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Abstract: An important goal in toxicology is the development of new ways to increase the speed, accuracy, and applicability
of chemical hazard and risk assessment approaches. A promising route is the integration of in vitro assays with biological
pathway information. We examined how the adverse outcome pathway (AOP) framework can be used to develop pathway‐
based quantitative models useful for regulatory chemical safety assessment. By using AOPs as initial conceptual models and
the AOP knowledge base as a source of data on key event relationships, different methods can be applied to develop
computational quantitative AOP models (qAOPs) relevant for decision making. A qAOP model may not necessarily have the
same structure as the AOP it is based on. Useful AOP modeling methods range from statistical, Bayesian networks, re-
gression, and ordinary differential equations to individual‐based models and should be chosen according to the questions
being asked and the data available. We discuss the need for toxicokinetic models to provide linkages between exposure and
qAOPs, to extrapolate from in vitro to in vivo, and to extrapolate across species. Finally, we identify best practices for
modeling and model building and the necessity for transparent and comprehensive documentation to gain confidence in the
use of qAOP models and ultimately their use in regulatory applications. Environ Toxicol Chem 2019;38:1850–1865. © 2019
The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
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INTRODUCTION
Traditionally, the hazard and risk assessment of chemicals

has relied heavily on animal testing. In addition to a limited
predictive capacity for human and environmental health

effects, these tests can be time consuming, costly, and raise
ethical concerns. Furthermore, it is not feasible to determine
the health hazards of the thousands of different chemicals in
commerce that lack toxicological data using animal tests (Dix
et al. 2007). As a result, there is an increasing need for
more cost‐effective, species‐specific, and mechanistic testing
approaches, such as human in vitro cellular assays and other
emerging technologies (Dix et al. 2007; National Research
Council of the National Academies 2007; Cote et al. 2016).
Because many of these technologies measure effects at the
suborganismal level, new quantitative modeling approaches
are needed to extrapolate measured toxicological effects to
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the whole organism or from test species (e.g., zebrafish) to
species of concern (e.g., human).

Frameworks that support the plausibility and causal under-
standing of how chemical exposures lead to toxicity/adverse
outcomes include the mode of action framework (Sonich‐Mullin
et al. 2001; Meek et al. 2003; US Environmental Protection
Agency 2005; Boobis et al. 2009; Meek et al. 2013) and, more
recently, the adverse outcome pathway (AOP) concept (Ankley
et al. 2010). The AOP framework has emerged as one potential
way of integrating evidence from in vitro assays in the context
of a pathway that leads to an adverse outcome. A key feature
of the AOP framework is that it is chemically agnostic (not
specific for one particular chemical), enabling one AOP to be
used to describe the potential actions of a group of chemicals.
An AOP describes a biological pathway that can be perturbed
by a chemical or other stressor and captures the consecutive
changes occurring at multiple biological levels that cause ad-
verse effects of regulatory interest. In the AOP framework
(Figure 1), the initiation of a molecular initiating event starts a
cascade of key events causally linked by key event relationships
(KERs) that lead to an adverse outcome (Ankley et al. 2010).
A key event reflects a measurable change in a biological
state that is necessary for the progression toward an adverse
event. The KERs represent the regulatory, mechanistic,
structural, and/or functional relationship between 2 key events
and are supported by empirical data that provide information
on dose response and temporality (Meek et al. 2014;
Becker et al. 2017).

However, there remains a critical need to extend the AOP
framework to support prediction of chemical doses or con-
centrations that would lead to adverse outcomes at the in-
dividual and population level (Kramer et al. 2011; Wheeler and
Weltje 2015). Such an extension requires a detailed quantita-
tive description of the relationships among the molecular in-
itiating events, the key events, and the adverse effect (Conolly

et al. 2017). This would enable the development of biomarkers
that can lead to earlier diagnosis of disease and/or prediction
of adverse effects that could be measured by in vitro assays
(Perkins et al. 2015). The KERs are likely to already contain
some degree of quantitative information that could be used to
develop statistical relationships or mathematical functions to
infer the state of the downstream key event from the known,
measured, or predicted state of the upstream key event
(Organisation for Economic Co‐operation and Development
2016). Moreover, the application of AOPs in dose–response
assessment and risk characterization (see Textbox 1) will require
linkage to chemical‐specific information such as toxicokinetics
that describe how much chemical is available at the tissue or
cellular level to affect a molecular initiating event (Scholz 2015).
Some aspects of quantitative (q)AOPs, particularly with respect
to hypothesis testing, have been recently described by Perkins
et al. (2019). In the present review we focus on how the prin-
ciples of quantitative models for AOPs can be established, and
their potential advantages and applications.

Development of quantitative AOP models
The relationships between key events in an AOP provide a

description of how one event causes a change in, or transitions
to, a second event. Quantitatively, a KER may be defined in
terms of regressions between key events, response–response
relationships, or dose‐dependent transitions. They may take
the form of simple mathematical equations or sophisticated
biologically based computational models that consider other
modulating factors, such as compensatory responses, or in-
teractions with other biological or environmental variables.
Depending on the level and nature of the empirical data
available, there is a continuum of AOPs from purely descriptive
qualitative AOPs to qAOP models with detailed response–
response relationships that allow one to infer the magnitude or

wileyonlinelibrary.com/ETC © 2019 The Authors

FIGURE 1: Use of quantitative adverse outcome pathways (AOPs) models in hazard and risk assessment. Quantitative AOPs (qAOPs) are developed
from qualitative AOPs but have quantitative descriptors (f (x)) for key event (KE) relationships (KERs). Both AOPs and qAOPs can be used in hazard
identification and assessment, but qAOP models are needed for dose–response assessments. Risk assessment applications combine qAOPs with
chemical‐specific information and/or models that characterize the external and the corresponding internal concentration of chemical that is available to
activate the molecular initiating event (MIE). (Note: f (x) may represent a mathematical or statistical function. AO= adverse outcome.)
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probability of an adverse outcome. In the present review we
define a full qAOP model as any mathematical construct that
models the dose–response or response–response relationships
of all KERs described in an AOP, a partial qAOP as a construct
that models the dose/response–response relationships of more
than one KER, and a quantitative KER as a construct
that models a single dose/response–response relationship
(Figure 1). The qAOP models support explicit incorporation of
complex relationships, such as feedback loops, thresholds, and
signaling cascades that are generally embedded in the key
event or KER of descriptive AOPs. Models incorporating
complex biological relationships can create predictions with
greater biological fidelity to support hazard and risk assess-
ment than models with simplified assumptions (Conolly
et al. 2017).

The objective of our review is to describe how qAOP models
can be developed and to provide examples of how they could
be used in a hazard or risk assessment context. We describe
how qAOP models can be built from qualitative AOPs, and how
different modeling approaches can be applied to developing
qAOPs, and we discuss the documentation requirements that
can facilitate the use, communication, and acceptance of qAOP
models. Finally, we discuss how these approaches can support
regulatory decision making in hazard and risk assessment along
with example qAOP applications.

HOW TO BUILD A QUANTITATIVE MODEL
FROM AN AOP

The structure, degree of detail, and confidence needed in
a qAOP model greatly depends on the specific question
needing to be addressed and what is relevant for decision
making (Wittwehr et al. 2016). Although there is no generic
qAOP model that is independent from its final use, models
representing specific KERs can be developed and used in

multiple qAOP models. For example, Conolly et al. (2017)
used an oocyte growth dynamics model developed by
Watanabe et al. (2016) to model aromatase inhibition leading
to reduced fecundity in fish. Because the oocyte model is a
stand‐alone component that models egg production as a
function of plasma vitellogenin levels in fathead minnows, it
could be used in other fathead minnow qAOP models
involving vitellogenin and oocyte production. The approach
can be applied to other species but would require species‐
specific models. Detailed computational qAOP models may
require a large dataset for their development, such as the
underlying data used for development of the qAOP model for
aromatase inhibition (Conolly et al. 2017). Hence, the first
steps in developing a qAOP model are formulating the
question to be answered, estimating the level of biological
fidelity needed, and evaluating whether there is sufficient in-
formation available to start the modeling cycle (Figure 2). The
applicability domain (i.e., species, life stages, appropriate
temporal scale, and biological level of organization) of the
underlying AOP must also be examined to ensure that it
meets the question requirements.

To formulate the question means that one identifies
exactly what should be modeled to support the needs of the
end user or decision maker. This will have a strong impact on
the type of model that is used. Broadly, qAOPs are likely to
be used for 2 categories of questions: 1) to understand and
assess the risk of new, untested chemicals to a given species;
and 2) to understand and assess the risk of a given (group of)
chemical(s) to new, untested species. The questions can in-
clude more specific context as to what regulatory action or
decision will be made or what protection goals are relevant.
For example, if the question is a screening or prioritization
issue such as what chemicals have the potential to cause liver
toxicity, the qAOP models developed could be simple, could
require fewer data, and could have a higher uncertainty be-
cause screening/prioritization approaches are not final

© 2019 The Authors wileyonlinelibrary.com/ETC

TEXTBOX 1: AOPs in the context of hazard and risk assessment

Chemical risk assessment is a process that typically combines four different parts: hazard assessment, dose‐response as-
sessment, exposure assessment and risk characterization. Hazard assessment identifies whether or not a chemical can cause
an adverse effect. Dose‐response assessment characterizes the amount of a chemical needed to elicit an adverse effect often
by identifying chemical concentrations or doses at which treated animals or assays diverge from controls (points of departure
or POD). Exposure assessment estimates how and how much of a chemical is available to cause adverse effects in individuals
or populations. Risk characterization integrates information on exposure, hazard, and dose‐response to estimate the like-
lihood of adverse effects in exposed individuals and/or populations. Adverse outcome pathways (AOPs) can be used in each
of the 4 assessments. Qualitative AOPs systematically structure knowledge of the cascade of key events, from the interaction
of a chemical with a receptor, enzyme, or other biological molecules (molecular initiating events) to an adverse outcome,
thereby enabling their use in hazard assessment. Quantitative AOPs, when sufficient quantitative information is available to
describe dose–response and/or response–response relationships among the molecular initiating event, the key event, and
the adverse outcome, can be used to identify a point of departure for calculation of the external doses needed to cause a
hazardous effect or adverse outcome in a dose–response assessment. As a result, both qualitative and quantitative AOPs can
be useful in risk characterization by identifying, structuring, and integrating the available evidence for chemical hazards.
However, only quantitative AOPs are useful for integrating dose–response assessment with exposure assessment by linking
exposure to the amount of chemical needed to cause a point of departure in an AOP.

1852 Environmental Toxicology and Chemistry, 2019;38:1850–1865—E.J. Perkins et al.
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assessments, However, if the question is “would exposure to
a chemical lead to significant risk of liver toxicity?” and the
outcome may result in banning of that chemical, then a highly
accurate model would need to be developed. Thus, con-
structing a qAOP that is fit for purpose requires one to start
with a clearly defined question/problem with well‐described
requirements.

A draft conceptual qAOP model (i.e., the key events and
their linkages within an AOP) may be built de novo based on
scientific evidence or may be obtained from a qualitative AOP
in the AOP knowledge base (Organisation for Economic
Co‐operation and Development 2019). The AOP knowledge
base is a crowd‐based resource that catalogs AOPs and ag-
gregates the underlying mechanistic information, including
supporting weight of evidence for adjacent or nonadjacent
KERs. A complete qAOP model describes the links between
key events mathematically, to relate the dose–response acti-
vation of a molecular initiating event to the response–response
dynamics of KERs and the manifestation of an adverse out-
come. A qAOP model may not necessarily have the same
structure as the AOP it is based on. For example, a qAOP
model may explicitly describe response–response relationships
of adjacent KERs present in an AOP rather than all KERs, which
may help prevent model overfitting and reduce the amount of
data needed for model parameterization and testing. Con-
sistent with good modeling practices, one must explicitly de-
scribe the quantitative assumptions one is making for the KERs
for which quantitative data are lacking. Conversely, and if re-
quired, additional events such as feedback loops may be in-
cluded (Shoemaker et al. 2010; Breen et al. 2013) or complexity
added to the description or modeling of a KER. An example for
the latter is provided by KERs leading from key events at the

level of an individual organism to adverse outcomes at the
population level, which can consider biotic (interspecies and
intraspecies interactions) and abiotic effects (e.g., tempera-
ture), feedbacks, and compensatory processes (Murphy et al.
2008; Forbes and Calow 2012). It is also possible to construct
quantitative models for networks of AOPs that share one or
more key events and/or KERs (Knapen et al. 2018). Although
adding more biological complexity to qAOPs may result in
greater biological fidelity, developers of qAOP models should
keep in mind that a founding principle of building models is to
keep them as simple as possible.

Building qAOP models is not significantly different from
building other computational models for decision support, and
therefore it is sensible to draw on the experience already
available. Good modeling practices that provide detailed gui-
dance on every step of the modeling cycle have been devel-
oped for ecological modeling (Schmolke et al. 2010) and for
mechanistic effect models that may support risk assessment of
plant protection products in the European Union (European
Food Safety Authority 2014). The modeling cycle (Figure 2)
includes the following steps: problem definition; assembly of a
conceptual model and translation into computer code using a
modeling method (see the Supplemental Data for different
modeling methods); assembly of data and model para-
meterization; model testing including sensitivity and un-
certainty analysis; and, lastly, use of the model for support of
decision making. The AOP knowledge base may already pro-
vide much of the information used at different steps of the
qAOP modeling cycle. Modules inside the AOP knowledge
base may be used as a collaborative platform in which me-
chanistic information, conceptual models, response–response
relationships, and supporting quantitative information can be

wileyonlinelibrary.com/ETC © 2019 The Authors

FIGURE 2: Building a quantitative model based on an adverse outcome pathway (AOP). The modeling cycle (modified from Schmolke et al. 2010)
illustrates how the AOP knowledge base (AOP k.b.) can feed into the model development process. The final fit for purpose assessment of the model can
be facilitated by the transparent and comprehensive ecological model documentation (TRACE) framework (Schmolke et al. 2010; European Food Safety
Authority 2014).

Quantitative adverse outcome pathway models—Environmental Toxicology and Chemistry, 2019;38:1850–1865 1853
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stored and shared (Edwards et al. 2016). Other data may be
available from the scientific literature and specialized data-
bases, such as the US Environmental Protection Agency
(USEPA) Aggregated Computational Toxicology Online Re-
source (ACToR), which aggregates data from thousands of
public sources on more than 500 000 chemicals (US Environ-
mental Protection Agency 2019). Databases focused on bio-
logical modeling (e.g., Chelliah et al. 2013 or The Systems
Biology Institute 2019) may also be useful in qAOP model
development.

Data needed to make a qAOP model
The availability of suitable data is arguably the most im-

portant requirement in the development of a qAOP model.
Quantitative response–response data among the molecular
initiating event, key events and the adverse outcome are
needed to explicitly model and parameterize each KER.
Models intended for use in regulatory decision making should
be scientifically sound, robust, and thoroughly tested, and
should make valid predictions (European Food Safety Authority
2014). Meeting those expectations requires a level of accuracy
that can only be guaranteed by using experimental data of
sufficient quality and quantity to support the level of certainty
required. The ideal characteristics of the data will vary greatly
depending on the type of model being developed, the ques-
tion being asked, and how accurate the prediction needs to be.
For example, the development of simple Bayesian network
models may only require enough data to show that inactivation
of a particular key event results in the inactivation of a sub-
sequent key event. However, development of models de-
scribing multiple, precise KERs would require detailed
concentration–response and response–response relationships.
Many aspects of the characteristics of data needed to develop
models are described in European Food Safety Authority
(2014) and in Conolly et al. (2017).

To obtain adequate dose–response data, care needs to be
taken to appropriately consider dose ranges and time points.
Ideally, this requires a dose range bracketing a dose that elicits
no observable response and a dose that elicits a maximal re-
sponse. In practice, the number of doses will be limited by the
available resources but should be a minimum of 5 to establish a
dose/response–response relationship. If the focus of the model
is on changes over time, then statistical/modeling approaches
for time series analysis often require a minimum of 10 time
points for successful analysis. However, fewer time points can
be sufficient, too, if the data allow the temporal aspects of a
given model to be parameterized. Usually the simpler the
model the fewer parameters it has and the fewer data points
are needed. Ultimately the design of experiments for data
collection will depend on the question being asked. For ex-
ample, models used for prioritizing chemicals for more in‐
depth toxicological analysis may not need as much biological
fidelity as a model used for determining acceptable levels of
chemicals in drinking water. Depending on the complexity of
the model, data requirements can be higher than the quanti-
tative data already available from a qualitative AOP

description. For certain applications of qAOP models, such as
those related to nonlaboratory or endangered species, a pau-
city of experimental data can be anticipated. In such cases,
theoretical relationships or extrapolations from related KERs in
other species may be necessary to quantify KERs within the
qAOP model specific to the species of interest. In many cases,
generation of additional data may be required during the
modeling cycle to improve the qAOP model.

The most efficient means to develop a qAOP depends on
the question being asked, the data available, and what is
known about the relationships between the key event and the
adverse outcome. Although every KER within an AOP can be
quantified and mathematically described, this may be un-
necessary if a molecular initiating event or an early key event
has a well‐described statistical relationship to the adverse
outcome. For example, highly predictive models have been
made for the AOP for membrane disruption (narcosis) leading
to respiratory failure whereby a measure of the molecular in-
itiating event (log octanol/water partition coefficient [KOW]) is
significantly correlated with the adverse outcome narcosis
(Mackay et al. 2009). Baldwin et al. (2009) used the significant
relationship between the molecular initiating event of acet-
ylcholinesterase inhibition and feeding behavior in salmon to
create a predictive model to assess the effects of pesticide
exposure on the productivity of wild salmon populations.

Documentation of qAOP model development
Transparent documentation of model development, testing,

and analysis is key to increasing user confidence in the model
and acceptability for decision making (Schmolke et al. 2010;
European Food Safety Authority 2014; Grimm et al. 2014). The
European Food Safety Authority scientific opinion on modeling
closely follows the TRAnsparent and Comprehensive model
Evaluation (TRACE) framework (Table 1), which was originally
developed for the use of ecological models in chemical safety
assessment (Schmolke et al. 2010), but later broadened to
apply to all mechanistic effect models used for ecological risk
assessment of chemicals (Grimm et al. 2009; Augusiak et al.
2014; Grimm et al. 2014). The TRACE framework applies to
both ecological and human health qAOP modeling applica-
tions as well, and its application would ensure that important
aspects of model testing and analysis are appropriately de-
scribed and documented, including model verification, sensi-
tivity analysis, validation, and uncertainty analysis. These are all
important aspects to consider when establishing the con-
fidence that can be placed in a model. The modeling cycle
closes with an assessment of whether the model is fit for pur-
pose, that is, whether it can be confidently used to answer the
question it was designed for.

GENERAL MODELING APPROACHES FOR
qAOP MODEL DEVELOPMENT

The aspect that marks the transition from a descriptive AOP
to a qAOP is the degree to which the biology or dynamics

© 2019 The Authors wileyonlinelibrary.com/ETC

1854 Environmental Toxicology and Chemistry, 2019;38:1850–1865—E.J. Perkins et al.

 15528618, 2019, 9, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/etc.4505 by U

niversity of L
jubljana, W

iley O
nline L

ibrary on [21/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



underlying response–response relationships are described
statistically and/or by a mathematical function in the KERs. The
qAOP models can use increasing specification for KERs, ran-
ging from scalar weights to functional relationships (including
probabilistic relationships), to entire models specifying how
adjacent key events interact. Different modeling approaches
can be used depending on data availability and how well the
mechanisms underlying the KERs are known (Table 2; detailed
descriptions of the modeling approaches are given in the
Supplemental Data).

As has been demonstrated by modeling the AOP ar-
omatase inhibition leading to population decline in fathead
minnow, it is not necessary to apply a single type of model to
build a qAOP model (Conolly et al. 2017). Different KERs and
available data often require combining different models to
describe the response–response relationships and possibly
also the time‐course of the adverse outcome as a function of
the degree of activation of the molecular initiating event and
the intervening KERs.

APPLICATION OF qAOP MODELS IN
DECISION MAKING

Quantitative AOPs have the potential to support decision
making in the development of new chemicals or drugs,
identifying and predicting potential chemical hazards,
dose–response relations, and risk assessment. Modeling of
biological pathways using qAOP models enables the predic-
tion of outcomes based on early events of both single

chemicals and mixtures, the inference of exposure levels re-
quired to produce an adverse effect, and an understanding of
species‐specific differences. We discuss how qAOP models
can be used to predict effects of chemicals using relative
potencies, how reverse toxicokinetics (rTK) can be combined
with qAOP models to estimate hazardous external exposure
levels, and different approaches for extrapolation of a qAOP
across species. Finally, we present a detailed example of how
one can use Bayesian network modeling to develop a qAOP
network and how this can be applied to understanding the
degree of potential health hazards of individual chemicals and
their mixtures. Specific examples of qAOP modeling are
currently limited in number due to the relatively recent de-
velopment of the AOP framework. However, elements similar
to those described in qAOP modeling (e.g., molecular
initiating events, key events, quantitative KERs, adverse out-
comes) can be found in several case studies. We describe
these studies as well as hypothetical scenarios in which qAOPs
might be applied.

Extrapolating qAOP models to different
chemicals using relative potencies

Computational models that accurately simulate or predict
effects of perturbing biological pathways or adverse effects are
often established using specific chemicals with known tox-
icological effects. Although a model can claim to be chemically
agnostic, it often uses chemical‐specific parameters such as
concentration–molecular initiating event response relationships

wileyonlinelibrary.com/ETC © 2019 The Authors

TABLE 1: Transparent and comprehensive ecological modeling documentation (TRACE) adopted for quantitative adverse outcome pathway (AOP)
modeling

Level Step Description

Development Problem formation Predict an endpoint of regulatory relevance in chemical hazard and risk
assessment; estimate which combination of molecular initiating events/
key events is required to trigger an adverse effect.

Model design and formulation (≠ programming) Decide whether physiologically based pharmacokinetic, toxicokinetic,
statistical, or dynamical system models may best describe the
quantitative relations required in the anticipated decision‐making
context.

Implementation Implement the model. A combination of different models targeting the
need to describe different key event relationships by different
approaches may be considered.

Parametrization and calibration Obtain parameters for the different AOP levels from literature or the AOP
knowledge base, or by conducting additional experiments. Thresholds
that trigger key events or instantiation of differential equations
describing relationships represent examples of parametrization.

Analysis Verification and sensitivity analysis Test whether the quantitative model adequately describes the relation of
molecular initiating event, key event, and adverse outcome and identify
parameters that would have the strongest impact on the adverse
outcome prediction.

Validation Validate the model using different chemicals or other independent data.
Application Quantification of uncertainties Compare with experimental data and estimate the deviation, identify data

gaps, and propagate parametric and structural uncertainty to
predictions.

Results Decide whether the confidence is sufficient, and the problem can be
addressed.

Repeat Rerun the steps to optimize the model or adopt the
problem formulation (increase feasibility)

Revise and repeat the modeling chain if performance deviates from the
expected results.

Quantitative adverse outcome pathway models—Environmental Toxicology and Chemistry, 2019;38:1850–1865 1855
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that permit one to relate the concentration increase in a spe-
cific chemical to a predicted outcome. Such a model can be
extrapolated to predict effects of other chemicals that also in-
teract with the same molecular initiating event by relating the
concentration–response relationship of a new chemical to that
of the reference chemical. Conolly et al. (2017) used the re-
lative potency of a new chemical to a reference chemical to
extrapolate a qAOP model developed to predict population
impacts of one chemical, fadrozole, to predict the response for
another, in this case the fungicide iprodione. The qAOP
modeled aromatase inhibition (the molecular initiating event)
leading to reproductive dysfunction in fathead minnow using 3
computational models: a hypothalamus–pituitary–gonadal axis
model (based on ordinary differential equations) of aromatase
inhibition leading to decreased vitellogenin production (Cheng
et al. 2016), a stochastic model of oocyte growth dynamics
relating vitellogenin levels to clutch size and spawning intervals
(Watanabe et al. 2016), and a population model driven by fe-
cundity (Miller et al. 2007). The qAOP was modeled on data
generated with the potent aromatase inhibitor fadrozole as a
stressor and then used to predict potential population‐level
impacts. The model was employed to predict iprodione effects
on populations using in vitro data for inhibition of aromatase
activity from ToxCast (Richard et al. 2016). This was achieved by
deriving a toxicity equivalency factor for iprodione relative to
fadrozole. Once the relative potency of iprodione to fadrozole
was established, the impact of iprodione on fathead minnow
population trajectories was then estimated using a read‐across
approach with the response–response relationships in the
qAOP. This approach is generally applicable when in vitro as-
says measuring molecular initiating events are available to
compare the potency of a new chemical with a model chemical
whose performance is known. This has the added advantage of
making the use of the qAOP for other chemicals more acces-
sible to users that do not have sufficient expertise to directly
model kinetics of new chemicals with the same molecular in-
itiating event.

As with any chemically agnostic qAOP, the aromatase in-
hibition model developed by Conolly et al. (2017) does not
account for differences in the toxicokinetics of a test chemical
(e.g., whether the compound metabolized to forms with
greater or lesser activity) or differences in bioavailability be-
tween in vitro and in vivo assays. This can be refined, if ne-
cessary, by coupling a physiologically based pharmacokinetic
or toxicokinetic model to the qAOP to add functions describing
the compound‐specific effects of adsorption, distribution, me-
tabolism, and excretion on concentrations at the molecular
initiating event (Figure 1).

Combining qAOP models with toxicokinetic
models to estimate hazardous external exposure
doses

Because qAOPs model dose–response and response–
response relationships, they can be used in determining whe-
ther a given exposure might result in the occurrence of
hazardous effect. For risk assessments, chemical‐specific

exposure models are used that describe how much chemical an
organism is exposed to as a result of chemical release into the
environment (e.g., aggregate exposure pathways; Teeguarden
et al. 2016). Linking external chemical exposure levels to a
qAOP requires a translation of environmental exposure levels
into a relevant internal dose at the site of the molecular in-
itiating event using toxicokinetic models (including physiolo-
gically based toxicokinetic models). Unlike qAOPs, tox-
icokinetic models are chemical specific because they must
account for the physical, chemical, and biological interactions
of a particular chemical.

A major goal in risk management is determining safe levels
of chemical exposure. A dose–response assessment can be
performed using qAOP models to determine internal con-
centrations that perturb an molecular initiating event and cause
an adverse outcome to occur. Once the concentration causing
the point of departure from normal is identified, it can be ex-
trapolated to an in vivo concentration using rTK models
(Judson et al. 2011; Wetmore et al. 2015). In vitro to in vivo
extrapolation is based on the assumption that an AOP is trig-
gered by the internal bioavailable concentration present at the
target site of the molecular initiating event (Figure 3). For ex-
ample, Stadnicka‐Michalak et al. (2015) used cultured fish cell
lines to measure the key event for reduction of cell prolifera-
tion, and an rTK model was used to extrapolate levels causing
effects in vitro to the corresponding in vivo exposure con-
centration needed for inhibition of fish growth. Interestingly,
the model used by Stadnicka‐Michalak et al. (2015) corre-
sponds to a very compact AOP: the molecular initiating event
(reduced cell proliferation) is directly linked to the adverse
outcome (reduced fish growth) via a quantitative model.

In vitro to in vivo extrapolation using rTK models has also
been used to determine exposure levels needed to cause
human skin sensitization (MacKay et al. 2013). The use of rTK
modeling enabled the determination of the topical application
concentrations that could activate the molecular initiating
event of covalent protein modification and, subsequently,
predicted to cause the adverse outcome of allergen‐driven skin
inflammation. Depending on the route of exposure in the body,
rTK models often include functions describing hepatic clear-
ance and plasma binding because distributions by blood and
metabolism in the liver often play large roles in the distribution,
metabolism, and excretion of chemicals in the body, which in
turn dictate chemical concentrations near a molecular initiating
event. For example, Judson et al. (2011) and Wetmore et al.
(2015) used a high‐throughput approach for rTK modeling that
included a one‐compartment model and data from hepatic
clearance and plasma protein binding assays. The model was
used to predict the human oral dose equivalents that would be
needed to cause an effect in vivo—based on the chemical le-
vels found to cause an effect on in vitro assays representing
biological pathways. These one‐compartment models may
exhibit considerable uncertainty, and more complex compart-
ment models for rTK modeling may provide greater accuracy in
extrapolating from in vitro to in vivo effects (Rowland et al.
2017). Nevertheless, the examples show that rTK models can
be connected to chemical effect thresholds based on in vitro

wileyonlinelibrary.com/ETC © 2019 The Authors
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data or qAOP predictions to estimate external doses needed to
cause effects at the adverse outcome.

Extrapolation of qAOP models across species
Species extrapolation is essential for environmental hazard

and risk assessment because data or toxicological assays are
not always available for the species of concern. Differences
among species (similar to extrapolation from acute to chronic
toxicity) are generally accounted for using large uncertainty
factors of 10‐ to 1000‐fold to ensure safe exposure thresholds
(Ashauer and Jager 2018). The qAOP models could be used to
refine our understanding of species differences by basing
cross‐species extrapolations on mechanistic species‐specific
information. A qAOP model incorporating species differences
may be useful in specifying the size of the uncertainty factor
for extrapolation between species. The predictions of the
extrapolated qAOP can be validated by comparison with the
results of exposing the species of interest to chemical stressors
under laboratory conditions. Understanding these differences
can also be used to determine whether a standard risk as-
sessment approach with large uncertainties is appropriate.

Given a conserved AOP structure, the qAOP for one species
could be adapted to another by modifying species‐specific do-
se–response or response–response parameters such as binding
affinity and activation of a receptor. This is similar to the idea of
adjusting mechanistic effect model parameters based on species
traits (Rubach et al. 2011). For example, the AOP for aromatase
inhibition (Conolly et al. 2017) could be extrapolated from fat-
head minnow to other fish species by calibrating the model to
species‐specific binding affinities, kinetic rates, and hormone
concentrations (Murphy et al. 2009; Gillies et al. 2016). Cali-
bration to other species should be relatively straightforward
because a limited number of measurements for molecular in-
itiating events or key events and their response–response re-
lationships (here chemical binding affinity to aromatase, kinetics
of aromatase inhibition, and resulting plasma hormone levels)
would be needed rather than response–response measurements
for every KER. Furthermore, species‐specific toxicokinetic dif-
ferences can impact on the level of internal bioavailable con-
centrations and the external effect concentrations required to
elicit an adverse outcome. In the case of aromatase inhibition,
predictions of hormone production from the extrapolated qAOP
can be compared with measured plasma hormone concentra-
tions to assess the reliability of the extrapolated qAOP.

© 2019 The Authors wileyonlinelibrary.com/ETC

FIGURE 3: Inference of an external in vivo dosing from an in vitro effect concentration using reverse toxicokinetics (rTK) and quantitative adverse
outcome pathways (qAOPs). 1) Concentrations are determined that perturb activities of a molecular initiating event (MIE) or key event (KE)
enough to cause significant changes in the final adverse outcome, using modeling or experiments. 2) and 3) The concentrations causing effects in
vitro at the molecular initiating event and the adverse outcome are assumed to be the same needed at the in vivo site of action. 4) The predicted
in vivo concentration used in combination with reverse toxicokinetics describing metabolism, binding, and clearance functions to determine the
external dose required to achieve the internal dose at the molecular initiating event. The boxes represent the different steps involved in
toxicokinetics (blue) and AOPs (green). Green arrows represent KERs. Blue arrows represent the time‐sequential links between exposure
toxicokinetics. Dashed lines represent different elements of modeling external exposure levels, internal doses, and reverse toxicokinetic
modeling. f (x)= quantitative descriptors.
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Predictive qAOP models for cross‐species extrapolations
could also be created when there is ambiguous mechanistic
information available for KERs by using a simple statistical
model relating the change in the molecular initiating event to
the adverse outcome. Substituting a statistical correlation with
a mechanistic function may increase the uncertainty of the final
prediction because a mechanistic approach also captures
biology features such as the feedback control underlying the
adverse response. Uncertainty can also be created by the de-
velopment of more complex models that describe more KERs
in a qAOP. However, the uncertainty generated by a complex
model reflects the variability of the underlying biology that
determines the outcome of a model.

Conservation of protein sequences among species can also
be used to infer how species differ in affinity or how sensitivity
in a species of interest varies from model species (Gunnarsson
et al. 2008). The aryl hydrocarbon receptor (AhR) presents an
example in which differences in the amino acid of the target
among avian and fish species result in different binding affi-
nities to dioxin‐like compounds and, as a result, different
dose–response relationships at the molecular initiating event
(Farmahin et al. 2014; Doering et al. 2015). A qAOP model for
activation of AhR leading to embryonic mortality could be ex-
trapolated across multiple species including fish, birds, and
other taxa by modifying the molecular initiating event (AhR
activation) dose–response function in the model to account for
species sensitivity to dioxin‐like compounds (Doering et al.
2013). The analysis of similarity for specific genes and proteins
across a few or many species is facilitated by tools such as
sequence alignment to predict across species susceptibility
(SeqAPass) that look at available sequences from as many
species as possible (LaLone et al. 2016). Provided that species‐
specific information on molecular initiating events and KERs is
available for selected species, a sensitivity distribution and the
chemical of interest using a qAOP model could be made.

It is difficult to determine whether slight differences in se-
quence homology may result in increased or decreased
binding affinity and whether those differences are biologically
significant. Information on the functional homology of proteins
from molecular docking simulations may be more accurate in
predicting binding affinity differences when only slight changes
are found in protein sequences (Ballester and Mitchell
2010). Sequence similarities can also be used to identify con-
served key events in a pathway, providing support that data or
modes from one species could be used for another.

Incorporation of toxicokinetic information can be crucial for
application of qAOP models in cross‐species extrapolation.
Allometric scaling is a simple approach to account for differ-
ences in body size and how such differences change con-
centrations at the target site (Espié et al. 2009). Allometric
scaling could be improved by combining it with in vitro data
prediction of toxicokinetics (Lavé et al. 1999). However, such
scaling may not account for certain differences in the activity
and specificity of biotransformation enzymes, protein binding,
and other toxicokinetic properties that can cause chemical
concentrations to differ considerably among species. As a re-
sult, more detailed pharmacokinetic modeling is needed to

capture differences in metabolic transformation capacity (Espié
et al. 2009). For example, pharmacokinetic modeling was used
to extrapolate to humans a rat biologically based computa-
tional model for nasal cell carcinoma in formaldehyde‐exposed
rats (Conolly et al. 2003). Conolly et al. (2004) adapted the rat
model to humans by replacing the model component de-
scribing rat nasal airways with components describing the
entire respiratory tract in the human model. The resulting
inhalation model was then used to predict regional for-
maldehyde dosimetry throughout the respiratory tract and to
link the dosimetry to time‐course effect data on cell division (as
a surrogate for cell death); the model was finally used to predict
human respiratory tract tumor responses to inhaled for-
maldehyde. Using this type of approach, models from one
species can be extrapolated to another by substituting model
components such as the ones describing distribution of for-
maldehyde in the respiratory system.

Differences in toxicokinetics between different species and/
or different life stages can affect whether data from one species
can be used to predict effects in another species. A prominent
example is the application of zebrafish as a screening tool for
human toxicology (Bambino and Chu 2017) or the use of
mammalian data for wildlife species toxicology (Huggett et al.
2004). Clearly, differences in exposure routes would need to be
considered when a qAOP model‐based prediction is applied,
for example, to account for differences in concentrations at the
target site. For instance, qAOP modeling has been used to
show that the therapeutic levels of glucocorticoids in humans
can be linked to various effects observed in exposed fathead
minnow, by incorporation of pharmacokinetic and pharmaco-
dynamic differences (Margiotta‐Casaluci et al. 2016).

Fish embryos are attractive models for predicting mamma-
lian adverse effects because of their small size and amenability
to high‐throughput testing. The use of fish embryos adds a
further level of complexity because the pharmacokinetics and
key parameters of KERs may differ not only between species
but also between life stages. A particular area of high relevance
is the prediction of human/mammalian developmental toxicity
using chemical impacts on fish embryo development (Sipes
et al. 2011; Brannen et al. 2016).

When an AOP structure in a species of interest is unknown at
levels below the cellular or organism level but has known si-
milarities with a model species at a high‐level key event such as
behavior, whole‐organism models could be used to extra-
polate qAOP models. This can be accomplished by coupling
models describing chemical impacts on individual organism
growth, reproduction, or behavior, such as dynamic energy
budget (DEB) models (Jager et al. 2006; Jager et al. 2014; Baas
et al. 2018) to models that extrapolate effects of contaminants
or stressors on behavior to population endpoints such as in-
dividual based models (Murphy et al. 2008), or matrix models
(Diamond et al. 2013). Modeling approaches such as DEB are
applied at the whole‐organism level to predict how flow of
energy from food is diverted to different functions including
reproduction, growth, and repair. Suborganismal processes
and ecotoxicogenomic measurements such as gene expres-
sion, vitellogenin levels, or lipid levels can be used as key

wileyonlinelibrary.com/ETC © 2019 The Authors
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events and also to determine energy distribution in DEB
models and, in the process, connect key events to population‐
level endpoints (Ananthasubramaniam et al. 2015; Murphy
et al. 2018b). When qAOP outputs are linked to DEB model
input parameters, then these changes can be compared with
known values of these parameters for a given or multiple
species and used to extrapolate population effects. Models
using DEBs have been developed for a wide range of animals
including rare species (such as the right whale) to predict the
accumulation of lipophilic contaminants and effects on growth
and reproduction (Klanjscek et al. 2007; Murphy et al. 2018b),
and explore how life history affects these processes in marine
mammals as a whole (Noonburg et al. 2010). Coupling of
qAOP models to DEB models for rare species may enable
extrapolation of in vitro testing results to understand the po-
tential impacts of chemicals on rare and endangered species
like marine mammals. However, identifying the physiological
mode(s) of action may still pose a challenge and should be a
topic of future research to support hazard or risk assessment
(Ashauer and Jager 2018; Murphy et al. 2018a).

Modeling AOP networks for hazard screening of
chemicals and chemical mixtures

Prioritization and screening applications are designed to
identify chemicals that are likely to cause an adverse outcome
at a given exposure concentration so that they can be sub-
jected to further, more in‐depth, testing. Prioritization and
screening efforts often use in vitro assays to assess the po-
tential of chemicals to cause an effect such as endocrine

disruption, neurotoxicity, or skin sensitization. Bayesian net-
works provide one approach by which experimental measure-
ments (e.g., in vitro screening assays, omics, or biochemical or
toxicological data) can be aligned with AOPs to determine the
probability that a chemical can activate an adverse outcome
(for more information on Bayesian networks and their use, see
Neapolitan 2004).

Bayesian network analysis is a relatively simple approach
toward modeling complex situations that could be particularly
useful when quantitative information is limited and/or when the
adverse outcome of concern could be caused by multiple
pathways. This is true especially when other modeling ap-
proaches are not feasible. Like graphical representations of
AOPs, a quantitative AOP Bayesian network (qAOPBN) model
is a causal network in which molecular initiating events, key
events, and adverse outcomes are represented by nodes
whose activity can be measured, for example by an in vitro
assay, and whose edges represent causal relationships be-
tween nodes (Figure 4). The probability that an upstream node
(s) will activate or inactivate a downstream node is defined
experimentally or by expert judgment informed by available
data and literature and summarized in probability tables asso-
ciated with each node (Figure 4). Depending on the available
information, a qAOPBN can have a high level of uncertainty,
which may be acceptable depending on the application and
question to be answered.

A qAOPBN uses information on the activation of each node
across the network to model the potential for a chemical to
cause the adverse outcome. For example, Jaworska et al.
(2013) and Pirone et al. (2014) used a Bayesian network

© 2019 The Authors wileyonlinelibrary.com/ETC

FIGURE 4: Scheme of a hypothetical binary adverse outcome pathway (AOP) Bayesian network. Tables associated with nodes describe the
probability that a node (molecular initiating event [MIE], key event [KE], or adverse outcome [AO]) is active or inactive given the state of the
upstream nodes. The final output of the model is the probability that an adverse outcome is active or inactive.
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approach to screen chemicals for the potential to cause skin
sensitization by integrating event measurements from in vitro
assays and computational models to estimate the potency of a
chemical to cause skin sensitization. The different assays were
related to the AOP for skin sensitization (Organisation for
Economic Co‐operation and Development 2012). For each
assay, thresholds were defined such as a 150% induction of a
cell surface marker or a 50% viability reduction in keratinocytes.
In silico data such as the presence of a certain structural alert or
predicted activity were considered as well. The data were fi-
nally used to derive an integrated testing strategy with a
Bayesian network, and probabilities were determined by ana-
lysis of a dataset of 124 chemicals.

The skin sensitization Bayesian network included variables
that did not represent key events in the skin sensitization AOP,
and it represents an application of Bayesian networks to a linear
AOP (branched, but with one molecular initiating event and one
adverse outcome; Organisation for Economic Co‐operation and
Development 2012) rather than a network of AOPs. Bayesian
networks can be particularly useful for more complex situations,

that is, networks of AOPs (Burgoon et al. 2017; Knapen et al.
2018). One example of an adverse outcome involving a network
of AOPs is the well‐studied adverse outcome of liver steatosis.
In steatosis, fatty acids accumulate in the liver, resulting in
nonalcoholic fatty liver disease that can lead to cirrhosis of the
liver (Tuyama and Chang 2012). Steatosis can be caused by
changing the activity of 4 critical key events (fatty acid efflux,
fatty acid uptake, lipogenesis, and peroxisomal fatty acid
β‐oxidation; Angrish et al. 2016; Burgoon et al. 2017). In a
companion paper (Burgoon et al., US Army Corps of Engineers,
unpublished manuscript), we have constructed a steatosis
qAOPBN (Figure 5). The steatosis AOPBN was established as a
binary Bayesian network where only 2 states, active or inactive,
are used as input (based on the measured state of an event) for
the molecular initiating event or key event and as output for the
adverse outcome. Probability tables were constructed using
expert judgment and available evidence in the literature to de-
termine whether a node was active or inactive based on the
state of the adjacent upstream nodes. When no information was
available, the probability of activation was set at 50%. When

wileyonlinelibrary.com/ETC © 2019 The Authors

FIGURE 5: Example of quantitative modeling of chemical impacts on liver steatosis adverse outcome pathway (AOP) networks using a Bayesian
network approach. (A) Effect of benzo[k]fluoranthene (BkF) inhibition of HSD17b4 on the liver steatosis AOP network. (B) Interaction of per-
fluorooctanoic acid (PFOA) at concentrations found in the environment with rosiglitazone (R) at therapeutic levels on the liver steatosis AOP
network. (C) Mixture interactions on the liver steatosis AOP network when PFOA is at high concentrations relative to rosiglitazone‐contaminated
water. Ovals represent chemicals, molecular initiating events, and key events. Arrows represent causal relationships through which an upstream
event activates a downstream event. T bars represent causal relationships through which an upstream event inhibits a downstream event. The
diamond node represents the adverse outcome of steatosis. Yellow nodes equal a 0% probability of being active, gray nodes equal a 50%
probability of being active, and a blue nodes equal a 100% probability of being active. aPKC= atypical protein kinase C; AKT= serine/threonine‐
protein kinase; FXR= farnesoid X receptor; L‐FABP= liver‐type fatty acid binding protein; LRH‐1= liver receptor homolog 1; LXR= liver X receptor;
mTORC=mammalian target of rapamycin complex; NFE2/Nrf2= nuclear factor erythroid 2/NFE2‐related factor 2; PI3K= phosphoinositide
3‐kinase; PPAR= peroxisome proliferator‐activated receptor; SCD1= stearoyl CoA desaturase 1; SHP= small heterodimer partner; SREBP= sterol
regulatory element binding protein.

Quantitative adverse outcome pathway models—Environmental Toxicology and Chemistry, 2019;38:1850–1865 1861
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evidence strongly supported the possibility that perturbing a
molecular initiating event or key event would change the ad-
jacent key event or adverse outcome, probabilities were set
close to 100% to account for the degree of uncertainty that
occurs in biological measurements. The Bayesian network al-
gorithm then uses the probability tables for each node to de-
termine the probability of activity for parent and child nodes
using Bayes’ rule.

To illustrate how AOP networks and Bayesian network
modeling could be used to assess the hazards of single che-
micals and chemical mixtures, the steatosis qAOPBN was per-
turbed with different chemicals, and the potential to cause
steatosis was assessed (Figure 5). For example, concentrations
of benzo[k]fluoranthene greater than 0.5 µM have been shown
to inhibit or inactivate activity of peroxisomal β‐oxidation of
fatty acids by the enzyme HSD17b4, a key event in the steatosis
qAOPBN (Burgoon et al. 2017). Inhibition of the key event for
HSD17b4 results in a probability of 1% that the key event
for fatty acid β‐oxidation will be activated. The resulting accu-
mulation of fatty acids is associated with a high probability that
steatosis will be activated (Figure 5A). The probability that
steatosis will be activated can then be compared with thresh-
olds of the probability of activation set by decision makers or
risk managers to decide whether benzo[k]fluoranthene should
be investigated further to confirm its ability to cause steatosis.

Understanding the potential of chemical mixtures to cause
an adverse outcome is a complex effort. The AOPBNs may be
particularly useful in understanding the potential hazards of
chemical mixtures because, in an AOP network, multiple mo-
lecular initiating events and pathways are described that can be
affected by multiple chemicals acting on common or different
molecular initiating events. As an illustration, using the stea-
tosis example, consider the impact of rosiglitazone, an
antidiabetic drug that is a full agonist of peroxisome pro-
liferator‐activated receptor γ (PPAR‐γ), which can activate
steatosis (Lehmann et al. 1995), and perfluorooctanoic acid
(PFOA), a highly stable chemical with widespread human ex-
posure and uptake (Fry and Power 2017), which is a partial
agonist of PPAR‐γ and a full agonist of PPAR‐α, which inhibits
steatosis by increasing the β‐oxidation of fatty acids (Vanden
Heuvel et al. 2006). These chemicals have the potential to in-
teract when diabetic patients being treated with rosiglitazone
drink water that is contaminated with PFOA (Figure 5B). In the
presence of therapeutic levels of rosiglitazone and environ-
mental concentrations of PFOA, PPAR‐γ is expected to be ac-
tive because rosiglitazone will outcompete PFOA to occupy
PPAR‐γ binding sites due to the higher efficacy of rosiglitazone
in activating PPAR‐γ (Vanden Heuvel et al. 2006; Fry and Power
2017). Activation of PPAR‐γ ultimately results in an increase in
the probability of steatosis activation, despite activation of
PPAR‐α by PFOA, which would normally inhibit steatosis. This
result is consistent with observations of increased steatosis in
clinical studies of rosiglitazone in obese patients (Massart 2017)
and manifestations of steatosis in mice fed a high‐fat diet in
combination with rosiglitazone (Gao 2016).

A critical aspect in chemical mixture interactions is how dif-
ferent ratios of chemicals can cause different effects. For

example, when healthy people are exposed to both PFOA and
rosiglitazone through contaminated water, PFOA is likely to be
at much higher concentrations than rosiglitazone. We assume
that external exposure concentrations reflect internal con-
centrations at the molecular initiating events and that tox-
icokinetics do not interfere. This would result in PFOA out-
competing rosiglitazone for occupancy of the PPAR‐γ receptor,
increasing PPAR‐α activation and decreasing the probability of
steatosis occurring (Figure 5C). These predictions are consistent
with experimental studies in which reduction of PPAR‐γ activity in
obese mice, via antagonism or gene knockout, combined with
activated PPAR‐α, resulted in decreased steatosis (Morán‐Sal-
vador et al. 2011; Zhang et al. 2014; Shiomi et al. 2015).

Our examples demonstrate how qAOP models can be used
to assess impacts of both individual chemicals and mixtures. A
significant source of uncertainty in applying an AOPBN is the
accuracy of expert judgment in determining probabilities and
thresholds when they cannot be inferred from datasets. Never-
theless, the ability to rapidly develop and integrate data from
different sources into the results of an AOPBN has many prac-
tical applications and is useful in developing qAOP networks for
screening and prioritization of chemicals. The uncertainty sur-
rounding probabilities can be reduced by using more complex
relationships or datasets, but the relatively simple assumptions
and binary input/outputs we have applied in our examples can
be used for screening and prioritization.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Quantitative AOP models can provide a bridge from de-
scriptive knowledge to the prediction of an adverse outcome in
hazard and risk assessments. Quantitative approaches cover a
spectrum of methods, taking AOPs from purely descriptive to
highly defined quantitative models. At present, examples of
qAOP models are scarce but show considerable promise for real‐
world applications. Given this high potential for chemical reg-
ulation, it can be expected that quantitative approaches will
continue to be developed. However, it is crucial that qAOP
models have properly defined application domains, documenta-
tion, and testing support to avoid misuse and poor regulatory
acceptance. The ability of models to predict outcomes and an-
swer regulatory questions must be well tested and documented
using goodmodeling practices so that one can clearly understand
how reliable a model’s predictions are or what type of improve-
ments are required to make them more reliable. Purpose‐specific
validation may include validating the ability of a model to predict
whether a chemical has a potential to cause an adverse outcome.
This requires the availability of adverse outcome data to anchor in
vitro assay responses of traditional toxicity endpoints to adverse
effects of regulatory concern. For example, the USEPA Endocrine
Disruptor Screening Program validated an estrogen receptor
agonist model for screening by examining its ability to accurately
predict estrogen receptor agonists from a library of well‐
characterized chemicals (Judson et al. 2017). In the future we may
lack data for traditional experimental regulatory toxicity. In this

© 2019 The Authors wileyonlinelibrary.com/ETC
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case, one may consider that these data could be generated for a
selected set of compounds to validate a new qAOP model and
endpoint of regulatory concern.

In practice, a number of potential limitations of qAOP models
need to be considered: 1) pathways other than the AOP mod-
eled may be biologically more significant in causing the out-
come; 2) species and life‐stage differences might be outside the
applicability domain of the AOP; and 3) limitations in the com-
plexity of the population models could interfere with translation
of individual effects to population outcomes (lack of density
dependence, other life stages, ecological factors, etc.). Given
that the concentration at the target site will be critical to esti-
mate the degree of an adverse effect with qAOP models, un-
certainties and differences in the toxicokinetics in vitro and
in vivo are important parameters that could impact the predic-
tion of hazards given external exposure concentrations. Ap-
proaches such as using data from in vitro assays to incorporate
effects of mixtures on specific events or qAOP networks for
integrating multiple pathways and multiple chemicals are pro-
mising for addressing mixture effects. However, great chal-
lenges remain in predicting and understanding mixture effects
under realistic environmental scenarios because the amount and
quality of relevant, mechanistic data are even more demanding
than for a single chemical. There are lessons from related fields
that can aid qAOP model development and regulatory adop-
tion, for example, the TRACE documentation. The most im-
portant issue is a clear definition of the question to be answered
with the qAOP model, and this must be articulated before un-
dertaking model development. To support transparency, un-
derstanding, and acceptance, models need to have clear and
detailed documentation of data use and sources, model devel-
opment and coding, rigorous testing (e.g., comparison of a
qAOP model prediction with independent data), and commu-
nication of the assumptions, applicability, and limitations of the
model.

Supplemental Data—The Supplemental Data are available on
the Wiley Online Library at DOI: 10.1002/etc.4505.
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