al., 2014). Sixteen genes of the StERF-IX group
(Charfeddine et al., 2014), corresponding to 26 POCI microar-
ray probes, were identified on the microarray. Indeed, 14 genes
were observed to be differentially expressed after PVY infection,
in at least one of the experimental conditions (Fig. 1a), support-
ing the importance of this gene family in potato immunity. In
NT plants, 5 out of 6 differentially expressed genes were downre-
gulated at 1 dpi, while most of them were upregulated at 3 and 6
dpi (Fig. 1a). By contrast, in NahG plants none of these genes
showed a differential expression or they were only weakly upregu-
lated at 1 dpi, while displayed a strong induction from 3 dpi
onwards (Fig. 1a).

The strongest response among the ERF-IX genes, was shown
for Sotub09g019370, Sotub02g020180 and Sotub02g023760
(Fig. 1a). Sotub02g020180 is, in the S. tuberosum group Phureja
DM1-3 genome annotated as pathogenesis-related gene

transcriptional activator Pti5 (Potato Genome Sequencing Con-
sortium, 2011), and is an orthologue of tomato Pti5 gene
(Fig. S1). The gene has 549 base pairs (bp) of open reading frame
(ORF) allowing for a protein of 182 amino acids (aa). Although
it clustered with AtERFs from subgroup IXc, including AtERF1,
ORA59 and AtERF14, among others (Nakano et al., 2006), no
orthologues of StPti5 were found in Arabidopsis (Fig. S1).

We next performed a more detailed spatial analysis of StPti5
transcription factor, by following its expression levels in small tis-
sue sections collected around the lesion (Fig. 1b). StPti5 showed
an induction peak in the area immediately surrounding the lesion
(section A) of PVY-infected plants, while its expression decreased
in both genotypes in the surrounding tissues (section B–D).
Induction in the viral amplification area (section A) was at least
two times stronger in NahG plants compared to NT plants
(Fig. 1b). Strong induction in infected plants and its spatial regu-
lation near the lesions thus suggests a role of StPti5 in the
immune response.

StPti5 negatively regulates potato immunity

To investigate the role of StPti5 in potato immunity, lines
silenced in StPti5 gene expression were generated in the NahG
genetic background (shPti5 NahG) (Fig. S2). The NahG geno-
type was selected for StPti5 silencing because, in contrast to the
fully resistant NT plants, SA deficiency of these plants enabled us
to study function of this ERF in immunity. Lines were first tested
for potato–PVY interaction, observing that StPti5 silencing led to
significantly lower viral RNA levels compared with NahG plants
at 5 dpi (Fig. 2a), consistent with impaired StPti5 expression
delaying PVY multiplication in the inoculated leaves. We also
monitored symptom development. The first necrotic lesions on
the inoculated leaves were observed at 3 dpi in both genotypes.
However, the number of lesions from 4 to 8 dpi was significantly
lower in StPti5-silenced plants compared to NahG plants
(Figs 2b, S3). Moreover, the first symptoms on the upper noni-
noculated leaves appeared at 11 dpi in all genotypes, although at
later time points NahG plants displayed more severe systemic
symptoms than StPti5-silenced plants (Fig. 2c). From these
observations we can conclude that StPti5 contributes to a more
efficient initiation of viral infection, higher local spread of the
virus and more severe systemic symptoms.

The function of potato StPti5 has not been, to our knowledge,
previously studied. However, SlPti5 has been reported in tomato
to enhance disease resistance to P. syringae pv tomato (He
et al., 2001; Wang et al., 2021) and contribute to aphid (Macrosi-
phum euphorbiae) resistance (Wu et al., 2015). Our data show the
opposite role of the potato orthologue gene after PVY infection.
We thus decided to explore whether the decreased susceptibility to
PVY observed in StPti5-silenced plants was a specific response to
the virus or it was also observed after infection with other patho-
gens, with a different mode of plant cell interaction, that is R. sola-
nacearum, the most devastating potato bacterial pathogen and the
causal agent of bacterial wilt (Mansfield et al., 2012).

The role of StPti5 in the response of potato against R. solana-
cearum was studied by following the development of wilting
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Fig. 1 ERFs gene expression in response to PVY infection. (a) Expression of StERF-IX genes in response to PVY. Heatmap reconstructed from our previous
microarray dataset (Baebler et al., 2014). Log2 fold changes (relative gene expression) of PVY-infected vs mock-inoculated plants of nontransgenic (NT)
and salicylic acid deficient transgenic line (NahG) are shown for 1-, 3- and 6-d postinfection (dpi). Bold: statistically significant differences (FDR-adjusted
P-value < 0.05). Framed: gene, selected for further analyses. (b) Spatial transcriptional regulation of StPti5 (upper panel) and viral RNA (lower panel; data
from Lukan et al., 2020) in NT and NahG plants inoculated with PVY. Tissue sections containing lesions (section A) and surrounding tissue (sections B, C
and D) were sampled at 5–6 dpi, at the stage of fully developed lesions (scheme on the left, adapted from (Lukan et al., 2020)). Distance from the lesion,
marked as positions A, B, C and D, is plotted on the x-axis and relative gene expression is plotted on the y-axis. Relative expression in mock-inoculated
tissue sections is shown as empty circles at the end of x-axis. Asterisks denote the statistical significance (P-value < 0.05, 2nd order orthogonal polynomial
contrasts) of differential gene expression at positions B, C and D, compared to position A. Spatial profile models are shown as thick black lines, with 95%
confidence interval bands in grey. Relative gene expression values within individual lesions are presented with coloured symbols connected by a line.
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symptoms after drench inoculation with a R. solanacearum lumi-
nescent reporter strain. We compared disease progress in NahG
and StPti5-silenced NahG plants. Both potato genotypes showed
a susceptible response, with the first symptoms appearing at 4
dpi. However, the disease index revealed that StPti5 plays a nega-
tive role in the defence response of potato to R. solanacearum
(Fig. 3). Symptoms were more pronounced in SA-deficient
plants, while StPti5 silencing reduced disease symptoms and

delayed pathogen multiplication (Fig. 3; Dataset S4). This shows
that StPti5 increases potato susceptibility to R. solanacearum,
same as for PVY.

StPti5 is a transcriptional activator

AP2/ERF domain factors were shown to a bind GCC-box ele-
ments (Ohme-Takagi & Shinshi, 1995). As expected from the

Fig. 2 StPti5 increases potato susceptibility to PVY infection. (a) Relative abundance of viral RNA in PVY-inoculated leaves of NahG and two StPti5-

silenced NahG lines (shPti5 NahG L1 and L6) at 1, 4 and 5 days postinfection (dpi). Arithmetic mean (full points) � SD of three replicates (translucent
points) are shown. Asterisks denote statistically significant differences between NahG and shPti5 NahG plants (Holm adjusted P-value *, < 0.05, **, < 0.01,
***, < 0.001) based on pairwise Welch’s t-test. Order of visualization corresponds to the order of the items in the legend. (b) Number of lesions on PVY-
inoculated leaves of NahG (full blue lines), shPti5 NahG L1 (sparse dotted pink lines) and shPti5 NahG L6 (dash-dotted orange lines). The average number
of lesions (points) on 3 inoculated leaves�SE of the mean (ribbon) as observed by 4–8 dpi are shown. Data correspond to 6 biological replicates.
(c) Representative images of PVY-infected NahG, shPti5 NahG L1 and shPti5 NahG L6 at 47 dpi. The results were confirmed in two independent
experiments (Supporting Information Fig. S3; Dataset S2).
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Fig. 3 StPti5 increases susceptibility to bacterial pathogens Ralstonia solanacearum. (a) Progress of bacterial wilt measured in the salicylic acid (SA)
deficient (NahG) and StPti5-silenced NahG (shPti5 NahG) plants at different days postinfection (dpi). Each measurement is presented as the mean
(n NahG = 41; n shPti5 NahG = 33) disease index (0–4) � SE of the mean (ribbon). Opaque shading denotes the region of statistically significant
differences between NahG and shPti5 NahG plants. (b) Multiplication of bacteria in stem of different genotypes at 5 and 10 dpi. Results are presented as
relative luminescence units per milligram of plant fresh tissue (RLU mg�1, log10 transformed, translucent points), including mean (full points) � SE of the
mean (error bars) of 5 replicates.

Fig. 4 StPti5 is a transcriptional activator binding the GCC-box for downstream gene activation. (a) Y1H analysis showing that StPti5 binds GCC-box cis
element. The Y1H Gold strain containing four tandem repeat copies of GCC-box (GCC) can grow in the presence of aureobasidin A (Aba) only after
co-expression of StPti5 bait construct. The same yeast strain containing a mutated version of the GCC-box (GCCm) does not grow in the presence of the
Aba selective marker. P53 promoter (P53p) and P53 were used as a positive control. (b) Transactivation assays confirming that StPti5 is an activator. The
b-estradiol inducible StPti5_GFP effector vector (StPti5) and the reporter construct expressing the firefly luciferase (LUC ) gene under the GCC-box
elements and a minimal promoter (GCC) were co-infiltrated in Nicotiana benthamiana leaves. Relative luminescence units (RLU) were measured over time
in b-estradiol treated and untreated samples (green dash-dotted and blue dashed lines, respectively). A reporter construct containing the mutated GCC-
box construct (GCCm) was used as a negative control (purple full and orange dotted lines). Significant differences between b-estradiol treated and
untreated samples (FDR-adjusted P-value < 0.05; Wilcoxon signed-rank tests) are intensly shaded in pink and starting time of difference is marked with a
vertical grey dashed line. The middle line connects the means (n = 12), while ribbon represents standard error of the mean.
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presence of a conserved AP2/ERF domain, Y1H experiments
using a yeast strain containing a four tandem repeat GCC-box
reporter confirmed that StPti5 binds this cis element (Fig. 4a).
We further investigated functional interaction of StPti5 and
the GCC-box in transient transactivation assays (Fig. 4b).
Nicotiana benthamiana leaf discs expressing the firefly LUC
gene under the GCC-box promoter construct showed an
increase in luciferase (LUC) activity on expression of the b-
estradiol inducible StPti5 effector (Figs 4b, S4), confirming
that StPti5 binds the GCC-box and that it activates the
expression of downstream genes.

StPti5mediates crosstalk of ethylene and salicylic acid
pathways

We further investigated the mechanisms regulating StPti5 gene
expression. Interestingly, we identified four different StPti5 pro-
moter variants in the Rywal (NT) genotype, indicating that
StPti5 is encoded in this tetraploid cultivar by four distinct allelic
forms (Dataset S5). Multiple sequence alignment and pairwise
comparison of these promoters showed a high percentage of simi-
larity, although 10–76 mismatches were observed within the
1 kb region upstream of the start codon. Moreover, these

promoters share less than 67% of identity with the StPti5 promo-
ter sequence of S. tuberosum Group Phureja (Potato Genome
Sequencing Consortium, 2011) (Fig. 5a).

In silico analyses of these promoter sequences identified con-
served binding sites for multiple defence-related TFs (Dataset S5;
Table S3). Among the candidates, we selected StANAC55,
StMYC, StEIL1, StEIL2, StEIN3, StTGA2.3, StTGA2.2 and
StTGA2.1 for further analysis. StMYC2, StEIN3, StEIL1
and StEIL2 were observed to bind the StPti5 promoter in Y1H
assay (Fig. 5b). We then conducted transient transactivation
assays to confirm such interactions in planta. Only StEIN3 and
StEIL1 increased the luciferase activity of the StPti5 promoter
construct, confirming that these factors activate StPti5 gene
expression (Figs 5c, S4).

These findings reveal that StPti5 expression is induced by
ethylene-responsive TFs. Previous studies on the effect of differ-
ent hormonal treatments on StPti5 gene expression had, however,
shown this gene to be induced after SA application (Wiesel
et al., 2015). Therefore, we monitored StPti5 transcript levels in
NT plants, 24 h after different hormonal treatments, MeJA, the
SA analogue INA and ethylene. StPti5 was found to be induced
between 1.5- and 2-fold after INA treatment, while no response
was detected after other hormonal treatments (Figs 6, S5).

Fig. 5 EIN3-like transcription factors activate StPti5 gene expression. (a) Pairwise comparison of 1000 bp StPti5 promoter sequences. The table shows the
% of identify (upper-right triangle) and the number of mismatches (lower-left triangle) between sequences, numbers are colour-shaded from minimum
(blue) to maximum (red) values; (b) Y1H experiments showing that StMYC2 (OR736060), StEIN3 (Sotub01g034310), StEIL1 (OR736061) and StEIL2
(OR736062) bind the StPti5 promoter. Y1H Gold yeast bearing the integrated StPti5 (StPti5p) or P53 (P53p) promoter constructs were transformed with
the selected transcription factors, as indicated. The aureobasidin A (Aba) yeast cell growth inhibitor was used as a screening marker. pAbAi_P53p/P53,
positive control; the empty vector (EV)/StPti5p, negative control. The experiment was repeated twice. (c) Transient transactivation assays in Nicotiana

benthamiana confirming the activation of StPti5 by StEIN3 and StEIL1. The b-estradiol inducible StEIN3 (upper panel) or StEIL1 (lower panel) effector
vectors and the StPti5 promoter (StPti5p) fused to the firefly luciferase reporter were co-infiltrated in N. benthamiana leaves. Relative luminescence units
(RLU) were measured over time in b-estradiol treated (green, full lines) and untreated (blue, sparse dash-dotted lines) samples. Significant differences
between b-estradiol treated and untreated samples (FDR-adjusted P-value < 0.05) based on Wilcoxon signed-rank tests are intensly shades in pink and
starting time of a difference is marked with a vertical grey dashed linefor StEIN3 and StEIL1, respectively. The middle line connects the means (n = 18),
while ribbon represents standard error of the mean.
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Given that our results had demonstrated an interaction of the
ethylene-responsive TF with StPti5 promoter, we further investi-
gated the involvement of ethylene signalling in StPti5 expression.
To this aim, we performed the INA treatment on plants pre-
viously treated with 1MCP which suppresses ethylene signalling
pathway by blocking the ethylene receptors. We observed that
the StPr1b SA marker was induced by INA treatment indepen-
dently of the presence of 1MCP. By contrast, inhibition of the
ethylene pathway strongly decreased response of StPti5 to INA
treatment (Figs 6, S5).

These results confirmed that StPti5 is regulated via the SA sig-
nalling pathway, while showing, for the first time, that an active
ethylene pathway is required for the activation of this gene.

The StPti5 protein is degraded in healthy plants by the
autophagy pathway

To get more insight into the function of StPti5, we determined
its subcellular localisation. We first checked its accumulation in
healthy plants but observed that the signal of StPti5-GFP fluores-
cence was very weak. Thus, we further checked its accumulation
after viral infection. Notably, following PVY inoculation, StPti5-
GFP was strongly accumulated in both nuclei and cytoplasm of
N. benthamiana leaves (Figs 7a, S6). Differences in StPti5 protein
levels were confirmed by western blot (Figs 7b, S6, S7), where

StPti5-GFP could not be detected in healthy plants. Neverthe-
less, analyses of the corresponding transcript showed them to be
equivalent in healthy and infected plants (Table S4), hence indi-
cating PVY infection increases the stability of the protein, while
it is rapidly degraded in healthy plants.

To confirm these findings and further investigate which pro-
teolytic pathway is responsible for StPti5 degradation, we treated
agroinfiltrated plants with 26S proteasome inhibitor MG132 or
the autophagy inhibitor 3-MA. Inhibition of the autophagy path-
way resulted in StPti5-GFP detection in both mock- and PVY-
inoculated plants, detected as Pti5-GFP fluorescence signal by
confocal imaging and stronger bands on western blot, although
protein abundance was still higher in PVY-infected plants
(Fig. 7c,d). On the other hand, mock-inoculated plants treated
with MG132, similarly to untreated mock plants, showed very
weak fluorescent signal (Fig. S6), not allowing protein detection
by western blot (Fig. 7d). Altogether, the data show that StPti5,
if produced in healthy plants, is rapidly degraded via the autop-
hagy pathway.

StPti5 causes transcriptional repression of protein
degradation

To further investigate the function of StPti5 we compared the
transcriptomes of PVY-infected NahG and shPti5-silenced NahG

Fig. 6 SA activates StPti5 expression in combination with ethylene signalling pathway. Leaves of nontransgenic potato plants were sampled 24 h after
treatment with methyl jasmonate (MeJA), the SA analogue 2,6-dichloroisonicotinic acid (INA), INA and 1-Methylcyclopropene (INA + 1MCP) and
ethylene (ET). Values are shown as log2 and scaled to the mean of the corresponding control (separate for INA/MeJA and ET treatments, marked with light
and dark green, respectively). Arithmetic mean (full points) � SD of three replicates (translucent points) are shown. Asterisks indicate significant
differences between treated and untreated samples (Holm adjusted P-value, *, < 0.05, **, < 0.01, ***, < 0.001) based on Welch’s t-test, as observed for
StPti5 (target gene), StPR1b (SA signalling marker), StACO4 (ethylene signalling marker) and StCPI8 (jasmonic acid signalling marker). For full
experimental details, see Supporting Information Dataset S1. Results of an independent experiment are provided in Fig. S5.
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(shPti5 NahG) plants in the early stage of infection (3 dpi).
Using stringent analysis, we identified 19 genes that were signifi-
cantly upregulated in the shStPti5 NahG line, while two showed
significantly lower expression in these plants (Tables 1, S5,
GSE136877). Such small differences were indeed expected due
to the short time after PVY inoculation, by which the virus had
just started multiplication (Lukan et al., 2018a), and therefore,
the StPti5 protein was accumulating in only a few cells. The
results from this comparative analysis were validated by quantita-
tive polymerase chain reaction (Fig. S8).

Among the genes upregulated in StPti5-silenced plants, five are
potentially implicated in ubiquitin-related protein degradation
mechanisms, the two F-box family proteins, two RING finger pro-
teins, and BTB-POZ domain-containing protein (StBTP-POZ).
Moreover, three proteases including nepenthesin-1 aspartic protei-
nase, cathepsin L-like cysteine proteinase and eukaryotic aspartyl pro-
tease family protein were found to be upregulated in StPti5-silenced
plants. Interestingly, most of these protein degradation-related
genes were significantly downregulated in the PVY-infected as
compared with the mock-inoculated NahG plants, suggesting they
are involved in potato–PVY interaction (Table S5).

Significant changes in gene expression were also observed in
StPti5-silenced plants for three AP2/ERF family genes. StERF51
and StERF156 were shown to be upregulated in StPti5-silenced
plants, while StPti6 was significantly downregulated in StPti5-
silenced plants, consistent with members of this gene family

comprising a complex cross-regulatory network. Additionally, a
histidine phosphotransfer protein with a role in cytokinin signalling
was downregulated in shPti5 NahG plants.

Discussion

In this study, we showed that StPti5, a member of the ERF TF
family, is a susceptibility (S) factor negatively regulating potato
immunity to the viral pathogen PVY as well as the causal agent of
bacterial wilt R. solanacearum.

One of the major mechanisms by which S factors facilitate sus-
ceptibility is via genes encoding negative regulators of immune
signalling, including several TFs (Van Schie & Takken, 2014;
Feng et al., 2020). Like StPti5 (Fig. 4), some of the previously
reported defence-suppressing TFs are also transcriptional activa-
tors. For example, AtWRKY38 and AtWRKY62, that compro-
mise basal defence and increase susceptibility of Arabidopsis
plants to P. syringae (Kim et al., 2008), SlERF84 that negatively
regulates immune response of tomato to P. syringae (Li
et al., 2018) and AtERF19, a negative regulator of PTI against
Botrytis cinerea and P. syringae (Huang et al., 2019), were all
found to act as positive regulators of gene expression.

Pti5 was first identified in tomato as an interacting partner of
the R Pto gene, encoding a serine/threonine kinase that confers
resistance against the bacterial pathogen P. syringae pv tomato
(Zhou et al., 1997). Since then, its role in Pto-mediated resistance
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Fig. 7 Regulation of StPti5 protein accumulation during the immune response. (a) Localisation of the StPti5 protein in mock- (left) and PVY-inoculated
leaves (right). Representative confocal microscopy images of Nicotiana benthamiana epidermal cells expressing StPti5-GFP under the b-estradiol inducible
promoter (StPti5-GFP) are shown. Bar, 300 lm. StPti5-GFP and nucleus marker H2BRFP colocalisation, Chl channel and negative control are shown in
Supporting Information Fig. S6. (b) western blot showing StPti5-GFP (47 kDa) and GFP (27 kDa) protein levels in mock- and PVY-infected plants
infiltrated with Agrobacterium transformed with empty pABinGFP plasmid as a control (GFP; left) or StPti5 fused with GFP (StPti5-GFP; rig+ht). Anti-GFP
antibodies (a-GFP) were used to detect the proteins. (c) Localisation of StPti5 in mock- (left) and PVY-inoculated leaves (right) treated with the autophagy
inhibitor 3-methyladenine (3-MA). Representative confocal microscopy images of N. benthamiana epidermal cells expressing the StPti5-GFP protein are
shown. Bar, 300 lm. (d) Levels of StPti5-GFP (47 kDa) and GFP (27 kDa) in mock- and PVY-infected plants treated with the 3-MA autophagy inhibitor
(left), proteasome inhibitor (MG132; right) or with DMSO (control; right) were determined by immunoblot using anti-GFP antibodies (a-GFP). Protein size
markers are indicated in kDa. Arrows indicate the target proteins StPti5-GFP and GFP. For full experimental details see Dataset S3 and for full western blot
images Fig. S7.
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has been extensively studied (Zhou et al., 1997; Thara
et al., 1999; He et al., 2001; Wang et al., 2021). SlPti5 was found
to enhance resistance to aphids (M. euphorbiae) (Wu et al., 2015)
and B. cinerea in tomato (Qiong et al., 2022), while Arabidopsis
plants expressing this gene failed to show enhanced tolerance to
the biotrophic fungal pathogen Erysiphe orontii or to the bacterial
pathogen, P. syringae strain DC3000 (Gu et al., 2002). Here we
demonstrated a different role of StPti5 in potato immunity and
proved that StPti5 negatively regulates plant immunity (Figs 2,
3). Similarly, the potato orthologue of the tomato transcriptional
activator Pti4 was found to be an indispensable element of a
repressosome complex (Gonz�alez-Lamothe et al., 2008). These
are examples of how evolutionary close genes can diverge in their
function and represent an additional exception to the orthology–
function conjecture (Gabaldon & Koonin, 2017).

Silencing the StPti5 gene in an SA-deficient potato back-
ground, allowed us to analyse whether this factor enhanced or

reduced plant susceptibility (nontransgenic plants are resistant to
PVY and thus silencing StPti5 would result in no phenotypic dif-
ferences). We observed that StPti5 increased plant susceptibility
to two pathogens with completely different modes of action
(Figs 2, 3). PVY is a virus transmitted by aphids feeding on an
infected leaf. Once in the new host, the virus must hijack the
plant cell molecular machinery to complete its infectious cycle
(Lacomme & Jacquot, 2017). By contrast, R. solanacearum is a
soil-borne pathogen that thrives in the xylem vessels, and systemi-
cally spreads from there through the host plant (Planas-Marqu�es
et al., 2020; Xue et al., 2020). To enhance potato susceptibility
to such different types of pathogens, StPti5 might perturb path-
ways involved in immunity to a broad spectrum of pathogens.
Several protein degradation pathway genes were found to be
indirect downstream targets of StPti5 (Table 1). Higher expres-
sion of these genes in StPti5-silenced plants most likely leads to a
more efficient immune response. It is well known that

Table 1 Differentially expressed genes in StPti5-silenced NahG vs NahG potato plants after PVY infection.

Function ID shPti5 NahG vs NahG (+ PVY) logFC Description

Protein homeostasis Sotub07g015000 2.89 Cathepsin L-like cysteine proteinase

Sotub01g023000 2.40 Eukaryotic aspartyl protease family protein

Sotub04g029470 2.22 Aspartic proteinase nepenthesin-1

Sotub10g009090 3.68 RING finger protein 5 (StRINF5)

Sotub11g012720 1.74 Ring finger protein

Sotub01g009740 3.34 F-box family protein

Sotub03g023340 1.98 BTB/POZ domain-containing protein (StBTP-POZ)

Sotub11g025480 2.08 F-box family protein

Ethylene response factor Sotub08g009520 1.96 Ethylene-responsive transcription factor 2b (StERF156)

Sotub06g033380 �1.63 Ethylene-responsive transcription factor 1b (StPti6)

Sotub12g018740 2.40 Ethylene-responsive transcription factor 1a (StERF51)

Other Sotub08g015710 �2.06 Histidine phosphotransfer protein

Sotub06g022940 4.44 Oxidative stress

Sotub03g035870 3.42 Oxidative stress

Sotub07g027860 1.75 Chaperone protein dnaJ 11

Unknown Sotub06g006790 3.22 Protein of unknown function DUF506

Sotub10g017020 1.69 Unknown Protein

Sotub10g017040 1.67 Unknown Protein

PGSC0003DMG400013938 1.93 Gene of unknown function

Sotub10g011090 2.19 Unknown Protein

Sotub12g007440 3.07 NHL repeat-containing protein

The intersection of genes obtained by two different statistical approaches using FDR-adjusted P-value < 0.05 as a cut-off is shown, grouped by their
function. For each gene, identifier, log2FC (blue, downregulated; red, upregulated) and description are shown. shPti5 NahG: StPti5-silenced NahG. Gene
short names used in this paper are marked in bold. Additional information on gene expression and function is presented in Supporting Information
Table S5.
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ubiquitination has a central role in defence, with previous find-
ings already demonstrating that it positively regulates plant
immunity by promoting degradation of different negative
immune regulators (Gao et al., 2022). For example, the plant U-
box type PUB17 increases potato resistance to P. infestans by tar-
geting the putative K-homology RNA-binding protein for pro-
teasome mediated degradation (McLellan et al., 2020), while the
BTB/ Pox virus and Zinc finger (POZ) enhances soybean resis-
tance to P. sojae, by promoting the ubiquitination of the soybean
AP2/ERF TF GmAP2 (Zhang et al., 2021). Similarly, we
hypothesise that the E3 ligases, indirectly regulated by StPti5
(Table 1), may be targeting further negative regulators of the
immune response for degradation (Fig. 8).

According to our RNA-Seq data (Table 1), StPti5 acts also by
indirectly repressing other AP2/ERF family members that are
positive regulators of plant immunity (Fig. 8). In particular,
StERF156 whose orthologue AtERF61 is induced in response to
defence elicitors (Libault et al., 2007) and StERF51, an ortholo-
gue of AtERF105 with a positive role in Arabidopsis immunity
against P. syringae (Cao et al., 2019) were in our dataset induced
in PVY-infected StPti5-silenced plants (Table 1). These are, how-
ever, not the only means of regulation of these genes as we have
shown that StERF51 is also repressed by ethylene treatment alone
while the SA does not activate the expression of StPti6 (Fig. S9).

Here we showed that StPti5 expression is modulated at the tran-
scriptional level by the ethylene and SA signalling pathways
(Fig. 8). Our INA treatment results corroborate earlier findings
(Wiesel et al., 2015) showing that StPti5 expression is induced by
SA treatment (Fig. 6). Moreover, we here showed that active ethy-
lene signalling is required for transcriptional StPti5 regulation by
SA (Fig. 6). We, in addition, demonstrated that StEIN3 and
StEIL1, the potato orthologues of Arabidopsis, activate StPti5
expression by directly binding to its promoter (Fig. 5), linking

transcriptional StPti5 control with the ethylene signalling pathway.
Consistent with our data, several ERF TFs were reported to act
downstream of EIN3 in the ethylene signalling cascade and be
involved in plant defence responses against biotic and abiotic stres-
ses (Zhang et al., 2016; Huang et al., 2021). By contrast, tomato
SlPti5 does not respond to ethylene, JA or SA treatments (Thara
et al., 1999), evidencing that the regulation of these two gene
orthologues has evolutionarily diverged. Interestingly, despite the
induction of StPti5 during the PVY infection (Fig. 1) and SA
treatment (Fig. 6), the contribution of the suppression is not suffi-
cient to break the resistance of potato to pathogens.

Hormone crosstalk is a crucial regulatory mechanism of plant
immunity (Aerts et al., 2021). The best characterised example of
hormone–plant defence crosstalk interaction is the antagonism
between the JA/ethylene and SA pathways (Van der Does
et al., 2013; Caarls et al., 2016; He et al., 2017). Many examples
of synergism between SA and ethylene modules have also been
reported. For instance, potentiation of SA-dependent immune
response by ethylene has been previously described in Arabidopsis
(Leon-Reyes et al., 2009) and potato (Ram�sak et al., 2018).
Moreover, a requirement of SA for ethylene-dependent gene
expression was also unveiled in studies where SA application
enhanced EIN3 protein abundance and activated the ethylene
signalling pathway (He et al., 2017). A similar SA and ethylene
cross-regulation may also explain StPti5 induction in SA-
deficient NahG plants after viral infection (Fig. 1).

The activity of TFs must be tightly regulated since transcrip-
tional reprogramming is crucial for an efficient immune response.
Therefore, it is not surprising that immunity-related TFs are sub-
jected to different levels of regulation to fine-tune their activity.
For instance, AtTGA3, a member of the TGACG-binding
(TGA) family, is modulated at transcriptional (Winter et al.,
2007) and protein stability levels (Pontier et al., 2002), in

Fig. 8 Current knowledge-based scheme of
StPit5 mode of action. Molecular events involved
in up- and downstream regulation of StPti5 after
pathogen attack are shown. PVY, potato virus Y;
Ralstonia, Ralstonia solanacearum; SA, salicylic
acid; ET, ethylene; 1MCP, 1-
Methylcyclopropene; StEIN3, ETHYLENE
INSENSITIVE 3; StTFs, unknown transcription
factors; ERF, ethylene response factor. Red solid
line: treatment; black solid line: transcriptional
regulation; black dashed line: post-transcriptional
regulation; arrow: induction; bar-headed arrow:
repression. Created with BioRender.com.
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addition to the protein–protein interaction control (Toma�z et al.,
2022). On the other hand, StERF6 involved in defence response
to B. cinerea, is regulated at transcriptional and posttranslational
levels by MPK3/MPK6 (Meng et al., 2013). Moreover, Wang
et al. (2021) recently reported that SlPti5 might be regulated in
tomato, not only at transcriptional level but also at the protein
level through the 26S proteasome pathway. Similarly, we here
observed that StPti5 is regulated at transcriptional and protein
stability levels. At the transcriptional level, StPti5 gene expression
is regulated by ethylene-SA crosstalk, while at the protein level,
StPti5 stability is regulated through autophagy (Fig. 8) and not
proteasomal pathway.

The dualistic function of autophagy in plant immunity is
becoming evident (Leary et al., 2019; Sertsuvalkul et al., 2022).
This cellular process plays a crucial role in defence response
against pathogens, yet, microbes can in turn manipulate autop-
hagy for their own benefit (Yang & Liu, 2022). Several reports
have now shown that viruses target plant defence factors for
degradation, by hijacking autophagy. For example, the P0 pro-
tein from turnip yellow virus activates the ER-autophagy path-
way to induce degradation of the RNA silencing component
argonaute 1 (Michaeli et al., 2019), while the VPg protein from
this virus targets the antiviral protein SGS3 to degradation
through both 20S ubiquitin-proteasome and autophagy pathways
(Cheng & Wang, 2017). We hypothesise that pathogens might
hamper StPti5 degradation by manipulating autophagy and thus
allow this susceptible factor to perturb immune responses and
facilitate pathogen infection. Despite its function as a negative
regulator of plant immunity, we should not neglect other benefi-
cial effects that StPti5 must have, otherwise function of this gene
would have been lost during evolution.

In conclusion, we here show that StPti5 is a susceptibility fac-
tor that attenuates the potato defence response to two pathogens
with completely different modes of action, probably by perturb-
ing the protein degradation pathway involved in general immu-
nity. Through this, we proved a different role of StPti5 compared
with its orthologue in tomato, which entails a further exception
for the orthology–function conjecture.
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