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A B S T R A C T   

Wastewater treatment plants (WWTPs) are a focal point for the removal of microplastic (MP) particles before 
they are discharged into aquatic environments. WWTPs are capable of removing substantial quantities of larger 
MP particles but are inefficient in removing particles with any one dimension of less than 100 μm, with influents 
and effluents tending to have similar quantities of these smaller particles. As a single WWTP may release >100 
billion MP particles annually, collectively WWTPs are significant contributors to the problem of MP pollution of 
global surface waters. Currently, there are no policies or regulations requiring the removal of MPs during 
wastewater treatment, but as concern about MP pollution grows, the potential for wastewater technologies to 
capture particles before they reach surface waters has begun to attract attention. There are promising technol
ogies in various stages of development that may improve the removal of MP particles from wastewater. Better 
incentivization could speed up the research, development and adoption of innovative practices. This paper de
scribes the current state of knowledge regarding MPs, wastewater and relevant policies that could influence the 
development and deployment of new technologies within WWTPs. We review existing technologies for capturing 
very small MP particles and examine new developments that may have the potential to overcome the short
comings of existing methods. The types of collaborations needed to encourage and incentivize innovation within 
the wastewater sector are also discussed, specifically strong partnerships among scientific and engineering re
searchers, industry stakeholders, and policy decision makers.   

1. Introduction 

Since the 1940s, plastics have revolutionized society to the extent 
that most people now use and depend on plastic products on a daily 
basis. At the same time, there is mounting concern that the production, 
use and disposal of plastics may pose risks to the environment and 
human health (Thompson et al., 2009b). Plastics have become ubiqui
tous because they are inexpensive relative to many other materials, 
generally durable and easily adaptable for manufacturing many kinds of 
products. Plastics are made from petrochemical-compounds, usually in 

combination with additives such as fillers, plasticizers, dyes, stabilizers, 
lubricants and foaming agents (Cole et al., 2011; Hollman et al., 2013). 
Approximately 30% of all plastic ever produced is estimated to be 
currently still in use, but the durability of plastic products no longer 
being used means they continue to exist in some form (often as waste), 
some of which eventually reaches the seas and oceans (Geyer et al., 
2017; Kubowicz and Booth, 2017; OSPAR, 2009). A proportion of this 
marine plastic waste is in the form of small particles known as micro
plastics (MPs). There are several size classifications for MPs, although it 
is generally accepted that they are less than 5 mm in size. Some 
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definitions place a lower bound of 1 μm, with particles smaller than this 
being classified as nanoplastics (NP) (Cole et al., 2011; Hollman et al., 
2013). A further refinement has been proposed with three classes, 
mesoplastic (1 mm–2.5 cm), MP (1–1000 μm) and NP (<1 μm) (Frias 
and Nash, 2019; Hartmann et al., 2019). 

MPs that are deliberately manufactured and used to make other 
products are considered primary MPs. Those that result from the 
breakdown of larger plastic items are considered secondary MPs. The 
routes by which primary and secondary MPs reach marine environments 
have been investigated (Fendall and Sewell, 2009; GESAMP, 2015; 
Geyer et al., 2017; Gregory, 1996; OSPAR, 2009; Zitko and Hanlon, 
1991), with the main ones considered as:  

i. Items discarded on land that have broken down into secondary 
MP and are washed by rain or transported by wind into the sea.  

ii. Larger Items disposed of on land and washed by rain and wind 
into the sea where they eventually break down into secondary 
MP.  

iii. Primary MP inadvertently lost during production, transportation 
and subsequent use and entering the waste stream; or  

iv. MPs discharged from wastewater treatment plants (WWTPs):  
a. Via treated wastewater (WW) discharged into waterways  
b. Via sewage sludge used in agricultural fertilizer and other 

applications.  
c. Via wear and tear of plastic components used in the WWTPs. 

As there are different routes by which MP waste from different 
sources reaches the seas and oceans, reducing the flow of such small 
plastic particles requires a multi-faceted approach. Of the four routes 
described above, the first two are widely acknowledged as the major 
sources of marine MPs and have attracted much of the attention and 
effort related to reducing plastic pollution, including reducing the 
quantity of plastics manufactured and used as well as better waste 
management approaches (Booth et al., 2018; Browne et al., 2011; 
Jambeck et al., 2015; Lam et al., 2018; Sundt et al., 2014; Thompson, 
2015). Less is known about the quantities of MPs released via the third 
route, but it has been identified as a target for better management in 
supply and processing chains, for example by reducing spillage and 
finding alternatives to MPs added to consumer products (Government of 
Canada, 2015; Sundt et al., 2014; UK Government, 2018). The fourth 
route has only recently begun to receive attention, but it appears that 
treated WW effluent may make a substantial contribution to aquatic and 
marine MPs (Sundt et al., 2014). WWTPs are focal points in concen
trating large amounts of MPs from urban sources. At the same time, 
these utilities act as a gateway for MPs from domestic, commercial, in
dustrial and other sources, although the ultimate fate of the MPs de
pends on whether they remain in the treated effluent. While large 
quantities of MPs are removed from the treated WW (Koelmans et al., 
2019) and retained in sewage sludge, wastewater treatment (WWT) does 
not target MPs specifically. As a result, most WWTPs discharge effluents 
containing MPs into rivers, lakes and groundwater that eventually reach 
marine water bodies. A number of recent reviews have focused on the 
fate and behavior of MPs in WWTPs, investigated different sampling and 
analysis approaches or summarized MP effluent (water and sludge) 
concentrations (Enfrin et al., 2019; Gatidou et al., 2019; Koelmans et al., 
2019; Mahon et al., 2017; Murphy et al., 2016; Sun et al., 2019; Zhang 
and Chen, 2020; Ziajahromi et al., 2017; Li et al., 2018, 2020). Only a 
small number of reviews and studies have attempted to compare the 
efficiency of different technologies for removing MPs from effluent 
streams (Sun et al., 2019; Talvitie et al., 2017a; Zhang and Chen, 2020), 
but none included bio-based filters or discussions of the role of policy 
and innovation in bringing about changes in WWT practices. 

It is important to note that the sludge produced as a by-product of 
WWT in fact contains most of the MPs removed from treated WW. If not 
properly managed, this sludge can itself be a source of MP pollution to 
soil, air and in turn indirectly to surface water. Nevertheless, WW and 

sludge treatment are separate processes and the current study focuses on 
the former. We first summarize the state of knowledge regarding MPs in 
the environment and the contribution of WWT effluents to the problem, 
followed by a discussion of the role of WWTPs in reducing the quantities 
of MP reaching the natural environment through effluent releases. We 
then examine and compare current technological innovations to reduce 
MP concentrations in effluents, including a previously undocumented 
and unique bio-based treatment technique that shows great potential. In 
a novel approach, we then set the knowledge gathered within the 
context of current policy discussions and highlight possible limitations 
and opportunities going forward, including highlighting knowledge 
gaps that are currently hindering said policy development for effective 
regulation of MPs in WWTP effluents. 

2. State of knowledge 

2.1. Prevalence of MPs in marine ecosystems and food webs 

Owing to their light weight and persistence, MPs can be transported 
over long distances and accumulate in most marine environmental 
matrices; from urban beaches to sediments, as well as remote polar and 
central ocean regions (Imhof et al., 2013; Ryan et al., 2009; Thompson 
et al., 2009a). Estimates of the amount and distribution of MPs in marine 
environments are variable. The number of MP particles in oceans and 
seas around the world has been estimated to range from 15 to 51 trillion 
(Baztan et al., 2017; Bergmann et al., 2015; Eriksen et al., 2014; Jam
beck et al., 2015; Jang et al., 2016). It has been reported that 15% of MPs 
are located in the water column, up to 70% have settled on the seafloor 
and the remainder is washed ashore (Barnes et al., 2009; Hammer et al., 
2012). Another recent study suggested that over 90% of marine MPs 
have accumulated in sediments (Booth et al., 2018). Accumulations of 
redeposited particles have also been observed on shore in sand and in 
“plasticrusts” of small plastic debris in rocky intertidal zones (Gestoso 
et al., 2019). 

MPs are found in marine organisms from most trophic groups, sizes 
and life stages (Barboza et al., 2019; Bergmann et al., 2015; Booth et al., 
2018; GESAMP, 2015; Mathalon and Hill, 2014). Detection is most 
frequent in digestive tracts, but there is increasing evidence that 
extremely small (nano)particles may cross biological barriers and 
accumulate in organs and tissues of multicellular biota, including 
humans (Brennecke et al., 2015; Collard et al., 2017). The size and shape 
of ingested plastic particles appear related to the taxon, body size, and 
life stage of marine organisms (Cole et al., 2013). There is also evidence 
that certain organisms (e.g. Antarctic krill, Euphausia superba) are able to 
alter the size of ingested plastic, fragmenting them into sub-micro par
ticles (Dawson et al., 2018). With decreasing particle size, the likelihood 
of being ingested by small lower trophic organisms increases and with it, 
the risk of wider food web impacts. For this reason, there is concern that 
extremely small particles ingested by suspension and deposit feeding 
organisms may pose risks to these essential units within the food web 
either by directly affecting the ingesting organisms or by widespread 
distribution throughout the foodweb (Gies et al., 2018). Evidence from 
the higher end of the trophic spectrum includes preliminary results from 
an ongoing 8-country pilot study showing that MPs are present in human 
stools, a clear indication that people are ingesting MPs (Schwabl et al., 
2019). 

2.2. Impacts on marine ecosystems and organisms 

The prevalence of marine MPs raises concerns regarding environ
mental quality and potential adverse mechanical, chemical and micro
bial impacts on organisms and food webs (Anderson et al., 2016; Auta 
et al., 2017; Barboza et al., 2019; Lusher, 2015; Rochman et al., 2015, 
2016; Solomon and Palanisami, 2016; Van Cauwenberghe et al., 2015a, 
2015b; Wright et al., 2013a, 2013b). Mechanical effects, observed in 
several species are believed to stem from the size and quantity of 
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ingested materials and effects include hindering mobility, clogging of 
the digestive tract and internal abrasion (Set€al€a et al., 2016). Reduced 
nutritional status and weight loss have been observed in lugworms 
whose food intake was impaired by the presence of MPs and several fish 
studies report intestinal alterations associated with ingestion of MPs 
(Barboza et al., 2018; Besseling et al., 2013; de S�a et al., 2015; Oliveira 
et al., 2013; Ped�a et al., 2016). Concerns for chemical effects stem from 
the fact that monomers, polymers and other chemicals may migrate 
from MPs into the environment or directly into ingesting organisms. 
Many of the plastic compounds detected in marine organisms are the 
same as those found in plastic packaging. Groh et al. (2019) and Geueke 
et al. (2018) found 68 environmental toxins and 63 human toxins in the 
approximately 900 chemicals most likely to be found in plastic pack
aging and many of these have been shown to migrate from the plastic to 
other media (Geueke et al., 2018; Groh et al., 2019). Adverse health 
impacts associated with chemical exposures include endocrine disrup
tion and hepatic and oxidative stress in fish exposed to MPs (Barboza 
et al., 2018; de S�a et al., 2015; Oliveira et al., 2013; Ped�a et al., 2016). 

In some cases, adverse health effects cannot be attributed definitively 
to chemical or mechanical mechanisms. Examples of this include ener
getic depletion and reduced reproduction and growth rates in copepods 
and in other planktonic animals exposed to MPs (Cole et al., 2015; Della 
Torre et al., 2014). It has also been proposed that MPs may serve as 
vectors for pathogens, facilitating the transfer of bacteria and viruses by 
‘rafting’ to new habitats or within food webs (Zettler et al., 2013). 

The main human exposure pathway to MPs present in the marine 
environment is believed to be through the consumption of fish and 
seafood and processed foods, but additional research on the sources, 
intake and associated health effects is needed (Cox et al., 2019). A 
challenge for assessing human health impacts is that, many, if not most 
of the effects are probably at the sub-acute level, with morbidity 
appearing only after extended periods of exposure, making it very 
difficult to trace the links between exposure and eventual ill health 
(Wright and Kelly, 2017). 

2.3. Marine MPs as contaminants of emerging concern 

Marine MPs were first described and reported on in the early-mid- 
1970s, but the number of studies on MPs began to increase substan
tially in 2008 and continues to rise (GESAMP, 2015; Lusher et al., 2017; 
Ryan, 2015). A systematic search of the literature using the terms 
“microplastics” or “microplastic” in combination with the terms “ma
rine” or “pollution” revealed that between 1991 and 2008, a maximum 
of one or two articles were published each year (Fig. 1). Between 2009 
and 2014, 148 peer-reviewed papers were published. Between January 
2015 and June 2019, the number grew by 1,701, indicating increasing 
concern supported by mounting evidence. The systematic search pro
tocol can be found in the Supplementary Information. 

According to Halden (2015), MPs are positioned at the second of 
eight stages of knowledge generation (See the Supplementary Informa
tion) for contaminants of emerging concern (CEC) (Halden, 2015). This 

means that there has been a progression from a low level of knowledge 
and awareness to preliminary evidence of a potential threat and 
knowledge gaps that need to be addressed in order to properly assess the 
risks and intervene appropriately (Halden, 2015). While the knowledge 
about the risks to ecological systems and human health may not meet the 
standards of evidence required for wide-ranging policy interventions, 
research has been prioritized by scientists across disciplines and insti
tutional settings and preliminary management strategies regarding MPs 
are being discussed or implemented by decision makers. Policies ban
ning personal care products containing MPs because of their contribu
tion to marine MPs have been enacted by several governments, 
including the USA, Canada and the UK (114th Congress, 2015; Dau
vergne, 2018; Government of Canada, 2018; Lam et al., 2018; Pettipas 
et al., 2016; UK Government, 2018; Xanthos and Walker, 2017). The 
European Union Marine Strategy Framework Directive (EU MSFD) de
fines MP as a pollutant. This requires all member states to establish and 
implement mitigation measures by 2020 (European Commission, 2018). 

The growing concern is also reflected in several high-level interna
tional initiatives that recognize the complexity of the marine MP chal
lenge, including the need for making decisions in the face of 
considerable uncertainty and the need to engage multiple stakeholders. 
Most of these initiatives also place MPs within the context of the entire 
plastic lifecycle, and therefore include reducing the quantities of plastics 
manufactured and consumed, removing existing stocks of MP particles 
in aquatic and marine environments and preventing MP particles from 
reaching these environments by improving waste management on land 
and in WW. The United Nations Environment Programme (UNEP) 
included the elimination of MPs in cosmetics as part of its global 
CleanSeas strategy, which also includes 13 non-binding resolutions on 
marine MPs signed by 193 nations (Ndiso, 2017; UNEP, 2017a, b, c). In 
2018, UNEP’s Global Plastics Platform was launched and the G7 pub
lished its Oceans Plastics Charter (G7, 2018; Walker and Xanthos, 2018). 
Several recent initiatives focus business stakeholders - the World Eco
nomic Forum’s panel on ocean sustainability, the World Bank Group’s 
PROBLUE Multi-Donor Trust Fund (MDTF) and the UN Global Compact 
Sustainable Ocean Business Action Platform (UN Global Compact, 2018; 
World Bank, 2018). One of the features of the business-oriented initia
tives is that they recognize the need for innovation as part of sustainable 
solutions, including innovation in WWT. This recognition has yet to be 
translated into concrete regulation governing the operations of WWTPs. 

Within Europe, for example, MPs are targeted within the Marine 
Strategy Framework Directive but not within the Urban Wastewater 
Treatment Directive that is the basis of the regulation for most European 
WWTPs (SAPEA, 2019). The systematic search of the literature revealed 
that globally, there is no jurisdiction that has specifications regarding 
the maximum level of MPs permitted in discharged WW. While WWT is 
highly regulated, the standards relate to water quality indicators such as 
concentrations of total organic matter, dissolved inorganic compounds, 
total suspended solids and nutrients, but not MP particles specifically. A 
key issue holding back regulation is available knowledge regarding the 
toxicity of MPs and how existing data have biased our view of the risk of 

Fig. 1. Number of publications per year (Note, 2019 contains data for January–August).  
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MPs. Most studies that have shown effects in organisms from exposure to 
MPs have been at very high MP concentrations, several orders of 
magnitude above current environmental occurrence (Barboza et al., 
2019; Everaert et al., 2018; Koelmans et al., 2017). Furthermore, most 
effects studies have used pristine spherical MP test materials of a single 
polymer type that do not accurately represent the partially degraded, 
irregular shaped MP mixture organisms encounter in the natural envi
ronment (Barboza et al., 2019; Pannetier et al., 2020). As a result, one 
main driver behind the current lack of regulation could be the absence of 
clear evidence for toxicity at environmentally relevant MP concentra
tions and for environmentally relevant MP particles, though more 
research needs to be conducted to make conclusions on this. 

3. Wastewater as part of the problem and wastewater treatment 
as part of the solution 

Typical WWT systems consist of successive treatment units of pri
mary and pretreatment (physical screening and clarification), followed 
by a biological treatment unit (secondary treatment). Many systems also 
have a tertiary unit (i.e. sand filtration or membrane-based filtration), 
which is considered as a combined physicochemical process to assure 
high quality of the final effluent for either safe disposal or reuse in 
agriculture after proper disinfection. A simplified schematic represen
tation of a treatment system is provided in Fig. 2. 

The first or primary stage targets floatable and settleable solids. Raw 
influent WW flows through a grit chamber gated by a bar screen with a 
mesh of between 1 and 6 mm. Items too large to pass through the mesh 
are removed from the WW, indicating the largest MP particles (>1 mm) 
will be removed at this stage. Up to 35% of the total suspended solids 
(TSS) are removed at this stage after which the WW flows into primary 
settling tanks where 40–50% of the remaining TSS is removed from the 
bottom of the tank (US EPA, 2011). The TSS removed from the WWT 
stream becomes part of the sludge that is treated separately from the 
effluent WW. The second stage of WW treatment targets organic matter 
and nutrients using aerobic and anoxic biological processes. Solids are 
also targeted at this stage, usually through additional settling techniques 
such as coagulation and flocculation. During this stage MP particles 
would also be subjected to these processes, which result in partitioning 
to the sludge. The tertiary stage targets a variety of chemicals, pathogens 
and the remaining organic matter, nutrients, and solids (again relevant 
for any remaining MP). Included in the multiple techniques at this stage 
are disinfection (e.g. chemical, ultraviolet radiation) and 
chemical-physical separation (e.g. rapid sand or membrane-based 
filtration) to remove additional particles. The MP particles removed 
from the WW at all stages are subsequently incorporated with other 
substances removed to the sludge and treated separately. 

Although the removal of MPs to sludge helps to reduce particles 

discharged into aquatic bodies, this process does not destroy MPs and 
the sludge can become a source of MPs to the environment when it is 
reused as biosolids or fertilizer (which it is in many parts of the world). 
The fate of MPs in sludge is an important issue for MP management. In 
this regard, several solutions have been proposed for reducing secondary 
MP pollution caused by sewage sludge (Zhang and Chen, 2020). For 
example, enhanced WWTP design at the grease removal stage has been 
suggested to improve removal of Low Density MPs and at the primary 
clarifier stage to increase settlement of High Density MPs (Yang et al., 
2019), while the usage of flocculants (i.e. ferric sulfate and aluminum 
sulfate) has been proposed to produce large flocs that adsorb and 
accumulate MPs in the primary sedimentation tank (Murphy et al., 
2016). Application of hydrophobic magnetic substances offers a poten
tial mechanism to collect and remove the hydrophobic MPs (Grbic et al., 
2019) and pre-treatment using pyrolysis technologies including thermal 
pyrolysis, microwave-assisted pyrolysis and catalytic pyrolysis has been 
suggested prior to sludge digestion (Undri et al., 2014). Finally, the 
removal of NPs has been suggested, for example in textile dyeing 
wastewater, using anaerobic digestion tanks that decompose the plastic 
into biogas (Feng et al., 2018). A focus of future research should be to 
find a way to remove or break down MPs during sludge treatment, so 
that they are not released into the environment. 

The capacity of WWTPs to remove MPs from WW influent is a by- 
product of plants’ design and several recent studies have quantified 
and categorized MPs in primary, secondary and tertiary WW and sludge. 
These studies were conducted on a variety of systems and employed 
various methods for sampling, sample preparation and analysis. While 
the results from the different studies may not be directly comparable, 
they do provide insights into the efficiency of current WWT processes on 
MPs under different real world and experimental contexts (Browne 
et al., 2011; Carr et al., 2016; Eriksen et al., 2013; Estahbanati and 
Fahrenfeld, 2016; Gies et al., 2018; Lares et al., 2018; Mahon et al., 
2017; Mason et al., 2016; McCormick et al., 2014; Murphy et al., 2016; 
Sun et al., 2019; Talvitie et al., 2017a; Underwood et al., 2017; Zia
jahromi et al., 2017). Table 1 provides examples of removal rates from a 
selection of these recent studies. 

Gies et al. (2018) found large differences between visual counting 
methods and Fourier-transform infrared spectroscopy (FTIR) in dis
tinguishing MPs from other particulate matter in water at each stage of 
treatment (Gies et al., 2018). Nevertheless, there is a general consensus 
that up to 88% of MPs in raw influent are removed during the primary 
and secondary treatment stages and up to a further 10% is removed in 
the tertiary stage (Carr et al., 2016; Murphy et al., 2016; Simon et al., 
2018; Sun et al., 2019; Talvitie et al., 2015, 2017a). Interestingly, 
certain treatment types appear to exhibit varying efficiencies in 
removing differently shaped MP. Primary treatment using flocculation 
and sedimentation may be more effective in removing fibers and 

Fig. 2. Wastewater treatment process.  

S. Freeman et al.                                                                                                                                                                                                                                



Journal of Environmental Management 266 (2020) 110642

5

skimming may be more effective in capturing bead shaped MPs, whereas 
irregularly shaped MP flakes may be more effectively removed during 
secondary treatment (Hann et al., 2018; SAPEA, 2019; Sun et al., 2019). 

Of the remaining MPs in the final effluent, the reported concentra
tions from 15 studies representing 73 WWTPs range from 0 to 447 
particles L-1 of effluent (Sun et al., 2019). Of these, reported daily 
emission data is available for 58 WWTPs, suggesting emissions of up to 
1.83 x 1010 MP particles per day or up to an equivalent of 6.7 x 1012 MP 
particles annually from just one WWTP (Leslie et al., 2017). However, 
this amount will depend on the specific capacity of an individual plant 
(i.e. the amount of WW treated), the content of the raw influent and the 
efficiency of removal. For example, a small-medium sized WWTP that 
treats 30,000–50,000 m3/day of wastewater will contribute up to 
1.34–2.24 x 1010 MP particles per day. Based on capacities of large 
WWTPs of up to 500,000 m3/day, emissions of MPs could then be ex
pected to be one order of magnitude higher than for medium sized 
systems. 

The particles released in the final effluent are generally smaller than 
the mesh size used in primary processing. Magnusson and Norén (2014) 
found that 70–90% of MP particles between 20 and 300 μm in raw 
influent were removed during treatment and 99% of particles larger 
than 300 μm were retained in a Swedish WWTP (Magnusson and Nor�e; 
n, 2014). Furthermore, Vollertsen and Hansen (2017) reported that the 
median size of particles (41.5 μm) in treated WWT was 20% smaller than 
that found in the raw influent (50 μm) (Vollertsen and Hansen, 2017). 

Polyester microfibers and polyethylene microparticles are typically 
the most abundant MPs found in the final effluents of WWTPs (Browne 
et al., 2011; Lares et al., 2018; Murphy et al., 2016; Sun et al., 2019; 
Ziajahromi et al., 2017). This most likely reflects the fact that polyester 
is the most commonly used synthetic fiber in textiles and that poly
ethylene is the most prevalent polymer used in plastics manufacturing 
generally and that both are highly prevalent in WW as a result. A Danish 
study of 10 WWTPs also found that polyamide and nylon microfibers 
were highly abundant, suggesting a major input of MPs to WWTPs from 
domestic and industrial washing of synthetic textiles (Vollertsen and 
Hansen, 2017). An additional contributing factor to the prevalence of 
fibers in WW effluent may be their long thin shape, which may allow 
them to pass through even fine mesh filters in WWTPs (Sun et al., 2019). 
Other common MPs include polyethylene fragments with uneven shapes 
that have been attributed to personal care and household cleaning 
products containing MP particles (Talvitie et al., 2017b). 

Notwithstanding the uncertainties regarding the exact types and 
quantities of MPs present in WW influents and effluents, current 
research points to relatively high capture rates. However, there remains 
a high potential for the release of large numbers of very small particles 
(low micron to nanometer in size) and fibers, as shown by the estimated 
annual release of up to 1010–1011 particles from a single WWTP (either 

small-medium or large size system). In addition, there is evidence that 
fiber-shaped particles in WW effluent may be more mobile than other 
MP particles. For example, one study traced MP particles through the 
effluent pipe from a Swedish WWTP to the sea and found that while all 
shapes were represented equally at the plant, only fiber shaped particles 
were present in seawater samples near the pipe outlet (Magnusson and 
Nor�e;n, 2014). From the standpoint of the marine environment, very 
small particles are of particular concern because of their potential for 
consumption by small biota and because in larger organisms these small 
particles are thought to have the greatest potential for true biological 
effect (i.e., transfer across biological membranes) and therefore the 
highest risk for eliciting toxicological effects (Hollman et al., 2013; 
Rochman, 2015). 

4. Technological innovation in WWT 

4.1. Existing innovation status for the capture of small particles 

A review of technologies (Table 2) reveals that there is a lack of 
methods capable of efficiently removing very small plastic particles and 
fibers in a manner that is technically, environmentally and economically 
sustainable in industrial-scale WWTPs. Four technologies, Membrane 
Biological Reactor (MBR), Rapid Sand Filter (RSF), Dissolved Air 
Flotation (DAF), and Microscreen Filtration with Discfilters (DF), 
reviewed by Talvitie et al. (2017a,b) were effective for removing par
ticles larger than 100 μm, but generally ineffective for fibers (Talvitie 
et al., 2017b). MBR combines biological processing of organics and 
nutrients in the raw WW with filtration via membranes to reduce the 
load of particles and microbes in subsequent treatment steps. Although 
this process is highly efficient (99.9% of all MPs are removed from the 
WW), some particles (especially fibers) tend to pass through with the 
treated WW. The RSF captures particles when the secondary WW 
effluent passes through the sand medium where collected particulate 
matter (including MPs) is removed by back-washing the sand; this 
process can remove as much as 97% of the MPs from the WW. DAF 
consists of pumping air into secondary effluent to cause particles and 
dissolved organic matter to float so that they can be skimmed off the 
surface ‘scum’ layer, thereby removing as much as 95% of the MPs from 
the WW. Microscreen filtration uses dedicated DFs to remove particles 
from the secondary WW effluent by simple mechanical filtration and 
harvesting of the collected particulate matter following backwashing of 
the filters. This filtration process can remove between 40 and 98.5% of 
the MPs from the WW. MBR and DAF are expensive to operate because of 
high capital or operating costs and energy consumption. MBR systems 
have particularly high maintenance costs because of fouling and 
biofouling problems. DAF was also found to be unsuitable for large 
WWTPs. 

4.2. Future innovation status for the capture of small particles 

At the experimental level, there have been varying degrees of success 
in removing particles at the smaller end of the size spectrum. One study 
reported low filtration resistance and trans-membrane pressure and easy 
cleaning in a Dynamic Membranes (DM) system; however, the system 
had high energy costs and low removal rates (Li et al., 2018). Another 
study tested enhanced flocculation/coagulation processes, but found 
that removal rates were low and restricted to bead-shaped particles 
while membrane fouling was also a problem (Ma et al., 2019). Although 
electrocoagulation (EC) appears to have very high removal rates, it re
quires continuous adjustment of pH levels and electrical current, and is 
unsuitable for the high-flow rates characteristic of most municipal sys
tems (Perren et al., 2018). Early-stage experimentation of enhanced 
filtration with a back-flushing mechanism to prevent clogging of filters 
appears to have overcome the problem of clogging and shows some 
effectiveness in removing fibers; however, removal rates for very small 
particles remains uncertain (Beljanski et al., 2016). In a system currently 

Table 1 
Examples of MP removal rates for different WWTPs and treatment stages.  

WWT Sites Treatment 
Level 

Removal 
Rate 

Reference 

Netherlands (7 
WWTPs) 

Tertiary 72% Leslie et al. (2017) 

Denmark (10 
WWTPs) 

Tertiary 99.7% Vollertsen and Hansen 
(2017) 

Australia (3 WWTPs) Tertiary >90% Ziajahromi et al. (2017) 
Secondary 29% 
Primary 17% 

Germany (1 WWTP) Tertiary 97% Mintenig et al. (2017) 
USA (3 WWTPs) Tertiary 99% Michielssen et al. (2016) 

Secondary 96% 
UK (1 WWTP) Secondary 98% Murphy et al. (2016) 

Primary 78% 
USA (7 WWTPs) Tertiary 90% Carr et al. (2016) 
Finland (1 WWTP) Tertiary 99.8% Talvitie et al. (2015) 

Source: Hann et al. (2018) 
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under development to address MPs in WWTPs, the EU H2020 CLAIM 
project is filtering WW using 1500 μm, 70 μm and 30 μm filters, followed 
by a photocatalytic process, designed to degrade these polymers. Ac
cording to Tofa et al. (2019), the process required 175 h to degrade 
LDPE. Relative to the standard one-day hydraulic retention time (HRT) 
employed in most WWT systems, this is very long and would require 
significant capital investment to modify existing WWTP infrastructure. 

Given the challenges associated with the approaches described 
above, some attention has been directed to bio-based alternatives 
derived from the mucus secreted by gelatinous zooplankton such as 
jellyfish and larvaceans. In in situ feeding experiments, giant larvaceans 
of the genus Bathochordaeus were able to trap MPs in the “mucous 
houses” they construct as part of their feeding process (Katija et al., 
2017). In a laboratory setting, it was found that jellyfish mucus secreted 
as a stress response could be used to capture and concentrate gold 
nano-particles (Patwa et al., 2015). In both studies, inherent properties 
of the mucus rapidly capture micro and nano particles, causing them to 
be removed from aqueous suspension. The results stimulated thoughts of 
how this might be applied elsewhere. 

The EU Horizon (2020) project GoJelly,1 for example, assesses the 
potential for developing a filter based on jellyfish mucus within WWTPs 
to reduce the release of the uncaptured MPs to the environment. The 
characteristics sought are effective removal, energy and resource effi
ciency and low capital and maintenance costs. Two deployment options 
are being considered for application of the mucus filter; one during the 
primary treatment (in tank 2; Fig. 2), where the addition of the 
mucus-derived compound will act as a particle aggregator enhancing the 
settling process and facilitating the removal of MPs from the settling 
tank. The second option is as a pre-treatment to the tertiary stage sand 
filter (before tank 6; Fig. 2), where the mucus will facilitate the capture 
of MPs within the pores of the sand filter media. As a steady supply of 
mucus is crucial to the success of the system, developing methods of 
capturing different species of jellyfish, extracting their mucus and pro
cessing it has been a major focus of the work and includes examining the 
capacity within the fishing community to adapt existing practices to 
capture jellyfish (Liu et al., 2018; Nakar et al., 2011; Tiller et al., 2014, 
2015). Table 2 provides an overview of the strengths and weaknesses of 
each technology described above. 

Table 2 
Overview of technologies for removing MPs within WWTPs.  

Technology Strengths Weaknesses Reference 

Membrane 
Biological reactor 
(MBR) 

Reported 99.9% 
removal rate. Small 
footprint. 

Expensive, fouling 
and biofouling 
problems, 
ineffective for 
removing particles 
<20–100 μm and 
fibers, high capital 
cost, high-energy 
requirement. 

(Talvitie 
et al., 2017a, 
2017b) 

Rapid sand filter 
(RSF) 

Reported 97.0% 
removal rate 

Ineffective for 
removing particles 
< 20–100 μm and 
fibers. 

Dissolved air 
flotation (DAF) 

Reported 95% 
removal rate 

Ineffective for 
removing particles 
<20–100 mm and 
fibers. 
Cannot be deployed 
in large WWTPs. 
Expensive capital 
and operational 
cost. 

Disc filtration (DF) Reported 
40–98.5% removal 
rate 

Ineffective for 
removing particles 
< 20–100 μm and 
fibers. 

Electrocoagulation Reported 99.24% 
removal rate at pH 
¼ 7.5 

Experimental (lab- 
scale) Applicable 
for beads only. 
Requires expensive, 
continuous 
adjustment of pH 
and electric 
current. May not be 
deployable in 
municipal-scale, 
high flow-through 
WWTPs. 

Perren et al. 
(2018) 

Gravity-powered 
filtration system 

Specifically 
designed for MP 
removal 

Experimental (lab- 
scale) Not yet tested 
on actual WW. 

Beljanski 
et al. (2016) 

Dynamic 
membranes 
(DMs) 

low filtration 
resistance and low 
trans-membrane 
pressure (TMP); 
easily cleaned 

Uncertain 
effectiveness, 
potentially high 
energy 
consumption. 

Li et al. 
(2018) 

Enhancement in 
flocculation/ 
coagulation 

Up to 40% removal 
efficiency 

Experimental (lab- 
scale) Applicable 
for beads, increased 
membrane fouling 
in subsequent steps, 
low removal rate. It 
was tested only at 
lab-scale. 

Ma et al. 
(2019) 

Photocatalytic 
process 

This technology is 
based on filtering 
WW using 1500 
μm, 70 μm and 30 
μm filters, followed 
by a photocatalytic 
process, 
supposedly to 
degrade these 
polymers. 

Experimental (lab- 
scale). Length of 
process (175 h) is 
incompatible with 
current WWT 
processes. 

Tofa et al. 
(2019) 

Bio-based, jellyfish 
mucous filter 

Cost-effective, 
requires little 
capital 
infrastructure, 
energy or other 
operating costs. 
Low footprint. 
Potential upstream 
job creation for 
fishers’ supplying 

Experimental (lab- 
scale)  
� Removal rates 

vary by species of 
jellyfish 
supplying the 
mucus.  

� Optimal 
processing of 

Unpublished  

Table 2 (continued ) 

Technology Strengths Weaknesses Reference 

jellyfish 
Converts a 
nuisance species 
into something 
useful. 

mucus has yet to 
be determined.  

� Optimal 
deployment 
options within 
WWTPs has yet 
to be 
determined.  

� Ensuring supply 
of mucus may be 
challenging 
given 
fluctuations in 
the size of wild 
jellyfish 
populations. 
Options for 
deployment in 
WWTP are 
uncertain.  

1 GoJelly-A gelatinous solution to microplastic pollution is a research consortium 
of 16 institutions funded by the European Union’s Horizon 2020 program that 
has as one major objective of exploring ways of reducing the flux of MP waste to 
the sea by reducing the quantities of microplastic particles in treated waste
water effluent. 
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5. Discussion 

WWT is recognized as an important element within the multifaceted 
sets of solutions needed to reduce the amount of MP waste entering 
marine environments. A growing number of trans-national policy ini
tiatives (e.g. the G7 Charlevoix Declaration) contain clauses that 
recognize the requirement for research and development into better 
WWT, and the need to promote and support innovation to create 
economically feasible technological solutions (G7, 2018). Nevertheless, 
it has proven difficult to achieve broad consensus on international 
agreements. For example, only five of the G7 members plus the EU have 
ratified the agreement, while Japan and the USA have not done so 
(Benson Whalen, 2018). In addition, the Charlevoix Declaration, like 
many other recent high-level initiatives is voluntary. Others include the 
UN Global Compact on Sustainable Ocean Business Action, the High 
Level Panel for Ocean Sustainability, and the UNEP Clean Seas Imitative. 
Crucially, none of these are backed by concrete, binding policies having 
the type of regulatory infrastructure needed to enforce change, with the 
one exception being the World Bank’s PROBLUE fund (Xu, 2016). 

To be truly effective, policies must be binding and accompanied by 
enforceable regulations that will affect the operation of water utilities 
and that encourage technological change innovation needed to remove 
MPs from the treated WW stream (Magnusson and Nor�e;n, 2014). To the 
best of our knowledge, there is no requirement anywhere in the world 
for the removal of MPs during WWT (SAM, 2018). The reasons for the 
policy gaps may include the uncertainty related to the risks associated 
with MPs (reviewed above). As a result, some policy and 
decision-makers may not be convinced of the need for immediate action, 
while others may be willing to act on a precautionary basis. Within the 
EU, WW is regulated under the Urban Waste Water Treatment Directive 
which requires that all member states ensure water collection and 
treatment for communities with populations larger than 2000 people. 
The Directive establishes principles for the design, construction and 
treatment of plants and systems, as well as minimum standards for the 
water treated (European Environment Agency, 2018; SAM, 2018). While 
there have been discussions on altering the directive to accommodate 
MPs, this has not been done (Clayton, 2016). 

This means that mechanisms for transmitting high-level policy ini
tiatives into operation are weak. Innovation in this field will occur only 
if the investors and WWTP operators believe that research and devel
opment, implementation (including new infrastructure) and operations 
will be cost effective in the long run. Most utilities are not market driven 
and therefore regulation must be constructed in a manner that in
centivizes investment in new infrastructures and practices (Beecher, 
2013; Porter and Van der Linde, 1995). According to industry experts, 
the conservative nature of the WWT industry, tough financial markets 
and current regulatory structures in many places means that it can take a 
minimum of five years to deploy a new technology (Gale, 2014; Rehan 
et al., 2011). This type of time lag can be an added deterrent to research 
and development because it creates uncertainties about whether new 
technologies will reach the market. Environmental regulation coupled 
with innovation subsidies have been shown to incentivize investment 
and may provide an effective mechanism because they can simulta
neously provide clear standards to guide operations with support for 
targeted, industry-oriented research aimed at refining the technologies 
needed to comply with regulation (Xu, 2016). 

With respect to the research and development stages of the innova
tion chain, the approach used in the GoJelly project shows promise by 
building on a prior proof of concept for using a bio-based filter instead of 
mechanical and chemical processes that have proven to be ineffective or 
too costly. The teaming of marine ecologists, jellyfish experts, micro
plastics and WW specialists has proven to be an essential element in 
progressing from experimental stages to piloting the filter. The inter
disciplinary team that draws on these separate research fields has 
enabled us to map out the steps needed for the chain of production and 
deployment of the bio-based filter, from the capture of jellyfish through 

to the methods of deployment within a WWTP. 
Policy and regulatory opportunities intersect with the age profile of 

plants and equipment in the WWT sector. While MP retention rates 
above 90% can be achieved by plants operating with tertiary treatment, 
in Europe WWTP operations are quite variable and rates can be as low as 
53% if technology is outdated and only primary and secondary treat
ments are conducted, as is the case in many older plants (Hann et al., 
2018). Much of the European and North American infrastructure was 
built during or before the 1970s and will need to be replaced or refitted 
in the next ten years. This presents an opportunity to deploy more 
up-to-date technologies capable of complying with changed regulations 
requiring the removal of MPs. WWTP operators are increasingly aware 
of the issue of MPs and within the scientific literature a number of recent 
articles have addressed the challenge of MPs for the WWT industry 
(Canadian Water Network, 2018; Drew, 2017; Huber Technology, 
2019). Improved removal of MPs in WW may also confer additional 
benefits. At least one study observed that MPs and NPs in WW clog 
certain mechanical processes within WWTPs and more efficient systems 
may translate into lower maintenance costs for operators (Enfrin et al., 
2019). If bio-based filters prove to require less investment in infra
structure than other options, deployment, even within current WWT 
systems, could be technologically and economically feasible. 

6. Conclusion 

WWTPs already capture a sizeable proportion of MP particles from 
WW but owing to the large volumes of WW processed within these 
plants, treated WW still makes a sizeable contribution to aquatic MP 
pollution. Moreover, the particles released in treated WW tend to be 
smaller and contain a high proportion of fibers, which may pose hazards 
to planktonic species and live stages at the base of aquatic food webs in 
ways that larger particles do not. While part of the solution to the 
challenge of stemming the flow of MP particles reaching surface waters 
must surely rest with WWTPs, there are currently no cost-effective 
technologies for capturing very small and fiber-shaped MPs. However, 
several systems currently being developed show promise. Diverting MP 
particles from WWTP influents into the sludge phase creates the need for 
additional innovation in the treatment process since the sludge subse
quently represents a source of MP pollution. Although this paper does 
not deal directly with management of MPs at this stage of WWT, we note 
that this must be a consideration if WWTPs are to be effective in man
aging MPs. 

The cost and effort of developing such mitigation systems can only be 
justified if there is a reasonable expectation that they will be adopted by 
the WWT sector, which would require changes to policies and regula
tions governing the operation of WWTPs. Such changes may include new 
standards for MP levels in WWTP effluents, as well as measures to ensure 
that the cost of deploying new systems can be recouped by plant oper
ators. However, any policy or regulatory changes need to be based upon 
an acceptable level of proof that MPs pose a risk to ecosystems at 
environmentally relevant concentrations and therefore justify the need 
for such mitigation actions. As a result, the partnership between applied 
scientific researchers, industry stakeholders and water policy decision 
makers is key to making the WWT sector a key player in meeting the 
challenge of reducing MP emissions to the environment. Finally, 
emphasis must be given to the fact that improved WWT is one part of 
what must be a multi-faceted approach to solving the problem of marine 
MP pollution and wider environmental MP pollution. Any efforts must 
form part of a broader approach that addresses the need for reducing 
plastic consumption, reducing the levels of uncontrolled plastic release, 
reducing the quantity of disposed plastics waste and better management 
of plastic waste through improved recycling and circular economy 
approaches. 
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