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Abstract: In uneven-aged forests, trees of different diameters, heights, and ages are located in a
small area, which is due to the felling of individual trees or groups of trees, as well as small-scale
natural disturbances. In this article, we present an objective method for classifying forest stands into
even- and uneven-aged stands based on freely available low-resolution (with an average recording
density of 5 points/m2) national lidar data. The canopy closure, dominant height, and canopy
height diversity from the canopy height model and the voxels derived from lidar data were used to
classify the forest stands. Both approaches for determining forest structural diversity (canopy height
diversity—CHDCHM and CHDV) yielded similar results, namely two clusters of even- and uneven-
aged stands, although the differences in vertical diversity between even- and uneven-aged stands
were greater when using CHM. The first analysis, using CHM for the CHD assessment, estimated the
uneven-aged forest area as 49.3%, whereas the second analysis using voxels estimated it as 34.3%. We
concluded that in areas with low laser scanner density, CHM analysis is a more appropriate method
for assessing forest stand height heterogeneity. The advantage of detecting uneven-aged structures
with voxels is that we were able to detect shade-tolerant species of varying age classes beneath a
dense canopy of mature, dominant trees. The CHDCHM values were estimated to be 1.83 and 1.86
for uneven-aged forests, whereas they were 1.57 and 1.58 for mature even-aged forests. The CHDV

values were estimated as 1.50 and 1.62 for uneven-aged forests, while they were 1.33 and 1.48 for
mature even-aged forests. The classification of stands based on lidar data was validated with data
from measurements on permanent sample plots. Statistically significantly lower average values of
the homogeneity index and higher values of the Shannon–Wiener index from field measurements
confirm the success of the classification of stands based on lidar data as uneven-aged forests.

Keywords: uneven-aged forest; lidar data; canopy height model; voxels; canopy height diversity

1. Introduction

In uneven-aged forests, trees of different diameters, heights, and ages are located in a
small area. This structural diversity arises from specific silvicultural treatments involving
the selective felling of individual trees or small groups [1], as well as small-scale natural
disturbances [2]. In addition to species composition, the diverse structure of forests affects
not only biodiversity but also their resilience to abiotic and biotic damage [3], along with
forest productivity [4] and other processes in forests such as water balance, the distribution
of carbon stocks, nutrient cycling, and light dynamics [5].

In Central Europe, regeneration in natural, unmanaged forests usually occurs in small
gaps [6]. A forest with a heterogeneous structure does not have the same regeneration
pattern over large areas, and regeneration is concentrated only in a small area of gaps.
A mixture of small and large gaps in the forest is a good approach to improving the
diversity of forest habitats [6]. Currently, even-aged forests still predominate in Europe [7],
and due to the higher resilience of uneven-aged forests to disturbances, calamities, and
climate change [8,9], as well as the faster recovery of these forests after disturbances, the
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proportion of uneven-aged forests in both Europe and worldwide is expected to increase in
the future. This has already led to an increased need for the development and management
of uneven-aged mixed forests in recent years, as these forests are considered more resilient
to disturbances and have a higher adaptive potential [10].

Slovenia is dominated by uneven-aged forests [11] due to a long tradition of small-
scale forest management [12]. The most typical uneven-aged forests in Slovenia are mixed
fir–beech–spruce forests on carbonates in the Dinarides and the Alps and mixed fir–spruce
forests on silicates, which have been sustainably managed for at least half a century [13–15].
The forests in the wider Pohorje region are also an example of uneven-aged forest structures
in spruce–fir forests on silicates [11]. This region was selected for our study due to its
representative uneven-aged forest structures, providing an ideal setting to develop and
validate our classification method using low-resolution nationwide lidar data.

The structure of uneven-aged forest stands can be described using vertical (e.g., num-
ber of tree layers, etc.) and horizontal elements (e.g., the spatial distribution of trees, gaps,
etc.), as well as species diversity [16]. The structure of forest stands can be described
considering the number of trees, tree species composition, height, and diameter-at-breast-
height distribution of the trees [17]. Assessing the vertical and horizontal structures of
uneven-aged forest stands is crucial for supporting forest management activities, for in-
stance, for planning silvicultural measures, assessing the suitability of habitats for rare and
endangered species [18], and subsequently stratifying forest stands by forest habitat types,
as presented by Hladnik and Žižek Kulovec [19] for the case of Slovenia. The vertical forest
structure, which is often challenging to quantify objectively, is essential in forest manage-
ment planning [20]. Currently, indicators used to describe vertical structures frequently
rely on visual estimation, which can be highly subjective and vary significantly between
different observers.

Additionally, using detailed data from field measurements to assess the horizontal
and vertical structures of uneven-aged forest stands is labor-intensive and costly due to the
extensive fieldwork required, especially when many stands need to be surveyed over large
forest areas, most notably in forests with mixed ownership [21]. Currently, stand maps need
to be rapidly updated given the increasingly frequent natural disturbances [22]. Another
challenge in field measurement is the objectivity of data collection by individual teams.
One of the main advantages of using remote sensing data for forest structure assessment
is providing a more rapid and cost-effective approach to obtaining accurate and objective
data for larger areas [23].

This study explores the following question: how can freely available national lidar
data be used to objectively classify forest stands into even- and uneven-aged categories?
We hypothesized that nationwide, low-resolution lidar data can effectively distinguish
between even- and uneven-aged forest stand structures. This, in turn, will enable forest
managers to identify uneven-aged stands over larger areas more objectively and efficiently.
Furthermore, this method can be reapplied as new lidar data become available, offering
a more cost-effective, scalable, and up-to-date approach for forest structure assessment
compared to traditional field methods.

This study aims to present an objective method for classifying forest stands into
even- and uneven-aged stands based on freely available national lidar data [24]. The
study findings contribute to more resilient forest management strategies and support the
sustainable management of forest resources in Slovenia and beyond.

2. Materials and Methods
2.1. Study Area

The study area encompasses the wider forest area of the Pahernik forest estate
(Figure 1), which was selected due to the presence of a diverse forest structure [25–27]
and because it is a large forest estate that has undergone more than a century of planned
forest management [25] through the development of an uneven-aged forest structure. Ad-
ditionally, a denser network of permanent sample plots (250 × 250 m) is available, with a
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detailed estate plan (2014–2023) prepared by the Slovenian Forest Service based on field
measurements [28].

The study area is located in the northeastern part of Slovenia on the Drava–Pohorje
mountain range, between the Drava River in the north and the Pohorje mountain ridge in
the south, in the northeastern part of Slovenia. Field measurements have already revealed
that the area has an uneven-aged forest structure [26]. The predominant tree species is
Norway spruce (Picea abies), accounting for more than 60% of the growing stock, and
more than 10% of the growing stock is silver fir (Abies alba) and European beech (Fagus
sylvatica) [26]. Forests account for 4479 ha of the surveyed area. A forest mask was taken
from the survey on the actual use of agricultural and forest land provided by the Ministry
of Agriculture, Forestry, and Food [29].
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Figure 1. The Pahernik estate and the entire study area.

2.2. Data Preparation

The forest structure was assessed based on freely available national lidar data, which
were recorded on tree foliage in 2014 [30]. The laser scanning of Slovenia was carried
out with the Eurocopter EC 120B helicopter at flight height from 1200 to 1400 m above
the ground. The lidar system consisted of a RIEGL LMS-Q780 laser scanner with a pulse
frequency of 400 kHz and a positioning and orientation system (differential GNSS Novatel
OEMV-3, INS IGI Aerocontrol Mark II rotation measurement system (E 256 Hz)). The
average recording density was 5 points/m2 with a laser beam diameter or a footprint
with a size of 30 cm, a positional accuracy of 30 cm, and an ellipsoidal height accuracy of
15 cm [30].

To determine the vegetation height, we used a canopy height model (CHM) developed
by Kobler [31], using a resolution of 1 m. In the studied area, the digital canopy model
obtained from the laser scanning data of Slovenia was segmented considering the minimum
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segment size of 5000 pixels, proposed by Šprah [32], as optimal for the eastern part of
Pohorje, as smaller values indicate significantly smaller groups and clumps and dictate the
method of regeneration in the area. Thus, we obtained a raster map of CHM segments that
represented forest stands (Figure 2).
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In the canopy height model, we searched for local maxima considering circular neigh-
borhood associations with a radius of 3 m, which was chosen based on measurements of
tree canopy radii for prevalent species in the area, as presented by Pretzsch, et al. [33]. We
then recorded tree height data and thus obtained a digital model of the tree tops or stand
canopy. Considering the 100 highest trees per hectare [34], we determined the dominant
height of trees for the entire stand or segment (Figure 2). We also calculated the canopy
closure for each of the analyzed stands. The canopy closure (Figure 2) is the proportion of
the area in the canopy height model with height classes higher than 5 m.

The digital canopy model was classified into 5 m height classes, according to the
FAO [35]. This classification system was used by Hladnik, et al. [36] in their study on
Slovenian forests and by Šprah [32], whose study investigated the Pohorje region near our
study area; in both cases, it proved to be suitable. The first class includes tree heights from
0 to 5 m, and the last class encompasses tree heights above 40 m. For each stand derived
from segmentation, we calculated the area of each height class and its proportion. From
these data, we then calculated the canopy height diversity (CHDCHM) using Equation (1)
(Figure 2). Similar indices for assessing the vertical forest structure have already been
proposed [36–39]. The pi value represents the proportion of the area of each height class in
the total area of the forest stand.

CHDCHM = −∑ piln(pi), (1)

Using a resolution of 10 m, we generated raster maps from the lidar point cloud
considering the relative frequencies of reflections along 5 m height classes (voxels), as
established by Kobler [40]. These maps were then used to create a raster map of canopy
height diversity using voxels (CHDV, Equation (2)) for the entire study area (Figure 2).

CHDV = −∑ piln(pi), (2)

To classify forests as even- and uneven-aged structures, we investigated the use of
CHDCHM and CHDV. CHM is more intuitive [36] and easier to use in operational prac-
tice [41] when studying larger areas, but its disadvantage is that some shade-tolerant trees
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cannot be detected when there is a dense canopy of mature dominant trees in stands with
low-height diversity visible from above, in contrast to the approach using voxels [42–45].

2.3. Statistical Analysis
2.3.1. Classification of Stands/Segments into Stand Types

Two K-means cluster analyses (Figure 2) were used to classify the stands derived from
segmentation. Clustering involves a broad range of techniques for exploring subgroups
within a dataset, which requires categorizing similar observations into the same group
and dissimilar observations into different groups [46]. We used this analysis because it
has proven useful, for example, for the typification of forest edges [36] and tree species
according to canopy characteristics [47]. In the first analysis, we used the canopy height
diversity derived from the proportions of the individual height classes of the digital canopy
model (CHDCHM), the variable dominant height of the stands, and the canopy closure to
estimate the vertical diversity of the stands. In the second analysis, we used the canopy
height diversity derived from the ratio of the relative frequencies of reflections by height
classes (voxels (CHDV)), and the variables dominant height of the canopy of the stands,
and canopy closure. We identified the optimal number of clusters using the elbow method,
which minimized the total within-cluster variation [46].

2.3.2. Permanent Sample Plots

In the study area, we analyzed 91 sample plots, with a radius of 12.61 m and an
area was 500 m2, using a systematic sample grid of 250 × 250 m measured in 2013 by
the Slovenia Forest Service [28]. The radius of the sample plot was 12.61 m and the area
was 500 m2. We used permanent sample plots from this inventory as the Slovenia Forest
Service has a dense sampling network throughout the country, and plots are measured
every 10 years. The Slovenia Forest Service is a public institution that oversees forestry
planning and management for all Slovenian forests, irrespective of ownership [48]. Every
year, 1⁄10 plans are renewed, and a field inventory consisting of permanent sample plots
and field descriptions of forest stands is carried out. In this study, trees with a diameter at
breast height of 30 cm or more were measured using the entire sample plot. In the inner
part of the plot, with a radius of 7.98 m and an area of 200 m2, trees with a diameter at breast
height of 10 cm or more were also measured. Tree height was also measured for all trees
included in the canopy of the stand in the sample plot (720 trees). The coordinates of the
center of each plot were measured using a handheld GPS receiver. The location of each tree
was determined by the distance from the center of the plot and the azimuth, i.e., the angle
between north and the location of the tree. The sample plots were then accurately positioned
based on the correspondence between the location of the dominant trees determined from
the field measurements and the same trees identified on the generated lidar CHM.

Regarding the structural diversity of the forest stands, the Shannon–Wiener index (H′)
was calculated for each sample plot. Pi represents the proportion of basal area per hectare
of each tree species or the proportion of basal area per hectare of trees in each diameter
class to the total basal area (Equation (3)).

H′ = −∑ piln(pi), (3)

For each sample plot, we also calculated the De Camino homogeneity index [49],
which has already been used to determine the homogeneity of spruce–fir forests [50]. The
homogeneity index is calculated using Equation (4) [49]:

CH =
∑n−1

i=1 SN%

∑n−1
i=1 SN% − SV%

(4)

where SN% is the sum of percentages of the number of trees up to the ith diameter class,
SV% is the sum of percentages of the volume up to the ith diameter class, and n is the
number of diameter classes.
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To overlap the remote sensing data with the data measured in the field, we used
permanent sample plots that covered at least 80% of each segment considering cases in
which the difference between the measured and lidar-estimated dominant height of the
corresponding segment was less than 5 m. In this way, plots that were within a small core
of other development phases of the stands were excluded from further analysis, as they
were too small for independent analysis.

Of the 91 permanent sample plots, 39 were used for further analysis (Figure 2). This
reduction in number was mainly due to the diversity of forests throughout the area, which
resulted in some sample plots being located at the boundary of the homogenous stands
obtained using segmentation.

Spatial analyses were carried out using ArcMap 10.8 [51], and all statistical analyses
and graph generations were performed using the R 3.5.2 software [52].

3. Results
3.1. Classification of Stands/Segments into Structural Types

In the first analysis, the CHM was used to estimate the canopy height diversity.
Clusters 2 and 4 had the highest average canopy height diversity (Table 1; Figure 3a), thus
representing the clusters with the most diverse stands. Cluster 4 had a slightly higher
average canopy height, but the two clusters differed in the average dominant height, with
Cluster 4 being more than 8 m higher. Clusters 1 and 3 had comparable average dominant
heights but lower average canopy height diversity (CHDCHM) (Figure 4). Clusters 5 and
6 were associated with development phases with a lower dominant height. The lowest
average dominant height, the lowest canopy closure, and the lowest canopy height diversity
were observed in Cluster 5, representing seedlings and stands in regeneration (Figure 5).
All variables in this cluster had a maximum coefficient of variation of more than 20%
(Table 1, Figure 3). Cluster 6, representing pole stands, had higher average values of the
investigated variables than Cluster 5 (Figure 5).
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Table 1. Area, dominant height, canopy closure, and canopy height diversity using CHM (CHDCHM)
by individual classes of stand types.

Cluster Area
(ha)

Hdom
(m) SD1 CV1 (%) Canopy

Closure SD2 CV2 (%) CHDCHM SD3 CV3 (%)

1 966.5 26.5 3.1 11.8 0.93 0.04 4.7 1.57 0.11 6.8
2 815.5 26.2 2.8 10.6 0.85 0.06 7.3 1.83 0.09 5.0
3 874.3 36.3 3.1 8.6 0.97 0.02 2.3 1.58 0.11 6.9
4 1395.2 34.3 3.1 9.1 0.93 0.04 4.1 1.86 0.10 5.3
5 123.4 12.4 3.1 24.7 0.37 0.11 28.9 1.10 0.22 20.1
6 304.4 18.8 2.7 14.6 0.68 0.10 14.3 1.55 0.12 7.9
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Figure 5. Examples of the cross-section of a lidar point cloud of a stand undergoing regeneration
with reservation of standards (Cluster 5 (a)) and a pole stand (Cluster 6 (b)).

In Clusters 2 and 4, which were classified as uneven-aged stands, the mean standard
deviation (SD) for the dominant height within of each stand was higher (5.9 and 4.0 m) than
those in Clusters 1 and 3, classified as even-aged stands (2.9 and 2.5 m) (Figure 6). Clusters
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5 (7.8 m) and 6 (6.6 m), associated with seedlings and stands undergoing regeneration and
pole stands, respectively, had the highest SD values (Figure 6), which can be attributed to
the small-scale management practices with reservation of standards.
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stand types.

In the second analysis, we used voxels to estimate the canopy height diversity.
Cluster 2 had the highest average value of canopy height diversity (CHDV) (Table 2;
Figures 3, 7 and 8), representing the most uneven-aged stands. The CHDV was also high
for Clusters 1 and 4. Cluster 1 had a lower average dominant height and a lower canopy
closure than Cluster 4. Clusters 5 and 6 represented the development stages with a lower
dominant height. Cluster 5, representing seedlings and stands in the regeneration phase
(Figure 5a) had the lowest average dominant height, the lowest canopy closure, and the
lowest CHDV, as shown in Figure 7. All variables in this cluster had a maximum coefficient
of variation higher than 20% (Table 2, Figure 3). Cluster 6, encompassing pole stands, had
higher average values for the analyzed variables than Cluster 5. Cluster 3, identified as the
cluster with mature even-aged stands, had an average dominant height of 25.4 m.
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Table 2. Area, dominant height, canopy closure, and canopy height diversity using voxels (CHDV) by
individual clusters of stand types.

Cluster Area
(ha)

Hdom
(m) SD1 CV1 (%) Canopy

Closure SD2 CV2 (%) CHDV SD3 CV3 (%)

1 569.3 26.4 2.9 11.0 0.84 0.06 7.2 1.50 0.06 4.1
2 968.9 36.8 2.9 7.9 0.95 0.04 3.8 1.62 0.06 3.6
3 941.1 25.4 3.0 11.9 0.91 0.05 5.4 1.33 0.07 5.2
4 1533.9 32.2 2.7 8.5 0.95 0.03 3.6 1.48 0.06 4.1
5 157.2 13.1 3.2 24.4 0.41 0.13 31.2 1.12 0.15 13.4
6 309.1 19.2 2.7 14.0 0.69 0.09 13.6 1.33 0.10 7.4

The results of the first analysis using the CHM revealed that nearly 50% of the entire
investigated area belonged to uneven-aged forests, namely Clusters 2 and 4 (Table 3,
Figure 8), with a forest area of 4479 ha. In the second analysis, Cluster 3 was classified as
mature even-aged forests, and after a detailed visual inspection, Cluster 4, with a slightly
higher average canopy height diversity determined from voxels, was also classified as
mature even-aged forests.
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Table 3. Area proportions of stand structures for the assessment of canopy height diversity using the
CHM and voxels.

CHM
VOXELS

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Total

Cluster 1 1.1 0.0 14.6 5.9 0.0 0.0 21.6
Cluster 2 10.7 0.0 4.1 2.0 0.0 1.4 18.2
Cluster 3 0.0 6.6 1.2 11.7 0.0 0.0 19.5
Cluster 4 0.6 15.0 0.9 14.6 0.0 0.0 31.1
Cluster 5 0.0 0.0 0.0 0.0 2.6 0.2 2.8
Cluster 6 0.3 0.0 0.2 0.0 0.9 5.4 6.8

Total 12.7 21.6 21.0 34.2 3.5 7.0 100.0

3.2. Validation of the Classification of Permanent Sample Plots

By comparing the permanent sample plots using the systematic grid, we investigated
whether there were statistically significant differences between the variables of the different
stand types and examined the differences between even- and uneven-aged mature forest
structures (Figure 9). When analyzing the height diversity with the CHM, mature, even-
aged plots were classified as belonging to Clusters 1 and 3, and uneven-aged plots were
attributed to Clusters 2 and 4. Considering the height diversity analysis with voxels, mature,
even-aged plots were observed in Clusters 3 and 4, and uneven-aged plots were located in
Clusters 1 and 2. Using CHM lidar, cross-sections of the lidar point cloud, and orthophoto,
at least 20 individual stands of each cluster underwent visual inspection to validate the
classification of even- and uneven-aged stands.
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Figure 9. Examples of the cross-sections using the lidar point cloud data of an even-aged stand (a)
and uneven-aged stand (b).

Regarding the assessment of canopy height diversity, with both methods, uneven-aged
stands had a higher dominant height, which was statistically significant (p < 0.05; t-test and
p < 0.001; t-test) (Figure 10a). The homogeneity index was statistically significantly higher
in the first analysis (CHM) (p < 0.05; t-test) and marginally statistically significant in the
second analysis (p < 0.01; Wilcoxon rank-sum test). The Shannon’s diversity index (basal
area) was higher in heterogeneous stand structures but not statistically significant. The
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basal area was larger in the first analysis and slightly smaller in the second analysis, but
the differences in mean values were not statistically significant (Figure 10b).
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Figure 10. Boxplots for the variables dominant height (a), basal area (b), Shannon’s diversity index
(basal area) (c), and De Camino homogeneity index (d) for mature even- and uneven-aged forest
stands in the study area of the Pahernik estate using the CHM and voxels to estimate canopy height
diversity (first and second analysis).

4. Discussion

The classification of forest structures across spatiotemporal scales is important for for-
est monitoring and management [53], especially in the context of climate change and recent
events in temperate forests [54,55]. Given the changes in site conditions, the increasing
frequency of disasters, and the threat to forests from harmful organisms, Diaci et al. [56]
have highlighted the optimization of silvicultural measures in even- and uneven-aged
forests as one of the development priorities in this field. The planning and optimization of
these measures will be significantly more successful in uneven-aged forests if we know the
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locations and types of stand structures using remote sensing data of vertical structures. It is
precisely these forms of stand structure that are characteristic of the Pahernik estate and its
surroundings, which involve a freestyle technique of silviculture with the implementation
of different silvicultural systems in small areas of the same segment [57].

In this study, we identified uneven-aged forests with spruce as the predominant tree
species (more than 60% of the growing stock) at the stand level (polygon), not at the raster
cell or sample plot level, as in most previous studies [53,58]. When analyzing the lidar data,
we used the dominant height, canopy closure, and canopy height diversity. The dominant
height derived from lidar data was also used by Bončina, Trifković, and Rosset [22] for
stand classification in even- and uneven-aged structures, as well as the cover levels in
stand layers. Torresan et al. [59] categorized forests with similar tree composition into
pole-stage, young, adult, mature, and old forests using 18 variables derived from lidar data.
In another study, Torresan, et al. [60] predicted forest structure classes from lidar CHM
data, highlighting the need for professionals involved in forest management planning to
familiarize themselves with CHM approach [60].

The main advantage of the selected classification variables used in the present study
is that they are also easy to use in operational forestry. In operational practice, diversity
data are often lost when delineating forest stands, as diverse stands are often classified
as, e.g., mature stands. Therefore, we sought to present a simple method for classifying
uneven-aged forests into homogeneous stand types that preserve data on their diversity.
In uneven-aged forests, all developmental stages are found in a very small area, and
regeneration phases are not specifically recorded [61]. Freely available lidar data [24] with
a low number of pulses recorded nationwide were used for the current survey. The lidar
data were recorded in 2014, and the field measurements were carried out in 2013. We
assume that the minimal temporal difference between the field measurement and the lidar
recording time had no significant impact on the validation of the lidar data with the field
measurements. We explain this with the low intensity of small-scale forest management in
the study area in small gaps [27] and the fact that the height growth of Norway spruce, the
dominant tree species in this area, is between 28 and 40 cm per year at a similar site [62].

The proposed methodology can be further applied using permanent sample plots’
data from national forest inventories of most European nations, as lidar data are freely
available in these countries [36]. A limitation of the study is the potential loss of forest
structure detail (especially in the voxel approach) due to the use of low resolution lidar
data. However, the advantage is the free availability of these data and their accessibility
for the whole country and thus the possibility of further studies in other Slovenian forests
with different tree species compositions and structures.

The application of the proposed approach is also suitable for other temperate forests
and for forests in other climatic zones, but the height classes (in our case 5 m) for estimating
canopy height diversity and canopy cover as well as the radius (in our case 3 m) for
detecting tree tops from lidar data need to be adapted to the conditions in these forests.
Caution is advised when using this approach in forests with steep slopes, as the accuracy
of tree height and canopy height diversity detection from lidar data decreases [63]. The
presented classification of forest stand structure should be continued in future studies
using higher resolution lidar data and by complementing the classification with tree species
mixtures or tree composition based on airborne hyperspectral data [64].

To determine the diversity of forest structures, we developed a canopy height model
from lidar data because it is simple and suitable for use in various imaging segmentation
methods [65], and voxels were used because this analysis method has significant potential
to improve the accuracy of forest measurements [42] or stand characteristics. Both methods
yielded the same results considering even- and uneven-aged stands, although the differ-
ences in vertical diversity between even- and uneven-aged stands were greater when using
the CHM. We conclude that in areas with low laser scanner density, CHM analysis is a more
appropriate method for assessing forest stand heterogeneity. At higher laser densities than
those indicated by Pearse, Watt, Dash, Stone, and Caccamo [42], the use of voxels is recom-
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mended, due to the ability to detect shade-tolerant trees under a dense canopy of mature
dominant trees. In our study area, stand regeneration is concentrated in small gaps [27],
so we believe that trees identified as the understory according to CHDCHM classification
did not have a significant effect, which was confirmed by the larger SD in the dominant
height of uneven-aged stands (Figure 6). The resilience of stands to natural disturbances is
mainly influenced by the height heterogeneity of trees in the canopy [66], which was found
to be adequate based on the CHDCHM classification. For multilayered stands, which do
not occur in the study area in practice, a greater influence of height heterogeneity on the
stand classification with CHDCHM is expected. However, the lower-than-expected results
of the voxel classification are mainly due to the low density of laser scanning. By using
voxels, which are metrics that provide better descriptions of complex forest structures [67],
we have thus demonstrated the potential of understory detection for stand classification,
which will become increasingly significant in the future as the density of national lidar
surveys is likely to increase. Similar to Hamraz, et al. [68], we also found a higher detection
accuracy of understory trees at higher laser scanning densities.

In both validation analyses with data from permanent plots (Figure 10), the dominant
height was statistically significantly higher in uneven-aged forests, which was also demon-
strated by Sterba and Ledermann [69]. The basal area had the same size in even-aged
and uneven-aged stands. The homogeneity index was statistically significantly lower in
uneven-aged forests. Similar values of this index were also found in uneven-aged spruce,
fir, and beech forests by Ibrahimspahić, Balić, and Lojo [50]. The Shannon–Wiener index,
calculated from the basal area of the trees in the plots, was higher in uneven-aged forests,
but the difference was not statistically significant, which is due to the different diameters at
breast height of the trees with the same dominant stand height. These findings validate
the classification of stands based on lidar data into even- and uneven-aged structures. The
higher, but not statistically significant, Shannon–Wiener index in the first classification
using CHDCHM can be attributed to the inability to detect trees in the understory using this
approach, as well as the low density of laser scanning in the CHMV analysis. However,
the validity of both approaches was confirmed by the statistically significantly different
heterogeneity index values. In the CHDCHM analysis, a higher standard deviation in the
dominant tree height within stands was observed in uneven-aged stands (Figure 6).

5. Conclusions

The resilience of uneven-aged forest stands to disturbances, calamities, and climate
change makes their development and identification crucial. The use of freely available
nationwide lidar data to identify uneven-aged forest stands offers a cost-effective, efficient,
and objective alternative to traditional field measurements.

In areas with low laser scanning density, CHM analysis is a more appropriate method
for assessing forest stand height heterogeneity. The advantage of detecting uneven-aged
structures using voxels is the ability to detect shade-tolerant species of varying age classes
beneath a dense canopy of mature, dominant trees. Therefore, in areas where higher-
density laser scanning data are available, using voxels is recommended for assessing the
heterogeneity of forest stand heights and classifying stands into even- and uneven-aged
types.
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