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TGA transcription factors are essential regulators of various cellular processes,

their activity connected to different hormonal pathways, interacting proteins

and regulatory elements. Belonging to the basic region leucine zipper

(bZIP) family, TGAs operate by binding to their target DNA sequence as

dimers through a conserved bZIP domain. Despite sharing the core DNA-

binding sequence, the TGA paralogues exert somewhat different DNA-

binding preferences. Sequence variability of their N- and C-terminal protein

parts indicates their importance in defining TGA functional specificity

through interactions with diverse proteins, affecting their DNA-binding

properties. In this review, we provide a short and concise summary on

plant TGA transcription factors from a structural point of view, including

the relation of their structural characteristics to their functional roles in

transcription regulation.
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Introduction

The Arabidopsis thaliana genome encodes for over 2,200 transcription factor
genes, according to the Plant Transcription Factor Database1 yet few of them have
been thoroughly characterized. The TGACG-binding (TGA) transcription factors were
among the first plant transcription factors ever studied, their discovery dating back to
the year of 1989 (Katagiri et al., 1989). Named after their hallmark binding site, the TGA
factors became known for their regulation of defense-related genes through interaction
with NON-EXPRESSOR OF PR-1 (NPR1) cofactor (Zhang et al., 1999), a salicylic acid
receptor and master regulator of plant immunity (Wu et al., 2012; Backer et al., 2019;
Wang W. et al., 2020). Among dicot plant species, the ten Arabidopsis TGA factors,

1 http://planttfdb.gao-lab.org
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AtTGA1-7, AtPERIANTHIA (AtPAN), and AtTGA9-10, have
been investigated most thoroughly, next to five tobacco
(Nicotiana tabacum) members, NtTGA1A, NtPG13, NtTGA2.1,
NtTGA2.2, and NtTGA10. They are distributed into five clades
(Jakoby et al., 2002), which are phylogenetically divided into
two branches (Figure 1). Functional analysis of TGAs from
different clades revealed not only their importance in biotic
stress response (Zhang et al., 2003; Kesarwani et al., 2007;
Zander et al., 2010; Sun et al., 2018), but also in regulation of
gene expression connected to abiotic stress responses (Zhong
et al., 2015; Fang et al., 2017; Herrera-Vásquez et al., 2021),
developmental processes (Murmu et al., 2010; Maier et al.,
2011; Wang et al., 2019), circadian rhythm (Zhou et al., 2015),
detoxification (Fode et al., 2008; Mueller et al., 2008; Herrera-
Vásquez et al., 2021), nitrate signaling (Alvarez et al., 2014;
Canales et al., 2017), flowering (Thurow et al., 2005; Song et al.,
2008; Maier et al., 2011; Xu et al., 2021), and autophagy (Wang
P. et al., 2020) (Figure 1). Initially, the function of TGAs from
clades I, II, and III was mainly associated with plant immunity,
whereas the first reports on clade IV and V members revealed
their role in regulating developmental processes (reviewed in
Gatz, 2013). However, this apparent functional division is
becoming less evident as an increasing number of reports show
that most clades are involved in a variety of processes (Figure 1).
For example, clade I TGAs have also been shown to be involved
in regulating growth and development (Li et al., 2019; Wang
et al., 2019), while clade IV TGAs are also important in biotic
stress (Noshi et al., 2016; Venturuzzi et al., 2021).

A detailed review, integrating TGA transcription factor
research, was published last in 2013 (Gatz, 2013). The
complexity of TGA involvement in various molecular processes,
the lack of research supporting the proposed mechanisms of
action and limited reports on the relation between structure
and in vivo function have become characteristic features of
TGA studies and are the reason for our lack of knowledge
about their mechanism of action. In order to understand how
transcription factors operate, we must consider their structural
characteristics as the underlying basis of protein activity. Here,
we consider the importance of reported and in silico determined
TGA structural features in defining their functional specificity
and variability, focusing on the characterized TGA factors from
Arabidopsis and tobacco.

From TGA factor structure to their
function

For more than 30 years after their discovery, the TGA
protein three-dimensional (3D) structure remained a mystery
and the first structural data have been published only recently
in a breakthrough report providing a partial cryo-electron
microscopy (cryo-EM) structure of AtTGA3 in complex
with NPR1 (Kumar et al., 2022). Additionally, the novel

artificial intelligence algorithm AlphaFold (AF) allows structure
prediction without the availability of known similar structures
(Jumper et al., 2021) and AF models for full-length Arabidopsis
and tobacco TGAs are already available in the AF Protein
Structure Database (Figure 2A; Varadi et al., 2022). In the
following subchapters, we aim to connect literature reports with
in silico analyses, to better understand the biological role of the
three main structural parts of TGAs: The conserved basic region
leucine zipper (bZIP) domain, the highly variable N-terminal
part, from now on referred to as the N-terminus, and the
C-terminal part (C-terminus), containing a putative Delay of
Germination 1 (DOG1) domain (Figures 2A,B).

The highly conserved DNA-binding
domain

TGAs are members of the bZIP protein superfamily and
represent a plant-specific subgroup, found in different species,
including mosses and liverworts (Gutsche and Zachgo, 2016;
Gutsche et al., 2017). bZIP proteins are defined by their DNA-
binding and dimerization region known as the bZIP domain,
which is highly conserved among plants and even across
kingdoms (Jindrich and Degnan, 2016). Multiple sequence
alignment of Arabidopsis and tobacco TGAs shows the bZIP
domain as the region of highest protein sequence identity,
regardless of plant species (Figure 2C). The bZIP domain
determines DNA-binding specificity and serves as a nuclear
localization signal (Figure 2B; van der Krol and Chua, 1991;
Deppmann et al., 2004). It consists of two regions, the basic
region and the leucine zipper. Hydrogen bond formation with
the major DNA groove is facilitated through the basic region,
which contains an invariant N-x7-R/K motif (Dröge-Laser et al.,
2018). Nineteen out of 20 amino acids of the TGA basic region,
including the N-x7-R motif, remain identical in all aligned
Arabidopsis and tobacco sequences, with a few clade/species-
specific differences present only in the first residue (Figure 2D).

bZIP proteins bind target DNA as dimers, with
combinatorial homo- or heterodimerization at the DNA-
binding site granting them broad variability in regulation of
physiological responses (Deppmann et al., 2006; Rodríguez-
Martínez et al., 2017). The leucine zipper confers dimer
formation and determines dimerization specificity. It consists
of repetitive seven-amino acid units, called heptads. Each
heptad contains a conserved leucine residue at its fifth position
(Landschulz et al., 1988; Deppmann et al., 2006). TGA bZIP
domains have three leucine zipper heptads, which show higher
variability than the basic region, yet retain the conserved
leucines. The only exception is AtTGA10, where the third
leucine is replaced with isoleucine (Figure 2D). The number
of heptads is among the lowest compared to other Arabidopsis
bZIP proteins (Deppmann et al., 2004), rendering the 41 aa bZIP
domains in TGAs considerably shorter from the typical 60–80
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FIGURE 1

Unrooted phylogenetic tree of Arabidopsis and tobacco TGAs. Phylogenetic analysis of TGA factors shows an earlier separation of clades into
two branches, one dividing into clades II, IV, and V, the other into clades I and III, indicating a closer evolutionary relationship between clade
members in the same branch. TGA involvement in regulation of different processes, based on literature search, is represented for each clade.
Sequence alignment by MUSCLE (Edgar, 2004) and phylogenetic analysis by the Maximum Likelihood method, based on the JTT matrix-based
model (Jones et al., 1992), were conducted in MEGA7 (Kumar et al., 2016). The branch length scale represents the number of substitutions per
site. Protein sequences with listed protein identification numbers were retrieved from UniProtKB (https://www.uniprot.org/): AtTGA1 (Q39237),
AtTGA2 (P43273), AtTGA3 (Q39234), AtTGA4 (Q39162), AtTGA5 (Q39163), AtTGA6 (Q39140), AtTGA7 (Q93ZE2), AtPAN (Q9SX27), AtTGA9
(Q93XM6), AtTGA10 (E3VNM4), NtTGA1A (P14232), NtPG13 (Q05699), NtTGA2.1 (O24160), NtTGA2.2 (Q9SQK1), and NtTGA10 (Q52MZ2).

aa bZIP length (Jindrich and Degnan, 2016). Additionally,
the leucine zippers of TGAs contain destabilizing residues at
dimer contact sites, making the zipper formation less stable
(Deppmann et al., 2004). The extent to which dimerization
stability affects transcription factor binding time at its specific
motif is not known and unstable interactions might shorten
DNA-binding times, resulting in a lower number of generated
transcripts (Swift and Coruzzi, 2017).

During DNA-binding the bZIP domains of two proteins
grip the DNA segment in a scissor-like fashion, while attaining
an alpha-helical fold (Vinson et al., 1989; Ellenberger et al.,
1992), as shown in the human FosB-JunD-DNA complex
3D structure (Figure 2E; Yin et al., 2017). The role of the
leucine zipper in TGA dimerization had been demonstrated by
switching the leucine zipper in NtTGA2.2 for a zipper from the
human Jun bZIP protein, which prevented heterodimerization
with NtTGA2.1 (Thurow et al., 2005). However, deletion of
93 aa from AtTGA2 N-terminus, including the entire bZIP
domain, still allowed homodimer formation (Boyle et al.,
2009) and multiple reports have shown that TGA dimerization
depends significantly on other protein parts as well. A dimer
stabilization region had been identified in the C-terminus
of tobacco NtTGA1A, located between 178 and 373 aa
(Katagiri et al., 1992). Formation of stable contacts through
the TGA C-terminus was recently confirmed with cryo-EM,

which revealed homodimerization of AtTGA3 C-termini in
the AtTGA3-NPR1 complex structure (Kumar et al., 2022).
Moreover, deleting the residues from 146 to 330, spanning more
than half of the protein C-terminus, abolished the DNA-binding
activity of AtTGA2 (Johnson et al., 2008), which could be
due to hindered dimerization. Additionally, protein interaction
analyses in vitro and in vivo showed that TGAs can form
homodimers, heterodimers as well as higher order complexes
(Niggeweg et al., 2000; Schiermeyer et al., 2003; Boyle et al.,
2009) and the oligomerization properties of AtTGA2 seem to
be dependent on the region spanning its N-terminus and bZIP
domain (Boyle et al., 2009).

Recognition of only a short DNA sequence is usually
sufficient for transcription factor binding (Kribelbauer et al.,
2019). The TGACG pentamer is the common TGA dimer
binding site and sufficient for their binding (Katagiri et al.,
1992; Schindler et al., 1992; Izawa et al., 1993). ChIP-
seq analysis of AtTGA2 revealed that 55% of significantly
enriched regions in the Arabidopsis genome contained the
TGACGTCA palindrome, while all carried at least the TGACG
core motif (Thibaud-Nissen et al., 2006). The palindrome
was also determined as the representative binding motif of
AtTGAs in DAP-seq data (O’Malley et al., 2016). In addition,
tandem TGACG repeats, such as the activating sequence-1
(as-1) or as-1-like elements, allow more options regarding
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FIGURE 2

Among the three main TGA protein parts, the bZIP domain is the most highly conserved. (A) The AlphaFold generated 3D model of AtTGA1
(Jumper et al., 2021; Varadi et al., 2022) (pLDDT, AlphaFold per-residue confidence score) and (B) a schematic representation of TGA domain
organization, showing the flexible N-terminus, the bZIP domain and the C-terminus, encompassing a putative Delay of Germination 1 (DOG1)
domain. The nuclear localization signal (NLS) and glutamine rich regions Q1 and Q2 are indicated. (C) Multiple sequence alignment of ten
Arabidopsis and five tobacco TGAs, with segments of high similarity or identity colored darkest and lowest similarity lightest, shows the bZIP
domain retains the highest sequence identity throughout the whole protein sequence. In cases where sequence segments at N-terminal or
C-terminal ends are not aligned to any of the other sequences, they are considered identical and are colored black. (D) A closer examination of
the bZIP domain shows few variations in the basic region, while the three zipper heptads, with conserved leucine residue positions marked,
show higher variability. The alignment and sequence logo were prepared and visualized with Geneious Prime 2020 (Kearse et al., 2012), using
default parameters. (E) Structural model of the human FosB-JunD bZIP dimer in complex with DNA (5VPE entry in RCSB PDB) (Yin et al., 2017).
The models in (A,E) were visualized in UCSF ChimeraX (Pettersen et al., 2021).
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the binding stoichiometry. For example AtTGA2, AtTGA5,
NtTGA2.1, NtTGA2.2, and NtTGA10, can bind tandem repeats
in two-dimer complexes (tetramers). Although past reports
indicated that AtTGA1, AtTGA3, and NtTGA1A prefer single-
dimer formation (Lam and Lam, 1995; Niggeweg et al., 2000;
Schiermeyer et al., 2003), Kumar et al. (2022) show single and
double occupancy of tandem repeats in the Pathogenesis related-
1 (PR-1) promoter by AtTGA3 in electrophoretic mobility
shift assays. The single-occupancy band is depleted in the
presence of NPR1, which supershifts the double-occupancy
band. The AtTGA3-NPR1-DNA complex structure consists
of four AtTGA3 and two NPR1 proteins, where an NPR1
dimer connects two DNA-bound AtTGA3 dimers (Kumar
et al., 2022). The spacing between tandem repeats is also
important, as it affects element recognition, binding affinity and
TGA transcription activation ability (Krawczyk et al., 2002).
Moreover, TGA paralogues have been shown to occupy the
A-box (TACGTA), C-box (GACGTC), G-box (CACGTG), and
T-box (AACGTT) motifs with different affinities (Izawa et al.,
1993; Wang et al., 2019).

Heterodimerization of transcription factors with different
binding preferences can, undoubtedly, result in distinct DNA-
binding specificities and affinities (Rodríguez-Martínez et al.,
2017). NtTGA2.1/NtTGA2.2-NtTGA1A heterodimers have
been recruited to a single TGACG motif (Niggeweg et al., 2000).
Homodimer binding can be stabilized by the presence of other
TGA homodimers at the tandem occupancy site (Lam and Lam,
1995). Besides the motif sequence, adjacent sequence regions
are also important for binding, as they determine intrinsic
DNA properties and consequently the transcription factor
binding affinity (Kribelbauer et al., 2019). For example, when
compared to the as-1-like element, the affinity of AtPAN was
stronger for the 33 bp long AAGAAT motif, characterized by
an AAGAAT sequence upstream of a single TGACG pentamer
(Gutsche and Zachgo, 2016). Additionally, local adjustments of
TGA concentration, for example through specific subnuclear
localization, may contribute to successful binding to suboptimal
binding sites (Kribelbauer et al., 2019).

Staying flexible through N-terminus

The N-terminus is likely a major contributor in defining
TGA functional specificity. It is the least conserved part of
the TGA structure, with a high variability in amino acid
sequence and length (Figure 2C). Studies analyzing the TGA
N-terminus function indicate its various roles, but only a few
of them have been corroborated by further analysis. Due to
its relatively high acidic amino acid content (9–24%, calculated
as the percentage of aspartic and glutamic acid residues), it
was proposed that it likely takes on a transcription regulation
function (Katagiri et al., 1989). Acidic regions are common
to many transcription activation domains and, according to

the model proposed by Staller et al. (2018), help exposing
the hydrophobic residues to facilitate contact formation with
coactivators. In support of this, removing the N-terminus of
NtTGA1A diminished its transcription activation ability in
tobacco cotyledons (Neuhaus et al., 1994).

Because activation domains often interact with a variety of
structurally distinct coactivators, they are usually intrinsically
disordered as well, thus their 3D structure is hard to determine
(Staller et al., 2018). In line with this, the TGA N-terminal
region is mostly unstructured in the AF models (Figure 2A)
and has an overall high probability of disorder (>0.5) with
variably interspaced more structured sections according to three
intrinsic disorder predictors, IUPred2 (Figure 3; Mészáros et al.,
2018), PrDOS (Ishida and Kinoshita, 2007) and SPOT-disorder
(Hanson et al., 2017) (Supplementary Figure 1). The intrinsic
disorder pattern as well as the N-terminus length seem largely
clade-dependent. Clade I and III TGAs all harbor medium
length N-termini of about 75–100 aa, which, according to
two of the prediction algorithms, share a higher probability
of disorder near the basic region, with disorder decreasing
further away from the bZIP domain. Most clade II members
exhibit short N-termini of about 40–50 aa, with a high disorder-
probability spanning their whole length. Clade IV and clade
V member N-termini are the longest, reaching 216 aa in
NtTGA10. While intrinsic disorder is higher in clade IV TGA
N-termini, the AtPAN N-terminus seems more structured
based on IUPred2 and PrDOS predictions (Figure 3 and
Supplementary Figure 1).

Electrophoretic mobility shift assay results have shown that
the long N-terminus of NtTGA2.1 enabled weak binding to
the as-1 element, while the binding of shorter NtTGA2.2 was
stronger. Furthermore, shortening the NtTGA2.1 N-terminus
increased the protein DNA-binding stability (Niggeweg et al.,
2000). Modulation of protein-DNA interaction stability
therefore may be one of the N-terminus features. Additional
stabilizing elements in DNA-binding motif vicinity can
stabilize the protein-DNA interactions through parts other
than the DNA-binding domain. Motif recognition and binding
stabilization through the N-terminus have been shown in
other transcription factors. For instance, the N-terminal arm
of the Drosophila melanogaster Hox homeodomain factor
stabilizes the binding to DNA by inserting the positively
charged amino acids within the arm into the minor DNA
groove (Abe et al., 2015).

While several discrepancies regarding the mechanisms of
AtTGA-mediated transcriptional regulation in cooperation with
NPR1 remain (discussed previously in Gatz, 2013), the study
from Boyle et al. (2009) indicated that the TGA N-terminus
is important for determining its activation/repression function.
In accordance with the results from Zhang et al. (2003) and
Kesarwani et al. (2007), who show that AtTGA2 acts as a
constitutive repressor, modulating basal promoter activity of the
PR-1 gene, the AtTGA2 N-terminus assumes a non-autonomous
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FIGURE 3

The N-termini of TGAs are intrinsically disordered. Representation of intrinsic disorder regions of full-length TGA amino acid sequences from
Arabidopsis and tobacco, created based on IUPred2 prediction algorithm results (Mészáros et al., 2018). The N-termini of analyzed TGAs show
generally high (>0.5), yet clade-specific pattern of intrinsic disorder probability, while the disorder probability is considerably lower in their
C-termini. Charts representing TGAs from the same clade were aligned based on the conserved bZIP domain, which is shown as grey area.

repression function and proved important also for AtTGA2
oligomerization at the DNA-binding site (Boyle et al., 2009).
However, AtTGA2 interaction with NPR1 in the presence of
salicylic acid activates gene expression (Rochon et al., 2006).
In the proposed NPR1-AtTGA2 activation complex, NPR1
prevents the DNA-binding of AtTGA2 oligomer and negates
the AtTGA2 repression function through interaction with its
N-terminus (Boyle et al., 2009).

Interestingly, Gutsche and Zachgo (2016) described the role
of AtPAN N-terminus in connection to its redox-sensitive DNA-
binding. Its unique feature is the presence of five cysteine
residues, dispersed throughout the N-terminus. AtPAN binds
the AAGAAT motif in reducing conditions, while an oxidizing
environment diminishes this interaction. Mutations of all
AtPAN cysteines, including Cys340 in the C-terminus or the
complete removal of N-terminus, both prevented such redox-
dependent motif-binding (Gutsche and Zachgo, 2016). The

activity of the N-terminus was further confirmed in planta.
The expression of either AtPAN N-terminus deletion mutant,
AtPAN with mutated N-terminal Cys68 and Cys87, or of AtPAN
with substituted of all N-terminal cysteines to serines could
not complement the pan knockout plant phenotype (Gutsche
and Zachgo, 2016). Nevertheless, the mechanisms of redox-
dependent sensitivity based on N-terminal cysteines remain
to be elucidated.

On the other hand, the TGA N-terminus effects on
interactions with other proteins should also be considered. The
AtTGA2 N-terminus can be bound by the copper chaperone
induced by pathogens (CPP) and the AtTGA2-CPP interaction
enhances AtTGA2 binding to the PR-1 promoter (Chai et al.,
2020). The N-terminal half of AtTGA3, including the bZIP
domain, interacts with the WRKY53 transcription factor (Sarkar
et al., 2018), while it also enhances AtTGA3 interaction
with NPR1 in yeast (Zhou et al., 2000). Yeast two-hybrid
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assays of AtPAN and AtTGA3 deletion mutants indicated that
their N-termini strengthen interactions with ROXY1 CC-type
glutaredoxin (Li et al., 2011), however, these results have not
been confirmed with quantitative analyses.

C-terminus: Glutamine rich regions
and the DOG1 domain

TGAs share a relatively conserved C-terminus of about
250 aa in length. Overall, it has a lower intrinsic disorder-
probability in all clades (Figure 3 and Supplementary Figure 1)
and contains two 20–30 aa long regions rich in glutamine
residues, designated Q1 and Q2 (Figure 2B; Katagiri et al.,
1989; Gatz, 2013). Glutamine-rich regions occur in transcription
activation domains and can modulate transcription activation
through unknown mechanisms (Arnold et al., 2018). Activation
and/or repression function of individual TGAs is therefore
likely the result of both N- and C-terminal contributions of
the same protein. As described above, the TGA N-terminus
is important for modulation of protein-protein interactions.
However, the C-terminus has been identified as the main
protein-protein interaction region in several studies. It is
sufficient for interaction of AtTGA2 and AtTGA3 with NPR1
(Fan and Dong, 2002; Johnson et al., 2008; Kumar et al., 2022).
AtPAN and AtTGA3 interact with ROXY1 primarily through
the Q2 and the intervening region, which represents the first
third of their C-termini (Li et al., 2011).

Consistent with the TGA AF model (Figure 2A), the cryo-
EM and crystallographic data presented by Kumar et al. (2022)
show that the 3D structure of AtTGA3 C-terminus (aa 166–377)
is predominantly alpha-helical, containing five longer and three
shorter alpha-helices that are connected with flexible linkers.
The alpha-helices envelop a single molecule of palmitic acid,
the role of which has yet to be elucidated. The C-terminus is
involved in AtTGA3 dimerization as well as interaction with
the ankyrin repeat region of NPR1, leading the authors to
refer to it as NPR1-interacting domain (NID). The NID forms
contacts with NPR1 through four residues near the center of the
AtTGA3 C-terminus sequence (Glu263, Pro264, Thr266, and
Asp267) and four residues close to its C-terminal end (Thr351,
Thr352, Arg353, and Arg357). Additionally, by using a series
of chimeric AtTGA1/AtTGA2 proteins, Després et al. (2003)
show the importance of AtTGA2 C-terminal aa 236–266 in
establishing the interaction with NPR1. Furthermore, the NPR1
Broad-Complex, Tramtrack, and Bric-a-brac/Pox virus and Zinc
finger domain was shown to interact with AtTGA2 N-terminus
(Boyle et al., 2009). While the cryo-EM structures of AtTGA3
bZIP and N-terminus could not be determined likely due to
flexible linker connecting them to the NID (Kumar et al., 2022),
it would be interesting to compare their involvement in the
TGA-NPR complex.

The TGA C-terminus contains also the DOG1 domain,
which spans most of the region according to the ExPASy
Prosite domain prediction tool (Sigrist et al., 2013). The domain
name originates from the Arabidopsis DOG1 protein, a plant-
specific protein involved in seed dormancy control (Bentsink
et al., 2006). DOG1 was also identified as a microprotein,
a transcription factor-like protein of low molecular weight
without the DNA-binding ability that could be involved in
modulation of TGA activity (Magnani et al., 2014). Circular
dichroism spectra of a recombinant DOG1 revealed it to be
an alpha-helical protein as well, containing a heme-binding site
important for DOG1 function (Nishimura et al., 2018). Despite
low sequence identity between AtTGAs and DOG1, some
DOG1 domain residues remain conserved and may contribute
to the final protein fold or any key structural and functional
characteristics (Sall et al., 2019), indicating the possibility of
heme-binding activity also in TGAs. Phylogenetic analyses have
shown that TGAs form a monophyletic group outside of DOG1
family members, which include DOG1 and five DOG1-like
(DOGL) proteins (Nishiyama et al., 2021). The presence of
conserved amino acid residues related to Calmodulin (CaM)
binding in the C-terminus in both protein groups, indicates
that DOG1 could act as a CaM-binding domain in AtTGA
transcription factors (Sall et al., 2019). CaM is an important
calcium (Ca2+) sensor and affects a number of cellular processes
in response to increased concentrations of free Ca2+ (Bergey
et al., 2014). Several TGAs have been identified as CaM
interactors (Popescu et al., 2007). The CaM/Ca2+ complex
enhanced AtTGA3 binding to TGACG elements in vivo and
in vitro by direct protein-protein interaction (Szymanski et al.,
1996; Fang et al., 2017), signifying a close connection of TGA
transcription regulation with Ca2+ influx, a primary occurrence
following stress-related events in plant cells (Tian et al., 2020).

Additionally, interactions with a variety of structurally
distinct proteins have been shown to affect TGA activity, but
the protein part important for the interaction has not yet
been identified. For instance, clade II AtTGAs interact with
WRKY50 transcription factor to cooperatively activate PR-1
gene expression (Hussain et al., 2018), or with NPR1 paralogues
NPR3 and NPR4 to repress the expression of SAR DEFICIENT
1 (SARD1) and WRKY70 (Ding et al., 2018). Recently it has
been shown that AtTGA5 and AtTGA7 interact with CYCLIN-
DEPENDENT KINASE 8 (CDK8), involved in the recruitment
of RNA polymerase II (Chen et al., 2019), and AtTGA2 with
HIGH OSMOTIC STRESS GENE EXPRESSION 15 (HOS15)
corepressor (Shen et al., 2020). All Arabidopsis TGAs interact
with ROXY glutaredoxins, albeit with different binding affinities
(Li et al., 2009; Murmu et al., 2010; Zander et al., 2012).
Being able to interact with various cofactors suggests a certain
flexibility in the binding region itself or the presence of
multiple binding sites. Considering the C-terminus to be fairly
structured, it could contain more than one protein-binding
region. To further facilitate interaction specificity and modulate
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binding affinity of different TGA-interactor combinations,
additional contact sites are likely mediated by the variable
N-terminus.

What is the role of post-translational
modifications?

Post-translational modifications (PTMs) are known to be
important in regulation of protein function and can affect
protein activity on many levels, including dimerization, DNA-
binding or protein interactions. TGAs have been found to be
subjected to phosphorylation (Kang and Klessig, 2005; Kim
et al., 2022), S-nitrosylation, S-glutathionylation (Lindermayr
et al., 2010; Gutsche and Zachgo, 2016) and most notably redox-
dependent regulation through disulphide bond formation
(Després et al., 2003; Lindermayr et al., 2010; Gutsche and
Zachgo, 2016). Phosphorylation was among the first PTMs
studied in TGAs. Clade II AtTGAs and to a lesser extent
AtTGA3, but not clade I AtTGAs, can be phosphorylated by
casein kinase II (CK2) and experiments with AtTGA2 deletion
mutants revealed the phosphorylation site to be within the first
20 aa of its N-terminus. The CK2-mediated phosphorylation of
AtTGA2 reduced its DNA-binding activity (Kang and Klessig,
2005). On the other hand, the clade I AtTGAs have been shown
to be phosphorylated by BR-INSENSITIVE2 (BIN2) at their
C-terminus. This phosphorylation destabilized AtTGA4 and
inhibited its interaction with NPR1 in vivo (Kim et al., 2022).

TGAs seem tightly connected to redox-dependent
regulation and several studies focused on examining the
importance of TGA cysteine residues. Clade II AtTGAs contain
only one cysteine in their C-terminus, but its function remains
unknown (Huang et al., 2016; Findling et al., 2018). AtPAN
retains five cysteines in the N-terminus alone, which are
involved in redox-dependent modulation of AtPAN DNA-
binding, while the S-glutathionylation of the Cys340, localized
in a putative transcription activation domain in AtPAN
C-terminus, indicates that additional mechanisms could modify
its activity post-translationally (Gutsche and Zachgo, 2016).
Clade I AtTGAs contain four cysteines, two of which are unique
and were found to facilitate redox-dependent interaction
with NPR1 in the presence of salicylic acid (Després et al.,
2003), with the redox regulation proposedly mediated by nitric
oxide (Lindermayr et al., 2010). Furthermore, substitutions
of the same cysteines prevent clade I AtTGA interactions
with the NPR-family Blade-on-Petiole (BOP) proteins (Wang
et al., 2019). However, Budimir et al. (2021) showed that the
reduction of cysteines in AtTGA1 may not affect its function in
salicylic acid-dependent gene expression. The conflicting results
regarding clade I redox regulation were discussed recently (Li
and Loake, 2020), and although a tight connection between
TGAs and the intracellular redox state is clearly important
for their activity, the role of TGA cysteine residues is still a
subject of debate.

Discussion

Although TGAs represent a relatively small group of
regulatory proteins, they are able to affect a wide range of cellular
processes. The three main TGA protein parts have individual
yet overlapping roles, jointly contributing to the functional
variability of each paralogue (Figure 4). Thus far, the link
between TGA structural characteristics and plant phenotype
is not well studied. Extensive work has been dedicated to
understanding how TGAs bind to DNA, as well as to which
genes they regulate (Gatz, 2013). However, while one area of
studies focuses on the biochemistry of binding, the other is
concentrated mainly on the function of TGAs in interaction
with other proteins, using knockout plants. The use of high-
throughput DNA-binding methodologies in TGA studies can
be challenging due to their low abundance in plant tissue and
the question of how different TGAs with similar DNA-binding
preferences can regulate so many different functions remains
to be elucidated.

Specific studies should be designed to understand how
the ability to form homo/heterodimers, tetramers or higher
order complexes with other proteins at promoter regions affects
target transcription and the physiological response of the plant.
Most of the available molecular information is based on the
studies of the PR-1 promoter, which may not be representative.
Additional gene models should be developed to study the TGA
mechanism of action in vivo. Analyzing local DNA structural
features in silico (Li et al., 2017; Samee et al., 2019) should
also be considered for identification and analysis of TGA
binding specificities. Suboptimal binding sites can contribute to
TGA function as well, depending on local transcription factor
molecule concentration, determined by their spatio-temporal
gene expression and non-redundant subnuclear distribution
(Kribelbauer et al., 2019). The mechanisms regulating TGA
abundance, however, are not well understood. TGAs are
differentially regulated at the expression level subsequent to
pathogen infection, abiotic stress and show tissue specific
expression (Chen et al., 2018; Wang et al., 2019; Seo et al.,
2020). In addition they are subjected to complex post-
transcriptional (Pontier et al., 2002) and post-translational
processes (Kang and Klessig, 2005; Lindermayr et al., 2010;
Gutsche and Zachgo, 2016).

In order to thoroughly understand the role and interplay
of different TGA clade members, it is imperative to recognize
key structural differences between them, individually and in
higher order complexes. Resolving the complete TGA factor
3D structure in complex with their various protein interactors
at target promoters would provide the basis for further
experiments in studying TGA activity. Development of cryo-
EM methods, which are already reaching atomic resolution
(Yip et al., 2020), proved valuable in structural analysis of
complexes and will continue playing an important role in the
future of structure determination. Alternatively, computational
modeling algorithms, such as AF (Jumper et al., 2021), can
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FIGURE 4

Schematic representation of TGA protein parts contribution to TGA function. All three protein parts of TGAs are multifunctional, each involved
in several tasks connected to their interaction with target DNA motifs, dimerization and/or oligomerization and protein-protein interactions with
transcription factors, cofactors or other proteins, resulting in a specific shift in gene expression activity.

provide a useful solution to understand the structure-function
relationship better, when obtaining structures experimentally
proves difficult (Greener et al., 2019; Aderinwale et al., 2020).
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