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Abstract

Background

Glioblastoma multiforme (GBM) is among the most aggressive cancers with a poor progno-

sis in spite of a plethora of established diagnostic and prognostic biomarkers and treatment

modalities. Therefore, the current goal is the detection of novel biomarkers, possibly detect-

able in the blood of GBM patients that may enable an early diagnosis and are potential ther-

apeutic targets, leading to more efficient interventions.

Experimental Procedures

MicroRNA profiling of 734 human and human-associated viral miRNAs was performed on

blood plasma samples from 16 healthy individuals and 16 patients with GBM, using the

nCounter miRNA Expression Assay Kits.

Results

We identified 19 miRNAs with significantly different plasma levels in GBM patients, com-

pared to the healthy individuals group with the difference limited by a factor of 2. Additional-

ly, 11 viral miRNAs were found differentially expressed in plasma of GBM patients and 24

miRNA levels significantly correlated with the patients’ survival. Moreover, the overlap be-

tween the group of candidate miRNAs for diagnostic biomarkers and the group of miRNAs

associated with survival, consisted of ten miRNAs, showing both diagnostic and prognostic

potential. Among them, hsa miR 592 and hsa miR 514a 3p have not been previously de-

scribed in GBM and represent novel candidates for selective biomarkers. The possible
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signalling, induced by the revealed miRNAs is discussed, including those of viral origin, and

in particular those related to the impaired immune response in the progression of GBM.

Conclusion

The GBM burden is reflected in the alteration of the plasma miRNAs pattern, including viral

miRNAs, representing the potential for future clinical application. Therefore proposed bio-

marker candidate miRNAs should be validated in a larger study of an independent cohort

of patients.

Introduction
Glioblastoma multiforme (GBM) is among the most aggressive and lethal types of brain cancer.
The average life expectancy of GBM patients (GP) is 1.5 years despite current advanced treat-
ment modalities and a plethora of established diagnostic biomarkers of the disease [1]. Thus
for an earlier and more efficient GBM treatment, new diagnostic and prognostic markers are
needed, that might also represent novel therapeutic targets [2]. Preferably, these should be de-
tectable in easily accessible biological fluids using robust and minimally invasive methods.

In this respect, microRNAs (miRNAs), the small non-coding RNAs representing endoge-
nous agents of RNA interference involved in the regulation of genes expression, emerge as suit-
able candidates [3,4]. Their overexpression, silencing or switching off was shown to affect
GBM carcinogenesis via the deregulation of targeted oncogenes or tumor suppressor genes [5].
Circulating miRNAs found in human blood plasma may represent stable biomarkers as they
are protected from degradation by being incorporated either into the lipid vesicles, i.e. micro-
particles and exosomes as well as in RNA-binding protein complexes [6,7]. Besides, plasma
miRNA levels do not change substantially when kept at room temperature over a short period
of time. Additionally, boiling and/or exposure to RNase A treatment, multiple freeze-thaw cy-
cles and pH changes, also do not seem to affect the circulating miRNA structures [8–11]. This
suggests that robust and stable circulating miRNAs could become potential clinical biomarkers
[12].

To date, only limited analyses of the miRNA contents in peripheral blood have been per-
formed. For example, in healthy individuals, gender-specific circulating miRNAs hsa—miR—
548—3p, hsa—miR—1323, hsa—miR—940 and hsa—miR—1292 have been identified, where-
as no differences in the miRNA content of microvesicles were revealed between different age
groups [9,13,14]. In cancer tissue samples the pattern of miRNA expression differs from that of
healthy individuals (HI), suggesting that miRNAs could play a critical role in the pathogenesis
of this disease, as reviewed in [15]. Roth and coworkers were able to identify a specific miRNA
signature in the blood cells of GBM patients (GP), namely an increased expression of hsa—
miR—128 and hsa—miR—194 and a decreased expression of hsa—miR—342—3p and hsa—
miR—628—3p [16]. In the microvesicles and plasma samples of GPs, decreased levels of hsa—
miR—128 and hsa—miR—342—3p were determined, whereas those of hsa—miR—21 were
found to be increased [17,18]. Until now, only a few miRNAs have been investigated in the
plasma of GPs and all of those found to be differentially expressed have been previously re-
ported present in GBM tissues [18,19]. To expand this knowledge, we performed a screening
analysis of a large group of miRNAs in plasma samples of HIs and GPs. This approach could
possibly lead to the discovery of novel plasma-specific miRNAs as candidates for early GBM
diagnosis and as prognostic biomarkers.
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Besides the host’s miRNAs, also some viral ones arising from latent infections are consid-
ered cancer development/progression promoters. Namely, viruses change the host miRNA ex-
pression profiles and make the infected cells more prone to oncogenic transformation. While
certain viral miRNAs act in cis and regulate the virus genome expression in infected cells, pos-
sibly contributing to viral latency, those acting in trans, cause translational repression and/or a
cleavage of the host cellular transcripts, normally involved in tumor suppression. Viruses also
produce dsRNA-binding proteins that might act as suppressors of RNA silencing (VSRs) and
interfere with the miRNA processor and effector complexes, thereby favouring tumor develop-
ment. Some prediction studies even implicate that certain viral miRNAs directly regulate onco-
genes. Some viral miRNAs may also facilitate tumor progression in uninfected tissues that are
already prone to develop cancer. Such pro-oncogenic modulation is a typical characteristic of
herpesviruses, for example EBV, HCMV, KSHV and HSV1. Altered host cellular miRNA rep-
ertoires found in cancerous tissues may influence their susceptibility to specific viruses. Thus
tumor-specific changes in miRNA expression profiles could be responsible for the fact that spe-
cific viruses are often associated with a particular type of cancer regardless of their causal rela-
tionship [20]. Therefore, we aim to investigate whether some changes in viral miRNA plasma
expression are representative for GBM.

For the identification of miRNA patterns in different biological samples, high throughput
RNA expression profiling is generally carried out using microarrays, followed by real-time re-
verse transcriptase qPCR-based methods to validate the differentially expressed miRNAs [21].
In the last decade additional high-performance technologies have been developed, such as the
nCounter technology [22]. Since the latter can be used to detect any type of nucleic acid in so-
lution and be modified to assess other biological molecules as well, we chose it for the identifi-
cation of putative new miRNA biomarkers screening in the plasma of GPs [22]. To our
knowledge, this is the first study to address the profiling of plasma miRNA contents within the
same individual over a defined time frame. Here we present a number of miRNAs, detected
with novel screening analyses, as candidates for playing a role in GBM development. These
also include viral miRNAs that have not been associated with GBM yet. Additionally, we pres-
ent the use of extended SegMine methodology, linking changes in miRNA levels with conse-
quently affected biological processes.

Materials and Methods

Plasma sampling
Glioblastoma (GBM) patients (GPs) were diagnosed and treated at the Department of Neuro-
surgery, Ljubljana University Medical Centre, Slovenia. The study was approved by the Repub-
lic of Slovenia National Medical Ethics Committee (Documents: 149/05/08 and 90/01/11).
Upon obtaining signed informed consents, the blood samples were collected from 16 healthy
individuals (HIs) recruited by the Blood Transfusion Centre of Slovenia in Ljubljana, and 16
GPs with a histopathological diagnosis of GBM (GPs). The inclusion criterion for HIs was
their age (20–60 years) and their gender (half men, half women). The subjects with known
acute and chronic diseases, pregnancy and those smoking and/or taking oral contraception or
other drugs, were excluded from the study [23]. GPs had to fulfil the following inclusion crite-
ria: age between 20 and 80 years and a confirmed diagnosis of a malignant glioma. The exclu-
sion criteria for them were metastases and pregnancy. Each blood sample taken was screened
for viral and bacterial infection markers of blood-transmittable diseases, i.e. HIV, hepatitis B,
hepatitis C and syphilis, and in addition, the body mass index (BMI) was calculated for each
individual enrolled.
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Plasma samples of HIs were collected three times in the morning after overnight fasting,
within a period of one month. The GP plasma samples were obtained prior to surgery, as well
as 24 hours and one week after the surgery. Only three samples, collected 24 hours after the
surgery, were included in the analysis. Another GP was included at the first occurrence of the
disease and then once again at its remission, which was detected ten months after the first sam-
pling. All GPs received pre- and postoperative corticosteroid therapy.

MicroRNA extraction
Peripheral venous blood was drawn into the BD Vacutainer CPT Cell Preparation Tubes con-
taining Sodium Citrate (Becton Dickinson Biosciences, USA). Upon centrifugation, the plasma
aliquots were frozen and stored at -80°C until RNA extraction was performed using the mir-
Vana Paris kit (Ambion, USA) according to a slightly modified manufacturer's instructions
and with applying additional purification steps (see S1 File. MiRNA extraction protocol). The
quality and quantity of the total RNA including small RNAs was assessed using a NanoDrop
8000 Spectrophotometer (Thermo Scientific, USA) and an Agilent 2100 Bioanalyzer, using the
SmallRNA kit (Agilent Technologies, USA). The total RNA extracts were kept at -80°C until
further processing.

MicroRNA profiling
MiRNA expression profiling was performed using the nCounter miRNA Expression Assay
Kits (NanoString Technologies, USA) at VIB Nucleomics (Belgium), allowing us to assay for a
total of 734 human (654) and human-associated viral (80) miRNAs. The digital nCounter
miRNA profiling technology is capable of accurately discriminating between miRNAs at a sin-
gle-base resolution in a complex mixture. The system provides a direct digital readout of each
miRNA needing only a small amount of the total RNA (100 ng), without requiring cDNA syn-
thesis or enzymatic reactions. The method involves: mixing the total RNA with pairs of capture
and reporter probes tailored to specifically recognize each miRNA present, hybridizing and
washing away excess probes, immobilizing probe-bound miRNAs on a solid surface, and final-
ly, scanning the different colour-coded bar tags on the reporter probes [24].

Quantitative real-time PCR
The total RNA that was extracted as described (see MiRNA extraction), was used as a template
for cDNA synthesis, qPCR reactions and data analyses, which were all performed according to
the manufacturer's protocols. The total RNA (1–13 ng) was reverse transcribed using the Taq-
Man MicroRNA Reverse Transcription Kit (Applied Biosystems, USA) to quantify all the se-
lected miRNAs, and with the High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, USA) to assess the amounts of 18S rRNA. In these experiments, TaqMan 2x Uni-
versal PCR Master Mix, No AmpErase UNG and TaqMan MicroRNA Assays (Inventoried As-
says, Applied Biosystems, USA) were used for the quantitative real-time PCR analyses of the
following pre-selected miRNAs: ebv—miR—BART2—3p (Assay ID: 006174), ebv—miR—
BART9—3p (Assay ID: 007435), hsa—miR—302c—3p (Assay ID: 000533), hsv1—miR—H1—
5p (Assay ID: 464923_mat), hsa—miR—193a—3p (Assay ID: 002250), hsa—miR—503—5p
(Assay ID: 001048) and hsa—miR—383—5p (Assay ID: 000573).

According to the different approaches that have been used in previously published experi-
ments, three standard endogenous reference controls, i.e. the eukaryotic 18S rRNA TaqMan
endogenous control (Assay ID: 4333760F), the small nuclear RNA RNU6B (Assay ID: 001093)
and the hsa—miR—16 (Assay ID: 000391), were included in the analyses [25,26]. The RNU6B
and hsa—miR—16 were analysed using the protocol and reagents for miRNAs, while in case of
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18S rRNA, a 2x TaqMan Gene Expression Master Mix was used (Applied Biosystems, USA).
Selected samples were processed in the set-up for quantitative PCR analysis using a LightCycler
480 Real-Time PCR System (Roche Applied Systems, USA), under the following conditions:
enzyme activation at 95°C for 10 min, 40 cycles of denaturation (95°C, 15 sec) and the same
number of steps of annealing and extension (60°C, 60 sec). The analysis of the resulting data
was performed as described by Gruden et al. [23].

Statistical analysis
The principal miRNA data analysis was performed using R software (http://www.r-project.
org).

Since the sample volumes in the study were not completely balanced and the extraction effi-
ciency varied from sample to sample, a proper normalization of results was eminent. Therefore
a number of normalization protocols, including housekeeping stable miRNAs, the total
miRNA content and the sum of positive controls, were tested. Based on the results obtained,
normalization to the total miRNA content was chosen as the optimal data correction method.
To reduce the problem with multiple testing in statistical models, the data were filtered for the
nondetectable miRNAs (an expression value below the background in at least 80% of all sam-
ples) and also for hsa—miR—720 that is likely a fragment of a tRNA and was therefore re-
moved from the miRBase [27]. Statistical analyses were performed on 284 miRNAs that met
the upper criteria.

Hierarchical clustering analysis (HCA), a principal component analysis (PCA) and an anal-
ysis of variance were applied in order to get an overview of the sample variability, using the
Multiexperiment Viewer software (MeV), where the criteria for data filtration were less strict
[28]. Significantly altered miRNA plasma levels were statistically identified by the t—test or, in
case of related samples, by the paired t—test.

In the survival analyses, the correlation between miRNAs detected in the plasma samples of
GPs and their different survival times following the disease diagnosis was determined by the
Kaplan-Meier statistics [29]. The optimal signal cut-off value that provided the most significant
distinction between the sample groups was defined by stratifying the data according to six pre-
determined cut-off ratios: 0.25:0.75, 0.35:0.65, 0.45:0.55, 0.55:0.45, 0.65:0.35, and 0.75:0.25. The
statistical significance of the differences (p—values) among these pre-defined group pairs was
determined using the log-rank analysis. The relationships between the groups with the lowest
p—values were represented by Kaplan-Meier graphs, following the application of correspond-
ing functions within the R programme (R version 2.15.1, libraries KMsurv 0.1–5, knitr 1.2.10,
patchDVI 1.9, survival 2.37–4).

Development of the microRNA analysis workflow in SegMine
To allow the analysis of miRNA datasets and their targets we extended the SegMine methodol-
ogy with special workflow components (widgets) which enable the analysis of miRNAs. Firstly,
miRNA expression data in a comma separated format can be loaded by using the Data parser
widget. Secondly, the Ranker widget ranks microRNAs according to their ability to distinguish
between the two sets of samples (control and treatment sets) using the ReliefF algorithm [30].
Thirdly, the list of ranked microRNAs is translated into a ranked list of targets (genes). For this
task the SegMine integrates three microRNA target databases: MiRTarBase with experimental-
ly validated targets and two algorithmically predicted target databases, DIANA-microT-CDS
and Targetscan [31–33]. The translation process is performed by voting where microRNAs
contribute their ranks to their target genes. If available, target probabilities are used in the pro-
cess, e.g. in the DIANA-microT-CDS the target probabilities are present for all the targets,
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while the Targetscan contains aggregate probabilities for only some of them. The translation
step is followed by the unmodified SegMine workflow which performs a search for enriched
gene sets with the SEGS algorithm, clustering of SEGS rules describing gene sets, and Biomine
link discovery between the biological entities (e.g. selected genes, clusters of genes, rules, clus-
ters of rules) [34]. This extension also enables adding the aggregated values from voting to the
graph in order to easily identify important targets. Finally, the reverse inference to identify
microRNAs which contributed to the observed target is also supported (if available, the target
probabilities are taken into account).

We have taken the following steps using the extended SegMine to interpret the differences
in miRNA levels between the HI older than 40 years (HIo) and GP groups: 1) the dataset was
filtered for miRNAs with absolute logFC (log fold change) values lower than 0.2; 2) ranked
miRNAs were translated into a ranked list of targeted genes based on the data from the miR-
TarBase—section Validated targets [31]; 3) SEGS rules with the corrected p-value� 0.05 were
taken into further analysis; 4) hierarchical clustering of gene ontology rules with Ward linkage
criteria considering a cutoff line at 11.23 was used to generate six rule clusters that were subse-
quently analyzed individually, and 5) the resulting Biomine sub-graphs were comprehensively
reviewed prior to focusing on the gene hubs (important nodes with a large number of edges).

Results

MicroRNA profiles in the plasma samples of healthy individuals (HIs)
MiRNA profiles in plasma samples were determined by using the nCounter technology. When
conceiving the experimental design, special attention was paid to the sampling and sample pro-
cessing in order to preserve miRNA stability and enable the standardization of the results.
From the initial 734 miRNAs, 284 were included in the analyses following their normalization
and omitting those below the detection threshold. If not specified otherwise, all the data were
statistically evaluated by the t—test with a cut-off value of p = 0.01. In the group of HIs, the
intra- and inter- individual variabilities of miRNAs were analyzed by using multivariate statis-
tical methods (HCA, PCA). The coefficients of variation (CVs) represent the measure of physi-
ological miRNA expression variability. Noteworthy, the assessed miRNA profiles showed
greater intra—than inter-individual physiological variability, as presented in Fig 1.

The influence of BMI on individual miRNA profiles was tested in two groups of HIs, i.e.
those with normal (�24) and those having high (>24) BMI values. Only hsa—miR—323a—5p
was significantly differently expressed, being elevated in a group of HIs with the higher BMI.
Nevertheless, this miRNA was close to the limit of detection with only a few signals being posi-
tive in the group of HIs with the higher BMI (see S2 Table. The overview of the results). There-
fore hsa—miR—323a—5p, despite emerging as differentially expressed, should only be
potentially assumed to have a valid correlation with the elevated BMI.

Four miRNAs (hsa—miR—208a, hsa—miR—142—3p, hsa—miR—23a—3p and hsa—
miR—1) were found to be age dependent (age< 40 versus age> 40 years) with the p—
value< 0.05. All of them appeared decreased in the older subgroup of HIs. In a search of dis-
similarities in miRNA expression between healthy men and healthy women, no differentially
expressed miRNAs were found considering the p—value< 0.01. When the p—value< 0.05
was taken into account, ten miRNAs were found to be differentially expressed. Hsa—miR—
1255a, hsa—miR—204, hsa—miR—651, hsa—miR—760 and kshv—miR—K12-4—5p were
significantly increased, whereas hsa—miR—151—5p, hsa—miR—199a—5p, hsa—miR—
361—5p, hsa—miR—423—3p and hsa—miR—423—5p, were significantly decreased within
the male group of healthy individuals (HI).
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Results of this part of research show trends that must be interpreted cautiously due to limit-
ed number of participants tested.

Identification of differently expressed microRNAs in the plasma samples
of GPs and HIs
In the search for novel biomarkers specific to GPs; plasma miRNA profiles of GPs and HIs
were compared. Some miRNAs were detected exclusively in one of the two tested groups. Still,
only those that were found to be under the detection threshold in less than 20% of samples
within both groups were further analyzed. Differences in plasma miRNA levels within the two
groups were statistically analyzed with the t—test or, in the case of related samples, (GP sam-
ples, obtained before and after surgery) by using the paired t—test, always with a cut-off value
of p = 0.01 (adjusted p-value). To assimilate and neutralize the data with respect to age, the
analyses were performed between all the GPs and only those HIs being older than 40 years
(HIo). To avoid false positive results due to plasma contamination with erythrocytes, blood
mononuclear cells and/or platelets, we systematically examined the results for the presence of
miRNAs, characteristic for the hematopoietic system, based on the previous findings of several
research groups [14,35,36]. These results are presented in Table 1. Together, 102 miRNAs, out
of which 41 down-regulated and 61 up-regulated, were found with significantly different plas-
ma levels in GPs, compared to the HIo group. These also included 11 viral miRNAs. After only

Fig 1. The comparison of intra- and inter-individual miRNA expression variability in the plasma
samples of 16 HIs. Variabilities are represented as boxplots showing miRNA expression coefficients of
variation (CVs) for each individual and a complete dataset.

doi:10.1371/journal.pone.0125791.g001
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miRNAs with at least a two-fold difference in levels detected in the HIo versus the GP group
were considered among all the significantly different ones, 19 more potential candidates for
miRNA biomarkers were revealed. The most strongly down-regulated miRNA in GPs was the
hsa—miR—383 (logFC = −1.85), whereas the most strongly up-regulated one was the hsa—
miR—603 (logFC = 2.68).

The screening analysis was performed using the nCounter technology. MiRNAs with
down—regulated plasma levels in the GP vs. the HIo group have the negative logFC values
(fold change) and those up—regulated the positive logFC values (t—test, between subjects; just
alpha; p<0.01), limited by the absolute logFC value of 1.0. The third column presents which
miRNAs have already been correlated to GBM (glioblastoma) according to the miRTarBase
[31]. Previous detection of explicit miRNA in the blood cells is marked in the fourth column
[14,35,36]. Viral miRNAs are not included in the miRTarBase, therefore their correlation with
GBM cannot be confirmed. A complete list of differentially expressed miRNAs is presented in
S1 Table. A complete list of differentially expressed miRNAs. Legend: GP—patient with glio-
blastoma multiforme, HIo—healthy individual, older than 40 years, NA—not applicable;—and
+ label previously reported detection in GBM or in blood cells.

Plasma microRNAs expression and GP survival
To determine whether the survival of GPs following GBM diagnosis associates with any partic-
ular plasma miRNA level, the log-rank analysis was performed. This enabled us to define the
signal values for each miRNA that discriminated best between the short-term and long—term
survivors. The analysis revealed 24 miRNAs significantly correlated with the survival of GPs.
In a group of long-term survivors, 20 of them were found to be significantly up—regulated: hsa
—miR—101—3p, hsa—miR—1260a, hsa—miR—145—5p, hsa—miR—185—5p, hsa—miR—
18a—5p, hsa—miR—1913, hsa—miR—29c—3p, hsa—miR—302c—3p, hsa—miR—30a—5p,
hsa—miR—30d—5p, hsa—miR—30e—5p, hsa—miR—483—5p, hsa—miR—484, hsa—miR—

Table 1. MiRNAs with altered plasma levels in the GPs group vs. the HIo group.

ID LogFC GBM Blood cells

hsa-miR-383-5p -1.85 - -

hsa-miR-660-5p -1.82 - +

hsa-miR-103a-3p -1.62 - +

hsa-miR-503-5p -1.55 - +

hsa-miR-320a -1.33 - +

hsa-miR-579-3p -1.32 - -

hsa-miR-302c-3p -1.23 + -

hsa-miR-492 -1.10 - -

hsa-miR-508-3p -1.05 - -

hsa-miR-148b-3p -1.03 - +

hsa-miR-649 -1.00 - -

hsa-miR-10b-5p 1.12 + -

hsa-miR-487b-3p 1.13 - +

hsv1-miR-H1-5p 1.16 NA -

hsa-miR-613 1.31 - -

hsa-miR-122-5p 1.49 - -

hsa-miR-142-3p 1.54 + +

hsa-miR-193a-3p 2.37 + +

hsa-miR-603 2.68 - -

doi:10.1371/journal.pone.0125791.t001
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493—3p, hsa—miR—525—3p, hsa—miR—548d—3p, hsa—miR—548d—5p, hsa—miR—566,
hsa—miR—592, hsa—miR—620, and four appeared to be significantly down-regulated: hsa—
miR—124—3p, hsa—miR—155—5p, hsa—miR—514a—3p and hsa—miR—653—5p. The
Kaplan-Meier graphs were generated for each of these 24 miRNAs (see S1 Fig. Kaplan-Meier
graphs of 24 plasma miRNAs having an impact on GP survival (p-value< 0.05)). Red curves
symbolize patients with miRNA signal intensities above the cut-off value, while the black
curves represent those below it. Coloured areas mark the confidence intervals. It was notewor-
thy that no viral miRNA was found to be associated with the patients’ survival.

All MiRNAs with prognostic potential, according to the log-rank survival analysis, did not
also hold diagnostic value, as they were not significantly differentially expressed in the GP and
HIo plasma samples. However, ten miRNAs overlapped in this respect and were therefore con-
sidered to be both diagnostic and prognostic, which makes them particularly appealing. These
were hsa—miR—302c—3p, hsa—miR—592, hsa—miR—484, hsa—miR—1260a, hsa—miR—
493—3p, hsa—miR—514a—3p, hsa—miR—145—5p, hsa—miR—30a—5p, hsa—miR—124—
3p and hsa—miR—483—5p.

Analysis of the effects in microRNA changes at the level of cellular
processes
The SegMine methodology was developed to enable the semantic analyses of gene expression
data [37]. This was accomplished by integrating an advanced algorithm for gene set enrich-
ment analysis (SEGS) and link the discovery within heterogeneous biological databases
(Biomine) into a coherent data analysis workflow [38], [34]. We extended the SegMine meth-
odology for the analysis of miRNA expression data at the level of cellular processes by linking
miRNAs with their targets through available miRNA targets’ databases.

Six SEGS rule clusters describing the differences between the HIo and GP groups were gen-
erated using the miRNA analysis workflow within SegMine (Fig 2). As anticipated, the main
miRNA clusters were linked with the gene ontology terms describing the cell proliferation pro-
cesses or the ones involved in cancer signalling (Fig 2). Link discovery with Biomine revealed a
generation of strong hubs, highly regulated by miRNAs that were found significantly differen-
tially expressed between the HIo and GP groups. A thorough inspection of the Biomine sub-
graphs revealed that the majority of gene hubs are cell cycle- or transcription-associated. Inter-
estingly, one fraction of the nodes, having limited edges with very low weights, emerged to be
linked to the main cluster. The fraction was found to cover the cytosolic processes, since the in-
cluded genes code for numerous ribosomal proteins (see S2 Fig. The SegMine sub-graph show-
ing a cluster of ribosomal proteins).

The intersection of the two Segmine clusters exposed proteins involved in the retinoblasto-
ma (RB) signalling pathway; one of the most common and important mutated or deregulated
pathways in GBM (Fig 3).

The genes most frequently targeted by miRNAs, differentially expressed in the plasma sam-
ples of GPs and HIos and/or correlated to GP survival were: vascular endothelial growth factor
A (VEGFA), heat shock 70kDa protein 1B (HSPA1B), actin beta (ACTB), heat shock protein
90kDa alpha (cytosolic), class A member 1 (HSP90AA1), insulin-like growth factor 1 receptor
(IGF1R), cyclin D1 (CCND1), as well as phosphatase and tensin homolog (PTEN) (Fig 4).

A reverse inference to identify miRNAs which have contributed to the observed target, sup-
ported by the SegMine methodology, provided us with a list of miRNAs, most frequently tar-
geting genes included in the sub-graphs. Those targeting at least ten genes in the Biomine sub-
graphs were: hsa—miR—320a, hsa—miR—484, hsa—miR—124—3p, hsa—miR—106b—5p,
hsa—miR—103a—3p and hsa—miR—503—5p. All of them appeared correlated to the
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Fig 2. Hierarchical clusters of rules for the validated targets of miRNAs detected in the plasma samples of GPs.Hierarchical clustering of the top 100
statistically significant rules (p�0.05) is presented. The SegMine rules were derived from genes, representing validated targets of the GBM-related plasma
miRNAs. Euclidian distance andWard’s linkage criteria were used to compute the hierarchy.

doi:10.1371/journal.pone.0125791.g002
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presence of GBM, with hsa—miR—484 and hsa—miR—124—3p being also associated with
GP survival.

Viral microRNAs found in the plasma samples of GPs and HIs
To find out whether viral miRNAs might have a role in GBM, a comparative analysis between
GP and HIo plasma samples was performed for 80 human-associated viral miRNAs included
in the nCounter miRNA expression assay. Eleven viral miRNAs were differentially expressed
in the plasma samples of GPs, when compared to those of HIos. Six of them were Epstein Barr
virus (EBV) miRNAs (ebv—miR—BART2-3p, ebv—miR—BART2-5p, ebv—miR—BART6-
3p, ebv—miR—BART9, ebv—miR—BART15 and ebv—miR—BHRF1-3), 2 Herpes Simplex
Virus (HSV) miRNAs (hsv1—miR-H1 and hsv1—miR-H4-3p), 1 Kaposi Sarkoma Human
Virus (KSHV) miRNA (kshv—miR-K12-7) and two Human Cytomegalovirus (CMV) miR-
NAs (hcmv—miR-US5-2 and hcmv—miR-US33-3p).

Nine of them were up-regulated (ebv—miR—BART15, ebv—miR—BART2—5p, ebv—miR
—BART6—3p, ebv—miR—BART9, ebv—miR—BHRF1-3, hcmv—miR—US5-2, hsv1—miR
—H1 and kshv—miR—K12-7) and two (ebv—miR—BART2—3p and hsv1—miR—H4—5p)
down-regulated in a group of GPs, compared to HIos (Fig 5).

These results suggest that viral miRNAs may play an important role in the tumorigenesis of
GBM.

Verification of nCounter technology results by real-time PCR (RT-qPCR)
RT-qPCR-based methods are mostly used for the validation of the results obtained with differ-
ent microarrays and other high-throughput methods. For the confirmatory qPCR analysis,
seven selected, differentially expressed miRNAs, ebv—miR—BART2—3p, ebv—miR—BART9
—3p, hsa—miR—302c—3p, hsv1—miR—H1—5p, hsa—miR—193a—3p, hsa—miR—503—

Fig 3. A Biomine sub-graph showing the Retinoblastoma (Rb) signalling pathway.Genes, involved in the RB signalling pathway are marked with an
orange colour. The genes in the subgraph are covered by the rules from clusters 5 and 6 of the hierarchical clustering.

doi:10.1371/journal.pone.0125791.g003
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5p and hsa—miR—383—5p, were used. In addition, three standard endogenous reference con-
trols, i.e. 18S rRNA, RNU6B and hsa—miR—16, were also included. No, or only a few signals
were detected for ebv—miR—BART2—3p, ebv—miR—BART9—3p, hsa—miR—302c—3p,
hsv1—miR—H1—5p, hsa—miR—193a—3p, hsa—miR—383—5p and RNU6B, while in the
case of hsa—miR—503—5p, the results were not reproducible due to the high variability of the
replicates. Reproducible results with the corresponding Cq values were obtained only for the
endogenous reference controls 18S rRNA and hsa—miR—16. Although RT-qPCR methods for
miRNA quantification are relatively inexpensive, commonly available and allow measurements
of very small quantities of miRNAs, still the amounts of circulating miRNAs in the peripheral
blood are often below their limit of detection [21]. Therefore, due to the low concentrations of
circulating miRNAs found in the GP’s and HI’s plasma, RT—qPCR-based detection does not
result in appropriate quantifications.

Discussion
We performed a miRNA screening analysis in the plasma samples of GBM patients and healthy
individuals using the nCounter technology and identified novel miRNA biomarker candidates
for the diagnosis and prognosis of GPs. The majority (> 65%) of the differentially expressed
miRNAs identified in this study had already been previously associated with various malignan-
cies [39,40], many of them also with GBM [39,41]. The most down—regulated miRNA (hsa—
miR—383) found in the investigated GP group may be involved in the promotion of glioma

Fig 4. Genesmost frequently targeted bymiRNAs, correlated to the presence of GBM or patient
survival. The presented genes are validated targets of miRNAs differentially expressed in the plasma
samples of GPs and the members of the HIo subgroup and/or correlated to patient survival according to the
results of analyses of this study, obtained by using the miRTarBase [32]. VEGFA—vascular endothelial
growth factor A, HSPA1B—heat shock 70kDa protein 1B, ACTB—actin beta,HSP90AA1—heat shock
protein 90kDa alpha (cytosolic), class A member 1, IGF1R—insulin-like growth factor 1 receptor,CCND1—
cyclin D1, PTEN—phosphatase and tensin homolog, BCL2—B-cell CLL/lymphoma 2, CCNE1—cyclin E1,
CDK4—cyclin-dependent kinase 4, PPIA—peptidylprolyl isomerase A (cyclophilin A), TUBA1B—tubulin,
alpha 1b,WEE1—WEE1 G2 checkpoint kinase,CCND2—cyclin D2, CDK2—cyclin-dependent kinase 2,
CDK6—cyclin-dependent kinase 6, BIRC5—baculoviral IAP repeat containing 5, EP300—E1A binding
protein p300, RRM2—ribonucleotide reductase M2.

doi:10.1371/journal.pone.0125791.g004

MiRNA Pattern Revealed in the Plasma of Glioblastoma Patients

PLOS ONE | DOI:10.1371/journal.pone.0125791 May 7, 2015 12 / 20



cell invasion by targeting the insulin-like growth factor 1 receptor gene (IGF1R) via AKT sig-
nalling that had been demonstrated previously [42]. In contrast, the hsa—miR—603 was found
to be the most up-regulated miRNA in GPs when compared to the subgroup of older healthy
individuals (HIo). It has not been previously linked to GBM, but its up-regulation improved
the classification of gastrointestinal stromal tumors and is considered potentially oncogenic in
bladder cancer [43,44]. Another miRNA with diagnostic potential is hsa—miR—10b, the in-
creased expression of which had been repeatedly confirmed in GBM tissue [45–49], whereas
Lang et al. also noticed this pattern in the cell lines originating from GBM stem cells [50].
Among miRNAs with the highest expression was also hsa—miR—193a—3p, previously corre-
lated with a poor prognosis of GBM by Srinivasan et al. [50]. In the group of miRNAs with a
decreased expression in the plasma of GPs, hsa—miR—302c—3p and hsa—miR—492 were
discovered. The former was reported as down-regulated in GBM tumor samples, and the latter
was decreased in GBM stem cell lines [48], [49]. Some inconsistencies regarding the expression
between GBM tissue and plasma miRNAs were found, for example hsa—miR—181b and
hsa—miR—181c were found down—regulated in the GBM tumor tissue, but are slightly up—
regulated in the GP plasma, similar to the case of hsa—miR—124—3p [45–47]. These differ-
ences may be due to the poor secretion of some miRNAs from tissues/cells into the blood. Ad-
ditionally, studies based on different blood fractions provide an overall picture of a patient’s

Fig 5. Log2 expression values of 11 viral miRNAs, differentially expressed in the GP and HIo plasma samples. The bars represent the mean values
and x each analysed plasma sample.

doi:10.1371/journal.pone.0125791.g005
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condition, not exclusively related to the tumor burden. Besides, highly modified small RNA
ends may cause a bias between the results obtained by hybridization-based methods versus the
RT-qPCR [51]. Due to the very low miRNA concentrations in the plasma, we were faced with
un-reproducible results of RT—qPCR, used for the validation of selected specific miRNAs, de-
tected by the nCounter technology. Namely, we have decided to avoid amplification of cDNA
that has been advised by other research groups due to possible errors and biases [42,43,52].
This study, as well as other authors, clearly demonstrated that the nCounter technology indeed
provides superior gene expression quantification in human plasma, compared to the RT—
qPCR [53].

Kaplan-Meier GP survival analyses revealed 24 plasma miRNAs with a prognostic potential
in GBM. Twenty (20) upregulated and four downregulated miRNAs were linked to a longer
survival of GPs. The overlap between the significantly upregulated miRNAs in the plasma of
GPs compared to HIos and those with a prognostic value for GP survival, revealed a group of
ten candidates, which might hold both, diagnostic and prognostic impact. Six of them (hsa—
miR—302c—3p, hsa—miR—592, hsa—miR—484, hsa—miR—1260a, hsa—miR—493—3p
and hsa—miR—514a—3p) were down-regulated and four (hsa—miR—145—5p, hsa—miR—
30a—5p, hsa—miR—124—3p and hsa—miR—483—5p) were up-regulated in GPs. Among
these, the association with GBM has already been confirmed for hsa—miR—302c—3p, hsa—
miR—1260a, hsa—miR—145—5p, hsa—miR—30a—5p, hsa—miR—124—3p and hsa—miR
—483—5p [47,53–57]. Moreover, the correlation of hsa—miR—484 and hsa—miR—493—3p
with glioblastoma was questioned due to their presence within hematopoietic cells [14]. Two
miRNAs, hsa—miR—592 and hsa—miR—514a—3p have not been previously associatied with
the GBM, though the first one has been correlated to other cancers, for example medulloblasto-
ma [43,58].

To expose the most significant, we propose hsa—miR—592 and hsa—miR—514a—3p as
potential novel GBM biomarkers with both, diagnostic and prognostic clinical potential. Vali-
dated target genes of hsa—miR—592 are DICER (dicer 1, ribonuclease type III), an endonucle-
ase with a role in the biogenesis of the active small RNA component and CCND1 that interacts
with the Rb tumor suppressor protein [59]. Mutations, amplification and overexpression of
this gene, which alters the cell cycle progression, are frequently observed in a variety of tumors,
including a subtype of GBM and may well contribute to its tumorigenesis [39,60]. Significantly
altered expressions of hsa—miR—592 have been observed among tumors with deficient, as
well as proficient mismatch repair in colon cancer [61,62]. In contrast to these two, no correla-
tion with cancer and no gene targets have been reported for the hsa—miR—514a—3p variant
so far [39].

For the purpose of this study we decided to upgrade SegMine, the new bioinformatic meth-
odology, to allow for the visualization of meaningful correlations among miRNAs and their
target genes. In this way, genes strongly associated with differentially expressed miRNAs in the
plasma of GPs were identified and found to be part of a transcriptional regulation network
(E2F1- E2F transcription factor 1,MYC—v-myc avian myelocytomatosis viral oncogene ho-
molog, RELA—v-rel avian reticuloendotheliosis viral oncogene homolog A), cell cycle progres-
sion (CDK2, CDK4, CDK6, CCND1, CCND2, CCNE1, CDKN1A - cyclin-dependent kinase
inhibitor 1A, PTEN, RB1), apoptosis (BCL2, BIRC5) and stress regulation (HSPA1B,
HSP90AA1) proteins. There, both identified miRNA candidates for diagnostic and prognostic
biomarkers, the hsa—miR—124—3p and hsa—miR—484, again appeared among the miRNAs,
whose gene targets were most numerously represented.

The group of miRNAs with the most striking differences detected in the plasma of GPs were
viral miRNAs. Viral miRNAs allow for viral persistence in the host by inhibiting the cell-medi-
ated immunity, apoptosis and cell-cycle, thereby providing conditions favouring latency [63].
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These mechanisms may link the viral infection to tumorigenesis, where similar processes are
deregulated. Yet, the question remains, whether viral miRNAs may also affect uninfected host
cells. This was demonstrated for the functionally active ebv—miR—BHRF1—3 found inside
exosomes released from EBV infected cells, consequently causing a down-regulation of its tar-
get gene CXCL-11 (Chemokine (C-X-C) Motif Ligand 11) also in the non-infected ones [64].
This study revealed 11 differentially expressed viral miRNAs in the plasma of GPs, compared
to those of HIs. Six (6) of them belong to the Epstein Barr virus (EBV) miRNAs, and the rest
are of Herpes Simplex Virus (HSV), Kaposi Sarkoma Human Virus (KSHV) and Human Cyto-
megalovirus (CMV) origin. Except for ebv—miR—BART2-3p and hsv1—miR-H4—3p, all the
others were up-regulated in the plasma samples of GPs.

A control over the latency to lytic transition may enable viruses to evade the anti-viral host
immune responses and may act in a similar manner in tumors, helping to evade immune sur-
veillance during tumor progression. EBV miRNAs were demonstrated to target and control the
cellular and viral synthesis of proteins involved in the transition from the latency to lytic state.
The ebv—miR—BART2 represses the viral DNA polymerase BALF5, thereby maintaining its
latency, while its reduced levels diminish the BALF5 transcript cleavage and allow for EBV
lytic replication [65]. In GP plasma samples hsv1—miR-H1 was also up-, whereas hsv1—
miR-H4-5p was down-regulated. Both, hsv1—miR-H1, which is exclusively expressed during
productive infection, and hsv1—miR-H4, which is known to down-regulate the viral pathoge-
nicity factor ICP34.5, inhibit the innate immune response to HSV-1 and promote its replica-
tion within the neurons [66]. Likewise, the decreased levels of ebv—miR—BART2-3p miRNA
along with the increased levels of HSV—1 and CMVmiRNAs found in the plasma samples of
GPs could affect the immune reponse in GBM patients [67,68].

Furthermore, to evade the immune response, viral miRNAs may also be interfering with the
immune cell mediated cytotoxicity. Ebv—miR—BART2-5p, found increased in plasma sam-
ples of GPs, targets the 3'UTR of MICB, a stress-induced non-classical major histocompatibili-
ty class I molecule, thereby reducing the cytotoxic death of the infected cells, mediated by
MICB binding to the NKG2D receptors expressed on the natural killer (NK) and CD8+ T cells.
As tumor cells also express MICB, the ebv—miR—BART2-5p, may be in this way involved in
GBM progression [65]. Additionally, the ebv—miR—BHRF1-3 miRNA, also found increased
in GP plasma, is known to directly down-regulate the host chemokine CXCL-11. Since this is
produced by B lymphocytes following IFN—γ stimulation, and upon binding to its CXCR3 re-
ceptors activates the NK and T cells, the induction of these important immune cells may also
be impaired in GPs [63,65]. Likewise, KSHV miRNAs play similar roles in modulating the ex-
pression of the same genes. In the plasma samples of GPs, significantly higher levels of kshv—
miR-K12-7 were detected, as in those of HIs. Kshv—miR—K12-7, like ebv—miR—BART2—
5p, is known to repress MICB expression. Additionally, it down-regulates the expression of the
liver inhibitory protein (LIP), which causes cell death, stimulates autophagy and activates the
transcription and secretion of IL-6 and IL-10 in monocytes and macrophages [69]. These cyto-
kines play an active role in the pathogenesis of KSHV-associated malignancies by promoting
tumor growth, angiogenesis and suppressing T—cell activation [70]. So putatively, the kshv—
miR—K12-7 may also function similarly in GBM progression.

With respect to cell death, EBV miRNAs inhibit apoptosis in cell lines during their transfec-
tion with the BART (BamHI A rightward transcripts) miRNA coding region. Multiple pre-
dicted sites for binding cluster I and cluster II BART miRNAs exist within the Bcl-2 interfacing
mediator of the cell death gene (BIM). Its encoded BIM tumor suppressor protein synthesis is
down-regulated by the expression of both miRNA clusters [71,72]. We found ebv—miR—
BART6 and ebv—miR—BART15 (Cluster I), as well as ebv—miR—BART9 (Cluster II) up-
regulated in the plasma of GPs. BIM is also known to be targeted by cellular miRNAs in
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nasopharyngeal and gastric carcinomas [71]. Additional predicted target genes for ebv-miR--
BART6-3p, ebv—miR—BART9 and ebv—miR—BART15 are CASP10, RAD1/RB1, and
CASP3, respectively [73]. Moreover, the up-regulated ebv—miR—BHRF1-3, found in the GP
plasma samples, was shown to match BID (BH3 interacting domain death agonist) and BHRF
(Bam HI fragment H rightward open reading frame, a homolog of mammalian BCL2) tran-
scripts, which, when silenced, block the extrinsic and mitochondrial apoptotic pathways, the
lower cell’s responsiveness to external signals and increase its resistance to apoptosis [70]. Be-
sides BID, EBV miRNAs may also negatively target the pro-apoptotic protein Cyclin G2
(CCNG2), which is down-regulated in different tumors, where these two key components of
the p53 pathway may be regulating cell cycle arrest, senescence and apoptosis [73]. The abun-
dance of these EBV miRNAs in the plasma of GPs could thus be supporting the increased apo-
ptotic resistance of GBM.

In this study we have also tested whether age, gender, physical activity and BMI correlate
with the detected miRNA expression patterns in the plasma samples of GPs and HIs. We iden-
tified four age-related miRNAs (p<0.05). All of them were present at lower levels in the older
group of HIs (HIo). Two of them, hsa—miR—208a and hsa—miR—1 have a common validat-
ed target gene CASP3 that plays a central role in the execution phase of cell death and may
therefore be related to age [74]. Hsa—miR—142—3p, hsa—miR—23a—3p and hsa—miR—1
also all target the CCNDI oncogene [39]. The down-regulation of miRNAs targeting this gene
can thus lead to enhanced cell cycle progression and telomere shortening that after a certain
time/age may result in tumorigenic transformation-prone cell evolution.

Conclusion
The presented analysis of human plasma-derived miRNAs in glioblastoma patients vs normal
healthy individuals provides a broader insight into the potential of miRNAs to be used as spe-
cific biomarkers for GBM diagnosis and prognosis using the novel nCounter technology,
being more sensitive than the classical methods. We have found 19 differentially expressed
miRNAs with a minimal 2-fold difference in the levels detected in the tested groups of which
not all have a prognostic value and also 24 miRNAs which fulfil this criterium but were not
significantly altered in the plasma of GPs compared to normal HIs. Besides, a subgroup of
ten miRNA candidates was defined that hold both, diagnostic and prognostic value for GBM
patients. The most interesting result of this study was a differential expression of 11 viral
miRNAs, which are known to modulate the cell cycle, and repress apoptosis and immune re-
sponses. Their influence is in concert with the signals generated by specific tumor-protecting
microenvironment and altogether immune and neuroendocrine system responses in cancer
patients. However, a broader clinical validation of the proposed biomarker candidate miR-
NAs requires further studies in an independent cohort of patients.
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