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Persistent Homology with Selective Rips
Complexes Detects (Geodesic Circles

Ziga Virk

Abstract. This paper introduces a method to detect each geometrically
significant loop that is a geodesic circle (an isometric embedding of
Sl) and a bottleneck loop (meaning that each of its perturbations in-
creases the length) in a geodesic space using persistent homology. Under
fairly mild conditions, we show that such a loop either terminates a 1-
dimensional homology class or gives rise to a 2-dimensional homology
class in persistent homology. The main tool in this detection technique
are selective Rips complexes, new custom made complexes that function
as an appropriate combinatorial lens for persistent homology to detect
the above mentioned loops. The main argument is based on a new con-
cept of a local winding number, which turns out to be an invariant of
certain homology classes.
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1. Introduction

Homology as a classical invariant is well understood to measure holes in
spaces. Its parameterized version persistent homology (PH) on the other hand
is thought to also contain geometric information about the underlying space
when arising from a filtration built upon it via Rips or Cech complexes. De-
spite being a focus of intense study from theoretical and practical point of
view in the past two decades, the precise nature of geometric information
that PH encodes has mostly eluded our understanding. A groundbreaking
result in this setting was the discovery of persistence of S in [1], which
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Figure 1. A stretched topological torus of dimension 2. Four
of the GB-loops are indicated by bold lines. There is another
GB-loop tracing the inner radius of the hole in the middle. All
GB-loops can be detected by selective Rips filtration using
the results of this paper employing one- and two-dimensional
persistent homology. On the other hand, some of these loops
may not be detected using standard Rips complexes

demonstrated that lower-dimensional geometric features may induce higher-
dimensional algebraic elements in PH. In this spirit a question of geometric
information encoded in PH can be recast in the following way: Which geo-
metric properties does PH encode and how does it encode them? Conversely,
how to interpret elements of PH in terms of geometric properties?

Some of the few settings in which such an interplay has been theoreti-
cally explained contain 1-dimensional PH of metric graphs [9], 1-dimensional
PH and persistent fundamental group of geodesic spaces [16,17], the com-
plete persistence of S* [1]; parts of PH of ellipses [3], regular polygons [5],
and certain spheres [18].

In this paper, we a focus on detection of those loops in geodesic spaces,
that are geodesic circles (isometric embeddings of S equipped with a geo-
desic metric) and bottleneck loops (i.e., each of its perturbations increases
the length), see Fig. 1 for an example. Let us call them GB-loops. These form
a particular class of geodesics in the sense of classical differential geometry
hence detecting them we are detecting parts of the length spectrum [10-13].
GB-loops are obvious significant geometric features of a space. All lexico-
graphically minimal homology and fundamental group bases [16] consist of
GB-loops (in the case of fundamental groups these have to be connected to a
basepoint by a path). Each systole [14] is a GB-loop and corresponds to the
first critical value of 1-dimensional persistent fundamental group [16]. In [19]
and [16] it was shown how a GB-loop may sometimes be detected using PH.
If « is a geodesic circle of circumference || in a geodesic space X then in the
case of Rips filtration there are three ways of detecting it:
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(1) A topological footprint appearing if « is a member of a lexicographically
shortest homology base: at |a|/3 a 1-dimensional PH element ceases to
exist [16].

(2) A combinatorial footprint arising from the internal combinatorics of the
Rips complex of a circle as described in [1]: under certain local conditions
a part of PH of « (i.e., odd-dimensional elements) may appear in PH of
X [19];

(3) A geometric footprint appearing under certain local geometric condi-
tions at « in the absence of a topological footprint: a corresponding
2-dimensional element of PH of X appears at |«|/3 [19].

These results provide ways to detect lengths of @ but often turn out to
be too restrictive in their conditions. If we cut off a geodesic sphere above
the equator and consider the lower remaining part, its boundary (now a GB-
loop) can be detected in the above mentioned way only if the cut is made
sufficiently far from the equator. If the cut is too low, the mentioned methods
can’t detect «, see the example in Sect. 5.2.

The aim of this paper is to expand the method of a geometric footprint
in order to detect more GB-loops under simpler and more general condi-
tions, including those of Sect. 5.2. The first step is to consider the choice
of complexes (discretization) used in the construction of PH. Various con-
structions are currently being used, ranging from classical complexes (Rips,
Cech), complexes aimed at computational convenience (alpha, wrap, witness)
or constructions based on geometric intuition (metric thickening) [2,4,6]. In
Definition 4.1 we present selective Rips complexes as custom made com-
plexes specifically designed to detect local features. They can be thought of
as a combinatorial lens for persistent homology. The idea is that for small
dimensions (up to dimension 2 in our case) a selective Rips complex coincides
with the usual Rips complex, while higher-dimensional simplices are forced to
be “thin” in all but two directions. The reconstruction properties of a more
general version of selective Rips complexes are treated in the follow-up paper
[15].

As the main result (Theorem 5.1 and Corollaries 5.3 and 5.4) we prove
that the length of each GB-loop a admitting an arbitrarily small geodesically
convex neighborhood can be detected by persistent homology via appropri-
ate selective Rips complexes. In particular, such o generates a 2-dimensional
or terminates a 1-dimensional homology class at |«a|/3. This is a significant
generalization when compared to the corresponding result in [19], which re-
quired generous assumptions on the geometry and size of neighborhoods of
a. A quantitative analysis of Remark 5.2 also allows us to deduce specific
conditions, under which PH via classical Rips complexes detect GB-loops. As
our main tool we develop local winding number at « (see Definition 4.3) and
prove they are homology invariant in an appropriate setting. We conclude
with a discussion on the localization of o and an example.

It is worth point out the connection to [19] explicitly. In [19], we have
introduced a class of geodesic circles called deformation contraction isolated



170 Page 4 of 23 7. Virk MJOM

loops. The definition is quite complicated and contains two different deforma-
tion contractions (i.e., deformation retractions with non-increasing distances)
on nested neighborhoods, tubular neighborhoods, as well as the information
on the homotopy types of the Rips complexes of two nearby loops. It was de-
signed to provide both the combinatorial as well as the geometric footprints
mentioned above. On the other hand, the assumptions on the geodesics in
this paper (i.e., the concept of GB-loops) are much weaker, simpler and more
widely applicable. We have achieved this by focusing on the geometric foot-
print alone, and by the introduction of the selective Rips complexes. This
treatment contains the case of the standard Rips complexes as a special case.
To the best of our knowledge, these two papers are the only two works in
which a geometric footprint was proved.

The structure of the paper is the following. In Sect. 2 we present prelimi-
naries on the setting and explain local geometry of bottleneck loops. In Sect. 3
we introduce local winding numbers. In Sect. 4 we define selective Rips com-
plexes and prove that local winding numbers are homology invariants in their
setting. In Sect. 5 we prove our main results, with the localization discussion
and an example concluding the paper in Sects. 5.1 and 5.2 respectively.

2. Preliminaries

In this section, we recall the context of geodesic circles in geodesic spaces and
provide some simple lemmas clarifying the context.

Given x in a metric space X (or A C X) and r > 0, notation N(z,r)
(or N(A,r) respectively) denotes the open r-neighborhood of x (of A re-
spectively). Notation N (z,r) (or N(A,r) respectively) will denote the closed
r-neighborhood. A path (or a loop) in X is a continuous map from an interval
(or S') to X. Its length is denoted by |a|. Throughout the paper a path (or a
loop) may be thought of as a map or as the image of the corresponding map.
The use of double interpretation is often geometrically more convenient and
simplifies descriptions, while it should not effect the clarity of the presenta-
tion. A choice of orientation will be specifically mentioned when required for
the sake of precision, for example when talking about the winding number.
On other occasions we will not mention orientation. For example, when talk-
ing about « being the unique shortest loop in some set, it is apparent that
reparameterizations of a and o~ are also shortest loops as maps, which en-
courages us to think of « as a subset in this setting to describe the geometry
more elegantly.

A metric space X is geodesic, if for each =,y € X there exists a path
between them of length d(z,y), i.e., an isometric embedding 7: [0, d(x,y)] —
X satisfying v(0) = z and y(d(z, y)) = y. Such a path will be called a geodesic
(a terminology which may differ from some usages in differential geometry).
A subset A C X is geodesically convex, if Vz,y, € A, all the geodesics (in X)
from x to y lie in A. The concatenation of paths «, 8 in X is defined if the
endpoint of « coincides with the initial point of § and is denoted by « * (.
The converse path of a: [a,b] — X will be denoted by o™ : [a,b] — X, i.e.,
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a” (t) = ala+ b —t). As each loop is also a path, the terminology can also
be used for loops. For example, if a is a loop, a * « is well defined up to
homotopy by choosing any point of « as the initial point of the loop «. For
k € Z the k-fold concatenation of an oriented loop « is defined as:

e the constant loop if k = 0,

e the k-fold concatenation of «, (i.e., axa*...x« with k terms) if k > 0,

e the |k|-fold concatenation of o, if k < 0.
Given a triple of points x1,x2,x3 € X, its filling is a loop in X obtained by
concatenating (potentially non-unique) geodesics from x; to xs, from x5 to
x3 and from z3 to z1. Note the length of a filling is d(z1,x2) + d(xe, z3) +
d(x3, 7).

For ¢ > 0 let S! be a circle equipped with the geodesic metric that
results in the circumference c. A geodesic circle in X is an isometrically
embedded S} for some ¢ > 0. A loop « of finite length in X is a bottleneck
loop, if it is the shortest representative of the (free unoriented) homotopy
class of a (considered as a map) in some neighborhood of a (considered as
a subset of X). For example, the equator on the standard unit sphere is a
geodesic circle, which is not a bottleneck loop. The loop on 22 +y? — 22 =1
determined by z = 0 is a bottleneck loop. It is not difficult to find bottleneck
loops which are not geodesic circles.

Space X is semi-locally simply connected if Vo € X,Ve > 0,35 > 0 so
that each loop in N(z,d) is contractible in N(z,¢). Manifolds and simplicial
complexes are semi-locally simply connected.

Lemma 2.1. Assume X is a geodesic semi-locally simply connected space.
For each a: S' — X there exists p > 0 such that if B: S' — X satisfies
d(a(t), B(t)) < p,Vt € St, then a ~ 3.

Proof. Choose p > 0 such that for each € a(S?) each loop in N(x,p) is
contractible in X. Define p = max;cg: {d(a(t), 53(t))} < p. Partition S! into
small intervals so that the image of each of such an interval is of diameter at
most p—u when mapped by « or 3. Also, connect the corresponding endpoints
of such intervals by geodesics, these are of length at most p. Such partition
decomposes the “difference” between a and (3 into loops of diameter at most
p, see Fig. 2 for a sketch. Such loops are contractible by our assumption,
hence a ~ (. 0

Lemma 2.2. Assume X is a geodesic semi-locally simply connected space. For
each geodesic circle a: S\la| — X there exists p > 0 such that if 3: St —

N(a, p), then (B is homotopic to a k-fold concatenation of a for some k € Z.

Proof. Choose p > 0 such that 4p < |a| and for each 2 € a(S') each loop in
N(z,3p) is contractible in X. Define p = max,cg1{d(5(t), a(S'))} and note
that u < p. Let II be a partition of S into small intervals so that the image
of each interval is of diameter at most p — p when mapped by (. For each
point ¢ € S! appearing as an endpoint of two intervals of IT choose a point
sp € 5\104 such that d(5(t), a(s:)) < p. For each interval of IT with endpoints
t,t:
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Figure 2. A sketch of a decomposition of Lemma 2.1. The
images of radial arcs are of length at most p while the images
of angular are of diameter at most p —

(1) note that d(a(st),a(sy)) < p+p < |al/2;
(2) connect a(s;) to a(sy) by the geodesic v along a, which exists as o
is a geodesic circle;
(3) connect s; and sp by the geodesic in S|1a\’ whose image is the geodesic
VYt -
This induces a map : St — S|1a\7 mapping S' as the domain of # along with
partition II to S|1a| as the domain of «, so that each interval of II is mapped

1
lex]

is of length at most p + p < |a|/2. Observe that 5 ~ « o ¢ as, similarly as
in Lemma 2.1, the “difference” between them can be decomposed into loops
of diameter at most 3p using partition II as shown on Fig. 3. This concludes
the proof as a o ¢ is homotopic to a k-fold concatenation of a for some
ke Z. O

bijectively onto a geodesic in S} between ¢(t) = s; and (') = sy, which

Lemma 2.3. Assume X is a geodesic semi-locally simply connected space. For
each geodesic circle a: S|1a\ — X that is also a bottleneck loop, there exists

p > 0 such that o is the shortest non-contractible loop in N(«, p).

Proof. Choose p > 0 small enough and n € {5,6,...} large enough so that
for each = € a(S!) each loop in N(w, % + 2p) is contractible in X. Further
decrease p so that the following are satisfied:

e p satisfies Lemma 2.2;

o 2np < Jal;

o |af/n+2p < |a|/2 (this inequality actually follows from the previous
two bullet points);

e « is the shortest representative of its homotopy class in N(«, p).

Assume there exists a shorter loop 3 in N(a, p). Partition S! (as the domain
of B) into n intervals so that the image of each of the intervals is of length
less than |a|/n when mapped by 3. For each point ¢t € S! appearing as an
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S a(se)
a(St) -
<u
<p—pu
B(t)
B(t)

Figure 3. An excerpt of homotopy between 3 and ¢ o « of
Lemma 2.2. The inequalities indicate the bound on the diam-
eter of each part. Taking into the account p < p, the entire
loop is of diameter at most 3p, hence it is contractible. The
corresponding nullhomotopy provides a homotopy between a
part of 5 on an interval of IT (below) and the corresponding
part v, of ¢ o a (above)

endpoint of two of the mentioned intervals above choose a point s; € S|1a\ such
that d(B(t), a(st)) < p, where = max;c g1 {d(3(t),a(S1))} is a quantity that
also appears in the proofs of the previous two lemmas. As in Lemma 2.2, for
each of the mentioned intervals with endpoints ¢, ¢ we connect a(s;) to a(sy )
by the unique geodesic ;4 of length less than |a|/n + 2p < |a|/2 along .
Concatenating segments of the form v; » we thus obtain a loop along « of
length less than n(|a|/n + 2p) = |a| + 2np < 2|a|, which is homotopic to
by the same argument as provided in Lemma 2.2. As it is of length less than
2|a, this loop is either homotopic to « up to orientation or contractible. The
first of these conclusions contradicts the assumption than « is a bottleneck
loop (as 8 would in this case be shorter that @ and homotopic to it). Hence
[ is contractible and the lemma is proved. O

The following is a standard result that can be proved directly or using
the Arzela—Ascoli Theorem. We state it here for completeness.

Lemma 2.4. Assume X is a compact geodesic space and f;: I — X is a
sequence of geodesics in X. Then there exists a subsequence of f; converging
point-wise to a (potentially one-point) geodesic in X.

3. Geometric Lemmas

In this section, we present a sequence of geometric lemmas in our setting.
These results are the fundamental reason why the selective Rips complexes
as defined in the next section detect locally shortest geodesic circles through
persistent homology.

Overall assumptions and declarations for this section:

(1) assume X is a geodesic, locally compact, semi-locally simply connected
space;
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(2) assume loop « in X is a geodesic circle and a bottleneck loop;

(3) assume loop « has an arbitrarily small geodesically convex closed neigh-
borhood;

(4) By the previous assumptions and Lemma 2.3 there exists a compact
geodesically convex neighborhood N of « in which « is the shortest
non-contractible loop;

(5) Furthermore, by Lemma 2.2 we may assume that each loop in N is
homotopic to the k-fold concatenation of « for some k € Z;

(6) Choose T > 0 such that N O N(«,T) and d(N(a, T), N¢) > 0.

Definition 3.1. A triple of points z1,x2,x3 € N is circumventing if any of its
fillings in IV is homotopic to « (or possibly a~, if an orientation is taken into
account).

Remark 3.2. Note that the diameter of a circumventing triple in [V is at least
|a|/3. If the diameter of the triple is precisely |a|/3 the points lie on «. If
the diameter of the triple is less than |a|/2, then the “difference” between
various fillings of the triple is generated by loops of length less than |a| (the
argument is similar to the ones in the lemmas of Sect. 2 or in [16, Proposition
4.6]). As such loops in N are contractible, the homotopy type of a filling is
well defined in this case.

Lemma 3.3. For each t > 0 there exists p, > |a|/3 such that each circum-

venting triple in N of diameter less than u; has a filling that is contained in
N(a,t).

Proof. Assume there exists t > 0 such that for each p > |a|/3 there exists
a circumventing triple ,,y,, 2, of diameter at most y, whose filling is not
a subset of N(q,t). Choose a decreasing sequence a; converging to |a|/3 so
that:

o the sequences 2, , Yq,, Za, converge in N;
e the sequence of fillings converges to a filling in NV (use Lemma 2.4).

By Lemma 2.1 the limiting filling is homotopic to a and of length |a/, hence
it coincides with (a reparameterization of) a. Consequently, almost all fillings
of triples xg,, Ya,, 2o, Mmust be contained in N(q,t), a contradiction. 0

Definition 3.4. Choose an orientation on «. The winding number w(3) of an
oriented loop (3 in N equals k € Z if 3 is homotopic to the k-fold concatena-
tion of . Assume the diameter of an oriented triple (we can think of it as an
oriented 2-simplex) (x1, 2, z3) in N is less than |a|/2. The winding number
w(x1, e, x3) equals k € Z if an oriented filling of x1,xs, 3 is homotopic to
the k-fold concatenation of «.

By Remark 3.2 the winding number of a triple is well defined.

Lemma 3.5. There exists D = D, > |a| such that each non-contractible loop
in N of length less than D is homotopic to o (or possibly ™, if an orientation
is taken into account).
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Proof. The proof is similar to that of Lemma 3.3 with a direct application
of the Arzela—Ascoli Theorem. Assume that for each s > |a| there exists a
non-contractible loop 75 in N of length less than s, which is not homotopic to
a. The bound on the length provides the equicontinuity condition and we can
use the Arzela—Ascoli Theorem to assume there exists a decreasing sequence
s; converging to |a| so that 7,, pointwise converge to a loop 7. As all 5, are
of length at least |a|, so is 4. As for any 4, each member of the collection
{¥s, }i>ir is of length less than s;/, the same holds for . Thus, « is of length
||

By Lemma 2.1 « is homotopic to almost all v4,. On the other hand,
v is either « (or possibly o~ if the orientation is taken into account) or
contractible, which is a contradiction with our assumption. O

Corollary 3.6. Each triple of points in N of diameter less than D/3 is of
winding number either 0,1, or —1.

Lemma 3.7. Assume, 0 and vy are two loops in N with a common point x,
and let B % v denote their concatenation at that point. Then w(f * v) =

w(B) +w(7)-

Proof. If 8 is homotopic to ka and 7 is homotopic to k'« then ( * v is
homotopic to (ka) % § * (K'a) * 6~ with § being a loop from a point on « to
xo (traced by zo via the reversed homotopy of 3) and back to « (traced by
xo via the homotopy of 7). As the fundamental group of N is Abelian by
Lemma 2.2 (ka) *§ * (K'a) x 6~ ~ (ka) * (K'a) ~ (k+ k)a. O

Recall that an oriented quadruple (3-simplex) induces four oriented
triples (2-simplices) via the boundary map.

Lemma 3.8. Assume o = (x1,x2,23,24) is an oriented quadruple in N of
diameter less than min{uyp, D/3} and fix an orientation on «. Then either
none, two, or four of the induced oriented triples are circumventing and their
winding numbers add up to 0. O

Proof. Assume L1, Ly, L3 and L4 are oriented fillings of the induced oriented
triples (xa,x3,x4), (x3, 21, 24), (X1, 22, 2q), (X2, 21, 23), see Fig. 4. Choosing
x4 as the common point to perform a concatenation, note that Lq % Lg% Lg ~
L, hence by Lemma 3.7 the winding numbers add up to 0. The proof is
concluded by observing that the winding numbers can be either 0,1 or —1
by Corollary 3.6. g

4. Selective Rips Complexes

In this section, we define selective Rips complexes and the winding number
of a 2-dimensional homology class in appropriate selective Rips complexes.

For the sake of clarity we first recall a definition of (open) Rips com-
plexes that will be used here. Given a scale r > 0, the Rips complex Rips(X;r)
(sometimes also called the Vietoris-Rips complex, see [20] for a discussion on
the naming) is an abstract simplicial complex with the vertex set X defined
by the following rule: a finite 0 C X is a simplex iff Diam(o) < r.
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Ty T2

Figure 4. A sketch of a decomposition of Lemma 3.8

Definition 4.1. Let Y be a metric space, 71 > r9,n € N. Selective Rips com-
plex sRips(Y;r1,n,72) is an abstract simplicial complex defined by the fol-
lowing rule: a finite subset 0 C Y is a simplex iff the following two conditions
hold:

(1) Diam(o) < r1;
(2) there exist subsets Uy, Us,...,U, C U of diameter less than ro such
that c C Uy U UL U---UU,.

Condition (1) of Definition 4.1 implies that sRips(Y’;71,n,72) is a sub-
complex of Rips(Y’; 7). Condition (2) of Definition 4.1 implies that we should
be able to partition (cluster) vertices of o into n + 1 clusters of diameter less
than ro.

Remark 4.2. Given a subset of a metric space, there are two natural notions
of its size. One is the radius of its smallest enclosing ball (or the infimum
of radii, if no single ball is the smallest). The second one is its diameter.
Combined with the nerve construction, sets of prescribed “size” in the first
case induce Cech complexes and in the second case Rips complexes. See [20]
for a detailed exposition of this story.

Definition 4.1 combines a global (1) and local (2) bound on the size of
groups of vertices of a simplex o. In this case, both sizes are expressed in
terms of a diameter. We might as well change condition (2) into a version
where the size in expressed in terms of the radius of the smallest enclosing
ball in the following way:

there exist xg,x1,...,x, € o (or, allernatively, xo,x1,...,x, € X) such
that o C N(zg,r2) UN(x1,72) U -+ UN(2p,72).

The results of this paper also hold for this global-Rips local-Cech con-
struction with the same arguments albeit slightly different parameters. Simi-
lar arguments could also be devised for selective versions of Cech complexes:
global-Cech local-Rips, and global-Cech local-Cech.
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Throughout this section, we will maintain the notational definitions
established in the previous section. We additionally make the following dec-
larations:

e define v = d(N (o, T),NY) > 0;
e choose a € (Ja|/3,min{D,/3, ur/3}) and b € (0, a;
e choose an Abelian group G.

In particular, given a neighborhood N (due to Lemma 2.3) of «, choose
D, according to Lemma 3.5, choose T' > 0 and define the corresponding v,
choose pr according to Lemma 3.3, and pick a and b within the ranges of
the stated inequalities.

Definition 4.3. Let ¢ = ) . \o; be a 2-cycle in the chain group
Cy(sRips(X;r1,2,72); G) with A\; € G and o; € sRips(X;r1,2,72) being rep-
resented as oriented triples Vi. The winding number of ¢ in N is defined
as

wn(c) = Z Aiwn (0y) € G.

o;CN

Proposition 4.4. Assume that either a < v or b < min{|a| — 2a,v}, with
the latter condition implicitly requiring that |a| — 2a > 0. Then the wind-
ing number of a 2-cycle ¢ in N is an invariant of the homology class [c¢] €
Hy(sRips(X;a,2,b);G).

Proof. Tt suffices to prove that wy (c+9d0) = wy(c) for any oriented 3-simplex
in sRips(X;a, 2,b) or equivalently, that wy (9o) = 0. Assume an oriented face
o’ of Qo is contained in N and circumventing. As a < pupr Lemma 3.3 implies
o’ is contained in N(a,T). We now claim that all four vertices of o are

contained in NV:

e If a < v the claim follows from the definition of v as Diam(o) < a.

o If b < |a| — 2a, then the pairwise distances between the three vertices
of o’ are larger than b as their filling is of length at least |«|. Hence the
distance of the fourth vertex of o to one of the vertices of ¢’ is less than
b. If additionally, b < v, then the claim holds by the definitions of v and
sRips(X;a,2,b).

By Lemma 3.8 the sum of the winding numbers of the four 2-simplices of do
equals 0 hence wy (do) = 0. O

It is easy to see that the winding number in this setting determines a
homomorphism Hs(sRips(X;a,2,b); G) — G.

5. Detection of Geodesic Circles

In this section, we combine the results of previous sections to prove how se-
lective Rips complexes may detect geodesic circles, which are also bottleneck
loops in geodesic spaces. The main technical result states that such loops may
induce a non-trivial two-dimensional homology class in persistent homology.

For a loop v: I — X (y(0) = v(1)) and r > 0, a r-sample of ~ is a
sequence Y(to),v(t1),v(t2),...,v(tr), where tp =0 < t; < --- < tx = 1 and
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for each 7 Diam (7|, 4,.,)) < 7 holds. A r-sample will often be identified by a
simplicial loop or a simplicial 1-chain in sRips(X;a,2,b) if a > r.

Theorem 5.1. Let X be a geodesic locally compact, semi-locally simply con-
nected space and let G be an Abelian group. Assume « is a geodesic circle in
X satisfying the following properties:

(1) « is a bottleneck loop;

(2) « is homologous to a non-trivial G-combination of loops (1, B2, ..., Bk
of length at most |a|, none of which equals o as a subset of X ;

(8) « has arbitrarily small geodesically convex neighborhoods.

Then there ezist bounds By > |«a|/3 and By > 0 such that for all increasing
bijections a > b: (0,00) — (0,00), and for all r > 0 such that By > a(r) >
|a|/3 and B > b(r), there exists a non-trivial

Q. € Hs(sRips(X;a(r),2,b(r)); G)

satisfying the following properties:

(1) ¥r1 < 1o with a(r;) > |al/3 and b(r;) < B,Vi, we have i , (Qr,)
Qrs s where igh: Hy(sRips(X;a(r1),2,b(r1)); G)

— Hy(sRips(X;a(re),2,b(r2)); G) is the natural inclusion induced map.
(2) ¥q :alq) < |a|/3 there exists no Qg with iy (Qg) = Q.

Remark 5.2. Bounds Bi, By in Theorem 5.1 are not unique and arise from the
assumptions of Proposition 4.4. In the proof of Theorem 5.1 the condition
b < min{|a| — 2a,v} is used. A small increase in B; accompanied by an
appropriate decrease in By will result in a different pair of parameters for
which the theorem still holds. This interplay has the following geometric
interpretation: the longer the lifespan of @), is, the thinner the triangles in
selective Rips complexes need to be.

The other condition of Proposition 4.4, namely a < v, can be used to
derive a version of Theorem 5.1 for Rips complexes. Following the notation of
the proof below, suppose N = N (o, T) = S x (0, 1) is a compact geodesically
convex neighborhood of «, in which « is the shortest non-contractible loop.
Assume T > |a]/3. Then in the proof below we can choose T € (0,T') so that
v=T-T> |e|/3, and hence the conditions of Proposition 4.4 hold for a
slightly above |a|/3 and b = a, i.e., in the case of Rips complexes.

In particular, if T > |ee|/3 then the conclusions of Theorem 5.1 and
Corollaries 5.3 and 5.3 hold for Rips complexes.

Proof of Theorem 5.1. The construction of @, appeared in [19]. There exist
singular 2-simplices A; in X and h;,g; € G in X so that the following equality
of 1-chains holds:

k K
e = gilBile+0_ h;(Aj]q
i=1 3:1
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11

Z10 Zo

L9 T
T T2
L7 L3
Lo L4
Zs5
Figure 5. Expressing (|a|/3)-loop g, x1,...,211,20 as the

boundary of a 2-chain in sRips(X;a(r),2,b(r)), we span a
shaded triangle (2-simplex) on the three equidistant points
o, T4, Tg to obtain the central triangle, and then fill in other
(non-shaded) triangles. Note that all triangles are of diame-
ter at most |«|/3. The length of a filling of the central triangle
is at most ||, while the lengths of fillings of other triangles
is at most 2|«|/3

170

We further subdivide singular 2-simplices A; into smaller singular 2-simplices
Aj so that for some h; € G the equality

k K’
La = ZglLl + 82 thj
i=1 j=1

holds in the second chain group of Rips(X, |«a|/3) with the following declara-
tions and conditions:

e the diameter of each singular simplex A; is less than |«|/3;
e each singular 2-simplex A; also represents the 2-simplex in Rips(X, |a|/3)
determined by its vertices (and the inherited orientation).

e L, and L; are (Ja|/3)-samples of o and f3; correspondingly;
e cach close (|a|/3)-sample above contains three points on the correspond-
ing loop, that divide the loop into three parts of the same length. We call
these points equidistant points and keep in mind that the “equidistance”
refers to the length of the loop « or §; between them.

With this we have transitioned from singular 1-chains in X to simpli-
cial 1-chains in sRips(X;a(r),2,b(r); G) with a(r) > |a|/3. Next we use the
type of decomposition presented by Fig. 5 to express 1-chains L, and L; as

boundaries:

o Li=0 M iy
L] La :82521 al.
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Together we obtain

ko ko kp k'
8201 = 829127'”, —|—8Zthj
=1 =1 p=1 j=1

and define a 2-cycle

Ea ko kp K
C = ZCT[ - ZZQ[]’LP - Zh]AJ
1=1 i=1 p=1 j=1
Defining @, = [C] we directly see that (1) holds as C' does not depend on
parameter r specifically but rather on its lower (unattained) bound |a|/3.
We proceed by showing @, is non-trivial using the winding number. By
our assumptions and Lemma 2.3 there exists a compact geodesically convex
neighborhood N of « in which « is the shortest non-contractible loop. By
Lemma 2.2 we may assume that each loop in N is homotopic to the k-
fold concatenation of a for some k € Z. Choose T' > 0 such that N D
N(a,T) and v = d(N(a,T),NY) > 0. Choose jur according to Lemma 3.3
and D according to Lemma 3.5. Choose B; € (J|/3, min{pur, D}/3) so that
|a| —2B;1 > 0, and define By = min{|a| — 2By, v} (in the last two paragraphs
of Remark 5.2, this sentence is handled using condition a < v to obtain the
conclusion for the Rips complex). By Proposition 4.4 the winding number wy
is an invariant of each single homology class in Ha(sRips(X; a(r),2,b(r)); G).
Obviously the winding number of the trivial class is 0. On the other hand
wn(C) = £1 by the following argument:

o All simplices of the form Aj, which are contained in N, are of diameter
less than |«|/3 hence are of winding number 0 by Remark 3.2.

e Each non-central triangle (see Fig. 5) of the form 7;, or o;, which is
contained in NV, has a filling of length at most 2|«/|/3 hence is of winding
number 0 by Lemma 3.5 and the bottleneck property.

e Suppose a central triangle A in N is of the form 7; ;. As it is of diameter
at most |«|/3 it is of winding number +1 or 0 by Corollary 3.6. Assume
wn(A) = +1. By the bottleneck property Diam(A) = |«|/3 and by
geodesic convexity of N the entire §; is contained in N. This implies
that  equals a as a subset of X, which contradicts our assumptions on
Bi.

e The central triangle of the form o; is of winding number +1 as its filling
is a.

To prove (2) note that by Remark 3.2 and Lemma 3.5 no triple of
diameter less than |a|/3 has a non-trivial winding number wy. O

The following two corollaries recast our main result in the setting of
persistent homology, i.e., in the case when the coeflicients form a field. In both
cases persistence diagrams and corresponding barcodes exist by compactness
(see the g-tameness condition of Proposition 5.1 of [7] for details). Given
positive a < b and a field F, an elementary interval {F}, ¢, (where )"
denotes either an open or a closed interval endpoint) is a collection of vector
spaces {V,.},~o defined as:
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o V., xF for r € (a,b),
o V. =0forr¢ (a,b),

and bonding maps V,. — V. for all » < 1’ being identities whenever possible
(and trivial maps elsewhere).

While the following two results are expressed using sRips(X;r,2,s - 1)
for simplicity, the results of course also hold for sRips(X;a(r),2,b(r)) with
appropriate functions a(r) and b(r), see Fig. 7 and the corresponding example
for such an occurrence.

Corollary 5.3. Let X be a compact geodesic semi-locally simply connected
space and let F be a field. Assume « is a geodesic circle in X satisfying
the following properties:

(1) « is a bottleneck loop;

(2) « is homologous to a non-trivial F-combination of loops (1, Ba,. .., Bk
of length at most |a|, none of which is homotopic to o or o™ ;

(8) « has arbitrarily small geodesically convex neighborhood.

Then there exists S > 0 such that for each s < S the persistent homology
module

{H>(sRips(X;7,2,5 - 7);F) }r>0
contains as a direct summand an elementary interval of the form

{Fhreial/som)
for some 0, > |a|/3.

Recall that for a space X satisfying the assumptions of Corollaries 5.3
and 5.4, its first homology group is finitely generated by [16, Corollary 5.13
and Proposition 5.2(4)]. A shortest homology basis of H;(X;F) is a collection
of loops a1, as, ..., a, of non-decreasing lengths in X, such that the length
vector (Jaq|, |asl, ..., |a,|) forms a lexicographically minimal vector amongst
the length vectors of all bases. See [16, Definition 8.7] for further details.

Corollary 5.4. Let X be a compact geodesic semi-locally simply connected
space and let F be a field. Assume « is a geodesic circle in X satisfying
the following properties:

(1) « is a bottleneck loop;
(2) « has arbitrarily small geodesically convex neighborhood.

Then there exists S > 0 such that for each s < S the length of « is de-
tected by the persistent homology module {Hs(sRips(X;7,2,s - 7r);F)}rso in
the following way:
(1) if o is a member of a shortest homology base of X, then |«a|/3 is a closed
endpoint of a one-dimensional bar;
(2) if o is not a member of a shortest homology base of X, then |a|/3 is an
open beginning of a two-dimensional bar.

Proof. Part (1) follows from [16], part (2) from Corollary 5.3. O
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5.1. Localizing Geodesic Circles

Throughout this subsection, we assume the setting of Corollary 5.4.

While Corollary 5.4 is clear about detecting the lengths of « in terms of

birth or death times of persistence, localizing (determining the location of)
a geodesic circle o in question is a bit more complicated.

(1)

Assume loop « is not homologous to a non-trivial F-combination of
loops 31, B2, . .., Bk of length at most |a|, none of which is homotopic to
a or o~ . In this case a is a member of each lexicographically minimal
homology base (see [16] for details) by definition. By the results of [16]
there is a unique corresponding 1-dimensional persistent homology class
with a closed death-time |«|/3. This class is generated by any (|a|/3)-
sample of a and any of its nullhomologies in Rips(X;r) (and hence
sRips(X;r,2,s-r)) for r slightly larger than |«a|/3 contains a 2-simplex
of diameter at least |«|/3 whose vertices form a circumventing triple
in a small neighborhood of a (see the Localization Theorem in [16]).
All other 2-simplices in such a nullhomology can be chosen so that the
length of a filling of its vertices is less than, say, 3|a|/4, although at
least the ones sharing an edge with the above-mentioned simplex will
be of diameter about |«|/3. In particular, this means that « can be
well approximated by a filling of a critical 2-simplex that ensures the
triviality of the mentioned homology class.

In the case of closed Rips complexes Rips(X;r), the 1-dimensional

persistent homology class corresponding to o will first become trivial at
r = |a|/3, where each of its nullhomologies will contain an equilateral
2-simplex of diameter |a|/3, whose corresponding filling of vertices is a.
In this setting « can be reconstructed explicitly.
Assume « is homologous to a non-trivial F-combination of loops
B1, B2, ..., Bk of length less than |«|. By the construction in Theorem 5.1
all simplices of the corresponding 2-dimensional homology class @, can
be chosen to have diameter at most max; |3;|/3, except for the ones
forming the nullhomotopy of L, i.e., the ones appearing on Fig. 5. Of
the latter ones, only one triangle (central on Fig. 5) is circumventing
and a filling of its vertices is a good approximation of «, while the other
triangles can be chosen so that their fillings are of length no more than
3|a|/4. By the invariance of the winding number, each representative of
@, contains a (with respect to «) circumventing 2-simplex, whose filling
of its vertices is a good approximation of a.

Again, if we considered closed selective Rips complexes as an obvi-
ous analogue to the selective Rips complexes introduced in this paper,
the filling of the vertices of this circumventing 2-simplex would be «.
Assume « is homologous to a non-trivial F-combination of loops
0B1, 02, ..., 0k of length at most |a|, none of which is equal to o and
n-many of which are of length |a| for some n > 0. Let us call these
n-loops 1,72, - - -, ¥n- For the sake of simplicity let us suppose that this
assumption does not hold for n — 1. As each lexicographically minimal
homology base consists of geodesic circles by the results of [16], we may
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Figure 6. A cut off sphere Z

assume all ; are geodesic circles. In this case, contrary to (2), the con-
struction of Theorem 5.1 results in n+1 “central” triangles: their fillings
are approximations of a and ~;.

In this case « is also a member of some lexicographically minimal
bases and the same reconstruction technique as in (1) may also apply for
certain nullhomologies of a. In fact, at least n-many 1-dimensional bars
cease to exist at |«|/3, with the reconstruction procedure of (1) yielding
(depending on the chosen nullhomologies) at least n of the ., y1, ..., vy.

To summarize the discussion, the location of o may be determined or
approximated by a filling of the vertices of the appropriate 2-simplex corre-
sponding to « in terms of Corollary 5.4. When using selective Rips filtration
or when approximating the persistence of X by computing persistence on a
generic finite sample, arbitrarily precise approximations of « are obtained.
When using the closed version of selective Rips filtration, loop o may be
reconstructed directly.

An issue that arises in the context is the choice of appropriate represen-
tative of homology (cases (1) and (3)) or nullhomology (cases (2) and (3)),
(i.e., the one described by [16] and Theorem 5.1), from which we may select an
appropriate “critical” simplex. Our results imply that these representatives
may be obtained in the following way:

iz try replacing each simplex of a representative by a chain consisting of
simplices of diameter less than |«|/3;

ii: try replacing the remaining simplices of diameter more that |a|/3 by a
chain consisting of simplices, whose filling of vertices is of length less
than 3|al/4;

iii: the only remaining simplices, for which such a reduction may not be
obtained, are the ones, whose fillings localize loops « and ~; as described
in (1)—(3). Each such simplex can be replaced by a chain consisting of
simplices, whose filling of vertices is of length less than |«| and a single
simplex, whose filling is of length |«| and equals « (or possibly +; in the
case of (3)).

In the computational setting one would compute persistent homology
of a sufficiently dense finite subset S C X equipped with the subspace metric
induced from the geodesic metric on X. In this case an algorithmic procedure
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Figure 7. Persistence diagrams of Z using cutoff at h = 0.35.
The right diagram corresponds to sRips(Z;r,2,0.3r). The
circumference of P equals approximately 2-7-0.94 and about
one third of it corresponds to the birth of 2-dimensional
points on the right. The diagram on the left using Rips stan-
dard complexes does not detect P. The lifespan of the last
2-dimensional point appears to be short. However, it is stable
with respect to various samples in the sense that it appears
consistently. Furthermore, its length 0.085 for this specific
sample is comparable to the scale of the difference of the
radius of the equator and P, which is about 0.06. A large
number of 2-dimensional points appearing up to about 0.6
are a result of discretization and have a significant negative
impact on the computational speed. See Fig. 8 for a
workaround

to extract or localize an approximation of « is of interest. Steps i.—ii. translate
to the following procedure on the filtration by selective Rips complexes:

a: Sort simplices by diameter (this is essentially what filtrations by Rips

b:

complexes and selective Rips complexes do).
At each r > 0, sort simplices of diameter r according to the length of a
filling of its vertices, and use this order when constructing the boundary
matrix.
Compute persistent homology using the standard algorithm on the ob-
tained order.

During this computation, each 2-simplex that appears as a critical sim-

plex in the sense of (1)—(3) above (i.e., in the sense that it either kills a
long 1-dimensional bar or gives birth to an appropriate 2-dimensional bar,
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Figure 8. Persistence diagrams of Z using cutoff at h = 0.35.
The right diagram corresponds to sRips(Z;r,2, min{r, 0.7 +
0.3r}), meaning that at small scales we are in the region
of classical Rips complexes, while for larger scales the ef-
fect of selective Rips complexes comes to the fore. With this
modification we still detect P, reduce the initial noise and
consequently speed up the process

under the conditions that S is sufficiently dense) will be a simplex, which
approximates « and potentially v; in the sense of (1)—(3) above.

5.2. Example

We now return to the example mentioned in the introduction. Consider a
sphere, cut it along the parallel P at height h above equator and keep the
lower part (Fig. 6). We denote the obtained lower part by Z. Equip Z with
the geodesic metric. Parallel P is not a geodesic circle in the entire sphere but
becomes one in Z. Also, P is a bottleneck loop in Z and has an arbitrarily
small geodesically convex neighborhood, meaning it can always be detected
with selective Rips complexes. However, if P is close enough to the equator
(i.e., so close that |P|/3 is larger than the distance from P to the south pole)
it can not be detected by Rips complexes: in that case Rips(Z,|P|/3) is a
cone with apex in the south pole.

The computational examples of Figs. 7, 8, and 9 were produced using
Ripserer.jl software [8]. Space Z was approximated by a random finite subset
of 10,000 points. For computational convenience a density filter was applied
that ensured that each pair of points is at distance at least 0.1. Upon the re-
maining points a weighted graph was induced: each pair of points at distance
at most 0.2 was connected by an edge with weight being the Euclidean dis-
tance between points. The metric on the obtained collection of points is the
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Figure 9. Persistence diagrams of Z using cutoff at h = 0.5
(diagrams above) and h = 0.6 (diagrams below). The right
hand diagrams corresponds to sRips(Z;r, 2, min{r,0.9+0.1-
r}). Both Rips and selective Rips filtrations detect P at this
scale with the latter inducing a longer-living 2-dimensional
point. In fact, the lifespan of the 2-dimensional point in ques-

tion can be made arbitrarily long with appropriate filtration
functions
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geodesic metric induced by the described weighted graph and represents an
approximation of Z in a geodesic metric. The scale ceiling is at value 3 (which
is clearly beyond the diameter of the samples of Z), hence the y-coordinate
of the single component surviving in infinity is displayed as 3.

The purpose of these computations is to demonstrate the detectional
advantages of the selective Rips complexes. Figures 7, 8 demonstrate the
case where the clearly geometrically significant loop P (i.e., the bottleneck
geodesic circle) is detected by selective Rips complexes, even though it is
“invisible” to the classical Rips complexes. The geometric reason is that the
cut-off is too close to the equator. Figure 9 demonstrates that even when
the higher cut-offs allow the detection of P through Rips complexes (see for
example [19, Fig. 9]), the significance (i.e., the lifespan) of the corresponding
persistent homology intervals can be much more pronounced (i.e., longer)
when using the selective Rips complexes.
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