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Abstract
In this paper, we extend the findings of recent studies on k-rainbow total domination by
placing our focus on its computational complexity aspects. We show that the problem
of determining whether a graph has a 2-rainbow total dominating function of a given
weight is NP-complete. This complexity result holds even when restricted to planar
graphs. Along the way tight bounds for the k-rainbow total domination number of
rooted product graphs are established. In addition, we obtain the closed formula for
the k-rainbow total domination number of the corona product G ∗ H , provided that H
has enough vertices.
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1 Introduction and Preliminaries

The remarkable growth and widespread recognition of domination in graphs are vividly
illustrated by the following data. Since the introduction of domination as a fundamental
graph-theoretical parameter by Berge [1] in 1958, the researchers community has
produced a substantial body of literature. Prior to the seminal survey [13, 14] published
in 1998, over 1200 articles had been dedicated to this field. Moreover, as of the year
2022, when a comprehensive book [12] together with its two companion books [10,
11] were released on the subject, the number of articles had surged to exceed 5000.
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2 Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, 1000 Ljubljana, Slovenia

3 University of Maribor, FEECS, Koroška cesta 46, 2000 Maribor, Slovenia

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-024-01747-8&domain=pdf
http://orcid.org/0000-0002-2321-6766


  155 Page 2 of 12 T. K. Šumenjak, A. Tepeh

This number is not surprising, considering the pervasive nature of domination, a field
renowned for its practical applications. Over time, motivated by real-world challenges,
various adaptations and extensions of domination have emerged, leading to a diverse
spectrum of related concepts.

In this paper, we further explore the notion of k-rainbow total domination, intro-
duced in [21] and further explored in [17], by directing our attention towards its
computational complexity aspects. We show that the problem of determining whether
a graph has a 2-rainbow total dominating function of a given weight is NP-complete,
even when restricted to the class of planar graphs. Through our exploration of NP-
completeness in Sect. 3, we noted the significance of graphs constructed as rooted
products. Consequently, in Sect. 2, we dedicated a segment of our research to deter-
mining tight bounds for the k-rainbow total domination number of rooted product
graphs. As a side result, we derived the k-rainbow total domination number of the
corona product graph, under the condition that the second graph in this product pos-
sesses a sufficient number of vertices.

To ensure a comprehensive understanding of the paper, we commence by eluci-
dating definitions and laying out preliminary concepts. The graphs examined herein
are finite, simple and undirected. For a graph G, V (G) denotes its set of vertices
and E(G) is the set of its edges. We use the notation nG for the order of a graph G,
i.e. nG = |V (G)|. If nG > 1, G is a nontrivial graph. The notation NG(v) stands for
the open neighborhood of a vertex v in G, that is the set of vertices in G which are
adjacent to v. The minimum degree of G, δ(G), is the degree of a vertex with the least
number of edges incident to it. Recall that a support vertex in a graph is a vertex that
is adjacent to a leaf, i.e. a vertex with degree equal to 1.

A dominating set of a graph G is a subset D of V (G) such that every vertex not in
D is adjacent to some vertex in D. The domination number, γ (G), is the minimum
cardinality of a dominating set of G. If every vertex of G is adjacent to a vertex in D,
then D is called a total dominating set of G, and the minimum cardinality of a total
dominating set of G is the total domination number, γt (G), [15].

For a positive integer k, a k-rainbow dominating function (or simply referred to as
kRDF) of a graph G is a function f : V (G) → 2[k], such that for any vertex v with
f (v) = ∅ we have

⋃
u∈N (v) f (u) = [k]. Let || f || = ∑

v∈V (G) | f (v)|; we refer to
|| f || as the weight of f . The k-rainbow domination number, γrk(G), of a graph G is
the minimum value of || f || over all k-rainbow dominating functions of G. A kRDF
of weight γrk(G) is called a γrk-function. Since its inception in the seminal paper [4],
this invariant has undergone extensive analysis, exemplified in works such as [3, 6,
7, 18–20, 22], to name a selection, while a comprehensive survey on the topic can be
found in [2]. The definition of the k-rainbow domination number was motivated by
wanting to understand domination in generalized prisms (i.e. Cartesian products of
arbitrary graphs with complete graphs).

Similarly, with the aim of enhancing comprehension of total domination in gen-
eralized prisms, k-rainbow total domination was defined in [21]. A k-rainbow total
dominating function f of a graph G (or simply referred to as kRTDF) was introduced
as a k-rainbow dominating function satisfying an additional condition that for every
v ∈ V (G) such that f (v) = {i} for some i ∈ [k], there exists some u ∈ N (v) such
that i ∈ f (u). The weight of a kRTDF is || f || = ∑

v∈V (G) | f (v)|, and the minimum
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weight of a kRTDF is called the k-rainbow total domination number of G, γkrt(G). In
particular, a kRTDF of weight γkrt(G) is called a γkrt-function. For a positive integer
k, let [k] = {1, 2, . . . , k}. For easier argumentation, we refer to elements of [k] as to
colors, and to sets in 2[k] as to labels. In addition, to enhance the clarity of figures, we
use colors only instead of labels (for instance, we simply write 1 instead of {1}, and
12 instead of {1, 2}, see Fig. 2). Moreover, we do not label vertices if they are empty,
i.e. if their label is ∅. If A ⊆ V (G) then w(A) = ∑

v∈A | f (v)| will be referred to as
the contribution of vertices in A to the weight of f .

Bounds on the k-rainbow total domination number in terms of the total domination
number, the k-rainbow domination number, the k-rainbow total domination number,
as well as the usual domination number, were presented in [17]. In the same paper it
was shown that in the case of bipartite graphs a Vizing-like conjecture for 2-rainbow
total domination coincides with the famous original Vizing’s conjecture. Also, closed
formula for the k-rainbow total domination number for complete bipartite graphs was
given. Such formulae for paths and cycles were obtained in [21], where also graphs
G with γkrt(G) = k were characterized.

Proposition 1 Let k and n be positive integers such that n > k > 1. For a connected
graph G of order n we have γkrt(G) = k if and only if G contains a spanning subgraph
isomorphic to a complete bipartite graph Ks,n−s where s ≤ � k

2	.
We conclude this section with several observations that will be necessary in the

main two sections. If G is an arbitrary graph with no isolated vertices, then clearly
γkrt(G) ≤ |V (G)|. In [21] it was shown that γkrt(G) = |V (G)| for a nontrivial graph
G of order n as soon as k ≥ 2�(G). The following was observed as well.

Observation 2 If G is a graph without isolated vertices and k ≥ |V (G)|, then
γkrt(G) = |V (G)|.
Observation 3 For a nontrivial graph G, γ2rt(G) = 2 if and only if G contains a
universal vertex.

While the above observation is straightforward, we need the following argumenta-
tion to show that there is no graph with 2-rainbow total domination number equal to
3.

Observation 4 There is no graph G with γ2rt(G) = 3.

Proof Suppose G is a graph with γ2rt(G) = 3. Clearly such graph is nontrivial and
connected. Moreover, it contains more than 3 vertices. Therefore there exists an empty
vertex v. The existence of labels {1} and {2} of vertices in NG(v) implies γ2rt(G) ≥ 4.
Thus v has a neighbor u with label {1, 2}. Then there is another nonempty vertex with
label {1} (or {2}), clearly adjacent to u. Note that all other vertices have label ∅ and
are therefore adjacent to u, so u is a universal vertex, a contradiction by Observation
3. ��

To facilitate referencing, we formally write also the last direct observation on rain-
bow total domination for general k.
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Observation 5 Let f be a kRTDF of G, and H an induced subgraph of G such
that f (v) = ∅ for each v in V (G) \ V (H) having a neighbor in V (H). Then the
contribution of vertices in H to || f || is at least γkrt(H). Consequently, γkrt(G) ≥
γkrt(H).

2 Rooted Product

The concept of rooted product graph was introduced in 1978 by Godsil and McKay [9].
Kuziak et al. [16] proved that there are two possibilities for the domination number of
a rooted product graph. Cabrera Martínez and Rodríguez-Velázquez [5] characterized
graphs reaching the two expressions, and provided closed formulae for the total dom-
ination number of rooted product graphs. Our attention was drawn to the construction
of rooted graphs upon realizing its utility in establishing the NP-completeness of the
2-rainbow total domination problem. This motivation prompted us to derive results in
this section.

Given a graph G with vertex set V (G) = {g1, g2, . . . , gnG }, and a graph H with
the root vertex v, the rooted product graph G ◦v H is defined as the graph obtained
from G and H by taking one copy of G and nG copies of H , and for every i ∈ [nG]
identifying gi ∈ V (G) with the root vertex v in the i-th copy of H , which we denote
by Hi . See for example Fig. 1, where the rooted product of a star K1,4 and a graph H
containing a universal vertex (taking the role of v in the definition) is depicted. If G or
H is a trivial graph, then G ◦v H is equal to H or G, respectively, therefore we only
consider graphs of order at least 2.

In the next theorem we identify extreme values of γkrt(G◦v H) under the assumption
that k < nGnH . Namely, by Observation 2, γkrt(G ◦v H) = nGnH , if k ≥ nGnH .

Theorem 6 Let 2 ≤ k < nGnH and let G and H be arbitrary nontrivial graphs. Then

nGγkrt(H) ≥ γkrt(G ◦v H) ≥

⎧
⎪⎨

⎪⎩

nGk; k < nH ,

k + (nG − 1)(nH − 1); nH ≤ k < nH + nG − 1,

nGnH ; k ≥ nH + nG − 1.

Moreover, the bounds are tight.

Proof To prove the upper bound, let h be a kRTDF of H . Let x ∈ V (H) be an arbitrary
vertex, and xi the vertex in V (Hi ) ⊆ V (G ◦v H) that corresponds to x . By defining
f on V (G ◦v H) such that f (xi ) = h(x) for every i ∈ [n], we clearly get a kRTDF
of G ◦v H .

To prove the lower bound, let f denote aγkrt-function onG◦vH , i. e.γkrt(G ◦v H) =
|| f ||. First, observe that if for some i all vertices in V (Hi ) \ {gi } are nonempty, then
vertices of Hi contribute at least nH −1 to the weight of f . On the other hand, if there
is u ∈ V (Hi ) \ {gi } such that f (u) = ∅, then its neighbors, which are all contained in
Hi , contribute at least k to || f ||. Therefore || f || ≥ mk + (nG − m)(nH − 1), where
m is the number of Hi ’s containing an empty vertex in V (Hi ) \ {gi }. If nH > k, then
nH − 1 ≥ k, and therefore || f || ≥ mk + (nG − m)k = nGk.
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Fig. 1 The rooted product graph G ◦v H satisfying nH ≤ k ≤ nG + nH − 1 with the k-rainbow total
domination number equal to k + (nG − 1)(nH − 1)

Now suppose k ≥ nH . We claim that m ≥ 1, i. e. || f || ≥ k + (nG − 1)(nH − 1).
If there exists Hi with an empty vertex in V (Hi ) \ {gi }, the claim clearly holds. Thus
assume all vertices in V (G ◦v H) \V (G) are nonempty. If there is gi with f (gi ) = ∅,
then vertices inU = ⋃

j �=i (V (Hj )\{g j }) contribute at least (nG−1)(nH −1) to || f ||,
and vertices in the open neighborhood of gi , which is disjoint withU , contribute at least
k to || f ||, thus the claim holds also in this case. In the last case all vertices in G◦v H are
nonempty. Then || f || ≥ nGnH , and since it clearly holds γkrt(G ◦v H) ≤ nGnH , we
have || f || = nGnH . If, in addition, k < nH +nG −1, we derive 0 > k−nH −nG +1
and further || f || = nGnH > k+nGnH −nG −nH +1 = k+ (nG −1)(nH −1). With
this we have proved that if nH ≤ k < nH +nG −1, then || f || ≥ k+(nG −1)(nH −1).

Now let k ≥ nH + nG − 1. It is clear that || f || = nGnH if all vertices in G ◦v H
are nonempty, and if there is an empty vertex in the product, we already know that
|| f || ≥ k + (nG − 1)(nH − 1). Now we derive from k − nH − nG + 1 ≥ 0 that
k+nGnH−nG−nH +1 ≥ nGnH , that is || f || ≥ k+(nG−1)(nH −1) ≥ nGnH . Since
clearly || f || ≤ nGnH , we have γkrt(G ◦v H) = nGnH , as soon as k ≥ nH + nG − 1.

In what follows, we verify the tightness of the bounds. Let G be an arbitrary graph
on at least 2 vertices and let H be a graph with nH > k ≥ 2 and γkrt(H) = k (graphs
with this property are characterized in Proposition 1). Then the theorem implies that
γkrtG ◦v H = nGk, which means that the upper bound, as well as the lower bound in
the case nH > k, is attained. If G with nG ≥ 2 contains a universal vertex, and H is
such that δ(H) ≥ 2, it contains a universal vertex v, and nH ≤ k ≤ nH +nG −1, then
the theorem implies γkrt(G ◦v H) ≥ k+ (nG −1)(nH −1). The opposite inequality is
obtained by the following construction of a function f , which proves to be kRTDF: for
a vertex gi , which is universal in G as well as in H , let f (gi ) = [k], let f (u) = {1} for
every u in

⋃
j �=i

(
V (Hj ) \ {g j }

)
, and f (t) = ∅ for every t ∈ (V (G) ∪ V (Hi )) \ {gi },

see Fig. 1. Finally, if f is such that f (v) = {1} for every vertex in V (G ◦v H), it is
clearly a kRTDF for arbitrary graphs G and H , and the bound nHnG is attained as
soon as k ≥ nH + nG − 1. ��

If k ≥ nGnH , by Observation 2, γkrt(G ◦v H) = nGnH . Moreover, by Theorem 6
we have the following.
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Corollary 7 If k ≥ nG + nH − 1, then γkrt(G ◦v H) = nGnH .

The lower bound in Theorem 6 in the case nH > k can be improved if H possesses
a specific structure, which proves beneficial in the subsequent section. Let H be an
arbitrary graph. By H+ we denote a graph obtained from H by attaching a pendant
vertex v to its support vertex x ∈ V (H).

Proposition 8 Let G and H be arbitrary nontrivial graphs. Then γkrt(G ◦v H+) ≥
nGγkrt(H), and the bound is tight.

Proof Let f be a γkrt-function of G◦v H+ and let V (G) = {g1, g2, . . . , gn}. It suffices
to show that vertices of each copy H+

i in G ◦v H+ contribute at least γkrt(H) to the
weight of f , i. e. w(V (H+

i )) ≥ γkrt(H) for each i . Let gi be an arbitrary vertex in G,
and let xi be the neighbor of gi in H+

i .
If f (gi ) = ∅ then w(V (H+

i )) ≥ γkrt(H) by Observation 5. Now assume f (gi ) = A
for a nonempty set A ⊆ [k], and suppose to the contrary that w(V (H+

i )) < γkrt(H).
We distinguish the following cases in which we construct a function g : V (Hi ) → 2[k]
such that g is a kRTDF of Hi .

If |A| ≥ 2, then we define g with g(xi ) = f (xi ) ∪ A and g(u) = f (u) for every
u ∈ V (Hi ) \ {xi }. If |A| = 1, we have three subcases. In each of them we again set
g(u) = f (u) for every u ∈ V (Hi ) \ {xi }. If f (gi ) = { j} and f (xi ) contains a color
from [k] different than j , then we set g(xi ) = f (gi ) ∪ f (xi ). If f (gi ) = f (xi ) = { j}
then we set g(xi ) = { j, �} where � is an arbitrary color different than j . In the last case
we have f (gi ) = { j} and f (xi ) = ∅. Note that every color in [k] \ { j} is contained
in some f (u) for some neighbor u ∈ V (Hi ) of xi . In this case we define g(xi ) = {�}
for some � ∈ [k] \ { j}.

In each of the above cases one can readily check that ||g|| ≤ w(V (H+
i )) < γkrt(H),

which leads to a contradiction, since Hi is isomorphic to H and we obtained a kRTDF
of H with weight strictly less than γkrt(H).

By Theorem 6 we derive that nGγkrt(H) ≤ γkrt(G ◦v H+) ≤ nGγkrt(H+), there-
fore, if H is such that γkrt(H+) = γkrt(H), the bound is clearly attained. ��

Through the above proof, we have validated the following corollaries.

Corollary 9 For an arbitrary graph H it holds γkrt(H) ≤ γkrt(H+).

Corollary 10 If γkrt(H+) = γkrt(H), then γkrt(G ◦v H+) = nGγkrt(H).

The converse in Corollary 10 does not hold: using computer software we have
verified our intuition that graphs H and H+ in Fig. 2 have 3-rainbow total domination
number 7 and 8, respectively, and γ3rt(K2 ◦v H+) = 14.

Let G and H be graphs with nG and nH vertices, respectively. The corona product
G ∗ H is a graph obtained from G and H by taking one copy of G and nG copies of
H , and then joining each vertex from the i-th copy of H with the i-th vertex of G.
The join graph G1 +G2 is the graph obtained from G1 and G2 by joining each vertex
of G1 to all vertices of G2. One can note that the corona product G ∗ H can be seen
as a rooted product graph G ◦v H1, where H1 is the join graph K1 + H , and v is the
vertex of K1.
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Fig. 2 Graphs H , H+ and K2 ◦v H+ and their γ3rt-functions

Proposition 11 Let G and H be arbitrary graphs, and nH ≥ k. Then γkrt(G ∗ H) =
knG.

Proof We let V (G) = {g1, g2, . . . , gnG }, and for any i ∈ [nG], Hi denotes the copy of
H attached to gi . It is clear that f : V (G ∗ H) → 2[k] such that f (gi ) = [k] for every
i ∈ [nG ], and f (v) = ∅ otherwise, is a kRTDF of G ∗ H . Thus γkrt(G ∗ H) ≤ knG .
The opposite inequality follows by Theorem 6.

3 Complexity of 2-Rainbow Total Domination Problem

In this section we prove that the 2-rainbow total domination problem is NP-complete.
The proof’s reduction will be from the dominating set problem which is a well-known
NP-complete problem [8]. The dominating set problem asks whether for a given graph
G and a positive integer k, the graph G contains a dominating set of cardinality at
most k. The decision version of the 2-rainbow total dominating function problem is
presented in Table 1.

First note that 2-RAINBOW TOTAL DOMINATING FUNCTION is in NP. Indeed,
given a function f : V (G) → 2[2] of weight k one can clearly check in polynomial
time whether it is a 2-rainbow total dominating function. Namely, for each empty
vertex u one has to check whether in the neighborhood of u all colors appear, and
whether for each v with | f (v)| = 1 in the neighborhood of v the color contained in
f (v) appears.

Table 1 2-rainbow total dominating problem

Instance: A graph G and a positive integer k.

Question: Does G have a 2-rainbow total dominating function of weight at most k?
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Fig. 3 The graph T

Our next goal is to derive a polynomial time reduction from the dominating set
problem to the 2-rainbow total domination problem. For this we use the following
construction and its properties.

Let T be the graph obtained from the cycle xyzoprx by adding a vertex s and
connecting it to o and x , and adding a vertex t and connecting it to p and y, see Fig. 3.

Lemma 12 For the graph T as defined above γ2rt(T ) = 4.

Proof By Observations 3 and 4, we derive γ2rt(T ) ≥ 4, and the opposite inequality
holds since f : V (T ) → 2[2] defined with f (x) = f (y) = {1}, f (o) = f (p) = {2}
and f (r) = f (s) = f (t) = f (z) = ∅, is a 2RTDF of T . ��
Lemma 13 If T is a graph as defined above, and f is a 2RTDFof T with f (x) = {1, 2}
then || f || ≥ 5.

Proof Let f be a 2RTDF of T with f (x) = {1, 2}. By Lemma 12, || f || ≥ 4. Suppose
|| f || = 4. Observe that there is no vertex v in V (T ) \ {x} such that every vertex in
V (T )\{x, v} is adjacent to x or v, so x is the only vertex in T with label {1, 2}. If there
exists an edge ab, where a and b are both different than x and the labels of both consist
of the same color, say f (a) = f (b) = {1}, then every vertex in V (T ) \ {x, a, b} is
empty and therefore it must be adjacent to x , which clearly contradicts the structure of
T . We are left with the case when there are neighbors a and b of x with, f (a) = {1}
and f (b) = {2}, and all other vertices are empty. But this is a contradiction with f
being a 2RTDF, since there exists an empty vertex such that in its open neighborhood
all vertices are empty as well. Therefore || f || ≥ 5. ��

Let T+ be the graph obtained from T by attaching a new vertex v to x . In what
follows G is an arbitrary graph with V (G) = {g1, g2, . . . , gnG }, and G ′ = G ◦v T+.
With Ti we denote the subgraph isomorphic to T in the i th copy of T+ in G ′. Also, if
i ∈ [nG ] and a is a vertex in T , we denote by ai the corresponding vertex in Ti .

Lemma 14 Let f be a 2RTDF of G ′. Then || f || > 4nG. Moreover, the contribution
of vertices in every Ti to || f || is at least 4.

Proof Let f be a 2RTDF of G ′. If f (gi ) = ∅ for every i , then f (xi ) = {1, 2} for
every i . By Observation 5 one can use Lemma 13 to derive that for each i vertices of
Ti contribute at least 5 to || f ||, therefore both claims hold in this case.

In the remaining case there is a nonempty vertex in G. Now we distinguish two
types of vertices in G. If gi is empty, then by Observation 5 and Lemma 12 vertices
of Ti contribute at least 4 to || f ||. Now suppose gi is nonempty. If f (xi ) = ∅, then
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by Observation 5 vertices of V (Ti ) \ {xi } contribute to || f || at least 2-rainbow total
domination number of the graph induced by vertices of V (Ti ) \ {xi }, which is at least
4 by Observations 3 and 4. Now suppose that xi is nonempty. Suppose to the contrary
that the contribution of Ti to || f || is less than 4. If f (xi ) = {1, 2}, then by restricting
the function f on Ti we obtain a 2RTDF of the graph induced by vertices of Ti which
is isomorphic to T . But this contradicts Lemma 13. If | f (xi )| = 1 then we define
g : V (Ti ) → 2[2] by g(xi ) = {1, 2} and g(vi ) = f (vi ) for vi ∈ V (Ti ) \ {xi }. Note
that this is again a 2RTDF of the graph induced by vertices of Ti of weight less than 5,
a contradiction with Lemma 13 again. Therefore the contribution of vertices in every
Ti to || f || is at least 4, and || f || > 4nG since we have at least one T+

j contributing at
least 5 to || f ||. ��

Now we can prove the key fact for our reduction. Recall that for an arbitrary graph
G we introduced G ′ = G ◦v T+, where T+ is obtained from the graph in Fig. 3 by
attaching a leaf to x .

Proposition 15 G ′ has a 2RTDF of weight at most k + 4nG if and only if G has a
dominating set D of size at most k.

Proof (⇐) Let D be a dominating set ofG, and |D| = l ≤ k. Without loss of generality
assume D = {g1, g2, . . . , gl}. Then by setting

• f (gi ) = f (xi ) = f (yi ) = {1} for every i ∈ [l],
• f (x j ) = f (y j ) = {2} for every j ∈ {l + 1, l + 2, . . . , nG},
• f (oi ) = f (pi ) = {2} for every i ∈ [l],
• f (o j ) = f (p j ) = {1} for every j ∈ {l + 1, l + 2, . . . , nG}, and
• f assigns ∅ to every other vertex in G ′,

we get a function of weight l + 4nG , which is clearly a 2RTDF of G ′.
(⇒) Let f be a 2RTDF of G ′. By Lemma 14, || f || > 4nG , i.e. || f || = k + 4nG

for some positive integer k. For i ∈ {1, 2} let VG
i denote vertices g ∈ V (G) such that

f (g) = {i}, let VG
∅ denote vertices g ∈ V (G) such that f (g) = ∅ and let VG

12 be the
set of vertices in V (G) to which {1, 2} is assigned under f . Now we construct a new
function f ′ : V (G ′) → 2[2]. To do so, we distinguish different types of vertices with
respect to the values of f in G:

• Type A: if gi ∈ VG
1 or gi ∈ VG

∅ and it has a neighbor in VG
2 but no neighbor in VG

1 ,
we say that gi is of Type A. If gi ∈ VG

1 , we set f ′(gi ) = {1}. If gi ∈ VG
∅ is such that

it has a neighbor in VG
2 but no neighbor in VG

1 , then f ′(gi ) = ∅. In both cases in
the corresponding copy Ti we set f ′(xi ) = f ′(yi ) = {1}, f ′(oi ) = f ′(pi ) = {2},
and f ′(zi ) = f ′(ti ) = f ′(si ) = f ′(ri ) = ∅.

• Type B: if gi ∈ VG
2 , then f ′(gi ) = {2}, and if gi ∈ VG

∅ and it has a neighbor in
VG

1 and no neighbor in VG
2 , then f ′(gi ) = ∅. In both cases in the corresponding

copy Ti we put f ′(xi ) = f ′(yi ) = {2}, f ′(oi ) = f ′(pi ) = {1}, and f ′(zi ) =
f ′(ti ) = f ′(si ) = f ′(ri ) = ∅.

• Type C: if gi ∈ VG
12, or gi ∈ VG

∅ either has a neighbor in VG
12 or it has a neighbor

in VG
1 and a neighbor in VG

2 , then the assigned value of f ′ to gi as well as to every
vertex in Ti remains the same as under f .
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• Type D: gi ∈ VG
∅ is such that all its neighbors in G belong to VG

∅ as well. For this
type of vertices we assign f ′(gi ) = f ′(xi ) = f ′(yi ) = {1}, f ′(oi ) = f ′(pi ) =
{2} and f ′(zi ) = f ′(ti ) = f ′(si ) = f ′(ri ) = ∅.

It is a straightforward task to verify that f ′ is a 2RTDF. Next, we claim that || f ′|| ≤
|| f ||. If gi is either of Type A or B, then the contribution of vertices that are included
in G to || f || and to || f ′|| is the same, and Lemma 14 ensures that the contribution of
vertices in V (Ti ) to the weight of f ′ is clearly less or equal to the contribution to the
weight of f . The contribution of vertices in T+

i to || f || and to || f ′|| is the same if gi
is of type C. If gi is of Type D it must hold f (xi ) = {1, 2}. So the contribution of
vertices in V (T+

i ) to the weight of f is at least 5 by Lemma 13. On the other hand,
the contribution of the same vertices to the weight of f ′ is 5, thus the claim is proved.

Let D be the set of vertices in G such that f ′(v) �= ∅. Note that D is a dominating
set in G. Namely, f ′ was constructed in such a way that there is no vertex in G with
label ∅ having all its neighbors in G labeled with ∅ as well.

To finish the proof we must show that |D| ≤ k. Note that vertices from copies of T
contribute at least 4nG to the weight of f ′, and each vertex from D contributes at least
1 to it. Therefore || f ′|| ≥ 4nG+|D|. We derive 4nG+|D| ≤ || f ′|| ≤ || f || = 4nG+k
and thus indeed |D| ≤ k. ��

Clarly, one can construct G ′ from G in linear time. Furthermore, from Proposition
15 and its proof we derive the following. If D is a minimum dominating set of G,
i.e. γ (G) = |D| and |D| = k, then γ2rt(G ′) ≤ k + 4nG = γ (G) + 4nG . On the
other hand, if f ′ is a 2RTDF on G ′ of minimum weight with γ2rt(G ′) = 4nG + k,
and D a dominating set of G comprised of vertices v with property f ′(v) �= ∅, then
γ2rt(G ′) = 4nG + k ≥ 4nG + |D| ≥ 4nG + γ (G). Thus γ2rt(G ′) = γ (G) + 4nG .
Therefore, by constructing the 2RTDF f ′ on G ′ from a given 2RTDF f , and then
selecting all vertices from V (G) with nonempty weight under f ′, one can construct a
dominating set of G in polynomial time. With this we have arrived at the main result
of this section.

Theorem 16 2-RAINBOW TOTAL DOMINATING FUNCTION is NP-complete.

It is known that dominating set problem is NP-complete for planar graphs [8]. Since
the graph G ′ from the above proof is planar if G is planar, we infer the following.

Corollary 17 2-RAINBOW TOTAL DOMINATING FUNCTION is NP-complete even
when restricted to planar graphs.

4 Conclusion

In our aim to establish NP-completeness of the 2-rainbow total domination problem,
we briefly touched upon the topic of of k-rainbow total domination concerning rooted
and corona product graphs, which stand as interesting topics in their own right. While
we have obtained the tight bounds for both (notably, the corona product can be seen as
a special rooted product), there are many questions that naturally arise. One of them
pertains to the converse of Corollary 10, which does not hold in general, which raises
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Table 2 k-rainbow total dominating problem

Instance: A graph G and a positive integer s.

Question: Does G have a k-rainbow total dominating function of weight at most s?

a question: can we characterize graphs H such that γkrt(G ◦v H+) = nGγkrt(H)?
Also, can we characterize graphs H with γkrt(H+) = γkrt(H)? More generally, can
we derive enclosed formulae, as it is the case when considering ordinary domination
and total domination, [5, 16]?

Further, in Proposition 11 we have obtained the closed formula for the corona
product of graphs if nH ≥ k. Note that if nH < k, strict inequality γkrt(G ∗H) < knG
can be obtained, as it can be seen by the example of family of graphs depicted in Fig. 1.
Therefore it would be interesting to further explore the case when nH < k.

Last but not least, we wonder whether it is possible to extract properties of the graph
T in Fig. 3, with the aim of generalizing these properties in such a way that would
allow the proof of Theorem 16 for a general value of k (see the problem in Table 2).

Conjecture 18 Given a positive integer k, the k-rainbow total dominating problem is
NP-complete.
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