In vitro corrosion-fatigue behaviour of rare-earth containing magnesium WE43 in sterile complex cell culture medium

Julia Nachtsheim a, Songyun Ma a,*, Jaka Burja b,c, Alexander Kopp d,e, Jan-Marten Seitz d, Bernd Markert e

a Institute of General Mechanics, RWTH Aachen University, Eilischhornstraße 18, 52062 Aachen, Germany
b Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
c Medical Magnesium GmbH, Philipsstraße 8, 52068 Aachen, Germany
d Meotec GmbH, Philipsstraße 8, 52068 Aachen, Germany
e Department of Materials and Metallurgy, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerceva cesta 12, 1000 Ljubljana, Slovenia

A R T I C L E I N F O
Keywords:
Corrosion-fatigue behaviour
Stress corrosion mechanisms
Biodegradable magnesium alloys
WE43
DMEM

A B S T R A C T
Rare-earth containing magnesium alloys are promising biomedical materials for a new generation of biodegradable orthopaedic implant systems due to their excellent biocompatibility, mechanical and biodegradation properties. However, chemo-mechanical interactions in aggressive physiological corrosion environments result in rapid degradation and early loss of mechanical integrity, limiting its broader application for orthopaedic implants. To date, only few studies have assessed the corrosion-fatigue behaviour of medical-grade magnesium alloys in an organic physiological corrosion environment, especially under sterile test conditions. In the present work, the corrosion-fatigue behaviour of fine-grained medical-grade magnesium alloy WE43MEO was systematically analysed under in vitro conditions using an organic physiological fluid DMEM. The experimental results showed that the fatigue strength of the alloy is nearly unaffected by a 1-day precorrosion, while a 7-day pre-corrosion resulted in a significant deterioration of mechanical integrity. In corrosion-fatigue experiments, the fatigue life was considerably reduced by interactions between corrosion and fatigue damages. The SEM analysis revealed that the mixed mode of intergranular and transgranular fracture in the crack propagation zone transits to intergranular cracking dominant mode under the corrosion-fatigue conditions due to hydrogen embrittlement.

1. Introduction

Designing biodegradable orthopaedic implant systems of magnesium alloys is a current challenge in biomedical engineering. The highly biocompatible magnesium implants are resorbed by the human body during the service period, eliminating the necessity for implant removal surgery. Magnesium alloys significantly decrease pathological tissue development caused by stress-shielding, which is induced by mismatching mechanical properties between implant material and bone tissue. Additionally, bone formation and integration are improved [1–3]. In the biodegradation process of the implant, the alloy constituents will be metabolised by the human body. Hence, the amount of implanted alloying elements must be kept within physiologically tolerable levels [4]. The use of aluminium-containing alloys is controversial in biomedical applications, since aluminium has been identified as potentially neurotoxic and carcinogenic [5,6]. As a consequence, more aluminium-free magnesium alloys have been developed to meet the essential biocompatibility requirements. As rare-earth containing alloys are considered as one of the most promising materials, more systematic studies on magnesium alloys with rare-earth elements are required for facilitate the magnesium implant development [7–9].

Despite significant progress in the development of biodegradable magnesium alloys, a major challenge for broader application in orthopaedic implants is the fast degradation of mechanical integrity in aggressive physiological corrosion environments. The loss of mechanical integrity is dramatically accelerated by the synergetic effect arising from the superposition of mechanical stresses during corrosion [10]. The resulting chemo-mechanical interactions can lead to stress corrosion cracking (SCC) and corrosion-fatigue (CF) during implant service. Implant failure can occur at loads significantly below the material’s strength in static or quasi-static loading conditions. Although the complex mechano-chemical degradation during cyclic loadings is of great

* Corresponding author.
E-mail address: ma@iam.rwth-aachen.de (S. Ma).

https://doi.org/10.1016/j.ijfatigue.2024.108531
Received 16 May 2024; Received in revised form 18 July 2024; Accepted 25 July 2024
Available online 26 July 2024
0142-1123/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
importance for the adequate design of orthopaedic implants, the CF behaviour of medical-grade magnesium alloys in physiological environments has not been thoroughly studied and understood so far, especially in an organic corrosion environment. First single-piece biodegradable magnesium implants for cardiovascular and orthopaedic applications were successfully approved by Conformité Européene (CE) [11]. To expand the CE-marked products for load-bearing implants and multi-part implant systems, the CF behaviour of medical-grade magnesium alloys needs to be studied more extensively.

Recent studies indicate that the interaction between corrosion and fatigue in a physiological environment can significantly accelerate the damage evolution of magnesium alloys [12]. Chen et al. [13] reported that the elongation-to-failure and the fatigue life of the magnesium alloy AZ31B in SBF were significantly reduced in comparison with the results in air. It was concluded that the detrimental effect is attributed to the interaction between corrosion and ratcheting strain as well as the rupture of the corrosion product layer in SBF with physiological pH values. Gu et al. [14] demonstrated that both magnesium alloys WE43 and AZ91D have a much lower fatigue strength in SBF and exhibit higher corrosion rates under dynamic loading conditions. Furthermore, the CF behaviour of magnesium alloys is strongly affected by microstructural features. Wang et al. [15] characterised the influence of microstructural changes after solution treatments on CF of an Mg-Zn-Y-Zr alloy. It is shown that coarse and homogeneous grains in the solution-treated alloy were prone to trigger twinning and localised corrosion at the twin boundaries, leading to an acceleration of CF failure. Moreover, the loading conditions play an important role in the CF interaction. In particular, low loading frequencies result in severe corrosion damage and a significant decrease in fatigue strength [16]. Linderov et al. [17] concluded that low frequencies should be used in CF tests to better understand the interactions of corrosion mechanism, stress corrosion mechanisms and CF mechanism.

In experimental studies on the corrosion performance of biodegradable magnesium alloys for medical applications, the impact of fluid constituents has been extensively investigated [18–27]. Meng et al. [28] analysed the influence of the solution pH on the CF performance of an AM60 alloy. It was shown that an instable protective layer in phosphate-gradable magnesium alloys for medical applications, the impact of fluid features. Wang et al. [15] characterised the influence of microstructural behaviour of magnesium alloys is strongly affected by microstructural corrosion rates under dynamic loading conditions. Furthermore, the CF importance for the adequate design of orthopaedic implants, the CF behaviour of medical-grade magnesium alloys needs to be studied more extensively.

Round fatigue specimens with a diameter of 2.5 mm shown in Fig. 1 were designed according to DIN 50125 and fabricated by Medical Magnesium GmbH (Aachen, Germany) from 9.5 mm rods of a clinically used extruded magnesium alloy WE43MEO (Meotec GmbH, Aachen), which is alloyed with rare-earth elements. The alloy is manufactured considering the following elemental specifications: 1.4 – 4.2 wt% Y, 2.5 – 3.5 wt% Nd, < 1 wt% for Al, Fe, Cu, Ni, Mn, Zn, Zr and Mg as balance. Stress and strain-controlled fatigue tests in air were conducted to study cyclic deformation and fatigue behaviour of the fine-grained magnesium alloy. In order to evaluate the effect of corrosion damage on the fatigue behaviour of the alloy, a number of fatigue specimens were immersed in the corrosive environment for different periods before fatigue testing. In addition, the interaction between the corrosion and fatigue processes was investigated in CF experiments.

2. Materials and methods

2.1. Fatigue tests in air

Stress-controlled fatigue tests in air were performed on an MTS Minibionix II testing machine (MTS Systems GmbH, Germany), controlled by FlexTest 60 (MTS Systems Corp., Minneapolis, USA). Corresponding sample elongation was measured with an optical extensometer (GOM Aramis SRX Adjustable, Carl Zeiss GOM Metrology GmbH, Germany). Fatigue tests were performed at room temperature with an axial tensile sinusoidal loading and a stress ratio of $R=0$. Tests were performed until failure or stopped after 2x10⁶ cycles. Strain-controlled fatigue tests in air were performed at room temperature on an INSTRON 8802 test machine equipped with 250 kN load cell. The stress amplitudes for the fatigue tests in air were selected to cover the fatigue data from the low cycle fatigue to high cycle fatigue regimes.

2.2. Precorrosion experiments

To study the effect of precorrosion on the fatigue behaviour, the fatigue specimens were immersed in 500 ml of pre-heated (37 °C) complex cell culture fluid Dulbecco’s Modified Eagle’s Medium (DMEM, Fig. 1. Geometry of the fatigue specimen, dimensions given in mm.
L0101-500, Biowest, Nuaille, France), which uses a bicarbonate buffer system. The fluid was supplemented with 5 ml Penicillin-Streptomycin (ThermoFisher Scientific Inc., Waltham, MA, USA) and 5 ml Amphotericin B (ThermoFisher Scientific Inc., Waltham, MA, USA). A comparison of the ionic concentrations of DMEM and human body plasma and the overall composition of the DMEM is given in [40]. The experimental setup is shown in Fig. 2a. To limit the exposed specimen surface to the central part, both specimen ends were sealed using Teflon tape. Experimental equipment was carefully sterilised before each experiment. The experiment was assembled under sterile working conditions in clean bench class 100 equipped with HEPA-filter and then placed in an incubator with a steady temperature of 37°C ± 1°C. Gas exchange between the corrosion environment and the incubator atmosphere was allowed via a filtering cap. After precorrosion periods of either 1 or 7 days, specimens were removed from the fluid, washed with distilled water, then with 90 % ethanol and air-dried subsequently.

2.3. Corrosion-fatigue experiments

An inhouse developed setup was used for CF experiments, which ensures a sterile corrosion environment in the corrosion cell (shown in Fig. 2b). The setup and the sterile procedure are described in more detail in [41]. Fatigue specimens were installed on a test bench, equipped with a force transducer (Model 661, 20F-03, MTS Systems Corp., Minneapolis, USA) and controlled by FlexTest 60 (MTS Systems Corp., Minneapolis, USA). CF tests were performed stress-controlled at a frequency of 1 Hz, which corresponds to the walking frequency of an adult. The stress amplitudes in the corrosion-fatigue tests for assessing the influence of the corrosive environment on the fatigue behaviour were selected to compare with the fatigue performance in air under similar stress levels. In the further work, the corrosion-fatigue tests with the stress amplitudes experienced under in vivo conditions should be conducted for the design of specific biodegradable orthopaedic implants. 650 ml DMEM, supplemented with 5 ml Penicillin-Streptomycin and 5 ml Amphotericin B, was used as corrosion fluid at a temperature of 37°C ± 1°C. The pH value was controlled optically using the phenol red colour indicator in the DMEM fluid, and the experiments with an unphysiological pH regime or contaminations were excluded from the analysis. After failure, specimens were removed from the fluid and washed with distilled water, then with 90 % ethanol and then air-dried.

2.4. Fractography

Fracture surfaces were analysed by scanning electron microscopy and back-scatter electron microscopy using a Zeiss CrossBeam 550 (Carl Zeiss AG, Oberkochen, Germany). Samples for transmission electron microscopy (TEM) were prepared using argon ion-slicing with JEOL EM 09100S Ion Slicer and observed with TEM (JOEL JEM 2100).

3. Results and discussion

3.1. Microstructure

Fig. 3 shows the alpha-magnesium matrix with an average grain size of 2.7 μm and intermetallic Mg-Y-Nd precipitates of less than 0.1 μm in diameter. Precipitates are found at grain boundaries as well as inside grains. EDS analysis revealed that neodymium is predominantly present in the intermetallic participates of Mg–Y–Nd at concentrations of up to 27 wt% and the content of yttrium is similar in the alpha-matrix and in the precipitates [41].

3.2. Strain-controlled fatigue in air

Fig. 4a shows stabilised stress–strain hysteresis of strain-controlled fatigue tests at different strain amplitudes between 0.6 % and 1.4 %. The cyclic stress–strain curve is fitted by the Ramberg-Osgood equation using the material parameters of cyclic strengthening coefficient K and the cyclic hardening coefficient n [42]:

$$\varepsilon_a = \varepsilon_{ea} + \varepsilon_{pa} = \frac{\sigma}{E} + \left(\frac{\sigma}{K}\right)^{1/n}$$ \tag{1}

with the strain amplitude ε_a, the elastic strain amplitude ε_{ea}, the plastic strain amplitude ε_{pa}, the axial stress σ and the elastic modulus E.

The comparison between cyclic and monotonic stress–strain curves indicates a cyclic softening behaviour of the material. The S–N curve in Fig. 4b demonstrates a comparable fatigue performance to that of a rolled WE43 alloy in the low cycle fatigue regime described by Ghorboupour et al. [43]. Both WE43 alloys exhibit moderate cyclic softening under cyclic loading. The ε–N curve was additionally supplemented with the data of an extruded WE43 alloy in the high cycle fatigue regime from Gu et al. [14], and the entire data set was correlated using the Manson-Coffin equation for predicting the fatigue life [44]:

$$\varepsilon_a = \varepsilon_{ea} + \varepsilon_{pa} = \frac{\sigma_f}{E}(2\pi)^{\frac{1}{n}} + \varepsilon_p (2\pi)^{\frac{1}{n}}$$ \tag{2}

with the elastic modulus E, the fatigue strength coefficient σ_f, the fatigue ductility coefficient ε_p, the fatigue strength exponent b and the fatigue ductility exponent c. The total strain amplitude can be divided into an elastic ε_{ea} and a plastic ε_{pa} part. Table 1 provides an overview of the material parameters under static and dynamic test conditions. We determined the tensile properties using the engineering stress–strain curve from the tensile test. The yield strength and tensile strength were...
4. The necking of the specimen was not accounted for in the engineering stress–strain curve. Therefore, the actual stress is underestimated at large plastic deformations, leading to a slightly higher yield strength compared to the tensile strength.

3.3. Stress-controlled corrosion-fatigue

The stress-fatigue life (S-N) curves of the WE43 alloy tested in air, after 1–day and 7–day precorrosion periods and in the corrosive environment are shown in Fig. 5. The relationship between the applied stress amplitude and the fatigue life above the fatigue limit is correlated using the Basquin equation [51]:

$$\sigma = A \times N_f^{0.05741}$$

with the stress amplitude \(\sigma\), the cycles to failure \(N_f\), the coefficient \(A\) and the exponential factor \(b\). The resulting material parameters for the different test conditions are presented in Table 2. The fatigue endurance of WE43 alloy in air at \(2 \times 10^6\) cycles is 99 MPa. Compared to the fatigue

<table>
<thead>
<tr>
<th>Static material properties</th>
<th>Fatigue properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s-Modulus E</td>
<td>47.6 GPa</td>
</tr>
<tr>
<td>Yield strength (\sigma_y)</td>
<td>316 MPa</td>
</tr>
<tr>
<td>Tensile strength (\sigma_m)</td>
<td>306 MPa</td>
</tr>
<tr>
<td>Elongation-to-failure</td>
<td>19.97 %</td>
</tr>
<tr>
<td>elongation A</td>
<td></td>
</tr>
</tbody>
</table>

Table 1

Static and dynamic material parameters of the WE43 alloy.

Fig. 5. (a) S-N curve of the WE43 alloy tested in air, in air after precorrosion of 1 or 7 days and in fluid. (b) Comparison of S-N curves of different alloy systems tested in air (Gu et al. [14], Liu et al. [45], Wang et al. [46], Bian et al. [47], Jafari et al. [48], Němcová et al. [49], Wu et al. [50]).
behaviour of AZ31B tested in air with a stress ratio of R = 0, WE43 exhibits a better fatigue performance, as shown in Fig. 5b. At 10^5 cycles, WE43 has a fatigue strength of approximately 113 MPa and the AZ31B alloy of 84 MPa [56]. This can be attributed to changes in the microstructure due to alloying with rare-earth elements. Rare-earth elements act as grain refiner and form precipitates in the matrix. Both effects hinder deformation twinning and pin dislocation movement [52]. It is indicated that the magnesium alloy WE43 with rare-earth elements is more suitable for highly loaded orthopaedic implant systems. Cracks in fatigue experiments are initiated by internal defects that locally increase the stress concentration. After precorrosion, locally increased stresses at corrosion pits facilitate crack initiation. Hence, the precorroded specimens are expected to crack at preformed pits. However, in our previous work, we have concluded that the WE43 alloy corrodes rather non-homogeneously and is insensitive to pitting corrosion [40]. This insensitivity explains the rather small difference in fatigue performance between the non-corroded and 1-day pre-corroded alloy. The similar S–N curves show that the inhomogeneous corrosion front after 1-day precorrosion has no detrimental effect on the fatigue strength. The fatigue limit of the 1-day pre-corroded alloy, which is defined at 2x10^6 cycles, is almost identical to the uncorroded alloy.

On the contrary, the progressing corrosion after 7 days in DMEM significantly deteriorates the fatigue performance. The advancing corrosion front leads to significant material dissolution, and fatigue failure occurs in less than 10^4 cycles. Immersion tests with round specimens of 4 mm diameter have revealed inhomogeneous corrosion attack along the circumference. Almost uncorroded ridges and pits with the maximum depth of 440 µm were observed on the specimen’s surface [40,41]. This inhomogeneous circumstance, which includes a considerable number of corrosion pits with varying depth of up to 35 % of the specimen radius, leads to stress concentrations and local plastic deformations, which dramatically deteriorate the fatigue performance. The large scatter of the fatigue life after 7-day precorrosion may be attributed to the irregular corrosion front and randomly distributed corrosion pits. As a consequence, the Basquin model does not correlate the fatigue life of the heavily corroded specimens in an adequate manner.

In the CF tests in DMEM, mechanical loading and chemical attack strongly interact each other, leading to a significant change in the S–N curve of the WE43 specimens. The experimental results show that the number of cycles to failure at high stress amplitudes is similar to that of the uncorroded alloy. This confirms previous observations that the CF behaviour at high stress levels is predominantly influenced by the mechanical loading and the effect of the corrosion environment is relatively limited [35]. At lower stress levels, the fatigue life of the WE43 is significantly reduced, which can be explained by a longer immersion time in the corrosive medium and superimposed corrosion damage due to electrochemical processes [48]. Hence, the degradation of the fatigue performance depends on the material’s corrosion properties [45]. It has been observed that the prolonged exposure to the corrosive environment is detrimental to fatigue [16,17]. On this account, a comparison of the CF resistance between different alloy systems as potential biodegradable implant material is not straightforward due to large variations in experimental conditions.

The detrimental effect of the corrosion environment on fatigue behaviour can be evaluated by the reduction ratio of fatigue strength (RRFS), which measures the reduction in fatigue strength due to the corrosion environment. To compare tests of different frequencies, we have concluded that the WE43 alloy corrodes rather non-homogeneously and is insensitive to pitting corrosion [40]. This insensitivity explains the rather small difference in fatigue performance between the non-corroded and 1-day pre-corroded alloy. The similar S–N curves show that the inhomogeneous corrosion front after 1-day precorrosion has no detrimental effect on the fatigue strength. The fatigue limit of the 1-day pre-corroded alloy, which is defined at 2x10^6 cycles, is almost identical to the uncorroded alloy. This confirms previous observations that the CF resistance between different alloy systems as potential biodegradable implant material is not straightforward due to large variations in experimental conditions.

The detrimental effect of the corrosion environment on fatigue behaviour can be evaluated by the reduction ratio of fatigue strength (RRFS), which measures the reduction in fatigue strength due to the corrosion environment. To compare tests of different frequencies, we have concluded that the WE43 alloy corrodes rather non-homogeneously and is insensitive to pitting corrosion [40]. This insensitivity explains the rather small difference in fatigue performance between the non-corroded and 1-day pre-corroded alloy. The similar S–N curves show that the inhomogeneous corrosion front after 1-day precorrosion has no detrimental effect on the fatigue strength. The fatigue limit of the 1-day pre-corroded alloy, which is defined at 2x10^6 cycles, is almost identical to the uncorroded alloy. This confirms previous observations that the CF resistance between different alloy systems as potential biodegradable implant material is not straightforward due to large variations in experimental conditions.

The detrimental effect of the corrosion environment on fatigue behaviour can be evaluated by the reduction ratio of fatigue strength (RRFS), which measures the reduction in fatigue strength due to the corrosion environment. To compare tests of different frequencies, we have concluded that the WE43 alloy corrodes rather non-homogeneously and is insensitive to pitting corrosion [40]. This insensitivity explains the rather small difference in fatigue performance between the non-corroded and 1-day pre-corroded alloy. The similar S–N curves show that the inhomogeneous corrosion front after 1-day precorrosion has no detrimental effect on the fatigue strength. The fatigue limit of the 1-day pre-corroded alloy, which is defined at 2x10^6 cycles, is almost identical to the uncorroded alloy. This confirms previous observations that the CF resistance between different alloy systems as potential biodegradable implant material is not straightforward due to large variations in experimental conditions.

\[
RRFS = \left(\frac{\sigma_{\text{air}} - \sigma_{\text{fluid}}}{\sigma_{\text{air}}} \right)
\]

(4)

with the stress amplitude in air \(\sigma_{\text{air}} \) and the stress amplitude in fluid \(\sigma_{\text{fluid}} \) after 2 h. Fig. 6a compares the relative reduction in fatigue strength RRFS of different magnesium alloys at the fatigue life that correspond to a cyclic loading of 2 h inside the corrosion environment. To the best knowledge of the authors, this is the first CF experiment using complex DMEM fluid, which is one of the most suitable media for in vitro corrosion studies as it is in closest in composition and concentration to human blood plasma [30].

After 2 h of cyclic loading in DMEM, the fatigue strength of the WE43 alloy is reduced by about 20 %. This value is higher than the results for Y- and Nd-containing magnesium alloys tested in SBF (WE43 and Mg-Zn-Y-Nd) [14,45,46]. However, it is noted that the larger maximum stresses and plastic deformations in the stress ratio case of our experiments may lead to a higher sensitivity of the fatigue performance to corrosive environments. Mg-Y-Zn and Mg-Zn-Zr show substantial reductions in the fatigue strength [17,53]. As both alloys contain either Y or Nd, this may indicate that to achieve favourable strength retention, alloying with both Y and Nd is required. Nd and Y are both present in WE43 and Mg-Zn-Y-Nd, with higher concentrations in WE43. The comparison between these two alloys reveals similar relative reductions in the fatigue strength, but the WE43 alloy is subjected to higher stress amplitude. It is suggested that the larger Y and Nd concentrations in WE43 contribute favourably to the high fatigue strength. The comparison also shows that the magnesium alloys containing aluminium or iron (AZ91D, AZ61, ZK10) do not outperform rare-earth alloy systems.

The effect of precorrosion on the fatigue performance of different magnesium alloys is compared in Fig. 6b. It is shown that the WE43 alloy has the highest fatigue life, even after 1-day of precorrosion. The aluminium-containing alloys exhibit a significantly lower fatigue performance. For longer precorrosion periods, the fatigue life of the rare-earth containing alloy ZEK100 decreases the least. The comparison shows that the magnesium alloy system can be tailored by the addition of rare-earth elements in order to achieve a suitable CF behaviour for medical applications.

Fig. 7 shows the stress–strain hysteresis of selected cycles of a fatigue test in air with the stress amplitude of 115 MPa and the fatigue life of 2,592 cycles. It is observed that the high stress amplitude in the low cycle fatigue regime results in an unstable stress–strain hysteresis with plastic ratchetting strain accumulating in each loading cycle. This ratcheting phenomenon has been reported for magnesium alloys and is related to twinning and dislocation slips [61]. The mean strain versus the normalised number of cycles is plotted in Fig. 8. At the initial stage, the mean strain increases rapidly. This rapid ratchetting rate then converts into a steady stage. The steady-ratchetting strain has been attributed to a balance between softening due to micro-crack development and strain hardening [13]. At the final fracture stage, the accumulated ratchetting strain dramatically increases again, leading to final failure. The comparison between different stress amplitudes shows that the ratchetting strain increases with higher stress amplitude and mean stress. This correlation has already been reported and linked to the increased density of twins at higher mean stress and stress amplitude [62–64]. The results within the two test groups of uncorroded and 1-day pre-corroded specimens show that the higher ratchetting strain leads to shorter fatigue life, which is consistent with reported results [59].

3.4. Praxtography

Fig. 9 shows the fatigue fracture surfaces of the WE43 specimens under different loading conditions. Except the 7-day pre-corroded specimen tested with a low stress amplitude of 91.6 MPa, all fracture surfaces show three morphologically distinct zones: the crack initiation zone, the crack propagation zone and the overload zone. Additionally,
shear lips are visible at the circumference. At lower stress amplitudes, the crack propagation zones are larger than at higher stress amplitudes, which corresponds to a larger number of cycles to failure.

SEM images of the three morphologically distinct zones of a WE43 specimen tested in air are presented in Fig. 10. Crack initiation in the uncorroded specimen, which is marked in Fig. 10a, cannot be clearly related to microstructural defects. In air, the fatigue source is related to surface or microstructural defects such as microcracks, micropores or inclusions [65,66]. In magnesium specimens free of defects, twin or slip boundary have also been reported as potential fatigue source, as they locally increase stress concentrations [61,67]. In the region near the crack initiation, as shown in Fig. 10b, striation marks are visible as well as transgranular cracking. A mixed mode has already been identified for the alloy in SCC conditions and has been observed in additively manufactured WE43 [41,68]. In the overload failure zone, we observe a dimple like morphology as shown in Fig. 10c.

3.4.1. Fracture surfaces of pre-corroded specimens

The crack initiation zone of the 1–day pre-corroded specimen, failing after 18,753 cycles at a stress amplitude of 105 MPa (specimen shown in Fig. 9f), is shown at a higher magnification in Fig. 11a. Corrosion products are clearly visible on the specimen circumference. Localised corrosion but no severe corrosion pits can be identified. Hence, crack initiation might not be related to an increased stress concentration at a deep pit for the 1–day pre–corroded group. The SEM image shows cracks in the corrosion products that have propagated throughout the thickness of the passive layer. At the interface of a brittle material and ductile metallic substrate, cracks can easily form inside the brittle material due to differing elastic properties. Due to the high stress concentration at the

Fig. 6. (a) Comparison of relative reductions in the fatigue strength after 2h cyclic loadings in different corrosive environments for different magnesium alloy systems with corresponding stress amplitudes \(\sigma_a \) (Gu et al. (2010) [14], Linderov et al. (2018) [52], Wang et al. (2021) [46], Liu et al. (2020) [45], Linderov et al. (2022) [17], Jafari et al. (2017) [54], Bian et al. (2016) [47], Jafari et al. (2015) [48], Némcová et al. (2014) [49]). (b) Comparison of the number of cycles to failure in air and after different precorrosion periods for different alloy systems (ZEK100 [55], AZ31 in NaCl [56], ZK60 [57], AZ31 in PBS [58], AZ80 [59]). Short pre-corrosion periods are 24 h for WE43 and AZ31 in PBS, 12 h for ZEK100, ZK60 and AZ80 and 3 h for AZ31 in NaCl.

Fig. 7. Stress–strain loops at selected cycles of stress-controlled fatigue tests of WE43 in air with a stress amplitude of 115 MPa.

Fig. 8. Mean strain vs. normalised cycles during stress-controlled fatigue tests of WE43 in air in uncorroded state and after precorrosion.

3.4.1. Fracture surfaces of pre-corroded specimens

The crack initiation zone of the 1–day pre-corroded specimen, failing after 18,753 cycles at a stress amplitude of 105 MPa (specimen shown in Fig. 9f), is shown at a higher magnification in Fig. 11a. Corrosion products are clearly visible on the specimen circumference. Localised corrosion but no severe corrosion pits can be identified. Hence, crack initiation might not be related to an increased stress concentration at a deep pit for the 1–day pre–corroded group. The SEM image shows cracks in the corrosion products that have propagated throughout the thickness of the passive layer. At the interface of a brittle material and ductile metallic substrate, cracks can easily form inside the brittle material due to differing elastic properties. Due to the high stress concentration at the
Fig. 9. Fracture surfaces of WE43 specimens cyclically loaded in air, in air after precorrosion for 1 or 7 days in DMEM or in DMEM.

Fig. 10. SEM images for details of fracture surfaces. (a) Crack initiation site (marked with blue arrow) of an uncorroded specimen failing after 9.3x10⁵ cycles in air (in Fig. 9e). (b) Crack propagation zone of 1-day pre-corroded specimen (in Fig. 9b) with evidence of inter- and transgranular cracking. (c) Evidence of dimple formation in overload zone of uncorroded specimen (in Fig. 9e). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. (a) BSE SEM image of crack initiation zone of 1-day pre-corroded specimen (in Fig. 9f). (b) Side view of 1-day pre-corroded specimen (in Fig. 9b) with the evidence of corrosion product cracking (highlighted by arrows) and evidence of corrosion product exfoliation (area highlighted with dashed line). (c) Side view close to fatigue fracture of 1-day pre-corroded specimen (in Fig. 9b) with the evidence of secondary cracks (highlighted by arrows).
crack initiation zone. (c) Side view close to fatigue fracture with evidence of secondary cracks (highlighted by arrows).

Fig. 12. SEM images of specimen dynamically loaded in the corrosion fluid (in Fig. 9h). (a) BSE SEM image of crack initiation zone. (b) BSE SEM image distant from crack initiation zone. (c) Side view close to fatigue fracture with evidence of secondary cracks (highlighted by arrows).

3.4.2. Fracture surfaces of corrosion-fatigue specimens

In the CF experiments, several shear lips can be observed in the specimens loaded in DMEM with high stress amplitudes, which are more pronounced, as shown in Fig. 9d. The crack initiation zone of the specimen loaded with a stress amplitude of 102 MPa (see Fig. 9h) is presented in more detail in Fig. 12a. Close to the fatigue source, the fracture is covered by a thin layer of corrosion products and a distinct layer is visible on the circumference distant from the crack initiation zone, as shown in Fig. 12b. This is a clear indication of simultaneous deformation and corrosion processes. When the alloy is exposed to the corrosive environment, microgalvanic corrosion occurs, leading to localised corrosion attack and the release of atomic hydrogen [38]. In a static corrosion environment, the dissolution of the magnesium matrix would be decelerated by the formation of a protective oxide layer. In contrast, the corrosion process is accelerated by the stress-induced passive layer breakdown under cyclic loading [28]. In addition, the stress-assisted hydrogen absorption and dissolution of the magnesium matrix can lead to increased corrosion rates [74,75]. These deteriorative mechanisms become evident through a large number of stress corrosion cracks on the circumference, which are of several hundred micrometres in length, as shown in Fig. 12c [41,71,76,77]. All of the above mechanisms mutually interact and take place repetitively, resulting in a significant shorter fatigue life in the CF experiments.

With increased exposure time to the corrosion environment, the formation of fatigue source is facilitated due to environmentally assisted mechanisms. The corrosion processes are more dominant at low stress amplitudes with a higher number of cycles-to-failure. At high stress amplitudes, the fatigue damage is mainly attributed to the mechanical loadings. Since the CF is an intrinsic time-dependent process, the test frequency of magnesium alloys for biomedical applications should be in the physiological regime. Another important factor is the physiological chloride concentration of the fluid, as high concentration of chlorides increases susceptibility to stress corrosion cracking [78].
Fig. 13 shows SEM images of the crack propagation zone of the four different test configurations at high magnification. All specimens show a mixed mode of intergranular cracking with striation marks and transgranular cracking, but significant differences in the predominant modes are visible. In uncorroded state, transgranular cracking is predominant. Interestingly, we observe less striation marks, more intergranular cracking and more secondary cracks along grain boundaries in the longer pre-corroded specimen and in the specimen loaded inside the fluid. The intergranular mode even prevails in CF configuration. This may be an indicator for the presence of hydrogen assisted mechanisms that weaken the bonds between grains and lead to more crack branching. In aluminium-containing magnesium alloys, cleavage or transgranular fracture was identified as the prevalent fracture mode in CF experiments [48,49]. The same applies to these alloys in fatigue tests after precorrosion, with no significant changes in the failure modes reported after precorrosion [56,79]. In the aluminium-free alloy ZK60, intergranular brittle fracture patterns and secondary cracks were observed in CF. The differences in the prevalent failure mode between the uncorroded, the precorroded and the specimens tested in fluid shows, that the failure mode of the WE43 alloy strongly depends on the experimental fatigue configuration. The failure mode changes after precorrosion and is dependent on the precorrosion period as well as on the cyclical loading in the corrosive environment.

4. Conclusions

In the present study, we analysed the corrosion-fatigue behaviour of a medical-grade magnesium alloy WE43MEO containing rare-earth elements. A cell culture fluid containing organic compounds (DMEM) was used for the physiological test conditions. To overcome the experimental limitations arising from the susceptibility of the fluid to contamination, sterile test conditions were employed. Finally, fracture surfaces were analysed using scanning electron microscopy. Based on the experimental results, the following conclusion can be drawn:

- The WE43 alloy exhibits cyclic softening in air with a fatigue limit of 99 MPa at 2x10^6 cycles. The ratcheting strain tends to be higher with increasing stress amplitudes.
- Compared to the effect of 1-day precorrosion on the fatigue life, 7-day precorrosion significantly deteriorated the fatigue performance, independent of the stress amplitude. This can be attributed to large secondary cracks potentially induced by hydrogen embrittlement, which formed perpendicular to the loading direction during cyclic loadings. These cracks developed either from corrosion pits or from cracks that formed in the brittle corrosion product layer and propagated into the magnesium matrix.
- In the corrosion-fatigue tests in the organic fluid, the fatigue life was considerably reduced due to continuous exposure to the corrosive environment. This particularly applied for small stress amplitudes. The corrosion-fatigue strength was 85 MPa at 8x10^5 cycles.
- Stress corrosion mechanisms generally reduce fatigue life of bioabsorbable magnesium alloys. The present results on WE43 fatigue life testing in DMEM confirm this behaviour. Clear signs of environmentally assisted cracking are visible on the specimen’s circumference. A significant number of long and aligned secondary cracks indicate material embrittlement.

Fractography reveals three distinct regions: crack initiation zone, crack propagation zone and overload zone. In corrosion-fatigue experiments, the initiation of the fatigue source is linked to corrosion pits, with secondary cracks forming along the circumference. In the crack propagation zone, all specimens showed mixed modes of intergranular and transgranular cracking. However, the predominant failure mode strongly depends on the experimental fatigue configuration.
Transgranular cracking was dominant in uncorroded states, while the transition to intergranular cracking dominant failure was observed in corrosion-fatigue tests due to hydrogen embrittlement.

CRediT authorship contribution statement

Julia Nachtshem: Writing – original draft, Visualization, Validation, Methodology, Investigation, Data curation, Conceptualization.

Songyu Ma: Writing – review & editing, Visualization, Validation, Supervision, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization.

Jaka Burja: Writing – review & editing, Visualization, Methodology, Investigation.

Alexander Kopp: Resources, Formal analysis.

Jan-Marteen Seitz: Resources, Formal analysis.

Bernd Markert: Writing – review & editing, Supervision, Resources.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

This research was supported by the German Ministry of Education and Research (13GW0352B). The authors would like to thank Barbara Sentina Batic for assistance with SEM images, Borut Žuzek for material analysis and Dongxu Liu, Laurent Schartz, Mario Hackbarth and Uwe Navrath for support with the fatigue experiments.

References

