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ABSTRACT

In this paper, we study the bivariate truncated moment problem
(TMP) on curves of the form y = g(x), g(x) € R[x], degg > 3 and
yx¢ = 1,£ € N\ {1}. For even degree sequences, the solution based
on the size of moment matrix extensions was first given by Fialkow
[Fialkow L. Solution of the truncated moment problem with variety
y = x3. Trans Amer Math Soc. 2011;363:3133-3165.] using the trun-
cated Riesz—Haviland theorem [Curto R, Fialkow L. An analogue of
the Riesz-Haviland theorem for the truncated moment problem. J
Funct Anal. 2008;255:2709-2731.] and a sum-of-squares represen-
tations for polynomials, strictly positive on such curves [Fialkow
L. Solution of the truncated moment problem with variety y = x3.
Trans Amer Math Soc. 2011;363:3133-3165.; Stochel J. Solving the
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truncated moment problem solves the moment problem. Glasgow
J Math. 2001;43:335-341.]. Namely, the upper bound on this size
is quadratic in the degrees of the sequence and the polynomial
determining a curve. We use a reduction to the univariate set-
ting technique, introduced in [Zalar A. The truncated Hamburger
moment problem with gaps in the index set. Integral Equ Oper The-
ory. 2021;93:36.doi: 10.1007/500020-021-02628-6.; Zalar A. The trun-
cated moment problem on the union of parallel lines. Linear Algebra
Appl. 2022;649:186-239. doi.org/10.1016/j.1aa.2022.05.008.; Zalar A.
The strong truncated Hamburger moment problem with and without
gaps. J Math Anal Appl. 2022;516:126563. doi: 10.1016/j.jmaa.2022.
126563.], and improve Fialkow's bound to degg — 1 (resp. £ + 1)
for curves y = q(x) (resp. yx* = 1). This in turn gives analogous
improvements of the degrees in the sum-of-squares representations
referred to above. Moreover, we get the upper bounds on the num-
ber of atoms in the minimal representing measure, which are k deg g
(resp. k(£ + 1)) for curves y = q(x) (resp. yx* = 1) for even degree
sequences, while for odd ones they are k deg g — ]—dezﬂ} (resp. k(£ +

1) — L%J + 1) for curves y = g(x) (resp. yxt = 1). In the even case,
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these are counterparts to the result by Riener and Schweighofer
[Riener C, Schweighofer M. Optimization approaches to quadrature:a
new characterization of Gaussian quadrature on the line and quadra-
ture with few nodes on plane algebraic curves, on the plane and in
higher dimensions. J Complex. 2018;45:22-54., Corollary 7.8], which
gives the same bound for odd degree sequences on all plane curves.
In the odd case, their bound is slightly improved on the curves we
study. Further on, we give another solution to the TMP on the curves
studied based on the feasibility of a linear matrix inequality, corre-
sponding to the univariate sequence obtained, and finally we solve
concretely odd degree cases to the TMP on curves y = x°, £ = 2,3,
and add a new solvability condition to the even degree case on the
curvey = x2.

1. Introduction

Given a real two-dimensional sequence

BD = {B0.0, Bros Bots - - - Baos Bd—1,1 - - -» Brd—1 Bod}

of degree d and a closed subset K of R?, the truncated moment problem (K -TMP) supported
on K for B asks to characterize the existence of a positive Borel measure u on R? with
support in K, such that

ﬁi,j=/x"y7dufor hjeZy, 0<i+j<d. (1)
K

If such a measure exists, we say that 8@ has a representing measure supported on K and
w is its K -representing measure (K-rm).

Let k= (%1. In the degree-lexicographic order 1,X,Y,X% XY, Y?, ..., Xk Xk 1y,
..., Y* of rows and columns, the corresponding moment matrix to § is equal to

M[o0,0](8) MI[0,1](B) --- MIO,k](B)
My = Mx(B) == : : . : , (2)
M[k,0]1(B) Mk 1]1(B) --- MlkKk](B)
where

Bitio  Bitj-11 Bitj-22 - Bij
Bitji-11  Bitj—22 Bitj-33 - Bi—1+1
M[i,jl(B) == | Piti-22 Bitj-33 Bitj-aa - Pi2jp2

Bj,i Bi-1i+1  Bj—2i+2 -+ Boitj

and for odd d, the lower right corner M[k, k] of My(B) is undefined. Until the end of
this section, we assume that My is fully determined, i.e. it corresponds to the even degree
sequence B2, Let R[x, y]x := {p € R[x,y]: degp < k} stand for the set of real polyno-
mials in variables x, y of degree at most k, where for p # 0 the degree deg p stands for the
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maximal sum i+ j over all monomials x'y/ appearing in p with a nonzero coefficient a;;,
while for p = 0, degp = 0. For every p(x,y) = Zi)j aiix'y’ € R[x, ylx, we define its evalua-
tion p(X, Y) on the columns of the matrix My by replacing each capitalized monomial X* Y7
inpX,Y)=>; j ainin by the column of My, indexed by this monomial. Then p(X, Y)
is a vector from the linear span of the columns of Mj. If this vector is the zero one, i.e. all
coordinates are equal to 0, then we say p is a column relation of M. Recall from [1], that 8
has an rm pu with the support supp(u) being a subset of Z(p) := {(x,y) € R2: p(x,y) = 0}
ifand only if p is a column relation of My. We say that the matrix Mj is recursively generated
(rg) if for p, g, pq € R[x, y]x such that p is a column relation of Mj, it follows that pq is also
a column relation of M.

A concrete solution to the TMP is a set of necessary and sufficient conditions for the exis-
tence of a K-rm that can be tested in numerical examples. Among necessary conditions,
Mj. must be positive semidefinite (psd) and rg [1,2]. A crucial tool to tackle the TMP, dis-
covered by Curto an Fialkow in 1996, was a flat extension theorem (FET) [1, Theorem 7.10]
(see also [3, Theorem 2.19] and [4] for an alternative proof), which states that ,B(zk) admits
a (rank My)-atomic rm if and only if My is psd and admits a rank-preserving exten-
sion to a moment matrix M. Using the FET as the main tool the bivariate TMP has
been concretely solved in the following cases: K is the variety defined by a polynomial
p(x,y) = 0 with degp <2 [5-8]; K = R2, k = 2 and M, is invertible [9], first solved
nonconstructively in [10]; K is the variety y = x® [11]; My has a special feature such as
recursive determinateness [12] or extremality [13]. Some special cases have also been solved
in [14-16] based on the FET and in [17-25] using different approaches.

References to some classical work on the TMP are monographs [26-28], while for a
recent development in the area we refer a reader to [29]. We also mention some variants
of the TMPs, which attracted a recent research interest, such as versions of the infinite
dimensional TMPs [30-32], the TMP on subspaces of polynomial algebra [33], the TMP
for commutative R-algebras [34], matrix and operator TMPs [35-43], etc.

In our previous work, we introduced a new approach to tackle the singular bivariate
TMP, namely a reduction to the univariate setting technique. The idea is to use one of the
column relations to transform the problem into the equivalent univariate TMP, where also
negative moments of the measure could be present or not all moments between the lowest
and highest degree ones are known. In the case all moments from degree 0 to the highest
degree are known, the situation is well understood in terms of the existence and uniqueness
of the rm and has been solved in full generality [44,45] for measures with support R, [a, c0)
or [a,b] C R, a,b € R, a<b, as well as for even and odd degree sequences. In the pres-
ence of negative moments, we gave a solution along the lines of the classical case in [46],
where we note that the existence of the solution even in the matrix case was already estab-
lished by Simonov [47] (but the measure is not constructively obtained and the number
of atoms in a minimal measure does not directly follow from this more general approach).
Using these results, we presented [38,46,48,49] alternative solutions with shorter proofs
compared to the original ones to the TMPs on the curves xy = 0,y = x>, y* = y, xy = 1,
but also obtained solutions to new cases, namely on the curve y* = x°, on the union of
three parallel lines and on xy? = 1.

The motivation for this paper was to use a reduction technique to the TMP on curves
of the form y = q(x) and yq(x) = 1, where q € R[x]. In [11, Section 6], Fialkow gave a
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solution to the TMP on these curves for even degree sequences in terms of the bound on
the degree m for which the existence of a positive extension M,, of My is equivalent to
the existence of a rm. Namely, his bound is quadratic in k and degq. Using a reduction
technique we are able to decrease his bound in the even degree case for all curves of the
form y = g(x), degq > 3, to deg g — 1 and for curves of the form yx* = 1,£ € N\ {1}, to
£ + 1, which is our first main result. Moreover, the reduction technique also works in the
odd degree case. A corollary to this improved bounds are also improvements of the sum-
of-squares representations for polynomials, strictly positive on such curves, by decreasing
the degrees of the polynomials in the representation. Our second main result are the upper
bounds on the number of atoms in the minimal rm, which are for curves y = q(x), degq >
3, equal to k deg g in the even and kdeg g — [@] in the odd case and for curves yx* = 1,
£ > 2, equal to k(£ + 1) in the even and k(£ + 1) — L%J + 1 in the odd case. In the even
case these results are counterparts to the result of Riener and Schweighofer [50, Corollary
7.8], who proved that for all plane curves, odd degree sequence has at most k deg q atoms
in the minimal measure. For curves of the above form, we improve their bound slightly in
the odd degree case. The third main result of the paper is another solution to the TMPs
studied, which is based on the feasibility of a linear matrix inequality corresponding to
the univariate sequence obtained. Moreover, we give concrete solutions to the odd degree
TMPs on the curves y = x* and y = x> and an alternative solution to the even degree case
on y = x? with a new solvability condition, which will be crucially needed in the solution
of the TMP on the reducible curve y(y — x*) = 0 in our forthcoming work.

1.1. Reader’s guide

This paper is organized as follows. In Section 2, we fix some further notation and known
results on the TMP, which will be used in the proofs of our results. In Section 3, we give two
solutions to the K-TMP for K = {(x,y) € R?: y = q(x)}, q € R[x], degq > 3, one based
on the size of psd extensions of the moment matrix needed (see Theorems 3.1 and 3.2
for the even and odd degree cases, respectively) and the other one based on the feasibility
question of a certain linear matrix inequality (see Theorem 3.8). Theorems 3.1 and 3.2 also
give bounds on the number of atoms in a minimal K-rm. Moreover, Theorem 3.1 gives a
Positivstellensatz on K as a corollary (see Corollary 3.3). Further on, we solve concretely
the TMPs on the curve y = x? (see Theorems 3.4 and 3.7 for the even and odd degree cases,
respectively) and on y = x° for the odd case (see Theorem 3.13). In Section 4, we give the
corresponding results to the ones from Section 3 for curves yx¢ = 1, £ € N\ {1}. Theo-
rems 4.1 and 4.2 are the counterparts of Theorems 3.1 and 3.2, respectively, Corollary 4.3
of Corollary 3.3 and Theorem 4.4 of Theorem 3.8.

2. Preliminaries

In this section, we fix some terminology, notation and present some tools needed in the
proofs of our main results.

We write R"*™ for the set of n x m real matrices. For a matrix M, we call the linear span
of its columns a column space and denote it by C(M). The set of real symmetric matrices of
size n will be denoted by S,,. For a matrix A € S, the notation A > 0 (resp. A > 0) means
A is positive definite (pd) (resp. positive semidefinite (psd)).
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In the rest of this section, let d € Nand g = @ = {Bij}ijez,, 0<it+j<d be a bivariate
sequence of degree d.

2.1. Moment matrix

Let k = [g'| and My = My (B) be the moment matrix of 8 (see (2)). Let Q, Q, be sub-
sets of the set {X'Y/: i,j € Z, 0 < i+ j < k}. We denote by (M)|q,,q, the submatrix of
M consisting of the rows indexed by the elements of Q; and the columns indexed by the
elements of Q. In case Q := Q; = Qy, we write (My)|q = (My)|o,q for short.

Remark 2.1: Whenever Qy, Q, will be subsets of{xi)xj: i,j € Z4, 0 <i+j<k}intherest
of the paper, in the notation (Mj)|q,,q, all monomials from Q;, Q, are meant capitalized,
ie x'y > X'YI.

2.2. Atomic measures

For x € R™, §, stands for the Dirac measure supported on x. By a finitely atomic positive
measure on R™, we mean a measure of the form u = Zf:o pjéxj, where £ € N, each pj >0
and each x; € R™. The points x; are called atoms of the measure i and the constants p; the
corresponding densities.

2.3. Riesz functional

The functional Lg : R[x, y]<4 — R, defined by

Lﬁ(p) = Z ai,jﬁ,‘,j, where p= Z ai,jx’))’,
i,jGZJr, i,jGZ+,
0<i+j<d 0<i+j<d

is called the Riesz functional of the sequence f.

2.4. Affine linear transformations

Let K € R2. The existence of a K-rm for B is invariant under invertible affine linear
transformations (alts) of the form

¢(x,)’) = (¢1(X>)/)>¢2(x,)/)) = (a+bx+c}’,d+ex+fy)> (X,)/) € Rz) (3)

a,b,c,d,e,f € Rwith bf — ce # 0 in the sense which we now explain. We denote by j the
two-dimensional sequence defined by

Bij=Lg ($1(x:9) - da(x pY)

where Lg is the Riesz functional of 8.

Proposition 2.1 ([7, Proposition 1.9]): Assume the notation above and let d = 2k.

(1) My (B) is psd if and only ika(E) is psd.
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(2) rank Mi(B) = rankMk(E). _
(3) Mi(B) isrgif and only if Mi(B) isrg.
(4) B admits a r-atomic K-rm if and only if 8 admits an r-atomic ¢ (K)-rm.

In case d = 2k—1 is odd, the block M[k, k] of My(B) is undefined. We say that My (8)
is psd completable if there exists an extension S @0 of B such that My(8 @0y is psd.

Proposition 2.2: Assume the notation above and let d = 2k—1, k € N.

(1) My (B) is psd completable if and only i]‘Mk(E) is psd completable.

(2) Letr € N. There exists an extension ﬂ(Zk) of B such that rank Mk(ﬂ(Zk)) = rif and only
if there exists an extension Bk of B such that rank My(B?9) = r.

(3) Let r € N. There exists an extension BP9 of B such that Mi(8?P) is rg if and only if
there exists an extension B0 of B such that M(B@R) is rg.

(4) B admits a r-atomic K-rm if and only zf,g admits an r-atomic ¢ (K)-rm.

Proof: Proposition 2.2 follows easily from Proposition 2.1 by defining the extension B0
of B from the extension 8 of 8 using the same transformation ¢ together with the Riesz
functional Lgow of the extension. Similarly, for the other direction one uses ¢~ ! together
with the Riesz functional Lz of the extension. For (4) we note that any r-atomic K-rm

of the sequence f generates the extension X and then use (4) of Proposition 2.1. M

2.5. Hankel matrices and univariate sequences

Letk € N.Forv = (vg, ..., vx) € R%*1 we define the corresponding Hankel matrix as

Yo V1 V2 T Vi
Vi " o - Vk+1
Ay = (Vi+j)i~ij:0 =1l o o o € Sk+1- (4)
Vok—1
Vk  Vik+1 v Vak—1 V2k

Letvj := (Vj+g)lgzo be the (j + 1)-th column of A,, 0 < j < k. In this notation, we have that
sz(vo Vk).
As in [44], the rank of v, denoted by rank v, is defined by

k+1, if A, is nonsingular,
rankv = . (. . .
min {1: Vi € span{vy,... ,vi_l}} , if A, is singular.

We denote

e the upper left-hand corner (v,-+j)m o € Smy1 of A, of size m + 1 by A, (m)

o the lower right-hand corner (V,+J)U em € Sm+1 of Ay of size m + 1 by Ay[m].
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We write

V) = (Vak Vaok— 15 - - > V0)
for the reversed sequence of v.

A sequence v = (vp, ..., var) is called positively recursively generated (prg) if, denoting
r = rank v, it holds that A,(r — 1) > 0 and in case r <k + 1, also

r—1
vj = Zgo,-vj_rH for j=r,...,2k
i=0
where
(po ~+ @1)=Ar—D7" (v - Vzr—l)T- (5)
A sequence v = (vo, . .., vak) is called negatively recursively generated (nrg) if, denoting r =

rank v it holds that A,[r — 1] > 0 and in case r <k + 1, also

r—1
Vok—r—j = Z 1/fiV2k—r+1—j+i for ] =0,..., 2k — T,
i=0
where
_ T
(o - Y1) = Ar— 17" (Vak—2rp1 o Vaker)

2.6. Univariate truncated moment problem

Given a real sequence

(krkz) = (ykla Yki+1> -+ > Vkp—1> sz)

14
of degree (k1,k2), k1, kz € Z, ky < ky, a subset K of R, the truncated moment problem sup-
ported on K for y(kl’kZ) ((K, k1, kz)-TMP) asks to characterize the existence of a positive
Borel measure ¢ on R with support in K, such that

yizfxidufor i€, ki <i<k. (6)
K

If such a measure exists, we say that y ¥1%2) has a rm supported on K and p is its K -rm.

The (R,0,k)-TMP with k € Z is the usual truncated Hamburger moment problem
(THMP) of degree k, which was solved in full generality in [44]. Algorithm 2.1 is a numer-
ical procedure to determine the existence and extract an rm. It is an adaptation of [51,
Algorithm 4.2], which is an algorithm to extract an rm in the multivariate TMP under
the assumption that an rm exists, to the univariate setting with the addition of deciding
whether a rm exists. For the latter, the solution from [44] is used.



LINEAR AND MULTILINEAR ALGEBRA . 1929

Algorithm 2.1 Solution to the (R, 0, 2k) -TMP
Input: A univariate sequence y = (Y0, ¥1>- - - » V2k)-
Output: A negative answer to the existence of an rm for y or
the points x1, . .., x, € R and densities py,. .., pr such that u = 2;21 ijxj is an
R -rm for y.

Algorithm:

1. Try to compute Cholesky factorization VVT of A, where V € RE+FDXT s a lower
triangular matrix. In case of a failure, an rm does not exist.

2.11fr < k+ 1, reduce V to a column echelon form U using Gaussian elimination on
columns.

2.2 Else r = k+ 1. Choose yr+1 € R arbitrarily and solve a linear system Vw =
(ka yzkH)T. Reduce V = (VT W)T to a column echelon form U using
Gaussian elimination on columns.

31.Ifr <k+1and U is of the form U = (Ir B)T for some B € R™**k+1=1 op p —
k + 1, define N as an R™*" matrix consisting of rows 2,...,r + 1 of U.

3.2.Ifr < k4 1and Uis not as in 3.1, then an rm for y does not exist.

4. Compute the Schur decomposition N = QTQT of N. The diagonal elements x;, . . ., x,
of T are atoms in an rm for y.

5. Solve the system Wp = (yo y,_l)T, where W is the r x r Vandermonde

matrix with ith row equal to (x]’%l

the densities of an rm measure for y.

) . The coordinates pj, j =1,...,r, of p are
j=1,...,r

Remark 2.2: (1) Correctness of Algorithm 2.1: Step 1 checks whether A, is psd. Step
2.1 only changes a basis of the column space of V. If Step 2.2 applies, then one can
choose y,x4 arbitrarily and then compute y, such that for the extended sequence
Y = (V> Vak+1> Y2k+2) Step 2.1 applies, i.e. Ay is psd, rank Ay = k+ 1 < k + 2 and its
Cholesky decomposition is equal to V(V)7. In the s1tuat10n of Step 3.1, A, (r) is pd
and hence y is prg. If Step 3.2 applies, the latter is not true. By [44, Theorem 3. 9] anrm

0,r— 1))

exists iff y is prg. Since U(v (0 D for every atom x; in an rm for y, where

,(COP) = (1 x... ) , it follows that N(vx,. T 1)) = lv,(co "1 and the atoms of an
rm is the eigenvalues of N. These are computed in Step 4 and finally, a Vandermonde
system in Step 5 determines the densities.

(2) Uniqueness of an rm: If r <k + 1 and Step 3.1 applies, then the rm for y is unique.
Otherwise, in case r = k + 1, there are infinitely many choices of (k + 1)-atomic rms.
Each choice of y,4) gives a different one.

(3) An adaptation of Algorithm 2.1 to solving (R, 0,2k + 1) -TMP: One has to do the
following modifications:

(@) Lety = (Y0, V1> -->V2k+1) and y as in Algorithm 2.1.

(b) If Step 3.1 applies with r <k + 1, one has to check whether the system Vw =
(yk+1 .. y2k+1)T is solvable. If not, an rm does not exist. Otherwise it does
and compute it as in Algorithm 2.1.

(c) If Step 3.1 applies with r = k+ 1, one does not choose 5k 1, since it is already
given. Hence, the minimal (k 4 1)-atomic rm is unique.
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The (R\ {0}, k1, k2)-TMP with ki,ky € Z, k1 < 0 < ky is the strong truncated Ham-
burger moment problem (STHMP) of degree (k1, k2). For even k; and k;, the solution is [46,
Theorem 3.1], but the technique in the proof can be extended to establish also the cases,
where ki, k, are not both even.

Let Rlx~ 1, x] = {Zl " aix': aj € R,r1,r € Z,r1 < 1y} be the set of Laurent poly-
nomials. For ki, k, € Z, ki < k,, we denote by Vi, ,) a vector subspace in Rx~ 1, x]
generated by the set {xkl,xle, . ,xkz}. For a sequence y := y(kl’kZ) the functional L, :
Vik k) — R, defined by

L,(p) = Z aiYis where p= Z aix’,

klfisz klfika

is called the Riesz functional of the sequence y .

Remark 2.3 (An adaptation of Algorithm 2.1 to solving (R, —2k;,2k;)-TMP,
ki1, k2 € N): One has to do the following modifications (see [46, Theorem 3.1]):

(1) The input is a sequence y = (—V2k,> Y—2k;+1> - - - » 2k2). The output is a negative
answer to the existence of an rm for y or the points x1,...,x, € R and densities
01, ... Py such that u = Z] 1 Pjbx; is an R-rm for y.

(2) Oneformsasequencey = (30, .., V2(k1+k2)) where y; Vi = Vi 2uk i =0,1,...,2(k; +
k3), and do all computations from Algorithm 2.1 on ¥

(3) If Step 2.2 applies, one chooses ¥, +k,)+1 arbitrarily except for the number vIcly
in case C is invertible, where C is a submatrix of A5 consisting of rows 1,...,k; + k

and columns 2,...,k; +k; + 1,and v = (y_k1+k2+1 e y_Zkz)T is a vector.

(4) If Step 3.1 applies with r < k; + k3 + 1, one has to check whether (r 4+ 1)th column
of Ay is in the span of columns 2,...,r. If yes, then an rm does not exist. Other-
wise it does. Equivalently, one can compute the Cholesky decomposition V; V! of the
restriction of Ay to the principal submatrix on rows and columns 2,3,...,7 + 1 and
see whether V7 has rank r or not.

(5) If Step 3.1 applies with r = k; + k» + 1, then an rm exists.

(6) The atoms are computed as in Step 4.

(7) The densities in Step 5 are obtained by solving the system Wp = (y_a2k;, V—2k;41 - - -
V—2k1+r—1)T> where W is the r x r Vandermonde matrix with ith row equal to

—2ky+i—1
<x]-
measure for y.

) . The coordinates pj, j = 1,...,r, of p are the densities of an rm
=1,

3. The TMP on the curves y = q(x)

In this section, we study the K-TMP for K being a curve of the form y = q(x), g € R[x].
In Section 3.1, we first give a solution of the K -TMP, deg g > 3, based on the size of pos-
itive semidefinite extensions of the moment matrix needed and also bound the number
of atoms in the K-rm with the smallest number of atoms (see Theorem 3.1 for the even
degree and Theorem 3.2 for the odd degree sequences). As a result, we obtain a sum-of-
squares representation for polynomials, which are strictly positive on K (see Corollary 3.3).
This improves bounds on the degrees in the previously known result [11, Proposition 6.3].
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In Section 3.2, we apply the technique from the proofs of the results from Section 3.1 to
give a concrete solution to the TMP on the curve y = x?, which is an alternative solution
to the one from [6] in the even case (see Theorem 3.4) and is new in the odd case (see
Theorem 3.7). In Section 3.3, we give a solution to the K-TMP based on a feasibility of
the corresponding linear matrix inequality (see Theorem 3.8). Finally, in Section 3.4 we
concretely solve the TMP on the curve y = x> in the odd degree case (see Theorem 3.13).

3.1. Solution to the TMP in terms of psd extensions of My, bounds on the number of
atoms in the minimal measure and a positivstellensatz

Theorem 3.1 (Even case): Let K := {(x,y) € R2: y = q(x)}, where g € R[x] withdegq >
3,and B := ,B(Zk) = (Bij)ijez, irj<2k with k > deg q. The following statements are equiva-
lent:

(1) B has a K-representing measure.
(2) B has a s-atomic K-representing measure for some s satisfying

rank My < s < kdeggq.

(3) My satisfies Y = q(X) and admits a positive semidefinite, recursively generated extension

Mk+deg q-—2-
(4) M satisfies Y = q(X) and admits a positive semidefinite extension My degq—1-

Theorem 3.2 (Odd case): Let K := {(x,y) € R?: y = q(x)}, where g € R[x] with deggq >
3, and B = (Bij)ijez, itj<2k—1 with k > degq. Then the following statements are
equivalent:

(1) B has a K-representing measure.
(2) B has a s-atomic K-representing measure for some s satisfying

d
rank My_; <s < kdegq — ’7 e;gg—‘ .

(3) 5(2"_1) can be extended to a sequence 5(2") such that My satisfies Y = q(X) and admits
a positive semidefinite, recursively generated extension My degq—2-

(4) BPY can be extended to a sequence BX) such that My, satisfies Y = q(X) and admits
a positive semidefinite extension My degq—1-

Remark 3.1: (1) Previous bounds on the size of extensions in (4) of Theorem 3.1: In
[52], Curto and Fialkow studied polynomials p € R[x, y] for which the existence of
the Z(p)-rm is equivalent to the psd moment matrix extension of some size. In
[11, Section 6], the author considered polynomials of the form p(x,y) =y — q(x),
where q € R[x], and proved that a sequence of degree 2k admits a Z(p)-rm, if My
admits a psd extension My, ,, where r = (2k + 1) degq — k [11, Propositions 6.1,
6.3]. The proof of this result relies on the truncated Riesz—Haviland theorem [52,
Theorem 1.2] and a sum-of-squares representations for polynomials, strictly positive
on Z(p) ([11, Proposition 6.3] and [53, Proposition 5.1]). Part (4) of Theorem 3.1
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2)

©)

(4)

improves Fialkow’s result by decreasing the size of the extensions to r = degg — 1.
We mention that this was known for the case of the curve y = x° [11, Corollary 5.3].
Known bounds on the number of atoms in (2) of Theorems 3.1, 3.2: In [50], the authors
also studied odd degree sequences 8, which are moments of a positive Borel measure
supported on a plane curve Z(p), p € Rlx, y], and proved that every such sequence
admits a (k degp)-atomic Z(p)-rm [50, Corollary 7.6]. In the proof, they use their
variant of Bézout’s theorem on the number of intersection points of two plane alge-
braic curves [50, Theorem 7.3]. Part (2) of Theorem 3.1 gives an analogue of [50,
Corollary 7.6] for even degree sequences on curves Z(y — q(x)), degg > 3, while part
(2) of Theorem 3.2 improves [50, Corollary 7.6] for curves Z(y — q(x)), degq > 3, by
decreasing the upper bound on the number of atoms needed by (@].

Theorem 3.1 in case degq = 2: If degq = 2 in Theorem 3.1, then y = ¢ + q1x +
qo € R[x] with g2 # 0 or equivalently qizy — q1x — qo = x*. By applying an alt

o (x,y) = (x, qiz ¥ — q1X — qo) to the sequence 8 we get a sequence B with the moment

matrix My(f) satisfying Y = X2. So it is enough to observe the case of a parabola,
which was concretely solved in [6] by the use of the FET. The technique used in the
proof of Theorem 3.1 can be used to give an alternative proof of the solution from [6]
and also obtain a new solvability condition (see Theorem 3.4). This condition will be
essentially used in the solution of TMP on the cubic reducible curve y(y — x?) =0
in our forthcoming work, similarly as for the TMP on the union of three parallel
lines [49, Theorem 4.2], where we needed such version of the solution to the TMP
on the union of two parallel lines [49, Theorem 3.1]. The upper bound on the num-
ber of atoms in a minimal rm is 2k 4 1 and this is sharp (e.g. if Mj has only column
relations coming from Y = X2 by rg, then it is of rank 2k + 1 and so every rm must
have at least 2k + 1 atoms). So the equivalence (1) < (2) of Theorem 3.1 does not
extend to degq = 2. (The moment yj deg 4—1 is not independent from g for degq = 2
as opposed to deg g > 2 and hence in the last step of the proof below decreasing the
number of atoms in the rm from k deg g + 1 to k deg g cannot be done.) Also the equiv-
alence (1) < (3) of Theorem 3.1 is not true for degg = 2, but we need to replace
k+ degg — 2 by k + degq — 1 in (3), because we do not get the information about
Y2kdegq+1 = Vak+1 and Vakdegg+2 = Vak+2 from My degq—2 = My for degq =2 as
opposed to degq > 2. However, the equivalence (1) < (4) still holds for degg = 2
with the argument given in Theorem 3.4.

Theorem 3.1 in case degq < 1: If degg < 1in Theorem 3.1, then q(x) = ax + by + ¢,
a,b,c € R.If (a,b) # (0, 1), then the following statements are equivalent:

(a) BhasaK-rm.

(b) B has a s-atomic K-rm for some s satisfying

rank My <s<k+1.

(c) My satisfies Y = aX + bY + ¢, is psd and rg.

The equivalence (a) < (¢) follows from [52, Proposition 3.11], while the equiva-
lence (a) < (b) follows from the solution [44, Theorem 3.9] to the R-TMP, which
corresponds to (My)l(; x,  xk- Namely, if the atoms x1,...,x, represent Bio, i =
0,...,2k, then the atoms (x;, y;), where y; = l%b(ax,- + ¢) will represent g if b # 1.
If b =1 and a # 0, then we change the roles of x and y in the argument above. If
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b =1and a = 0, then y = q(x) only makes sense if c = 0, but in this case there are
no relations in the moment matrix and for k > 2 the solution to the TMP is not known
(for k = 2 the solution is known [9,10]).

Uniqueness and description of all solutions in Theorems 3.1 and 3.2: These questions
are nontrivial, being equivalent to the descriptions of psd completions of a par-
tially defined Hankel matrix A,, where y € R?**+! is a partially defined univariate
sequence, i.e. y; is defined by the formula (16) below. Namely, the original sequence
B determines only those y; for which t mod ¢ + L%J < 2k (resp. 2k—1) in the even
(resp. odd) case. However, in a very special case y = x° the structure of the miss-
ing entries is simple enough (only ygk—; is missing) to answer these questions. The
description is not explicitly stated in [48, Theorem 3.1], which solves y = x> using
the univariate reduction technique, but one of the main steps of the proof is [48,
Lemma 2.11], which actually describes all psd completions and among them there are
one or two minimal ones (in terms of the rank). However, already for y = x* describ-
ing all psd completions concretely and among them minimal ones does not seem to
be possible due to the structure of missing entries of A, see Example 3.11.
Complexity of checking conditions in (4) of Theorems 3.1 and 3.2: Checkingif Y = q(X)
is a column relation only requires checking whether the corresponding vector is
in the kernel for My, while the existence of a psd extension My degq—1 of My is
a feasibility question of a semidefinite programme (SDP) in the variables B;; with
2k <i+j<2(k+degq—1),i,j € Z, ie. an SDP with matrices of size (k+de§ )
in (2(k+§eg‘1)) - (2(k2+1)) = (degq — 1)(4k + 2degq + 1) variables. The complexity
of the SDP feasibility question is still unknown (see [54,55]), but for a fixed number of
variables or size of matrices it has polynomial time complexity [56]. By Theorem 3.8,
the feasibility question in (4) of Theorems 3.1 and 3.2 is equivalent to the feasibility
question of a smaller SDP, i.e. the matrices are of size k deg g + 2 and the number of
variables is %(degq —2)(degg— 1) +2.

Remark 3.2 (Basic idea of the proof of the implication (3) = (2) of Theorem 3.1): The
main steps are the following:

(1)

()

3)

Due to the column relation Y = q(X) satisfied by My and Mj being rg, the column
space of My¢_; is spanned by the set B of columns, indexed by monomials YiX,
wherei=0,...,kj=0,...,degqg— l,andi+j < k+ ¢ —2.

Writing g(x) = Zf:o gix', the point (1) implies, on the level of the sequence B;j, the
following linear relations:

Bij = qeBitej—1 + qe—1Bive—1j-1 + ... + qoBij—1, (7)

whereie Zy,je Nandi+j <2(k+ € —2).
Using relations (7) one can show that the sequence

Bijy bj€ly,i+j=<2k+4L—2),
can be uniquely parametrized by
vi=Bio» i=0,...,2kl+2.
(See (16) and Claim 4 in the proof of Theorem 3.1 below.)
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(4) The next step is to note that the original sequence j; jbJj € Zy4,i+j < 2khasaK-rm
if and only if the univariate sequence yy, y1, . . . , ¥2k¢ has an R-rm. (See Claim 5 in the
proof of Theorem 3.1.)

(5) Now one can use the solution to the R-TMP due to Curto and Fialkow [44,
Theorem 3.9] and derive the solution to the K -TMP. Namely, the sequence y (%) =
(Vo> V1> - - -» v2ke) € R4 has a (rank y ©%%0)-atomic R-rm iff a Hankel matrix
A, ke is psd for some extension y 252 = (y, yyey1, Vakeqa) € RT3 of y 020,
Observing that the restriction (M4¢—2)|5 is equal to PA, oke+2) PT for a certain matrix
P (See Claim 6 in the proof of Theorem 3.1 below.), translates the condition of A, ek
being psd, to (Mk1¢—2)|5 (and hence My.¢_,) being psd.

(6) The last step is to decrease the number of atoms in the solution to the R-TMP for
y(o,zkz) by 1 in case A, 02k has full rank, i.e. rankAy(o,sz) = k€ + 1. This can be
achieved in the following three steps:

(a) Applying an appropriate alt ¢ to 8, one can assume that the coefficient g of
q(x) is equal to 0. (See Claim 1 in the proof of Theorem 3.1.)

(b) Dueto (a) none of the moments of the original sequence B, i,j € Z, i+ j < 2k,
depends on yax¢—1.

(c) One can replace y,ro—1 with P5s—1 to obtain a sequence 7(02k0) with a (k€)-
atomic R-rm.

Proof of Theorem 3.1.: Before starting a proof we do an alt ¢ which will be used in the
proof of the implication (3) = (2) to justify in an easier way that the upper bound in (2) is
k deg q instead of k deg g + 1. We write £ := degq and let q(x) = Zf:o qix', where gy # 0
and each g; € R.

Claim 1: We may assume that go—; = 0.

Proof of Claim 1.: Defining ¢ : R? - R2 by ¢(x,y) = (x+ %—(;,y) =: (X,), note that

the relation y = g(x) becomes

14 i

~  qe—-1 Z ~  qe—-1

= X — — = X — —
g q( ﬁqz) ._Oql( qu)

(-2

~ (- - ~ i

= qi" + | —q %qg—q; +qer |+ g gix',
i=0

=0

for some g, . . ., G¢e—2 € R. Since the solution of the K-TMP is invariant under applying ¢
by Proposition 2.1, the conclusion of Claim 1 follows. [ |

Now we start the proof of the theorem. The implications (1) = (4) and (2) = (1) are
trivial. The implication (4) = (3) is [1, Theorem 3.14]. It remains to prove the implication
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(3) = (2). Assume that My admits a psd, rg extension My.y¢_,. Let
B= {l,x, csx T Ly L ,yk_l,. . ,yk_lxz_l,yk,ykx} (8)

be a set of monomials and V a vector subspace in R[x, y]x4¢—» generated by the set 5.
Since My ¢, satisfies X'Y) = X'q(Xy for every i,j € Z, suchthati+ jl < k4 £ —2,it
follows that /t\he columns from B span C(Mj.y¢—3). Let p(x, ) = > ; j pijx'y) € V beapoly-
nomial and p a vector of its coeflicients ordered in the basis 3. Before we define a univariate
polynomial g, (x) corresponding to p(x, y), we prepare some computations. We have that

xi(‘I(x))j =x Z qi,qi - - Qijxi1+"'+if

0<it,....ij<t

= Y qndn-eqi | X

p=0 | 0<ip,....ij<¢,

i1+...+ij=p
i+t
= qijer, ©)
s=i

foralli,j € Z, where

Z 9inqi - - i ifi<s<i+je,

s — ) 0<ip,.Li<¢t, 10
ql,],S i1+...+ij:S—i ( )
0, otherwise.

Later on we will need the following observation about the numbers g; j s.

Claim 2: Let i1, 3,j1,j2,5 € Z4. Then

N
iy +in,ji+jas = Z Qirj1t iz a5 —t- (11)

t=iy

Proof of Claim 2.: We write m; := i; + iy and my := i} + i2 + (j1 + j2)¢. We separate
two cases:s € {my,m; 4+ 1,...,mp}ands ¢ {m;,m; + 1,...,my}.
Case 1:s € {m1,m1 + 1,...,my}. We have that

_1
iy +iz,j1+ja.s = Z qki9k; = * Gkjy Dy +1 °* * 9kjy 4,
05k1,...,kj1+j2 <¢,
k1+.‘.+kjl+j2=sfi17iz

s
=2 Z Z Z A1 Gks = * Dk, Gk 1 Dy,

t=iy 0<kp,...kj; <€,  0<Kkj +1,...kj, <¢,

k1+...+kjl =t—i; kj1+1 +-..+kj2 =s—t—ij
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s
=’ Z Z k1 9k, * * - 9k;, Z Gkj 41 * " Gkjy 1,

t=iy 0<ki,..., kjl <t, Ofkjl-%-l)“"ka <¢,
k1+‘..+k]‘1 =t—i; kj1+1+.“+kj2 =s—t—ij
N
_4
= Z iy j1,tDinsjo.s—1t>
t=i1

where the first equality follows by definition (10) of gj, +4,,j, +j,.s» in the second we decom-
posed the sum into three sums, in the third we used independence of the inner two sums,
while the last equality follows by definitions (10) of g;, j, r and gy, j, s—¢-

Case 2:s ¢ {my,my + 1,...,my}. For s > my we have g;, 1, j, +j,,s = 0 and

s i1 +j1¢ s
E :qi1,j1,tqiz,jz,57t = E : Qi jit Gigjors—t T Z Qirjr1t Gingas—t = 0,
—; i —— N
t=h t=n =0,since t=htj1t+1 =0,since
S—t>i2+j2£ t>i1+j1€

which implies that (10) holds. Similarly, for s < m; we again have g, 1, j+j,.s = 0 and
Z;:il iy j1 1 iz jps—t = 0, since gj, j, ¢+ = 0 for every t due to s —t < i,. Also in this

case (10) holds. [ |

Now we define a univariate polynomial g,(x) corresponding to p(x, y) by

i+jt ke+1
&) =p(q)) =Y pi Y qijsx* = Y gpsx* € Rlxler1,
i s=i =0

where we used (9) in the second equality.
Let g, be its vector of coefficients in the basis

B ={1,x,...,x. (12)
The following claim expresses g by p.

Claim 3: It holds that

& ="P'p, (13)
where
I, 0 0 0
P[1,0] P[L1] 0 0
p— : : D e Rt x(ket2)
: T 0 :
Plk—1,0] Plk—1,1] --- --- Plk—1,k—1] 0

Q[0] Q[1] Qlk — 1] Q[k]
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and
q0,c,d¢ q0,c,de+1 q0,c,de+0—1
qd1,c,de 91,c,de+1 ql,c de+e—1
Plc, d] = . . e R foreachc,d,
qe—1,c,de  Ge—1,c,de+1  “°° qe—1,c,de+0—1
Q[d] = <‘]0,k,d€ qo,k,de+1 fIO,k,dz+e—1) cR>*! ford — 0. k—1,
Q1k,de  qikde+1 0 qlkde+e—1
ko
Qlk] = ((‘”) k) e R2,
qikke  (qe)

Proof of Claim 3.: We write T/x,y for the vector of monomials x’jJ from the basis B3 (see (8))
and v, for the vector of monomials from the basis B; (see (12)). We have that p(x, y) =
(T/x,y)T’ﬁ and gy(x) = (vx) . By (9) it follows that v, y = = Pv,. Hence, the definition of S

implies that g,(x) = (Pvy)T p (vx)TPTp. Thus g, &= PTp, which proves Claim 3. |
Note that
Qiji+je = (@Y #0 (14)
and hence we can express x ¢ from (9) by the formula
Kt — L xi(q(x))j _ i+£lq.. X (15)
(qe) e

We define two univariate sequences

Y = y(0,2kf) = (VO’ Viseoos y2k€) € R2k6+1’
7=y D = (y yakes, vakera) € R,

recursively for t = 0, 1,...,2k¢ + 2 by the formula

t—1

1

V= PN (ﬂtmodz,m - Z‘Itmodz,m,s : Vs) . (16)
(qf) ¢ s=0

Note that t mod £ + I_ij < £ — 1+ 2k (here we used that £ > 3 and thus L%J < 2k) and so
Bt mod oLt is well-defined being an element of the matrix My4,_5 (since 2(k + ¢ — 2) >
¢ —1+4 2kfor ¢ > 3).

Note that we defined y; by (16) only using B;; with i < £. The following claim proves
we could define y; using any i, j with t = i + j¢.

Claim 4: Let t € {0,1,...,2k{ + 2} and t =i+ j with i,j € Z4, i+j < 2(k+ € — 2).
Then

Ve = (q[)] (ﬂz] Z%]S : Vs) . (17)
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Proof of Claim 4.: If i < £, then (17) follows from definition (16) of y;. Let iy > £.
Assume (17) istrue foreveryi = 0,1,...,ip — landj € Nysuchthati+j <2(k+ ¢ — 2).
We will prove it is true for iy and every j € Ny such that ip +j < 2(k + £ — 2). We have
that:

£—1
1
Bioj = @ (ﬂio—e,jﬂ - ‘15/31‘0—€+s,j)
s=0

1 io+jt -1 io+s+(—1)¢
= — Z Qig—E,j+1,5Ys — Z% Z Gig—E+s,j,uVu (18)
1\ Zi—e =0 u=ig—l+s

where in the first equality we used that ,3(2("*(’2)) = (Bij)ijez, itj<2(k+t—2)isrgand Y =
q(X) is a column relation, and in the second we used the induction hypothesis together
with the fact that g; ;5 = 0 if s <iand qj,—¢ j+1,ip+j¢ = (qg)f“. Note that

-1 io+s+(—1)¢ igts+(—1)¢

-1
Z qs Z Qio—t+sjulu | = Z qs Z Qio—L,ju—sYu
s=0

s=0 u=ig—L+s u=ig—L+s

t—1 fio+s+(G—1)¢

= Z Z qsqio—L,ju—sYu

s=0 u=ig—L+s

io+jl—1 ip+jt—1
= Z Qio—L,j+1,uVu — Z qeqgio—L,ju—LYu (19)
u=ip—+¢ u=ig—4{

where in the first equality we used that gj,—¢+sju = qiy—¢,j,u—s by definition (10), in the
second we moved ¢, inside the inner sum, in the third we used that for a fixed u, as s runs
from 0 to £ — 1, the coefficients at y, run over all terms gj, - - - gi;,,, such thati; +... +
ijy1 = u — io + £ except those where g;, = q¢. Butif gi, = gy, all terms gi4» - - - gi;,, such
thati; + ...+ ij41 = u — ip sum up to gj,—¢,ju—¢. Using (19) in (18) we get

) ioHjt—1
,Bio,j = — | Gio—t,j+Lio+jtYio+jt T Z qeqio—Lj,uYu
9t u=ip—4¢
1 io+jl—1
= — | @V Wigje + Z qeqig—t,jtVu
qe u—io—t
ioHjt—1
= @ Vierjt + Y io—tjuVur (20)
u=iy—+¢

where in the second equality we used that qj,—¢j+1,ip+j¢ = (qg)jJrl and in the last we put
qiz inside the bracket. But (20) is (17) for t = iy + j¢. |

By the following claim solving the K-TMP for g is equivalent to solving the R-TMP
for y.
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Claim 5: Let u € N. A sequence y admits a u-atomic R-rm if and only if 8 admits a u-
atomic K-rm.

Proof of Claim 5.: First we prove the implication (=). Let xi, . . ., x,, be the atoms in the
R-rm for y with the corresponding densities py, ..., 0y. We will prove that the atoms
(x1,9(x1)), . . . » (x> q(x,,)) with densities p1, . . ., pp are the K-rm for 8. We use induction
on the index i in B, where i + j < 2k. For i < £ and any j such that i 4 j < 2k we have
that

i+je—1
Bij =" (atYvitje + Z ijisYs
s=0
i+je—1
=* (q0) procp)’*f‘Z + > digs pr<xp)
p=0 s=0 p=0
i+jl—1
prmz)f(xp) +ﬂ+2 Pp Z s (5p)°
i+je—1
42 pp | @)™+ D gl
p=0 s=0
’
=1 Z (pp(xp)i(Q(xp))j) >

p=0
where we used (16) with ¢t = i + j¢ in the first equality noticing that
i+jl=i+j+jl —1) <2k+2k(t—1) <2kt,

implying well-definedness of y; by s being bounded above by 2k, the definitions of pp, x;
in the second equality, we interchanged the order of summation in the third and fourth
equalities and in the last we used (15) for x = x,. So the atoms (x1, g(x1)), . . ., (xu, q(x4))
with densities p1, . . ., pp indeed represent B;; for i < £ and any j such that i + j < 2k. We
now assume that this holds foralli = 0, ..., mand jsuch thati 4 j < 2k, wherem > ¢ — 1
and prove it for i = m+ 1 and any j < 2k — i. We have that

-1
Bmrij=" — (ﬂm+1 —tji+1 — Z%ﬂmH e+s])

s=0
£—1
pr(x )" )Y T =D g pr(xpW“ ()Y
s=0 p=0

u -1
_3 (,Op ((xp)m+l Z(q(xp))]+l qu(xp)erl “S(q(x ))J)>

p=0 s=0

»Ql,_‘
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u £—1
1 )
== (pp(xp)m“‘f(q(xp»f <q<xp) -3 qs(xp)s»
e p=0 s=0
(p(xp)™ 1 (q(xp)Y) 5
p=0

where we used that g is rg in the first equality, the induction hypothesis in the second, in
the third we interchanged the order of summation, factored out (x‘,,)"“rl_Z (q(xp))f in the
fourth and in the last we used that q(x) — Zf;ol gsx°* = qex* by definition of g. This proves
the implication (=).

It remains to prove the implication (<=). Let (x1, q(x1)), . . ., (xy, q(xy)) be the atoms in
the K-rm for 8 with the corresponding densities py, . . ., p,. We will prove that the atoms
(x1, ..., x,) with densities py, ..., o, are the R-rm for y. We use induction on the index
tin y;. For t = 0 the claim is trivial, since yp = Boo = Z;:o pyu. We now assume that the
claim holds for all t—1 with 0 <t — 1 < 2k¢ — 1 and prove it for . We have that

t—1
1
1
143 — (ﬂtmodu £ thmod&l_ﬂ,s ’ Vs)
s=0

(g0
t—1 u
d
=? LLJ X:PP(Xp)tm0 E(Q(Xp))L o) thmode,\_%j,s' pr(xp)s
(@)™t \p=o s=0 =0
1 u , t—1
= t Pp (xp)tmOde(q(xP))LZJ - thmod&\_ij,s : (xp)s
(@0t ;= - ‘
p=0 s=0

tmod £+ |¢
Podtmod £ Ltmod e+ £1e * (%) MO AL )

Il
'S
[u—
N oS

5 1 L] t
= T Pp(qe)-t- (xp)
(qe)u] pars )
:6 Z,Op(xp) >
p=0

where we used the definition (16) of y; in the first equality, the definitions of p,, xp
and the induction hypothesis in the second equality, we interchanged the order of sum-
mation in the third equality, used (9) for (i,j) = (fmod¥¢, L%J) in the fourth equality
and the observation (14) for (4,j) = (t mod ¥, L%J) in the fifth equality. This proves the
implication («=). [

Let (My+t¢—2)|5 be the restriction of My, to the rows and columns indexed by
monomials (capitalized) from B. The following claim gives an explicit connection between
(Mi+¢—2)|5 and the Hankel matrix A3 of the sequence ¥
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Claim 6: We have that
(Myse—2)|5 = PAFPT. (21)

Proof of Claim 6.: Let p(x,y) =3, piix'y € Vandr(x,y) =Y, j riix'y/ € V be polyno-
mials from the vector subspace V and p, 7 vectors of their coefficients ordered in the basis
B (see (8)). Let B := BR*+£=2) Then we have

T ~ L
AT (Mire-)IB)P =" Lg(pr) =L | Y piyjarigjpx” T2y 2
i1,12,1,2
2
= Z Pirji Tiaja Bir iz ji+iz
i1,02,]1,2
i1 +i2+(j1+j2)¢

_3 g L
= Z PijiTisj Z Qir+ip,j1+j2.sVs

iL,i2,j1,2 s=i1+ip

ir+ix+(j1+2)¢ s

= Z PijiTizj Z Zqil)jl)tqiz,jz,S—t Vs

i1,02,]1,2 s=ij+ip t=ij

i14+ix+(1+j2)¢ s

5
= Z Z Zpiljlqil)j1>tri2j2qi23jz,5—t Vs

i1,02,§1,2 s=ij+ip t=i;
i1+i2+(1+j2)¢ s
_6 71 o o S
- LV Z Z ZPH]]qll)]l)trlzqulz,jz,sft X
i1,12,j1,2 s=i1+iz t=iy
it+i+(G1+p2)l s
_7 L~ Y P T s—t
= Ly Piji Qin,j1tX * Tigjp iz jo,s—tX
i1,i2:]1,/2 s=iy+ip  t=iy
ir+jil ir+j2l
=8 L~ R A u
= Ly Piyj1 qiy j1.,tX Tizjo Qi jo,uX
i1,i2,f1,2 \ t=i1 u=ip
i1+j1€ i+l
97~ g et g 4
=Ly Z Z Pirji Gir,ji % Z Z Vizjr Gin,jo,sX
i1 t=i1 irfp s=i1+ip
&) &r(x)

=10 87458 = (PTHTA5(PTD) =71 (PAyPTp,

where in the first line we used the correspondence between the moment matrix and the
Riesz functional LE’ the definition LE in the second, Claim 4 in the third, Claim 2 in the
fourth, we moved the factor p; j i, into the inner sum in the fifth, used the definition
of Ly in the sixth, split x°* into two parts and moved it into the inner sum in the seventh,
decomposed a double sum into the product of two sums in the eight using that g;, ;, + is
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nonzero only for t < i + j1£ and gy, j, 4 is nonzero only for u < i + j>¢, decomposed a
sum into the product of two sums using independence of the factors in the ninth line, in
the tenth we used the correspondence between Ay and the Riesz functional Ly, where g,
& are the vectors of coefficents of g, and g, in the basis B; (see (12)) and also Claim 3.
Since p and q were arbitrary from V, this proves Claim 6. |

Note that
(q0)° 0 0

q1,c,ct (q@)c 0

Plc,c] = e R forc=1,....k—1.

0
qe—lect 0t Qe-lectrt—1 4y

Since P is a lower triangular matrix with all nonzero diagonal entries, it is invertible.
Claim 5 implies that

Ay = P (Mype—2)5) P~HT. (22)

Since (My4¢—2)|5 is psd, it follows from (22) that Ay is also psd. We separate two cases.
Either Ay is pd or Ay is singular. In the first case in particular Ay (k¢) = A, is pd, while
in the second case Ay (k¢) is psd and prg by [44, Theorem 2.6]. By [44, Theorem 3.9], y
admits a (rank A, )-atomic R-rm. Since rank My < rank A, < k¢ + 1, using Claim 4 the
following holds:

(2") B has an s-atomic K-rm for some s satisfying

rank My <s <A, <kl +1. (23)

To obtain (2) of Theorem 3.1 we need to decrease the upper bound in (23) by 1. Note
that the bound k¢ + 1 occurs only in the case A, is pd, which we assume in the rest
of the proof. We denote by y (z) a sequence obtained from the sequence y by replacing
Y2ke—1 with a variable z. The matrix A, ;) is a partially pd matrix and by [48, Lemma 2.11]
there exist two choices of z, which we denote by z*, such that A, (z+) is psd and has rank
ke. Since rank A, ;+) (k¢ — 1) = rank A, .+, = k¢, the sequence y(zi) is prg and by [44,
Theorem 3.9] it admits a k€-atomic R-rm. If none of the moments g;; of the sequence
B depends on y,k¢—1, the R-rm for y (z%) will generate a K-rm for 8 as in the proof of
Claim 4. By (9), the only moment from g, which could depend on y,x¢—1, is Bo2k. Note
that if go 2k 2ke—1 = 0, then also Bk is independent from the value of ;. We have
that

q0,2k 2kt —1 = Z @iy i - - - Qi = 2k(q0)* qe1,
0<iyye..sigp <,
i1+ igg=2kt—1
where in the first equality we used the definition (10) of qo 2k 2k¢—1, while in the second we
used the fact that i + ... + iz = 2k€ — 1 could be fulfilled only if 2k—1 indices i; are £
and one is £ — 1. So qo2k2k¢—1 = 0iff go—1 = 0. But this is true by Claim 1 and concludes
the proof of Theorem 3.1. |



LINEAR AND MULTILINEAR ALGEBRA . 1943

To prove Theorem 3.2 for g(x) = x%, £ > 3, only a little adaptation of the last part of the
proof of Theorem 3.1 is needed, which we now explain.

Proof of Theorem 3.2.: The implications (1) = (4) and (2) = (1) are trivial. The impli-
cation (4) = (3) follows from [1, Theorem 3.14]. It remains to prove the implication (3) =
(2). Following the proof of Theorem 3.1 everything remains the same until (2’). It remains
to justify that the upper bound in (23) can be decreased to m := k¢ — f%] JIfrank A, < m,
then we are already done. From now on we assume that r := rank A, > m. Since y admits
a R-rm, which we denote by u, y is prg and rank y =rank A,, = rank A, (r — 1) by
(44, Theorem 3.9]. Hence, A, (r — 1) is pd and in particular also its submatrix A, (m)
is pd. We denote by y(zi,...,z¢) a sequence obtained from the sequence y by replac-
ing Yok—1ye+1> Y(2k—1)¢+2> - - - » V2ke With variables zi, . . ., z¢. The sequence y (0@=DO . —
(0> - - > Y(2k—1)¢) is represented by 1, being a subsequence of y. If £ is even, then (2k — 1)¢
is also even and by [44, Theorem 3.9], y @Z*=DO has a (rank y @D _atomic R-
rm. Otherwise £ is odd, (2k — 1)£ is also odd and by [44, Theorem 3.1], y (k=10
has a (rank y ©@k=DE=Dy _atomic R-rm, where y G@k=DE=D .— (o) Yk—1ye—1)- We
denote the measure obtained in this way by w; and generate its moment sequence
y(z1,...,2¢), where zy, . . ., zg are the moments of degrees (2k — 1)¢ + 1,. .., 2k¢. Hence,
Since (2k — 1)£ = 2mfor even £ and 2k — 1)¢ — 1 = 2m for odd ¢, (41 is m-atomic (since
Ay (m) > 0 by assumption). If none of the moments ;; of the sequence (2k=1) depends
ON Y (2k—1)e+1> Y(2k—1)t+2> - - - » Y2ke» then pu1 will generate a K-rm for B asin the proof
of Claim 5 of Theorem 3.1. But by definition (16), none of the moments of =1 depends
ON Y(2k—1)t+1> Y(2k—1)€+3> - - - » V2ke» Which concludes the proof of Theorem 3.2. |

A corollary to Theorem 3.1 is an improvement of the bounds on the degrees of sums
of squares in the Positivstellensatz [11, Corollary 6.3] for the curves of the form y = q(x),
q € R[x], degg > 3.

Corollary 3.3: Let K := {(x,y) € R?: y = q(x)}, where q € R[x] satisfies degq > 3. Let
k > degq. If r(x,y) € R[x, ylax is strictly positive on K, then r admits a decomposition

o 123 43
rey) =Y fite )+ —q@®) Y gty — (= q®) > hi(xy)?,
i=1 i=1 i=1
where £1,£2,43 € Zy, fi,gi € Rlx,y] and
degf? < 2m, deg((y — q(x))g?) < 2m, deg((y — q(x))h?) < 2m

with m = k + degq — 1.

Proof: Bytheequivalence (1) < (3) of Theorem 3.1, the set K has the property (R, degq—2)
in the notation of [52, p. 2713]. Now the result follows by [52, Theorem 1.5]. |

Remark 3.3: The bound on m in Theorem 3.3 from [11, Corollary 5.4] is quadratic in k
and deg ¢, namely (2k + 1) degq.
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3.2. Solution to the parabolic TMP

The following is a concrete solution to the parabolic TMP, first solved in [6]. We give an
alternative proof together with a new solvability condition, i.e. (6) below, where the variety
condition is removed.

Theorem 3.4 (Solution to the parabolic TMP, even case): Let
K:={(xy) e R?: y= q2x2 + q1x + g0},

where qo, q1,q2 € R and q; # 0, be the parabola and B := g0 = (Bij)ijezy i+j<2k» Where
k > 2. The following statements are equivalent:

(1) B has a K-representing measure.

(2) B has a (rank My)-atomic K-representing measure.

(3) My is positive semidefinite, recursively generated, satisfies the column relation Y =
02X + q1X + qo and rank My < card V(B), where

Ve = [] Z@.

gER[xy] <ts
gX.Y)=

(4) My satisfies Y = q2X* + q1X + qo and admits a positive semidefinite, recursively gen-
erated extension My 1.

(5) My satisfies Y = q2X* + q1X + qo and admits a positive semidefinite extension My .

(6) My is positive semidefinite, the relations Biji1 = q2Bit2,j + q1Bir1j + qoBij hold for
everyi,j € Zy withi+j < 2k — 2 and, defining

B={Lxyyx... .1y ek, (24)

one of the following statements holds:

(a) (Mk)lB\{yk} is positive definite.

(b) I‘al’lk(Mk)|B\{),k} = rank M.
Proof: By applying an alt ¢(x,y) = (x, q—lzy— q1x — qo) to the sequence S we get a
sequence S with the moment matrix My (f) satisfying Y = X2. Using Proposition 2.1,
each of the statements (1)-(6) holds for tile original sequence B with the column rela-
tion Y = g2 X% + q1X + qo iff it holds for B with the column relation Y = X2. So we may
assume (42,41, qo) = (1,0,0). Let us start by proving the equivalences (1) < (2) < (6).
By [57], (1) is equivalent to:

(1') B has a s-atomic K-representing measure for some s € N.

Let

0.4k) = (VO) Vis---> )/4k) S R4k+1) (25)

where y; = ﬂtmodz,Lg P which is a special case of definition (16) in the proof of

V=Y

Theorem 3.1. Claim 5 in the proof of Theorem 3.1 holds with the same proof also for
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g(x) = x%. Using Claim 5 and [44, Theorem 3.9] for y, the equivalences (1') < (2) < (6)
follow by noting that A, = (M)|g and Ay (2k — 1) = (M) |\ (yk)-

The implications (2) = (4) and (4) = (5) are trivial. The implication (1) = (3) fol-
lows from the necessary conditions for the existence of a K-rm (the variety condition
follows from [1, Proposition 3.1 and Corollary 3.7]).

Now we prove the implication (5) = (6). By [1, Theorem 3.14], it follows that M}
is rg. Defining the sequence 7 := y O*%+2 = (yo, y1,. .., vk 1> Vaki2) € R¥F3, where
Yt = Bimod 2L ) which is a special case of definition (16) in the proof of Theorem 3.1,
it follows by My being psd that in particular (Mi4.1) | guyyh1y = Ay is also psd. If A, w40
is pd, then (My)| B\(A} is pd, which is (a) of Theorem 3.4. Otherwise Ay(o,4k) is singular and
prg by [44, Theorem 2.6]. In particular, rank A, = rank A,, (2k — 1), which, by noting that
(Mk)|8\{yk} = A, (2k — 1), implies (b) of Theorem 3.4. This proves (5) = (6).

It remains to prove the implication (3) = (6). If (My)| B\(*) is pd, we are done. Other-
wise (My)] B\{(y¥) is not pd. We have to prove that in this case rank (M) | B\k) = rank M.
We assume by contradiction that rank(Mj)| B\k) < rank M. Let y be as in (25). The
inequality rank(My)| B\pk) < rank My implies that rank A, (2k — 1) < rankA,. Let r =
rank y. Then, by [44, Theorem 2.6], rank A, (2k — 1) = r and hence, [44, Theorems 3.9,
3.10] imply that )/(0’4"’2) = (Y0, - ->Vak—2) has a unique r-atomic R-rm with atoms
X1»...,%r. Hence,rank A, = r 4 1. Note that for every g(x, y) € R[x, y], whichisa column
relation of My, it follows that g(x, x*) € R[x] is a column relation of A, (where columns
of A, are LLX,... , X%, Since (x,y) € V(B) and (x,y) € V(B), implies that y = y/ (due
toy = x% and y = x?), it follows that V(8) C {(xl,x%), cees (xr,xf)}. (This is true, since
the atoms of a finitely atomic measure always satisfy all column relations of the moment
matrix. Moreover, the sets are equal, but we do not need this in the rest of the proof.) Hence,
[V(B)| < r. Since rank A,, = rank M, this leads to a contradiction with the assumption
rank M < |[V(B)|. |

Remark 3.4: (1) The proof of the implication (3) = (2) of Theorem 3.4 in [6]: [6] consid-
ers 5 different cases according to the form of the relations between the columns of B
defined by (24). The most demanding cases, which both use the FET as the main tool
in the construction of a flat extension My of M, are cases where there is only one
relation and the column Y* occurs nontrivially in it or if there is no relation present.

(2) Complexity of checking conditions in the statements of Theorem 3.4: Among condi-
tions in (3) the most demanding is the variety condition rank My < card V(8), since
it requires solving a system of polynomial equation, which can be numerically dif-
ficult and unstable. However, (6) of Theorem 3.4 requires less work and can be
stably checked numerically. Namely, one has to check if the column relations Y'X/ =
q(X)IXJ, i+ j < k,i € N, hold, then try to compute the Cholesky decomposition VV T
of (My)|B, compute the column echelon form U of V and in case U is of the form
(Ir B)T for some matrix B, then (a) or (b) holds and an rm exists. This follows by
noting that (My)|s corresponds to the Hankel matrix of a univariate sequence (see the
proof above), for which the solution to the TMP is given in Algorithm 2.1.

The following example shows that the variety condition rank My < card V(B)
from Theorem 3.4.(3) cannot be removed in contrast to the case of K being
a circle [5 Theorem 2.1] or a union of two parallel lines [49, Theorem 3.1].
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The Mathematica file with numerical computations can be found on the link
https://github.com/ZalarA/TMP_quadratic_curves.

Example 3.5: Let 8 = (Bij)ijez, i+j<4+ be a bivariate sequence of degree 4 with the
moment matrix M, equal to

1 X Y X* Xy Y?

1 [3 0 2 2 0 27
X 02 0 0 2 O
Y 2 0 2 2 0 2
M=wl202 2 0 2
XY 02 0 0 2 0

v L2 0 2 2 0 3 |

M, is psd with the eigenvalues %(9 + /65) ~ 8.53,4, 1, %(9 — /65) ~ 0.47, 0, 0, and the
column relations Y = X2, XY = X. Hence, M, is psd, rg and satisfies Y = X2, The variety
V(B) is equal to {(0,0), (—1,1),(1,1)}. So 4 = rank M, > card V(B) = 3 and the variety
condition is not satisfied. Thus 8 does not admit a representing measure supported on the
parabola y = x?. So My being psd, satisfying Y = X? and rg does not imply the variety
condition and the existence of a representing measure.

Note that by Remark 3.4.(2) it is cheaper and more stable to check only that ¥ =
X? is a column relation and then solve the TMP for y, such that A, = (My)|B, using

Algorithm 2.1. Since the case 3.2 applies, an rm does not exist.

The following example demonstrates the solution of [6, Example 1.6] in the univari-
ate setting. The Mathematica file with numerical computations can be found on the link
https://github.com/ZalarA/TMP_quadratic_curves.

Example 3.6: Let 8 = (Bi))ijez, i+j<6 be a bivariate sequence of degree 6 with the
moment matrix M3 equal to

1 X Y X2 Xy y? x> Xy Xxy? yv3

1 [ 1 0 a a 0 b 0 b 0 ¢ 7
X 00a 0 0 b 0 b 0 c 0
Y a 0b b 0 ¢ 0 ¢ 0 d
X2 a 0b b 0 ¢ O c 0 d
Ma — XY 0 b 0 O c 0 ¢ 0 d 0

T v b0 c c 0 d o0 d 0 e |

x3 0 b 0 O c 0 ¢ 0 d 0
X2y b 0 ¢c ¢ 0 d 0 d 0 e
XY? 0 ¢c 0 0 d 0 d 0 e 0

Y’ Lc 0d d 0 e 0 e 0 f _

with the inequalitiesa > 0,b > a?,¢ > %,d > Z’S_;+l:;rcz,which ensure that (M2) [( x,v,xv,y2,x2v}

is psd and (M2)l(; x,y,xy,y2} is pd. Note that Mj satisfies the column relations ¥ = X2,


https://github.com/ZalarA/TMP_quadratic_curves
https://github.com/ZalarA/TMP_quadratic_curves
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XY = X? and Y? = X?Y. We introduce the univariate sequence

y € (1,0,4,0,b,0,¢,0,d,0,¢,0,f) € R

as in the proof of Theorem 3.4. We denote the rows and columns of A, by 1,X,. .. , X0,

Since (M2) (1 x,v,xy,y2) is pd, it follows that A, (4) is pd. For

—c3 + 2bed — ad?
b2 —ac

>

T _
e=(vy(54) (A1,0a0b0c0d) Vy(5,4) =

we have that A, (5) > 0 (e.g. using [58, Theorem 1] for A, (5)) and X° € span{1,X,..., X%}
in A, (5), where the vector v, (5,4) = (0 ¢ 0 d 0)7T is the restriction of the column
X° to the rows indexed by 1, X, X2, X3, X* Hence, for y toadmitaR-rm, A, > Oand X e
span{l, X, ... , X1} for i = 5, 6 [44, Theorem 3.9]. Since A, (5) > 0 and the last column
of A, (5) is a linear combination of the others, it only needs to hold by [58, Theorem 1],
that

v, (6,5) € C(A,(5)) and f = (v (6, 5)" (4, 5) v, (6,5)
—bc* — b*c*d — 2acd — bPd — b3 d? + 4abcd? — a*d?

- >

(b% — ac)?

where v, (6,5) denotes the restriction of X® to the rows indexed by 1,...,X° in A, and
(A),(S))Jr denotes the Moore-Penrose inverse of A, (5). Using Mathematica we check
that the equality A, (5) (Ay(S))Tvy (6,5) = v, (6,5) holds, which implies that v, (6,5) €
C(A, (5)) is true. By [44, Theorem 3.10], in this case the R-rm is unique, 5-atomic and
consists of the roots of the polynomial

P =01 x & 2 x* ) (A10a0b6000d) Vy(54)

- 2 _
=x<x4+ad bcx2+c bd)'

b2 —ac b2 —ac

Since p(x) has roots 0, x1, —x1, x2, —x3 and the atoms for the K-rm for 8 are (0, 0), (x1, x%),
(_-xl’ x%)a (xZa X%), (_x2> x%)

The following theorem is a concrete solution to the parabolic TMP of odd degree, which
is solved using the same technique as in the proof of Theorem 3.2, but here we get explicit
conditions for the existence of the solution, similarly as in the even degree case.

Theorem 3.7 (Solution to the parabolic TMP, odd case): Let K := {(x,y) e R?: y =
x*} be the parabola and B := pE=D = (Bij)ijez, itj<2k—1, where k> 2. Let y =
(0> Y15 - - - » Vak—2) be a sequence, defined by y; := Bimoda, ] fort=0,1,...,4k — 2. The
following statements are equivalent:

(1) B has a K-representing measure.
(2) B has a (rank y)-atomic K-representing measure.
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(3) B can be extended to a sequence B such that My is psd, rg, has a column relation
Y = X? and satisfies rank My < card V(B 20y where

V= [ 2@

gER[xy] <k
g(X,Y)=0 in M;

(4) B can be extended to a sequence ,8(Zk+2) such that My is psd and has a column relation
Y = X2

(5)  The relations Bijy1 = Bita,j hold for every i,j € Z, withi+j <2k —1, A, > 0and
the sequence y is positively recursively generated.

(6) The relations Bjj+1 = Biy2, hold for every i,j € Z with i+ j < 2k — 1 and defining
Bizk—i = ﬂimodZ,Zk—i—!—l_%J for 2 <i < 2k, the moment matrix (Mk)lB\{yk}, where B =

{Lx,y,9x,... ,yk_l,yk_lx,yk}, is positive semidefinite and

T
(Bok Bk Bokr1 Biktr -+ Bozk—1) € CUMPpy a1 iy k) (26)

Proof: The equivalences (1) < (3) < (4) follow by Theorem 3.4. By [57], (1) is equiva-
lent to:

(1) B has an s-atomic K-rm for some s € N.

Claim 5 of Theorem 3.1 holds with the same proof also for g(x) = x* and odd degree
sequence (i.e. i +j < 2k — 1). Together with [44, Theorem 3.9], the equivalences (1') <
(2) & (5) follow. Note that (Mk)lB\{yk} = A,.By [39, Theorem 2.7.5], y is prg if and only
if (26) holds. This establishes the equivalence (5) < (6). [ |

Remark 3.5: (1) Note thatrank y in Theorem 3.7 is at most 2k and it is 2k iff A, is positive
definite.

(2) Theorem 3.7 also solves the odd degree TMP on any curve of the form y = g x* +
q1x + qo}, where qo, 41,92 € R and g # 0. As in the proof of the even degree case
one applies ¢ from the proof of Theorem 3.4 to 8 to come into the case y = x* and
then use Theorem 3.7.

3.3. Asolution to the TMP based on a feasibility of a linear matrix inequality

In this section, we give another alternative solution to the TMP on curves y = g(x), where
q(x) € R[x] and degq > 3, which is based on a feasibility of a linear matrix inequality
associated to the univariate sequence y, obtained from the original sequence g as in the
proofs of the results of previous subsections. The feasibility question appears as a result of
the fact that y is not fully determined by 8, but 8 admits a K-rm if and only if y can be
completed to a sequence admitting an R-rm.

For n € N, we denote by [#] the set of all nonnegative integers smaller or equal to n. Let
the sets N1, N, form a partition of [#n], i.e. N1, N, C [n], Ny UN, = [n] and N} NN, = (.
Let I'1 := (¥)ten, be a sequence of real numbers indexed by integers from N; and I'; :=
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(¥ /)ten, a tuple of variables indexed by integers from Nj. Let
Fr, (T) : RIN2l _y RINIHIN:| 27

Yt if t € Ny,
Ve ifteN,.

In Theorem 3.8, the set Nj will be the set of indices, for which the corresponding uni-
variate sequence y is determined by §, while the indices of the non-determined part will
belong to N,. Since we can either get an odd or an even sequence, for which the solutions
to the R-TMP are slightly different, we separate two cases for N; U N, = [#n] (see (29)).

be a function with the output a sequence (¥;)¢e[,) Where y; =

Theorem 3.8: Let K := {(x,y) € R2: y = q(x)}, where q(x) = Zf:o qixi € R[x], £ = 3,
qe # 0, and

B =Y = Bipijer, i+j<d>

where I'g'l > deggq. For i, j,s € Z., such that i + j < d, define real numbers

Z 9iqi - - - qipp it i <s=<i+je,

o Lot
Qijs * i1+ Aij=s—i
0, otherwise.

Let
t
N; = {te Z+: tmod ¢ + lzJ < d},

1

t—1
Yt = m <13tmod€,L§J - thmod&LéJ,s ) )’s) for every t € Ny, (28)
qe ) s=0 )

and I'1 := (Vt)ten,- Let

[d¢ + 2], ifdeiseven,
[n] .=

[de+1], ifdeisodd, (29)

I'; := (Y )ten, be a tuple of variables with Ny = [n] \ Ny and Fr, (I';) be defined as in (27).
Then the following statements are equivalent:

(1) B has a K-representing measure.
2) Bij= Zﬁ:o GpBitp,j—1 foreveryi,j € Z, suchthati+j < d — €+ 1 and there exists
a tuple Ty = (yp)ien, € RN? such that Afp (ry = 0.

Proof: Observing the proof of Theorem 3.1 for a general g(x) one can note that Fr, (I';)
corresponds to the sequence y. The original sequence B determines only y, for t € Ny by
(28), while for t € Ny, p, are variables. By the proof of Theorem 3.1, g will have a K-rm iff
it satisfies the rg relations coming from the column relation Y = g(X) and there exists
such that Ay > 0. This proves Theorem 3.8 for even d.

Observing the proof of Theorem 3.2 in case d is odd one can notice that only y 4 =
(%05 - - - » Yde) needs to have a R-rm to obtain a K-rm for 8. In case d is even, this is by [44,



1950 A.ZALAR

Theorem 3.9] equivalent to Ay(o,d£+2) > 0, where y© de+2) — (Vo> -+ +> ¥Yde> Vde+1> Yde+2)

for some Y dp11, Yderz. Since y© de+2) corresponds to the sequence Fr, (I"2), this proves
Theorem 3.8 for even d¢ with d being odd. If d{ is odd, then by [44, Theorem 3.1] it suffices
that there is y4¢41 such that Ay(o,d(+1) > 0, where y(o’ dé+l) — (Yo - - ->Yde> Vde+1), and
this proves Theorem 3.8 for odd d¢. |

We will present the statement of Theorem 3.8 on a few examples. The following example
is for the case degq = 3 and a sequence S of even degree.

Example 3.9: Let 8 = (Bij)ijez, i+j<2k be a bivariate sequence of degree 2k, k > 3, and
K := {(x,y) € R?: y = x°}. For the existence of a K-rm 8 must satisfy the relations f; =
Bit3j—1 for every i,j € Z, such that i+ j + 2 < 2k. In the notation of Theorem 3.8 we
have

1, ifs=1i+3)
Qijs = 0, otherwise,

for i,j,s € Z,suchthati+j <2k,
t
N1 = :t€Z+I tmod3+ LgJ SZk} = {t€Z+: t§6k, t;é6k— 1},
[n] :=[6k+2] and N, := {6k — 1,6k + 1,6k + 2}.
The formula (28) is equal to
V= ﬁtmodt,[%] for every t € N;

and the function Fr, : R® — RO+3 i defined by

Fri(I2) = Fri (Y ek—1>V6ka1> Y 6kt2) = (V0> V15 -+ - > Yok—2> Y 6k—1> V6ks Y 6k+1> Y 6k+2)-

The matrix Ar;. (r,) is equal to

Yo yio V2 V3 s T Y3k V3k+1
Y1 Y2 V3 ' :
V2 vs oo Vek—2
v Vek—2 | Yek-1 |
: Y6k—2  Vek—1 Vek
Y3k s s T Yok—2  VYek—1 Yok Y 6k+1
V3k+1 -0 0 o Yek—2  Vek—1 Yok Yek+1 | Yek+2

The question of feasibility of Af. (r,) = 0 can be answered analytically, since the struc-
ture of the missing entries is simple enough. Actually it is even easier to work with
,,,,, Yer_1.vsr) and answer the feasibility question together with the condition from the
solution of [44, Theorem 3.9] (see [48, Theorem 3.1]).

Remark 3.6: If degq = 3 in Theorem 3.1, then a polynomial is of the form y = g3x> +
q2x* + q1x + qo € R[x], where g3 # 0, and using alts it can be transformed to y = x°.
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Indeed, by first applying an alt as at the beginning of the proof of Claim 1 of Theorem 3.1,
we can assume that g, = 0, i.e. the polynomial becomes y = g3x> + q1x + go. Now we
apply an alt (x, y) = (x,y — q1x — qo), followed by (x,y) — (/g3x,y) and get a polyno-

mial y = x°.

The following example demonstrates the statement of Theorem 3.8 for the case degg =
3 and a sequence § of odd degree.

Example 3.10: Let 8 = (Bij)ijez, i+j<2k—1 be a bivariate sequence of degree 2k—1,k > 3,
and K := {(x,y) € R?: y = x’}. For the existence of a K-rm B must satisfy the rela-
tions B;; = Biy3—1 for every i,j € Z such that i +j+ 2 < 2k — 1. In the notation of
Theorem 3.8, we have

Qijs = {1’ ifs=i+3, for i,j,s € Z4,such thati+j <2k —1,

0, otherwise.
Ny = {t€Z+: tmod 3 + LgJ <2k — 1} ={teZs:t <6k—3andt # 6k —4},
[n] = [6k—2] and N, := {6k — 4,6k — 2}.
The formula (28) is equal to
V= ,Btmodt,L%J forevery t € N,
and the function Fr, : R? — R~ is defined by

Fr,(T2) = Fr, (Y ek—a> Y6x—2) ‘= (Y0, V1> - - - > V6k—5> ¥ 6k—a> Y6k—3> Y 6k—2)-

Since 6k — 3 = (2k — 1) - 3 is odd, only feasibility of the inequality Af. (r,) >= 0is impor-
tant for the existence of the rm for 8, where Ap;. (r,) is equal to

Yo Y V3 T T V3k—1

V1 Y2 V3 ' ;

2 Z R Vek—5

s TR
: Yek—5 Yek—4 Yok-3

V3k-1 - - Yek—5 Vek—a VY6k—3 Vek—2

This feasibility question can be answered analytically, since the structure of missing entries
is simple enough. See Theorem 3.13.

The following example demonstrates the statement of Theorem 3.8 for the case y = x*
and a sequence S of even degree.

Example 3.11: Let 8 = (Bi))ijez, i+j<2k De a bivariate sequence of degree 2k, k > 4, and
K := {(x,y) € R?: y = x*}. For the existence of a K-rm 8 must satisfy the relations f; =
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Bita,j—1 for every i,j € Z, such that i + j+ 3 < 2k. In the notation of Theorem 3.8, we
have

.. L
0. otherwise. for i,j,s € Z,such thati 4 j < 2k,

{1, if s =i+ 4,
Gij,s =

t
N1 = {t S Z+I tmod 4 + \‘4—1J < Zk}

={teZy:t<8k t¢{8k—58k—28k—1}},
[n] :=[8k+2] and N, := {8k —5,8k— 2,8k — 1,8k + 1,8k + 2}.

The formula (28) is equal to
ve=B, .4 fl_iJ foreveryt € N,
the function Fr, : R> — R8+3 is defined by

Fr (T2) = F(Y gk—5> Y 8k—2> Y 8k—1> ¥ 8k+1> ¥ 8k+2)
= (Y0, Y15 - - - > V8k—6> Y 8k 5> V8k—4»> V8k—3»> ¥ 8k_2> ¥ 8k—1> V8k> Y 8k+1> Vsk+2)’

and the matrix Ap. (r,) is equal to

Yo Y1 V2 V3 T s Yak Vak+1
Y1 V2 V3 ) :
V2 V3 - V8k—6 V8k—5 | V8k—4

v Ysk—6  Ysk—5 Vsk—4 | V8k—3

V8k—6  V8k—5 V8k—4  V8k—3 | Y8k—2
V8k—6 V8k—5 V8k—4  V8k—3 V8k—2 | Vs8k—1

V8k—6 V8k—5 V8k—4  V8k—3 V8k—2 Vs8k-1 V8k
Vak V8k—6 V8k—5 V8k—4 V8k—3 Vgk—2 Ys8k—1 Y8k Y 8k+1
Vak+1 -+ YV8k—5 V8k—4  V8k—3 Vgk—2 ¥Y8k—1 V8k Y8k+1 | Y8k+2

In contrast to the situation y = x> from Example 3.9, the structure of missing entries here
is too complicated for the analytic approach and we believe the feasibility question can only
be answered numerically using linear matrix inequality solvers.

The following example demonstrates the statement of Theorem 3.8 for the case y = x*

and a sequence 8 of odd degree.

Example 3.12: Let 8 = (Bi))ijez, i+j<2k—1 be abivariate sequence of degree 2k—1,k > 4,
and K := {(x,y) € R?: y = x*}. For the existence of a K-rm 8 must satisfy the relations
Bij = Bitaj—1 foreveryi,j € Zy such thati+j+ 3 < 2k — 1. In this case

Qijs = {1’ ifs =i+ 4, for i,j,s € Z4,such thati+j <2k — 1,

0, otherwise.
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t
N; = {t€Z+Z tmod4 + \\A—LJ ka— 1}

={teZ,: t<8k—4andt ¢ {8k — 9,8k — 6,8k — 5},
n:=[8—2] and N,:={8k—9,8k—6,8k— 5,8k — 3,8k — 2}.

The formula (28) is equal to
Ve = Btmods L] for every t € N,
the function Fr, : R> — R®~1 is defined by

Fr (T2) = F(Y sk—9> Y 8k—6> Y 8k—5> ¥ 8k—3> ¥ 8k—2)

= (Y0> Y15 - - - > Y8k—10> ¥ 8k—9> V8k—8> ¥Y8k—7> Y 8k—6> ¥ 8k—5> V8k—4> Y 8k—3> ¥ 8k—2)>

and the matrix Ag. (r,) is equal to

Yo Y1 Y2 V3 T T Yak—2 | Vak—1
51 V2 V3 :
2 v Y8k—-10 Y8k—9 | Vsk—8

V3 V8k—10 Vgk-9  V8k—8 | V8k—7

V8k—10 Y8k—9  V8k—8  V8k—7 | Y 8k—é6
V8k—10 VY8k—9 V8k—8  V8k—7 V8k—6 | YV8k—5

: V8k—10 V8k—-9 V8k—8  V8k—7 V8k—6 Y8k—5 | V8k—4
Vak—2 V8k—10 ¥Y8k—9 V8k—8  V8k—7 V8k—6 V8k—5 V8k—4 | Y8k—3
Vak—1 -+ Vgk-9 V8k—-8 V8k—7 Vsk—-6 Vs8k-5 V8k—4 Vgk—3 | Vgk—2

Since 8k — 4 = (2k — 1) - 4 is even, the problem has the same structure as in the even
degree case (see Example 3.11).

3.4. Asolution to the odd degree TMPony = x3

The following theorem is a concrete solution to the TMP of odd degree on the curve y = x°,

which can be solved using the same technique as odd cases of the TMP on y = x, £ > 3.
However, for £ = 3 we get explicit conditions for the existence of the solution, similarly as
in the even degree case [48, Theorem 3.1].

Theorem 3.13 (Solution to the TMP on y = x>, odd case): Let K := {(x, y) € R2: y=

Xy and B = B = (B, ))ijer, i+j<ok—1, where k > 3. Let y(2) := (0 V1, - .» Vok—5»
Z, Yek—3) be a sequence, defined by y; .= ﬁtmod“%] fort=0,1,...,6k — 5,6k — 3, and z
is a variable. The following statements are equivalent:

(1) B has a K-representing measure.
(2) B has a (rank My_)-atomic or (rank My_1 + 1)-atomic K-representing measure.
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(3) The relations Bij+1 = PBits,; hold for every i,j € Z with i+ j < 2k — 4 and denoting
B = {1,%x% v, yx, yx%, ..., y*~1}, one of the following holds:
(@) (Mi-)ls > 0.
(b) (Mk-1)IB # 0, (Mk—1)|5 = 0, denotingy := (Y0, V1, - - -» Yek—6), T := rank y and

_ T
((pO T (Pr—l) =Ay(r—1) ! (Vr T V2r—l) > (30)
it holds that
r—1
Yok-u= ) @iVek-u—rti foru =35, (31)
i=0

where Yek—_4 is defined by (31) foru = 4.

Moreover, if a K-representing measure exists, then there does not exist a (rank My_,)-
atomic one if and only if (My_1)|5 > 0 and yek—3 does not satisfy (31) for u = 3, where
Yek—a is obtained by (31) for u = 4 and one uses (30) with r = 3k—2.

Proof: By Theorem 3.8, (1) is equivalent to the validity of the relations B;j+1 = Bit3;
for every i,j € Z4 with i+ j < 2k — 4 and feasibility of Ap. (yg_4yq_, = 0> Where the
linear matrix function Af. (yg_4yg.,) is as in Example 3.10. The latter is further equiv-
alent to the existence of ygr_4 and ygk—» such that Fr, (Ysk—4, Yek—2) has an R-rm. Here
we note that ifAFFl (eraver_p) = 0is such that rank Fr, (Vsk—4, Yek—2) < Aprl Ver—sVek—_2)*
then rank Fr, (Vsk—4, Yek—2) = AFFI(VGk—4:V6k—2) — 1 by [44, Corollary 2.5]. Since ygr—2
occurs only in the bottom right corner of AFFl (Ver_arver_a)» We can replace it with Yer_»
such thatAprl eraTer_y) = 0and rank Fr (Vek—4» Vek—2) = AFFI (Ver—uTsk_a)» Which by [44,
Theorem 3.9] indeed implies the existence of an R-rm. We have that (My_)|z = A, . If
(Mk—1)|B > 0, there exists ygk—4 such that A, ., v, > 0and by [44, Theorem 3.1],
the sequence (o, ¥1»- - -» Yek—3) has a (3k — 1)-atomic R-representing measure. Hence,
one also finds ygx—» such that Fr,(yYek—a> Yek—2) has an R-rm. If (M_;)|p > 0 and
(Mk—-1)|B % 0, then by [44, Theorem 3.8], (0, V1> - .» Vsk—s5) has a unique R-rm. This
measure also represents ygx—3 iff (31) for u = 4 and u = 3 holds. This establishes the
equivalence (1) < (3). The equivalence of both with (2) follows by observing that
Fr, (Yék—4> Yek—2) admits a (rank y)-atomic or (rank y + 1)-atomic R-rm. The first case
happens iff (b) holds or (a) holds and ygr_4 is obtained by (31) for u = 4, where one
uses (30) with r = 3k—2, and yer—3 is obtained by (31) for u = 3. Since rankA, =
rank Mj._1, the equivalence follows. |

4. The TMP on the curves yx‘ = 1

In this section, we study the K-TMP for K being a curve of the form yx‘z =1,¢€N,
£ > 2. In Section 4.1, we first give a solution to the K -TMP, based on the size of posi-
tive semidefinite extensions of the moment matrix needed and also bound the number of
atoms in the K-rm with the smallest number of atoms (see Theorem 4.1 for the even degree
and Theorem 4.2 for the odd degree sequences). As a result we obtain a sum-of-squares
representation for polynomials, which are strictly positive on K (see Corollary 4.3). This
improves bounds in the previously known result [11, Proposition 6.4]. In Section 4.2, we
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give a solution to the K -TMP, based on a feasibility of the corresponding linear matrix
inequality (see Theorem 4.4).

4.1. Solution to the TMP in terms of psd extensions of My, bounds on the number of
atoms in the minimal measure and a positivstellensatz

Theorem 4.1 (Even case): Let K := {(x,y) € R2: yxe = 1}, where £ € N\ {1}, and B :=
B = (Bij)ijer, itj<2k» where k > € + 1. The following statements are equivalent:

(1) B has a K-representing measure.
(2) B has a s-atomic K-representing measure for some s satisfying

rank M <s < k(£ +1).

(3) My satisfies YX* = 1 and admits a positive semidefinite, recursively generated extension
Mieye-
(4) My satisfies YX¢ = 1 and admits a positive semidefinite extension My ¢ 1.

Theorem 4.2 (Odd case): Let K := {(x,y) € R2: yxZ = 1}, where £ € N\ {1}, and B8 :=
D = (Bij)ijezy iti<2k—1, where k > £ + 1. The following statements are equivalent:

(1) B has a K-representing measure.
(2) B has a s-atomic K-representing measure for some s satisfying

14
rank M <s<k(£{+1)— LEJ + 1.

(3) BP can be extended to a sequence B such that My satisfies YX* = 1 and admits
a positive semidefinite, recursively generated extension Mj.

(4) BPY can be extended to a sequence B0 such that My satisfies YX* = 1 and admits
a positive semidefinite extension Myyo41.

Remark 4.1: (1) Previous bounds on the size of extensions in (4) of Theorem 4.1: In [11,
Section 6], the author considered TMPs on Z(p) in terms of the size of psd exten-
sions of the moment matrix also for polynomials of the form p(x, y) = yq(x), where
q € R[x]. Namely, by [11, Propositions 6.1, 6.4], a sequence of degree 2k admits a
Z(p)-rm, if My admits a psd extensions My, wherer = (2k +2)(2 + degq) — (1 +
deg g + k). The proof of this result relies on the truncated Riesz-Haviland theorem
[52, Theorem 1.2] and a sum-of-squares representations for polynomials, strictly pos-
itive on Z(p) ([11, Proposition 6.4] and [53, Proposition 5.1]). Part (4) of Theorem 4.1
improves Fialow’s result in case g(x) = x*, £ > 2, by decreasing the size of the
extensionstor = £ 4 1.

(2) Known bounds on the number of atoms in (2) of Theorems 4.1, 4.2: Similarly as in
Remark 3.1.(3.1), part (2) of Theorem 4.1 is a counterpart of [50, Corollary 7.6] for
even degree sequences on curves 2 (yx‘Z — 1), while part (2) of Theorem 4.2 improves
[50, Corollary 7.6] for curves Z(yx* — 1) by decreasing it for L%J -1

(3) Uniqueness and description of all solutions in Theorems 4.1 and 4.2: The same comment
as for Remark 3.1.(5) applies here. Beyond the case yx2 =1 (see Example 4.5) the
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structure of the missing entries of A,, from the proof of Theorem 4.1 is too complicated
to have control over all psd completions and consequently over the uniqueness and the
description of all solutions.

(4) Complexity of checking conditions in (4) of Theorems 4.1 and 4.2: The same comment
as for Remark 3.1.(6) applies here. The main complexity question is the SDP feasibility
question, which is cheaper when dealt with on a univariate sequence A defined in the
proof. A precise SDP is stated in Theorem 4.4.

Proof of Theorem 4.1.: The implications (1) = (4) and (2) = (1) are trivial. The impli-
cation (4) = (3) follows by [1, Theorem 3.14]. It remains to prove the implication (3) =
(2). Assume that YX? is a column relation and Mj admits a psd, rg extension Mj.,. Let

B = {kaxK_l,yk,ykx, . ,ykxe_l,. TS 1> A ,yxg_l, Lx,... ,xk+1} (32)

be the set of monomials and V' the vector subspace in R[x, y]x4+, generated by the set 5.
Since My ¢ satisfies

iy — Ximodiyj—L%J, ifi,jeZy, i+j<k j> L%L
Xi—it, ifi,j€Z+,i+j§k,j<|_%J’

it follows that the columns from B span C(Mjy¢). Let p(x,y) = ), j piix'y) € V bea poly-
nomial and P a vector of its coefficients ordered in the basis B. We define a univariate
polynomial g, (x) corresponding to p(x, y), by

k+1
g0 =paxH =Y pix =Y g e Rl (33)
i,j s=—kt—1
Let g} be its vector of coefficients in the basis
B = {xikefl,xfke, ... ,ka}. (34)

The monomials x1 /1, x232 from B correspond to the same monomial x°* by the corre-
spondence (33) iff iy — €j; = iy — {j,, which is further equivalent to i} = i; and j; = j»
(since i1 and i, are at most £ — 1 in ). Therefore

o~

& =" (35)
We define two univariate sequences
y = V(_kak) = (V—2kt> V—2kt+15>-- > V0> > V2k) € RMH[)H,
7=y CRE2ID = () 0 Yookt 15 Vs Vakt1s Vakp) € RIFUTOTS,



LINEAR AND MULTILINEAR ALGEBRA (&) 1957
by the formula

IBt,0> lft > Oa
Ve = (36)

Pel] [4] HE =0
Note that for t < 0 we have that t + leﬂl <{-1, (%] < 2k + 1 (since £ > 3) and hence

t t
t+£[%—‘+(%—‘ <l—-1+4+2k+1=2k+¢.

Therefore 8

2k + 20).
By the following claim solving the K-TMP for 8 is equivalent to solving the (R \ {0})-
TMP for y.

byl pliq i well-defined being an element of the matrix My, (since 2k + £ >
[N N]

Claim 7: Let u € N. A sequence y admits a u-atomic (R \ {0})-rm if and only if 8 admits
a y-atomic K-rm.

Proof of Claim 7.: First we prove the implication (=). Let xi,...,x,, be the atoms in
the (R \ {0})-rm for y with the corresponding densities py, ..., p,. We will prove that
the atoms (x1, (x1) ), . .., (xu, (x,) %) with densities py, . .., p are the K-rm for 8. We

separate two cases:

(1) L4 =

u u
Bij = Bitio =vitj = »_ pp(xp) T =D ppp) (Gp) 1Y,
p=0 p=0
were we used the fact that § is rg in the first equality, (36) in the second equality, the
definitions of pp, x, in the third equality and split (xp)"’zj into two parts in the last
equality.
2) Lyl <

u
R L . _ —(— L] e+imod e
Bij = Bimod tj—1 1] = Y—(i—|i petimode = D pplay) U Lierimo
p=0

u i ) )
— Z pp(xp)LZJE-HmOd{((xP)—E)]
p=0

=Y 0p(xp) (i) ™,
p=0

were we used the fact that § is rg in the first equality, (36) in the second equality, the
definitions of p, x, in the third equality, split the exponent at x;, into two parts in the
fourth equality and used that [ 7]€ + imod £ = i in the last equality.

This proves the implication (=).
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It remains to prove the implication (<). Let (x;, (x1) 79, ..., (X (x,) ) be the atoms
in the K-rm for 8 with the corresponding densities oy, . . . , p,. We will prove that the atoms
(x1, . .., x,) with densities py, ..., pp are the (R \ {0})-rm for y:

e Fort > 0 we have that

u
vi=Bo= Y ppxp)’,
p=0
where we use the definition (36) in the first equality and the definitions of pp, x, in the
second.
e For t <0 we have that

Ve = ,BHEP%\‘H%\] = X;pp(xp)tH'-Iﬂ ((xp)*e)l—%-l = Xgpp(xp)t’
p= p=

where we use the definition (36) in the first equality and the definitions of p,, x, in the
second.

This proves the implication (<). [ |

Let (My+¢)|B be the restriction of My, to the rows and columns indexed by monomials
(capitalized) from B. The following claim gives an explicit connection between (My1¢)|B
and the Hankel matrix Ay of the sequence y.

Claim 8: We have that
(Miyo)lB = Ay. (37)
Proof of Claim 8.: Let p(x,y) = Zinijxi)/i € Vandr(x,y) =3, riix'yl € V be polyno-

mials from the vector subspace V and p, 7 vectors of their coefficients ordered in the basis
B. Let f := pek+DE+2=1) Then we have

- -1 o 4
AT (Miso)|8)P =" Lgpr) =Lz | Y pijyrigjyx T2y 152
i1,02,]1,2
2 N P
= Z p11]1r12]2ﬂ11+12,11+12
i1,i2,]1,2
3 g s ey
= Z Pirjyi Tirjp Vir+ia—(ir+i2)¢

i1,02,]1,52

47 oy 1T —(12)E
- LV Z p11]1r12]2x Giti

iLi2,j1,j2

_57. T T4 L2t
=Ly Z Pijy XMy x2

i1,02,]1,2
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6 7. 41— 2=t
- L)/ Zplljlx / Zrlzjzx !

i1,j1 i2:j2

&) &%)
7 AT g~ AT, =~
=g Aygp =71 Ayp,

where in the first line we used the correspondence between the moment matrix and the
Riesz functional Lg, the definition L i in the second, (36) and the fact that § is rgin the third
(rg is needed if iy + iy > £), the definition of Ly in the fourth, decomposed the exponent
of x into two parts in the fifth, decomposed a sum into the product of two sums in the
sixth, in the seventh we used the correspondence between A3 and the Riesz functional Ly,
where g;, gr are the vectors of coefficients of 8p and g, in the basis ) (see (34)) and (35).
Since p and q were arbitrary from V, this proves Claim 8. |

Since (Myy¢)|5 is psd, it follows from (37) that Ay is psd. We separate two cases.
Either A, is pd or A, is psd, singular, prg by [44, Theorem 2.6] and nrg by [46, Propo-
sition 2.1.(5)]. By [46, Theorem 3.1], y admits a (rank A, )-atomic (R \ {0})-rm. Since
rank My < rankA, < k(£ + 1) + 1, using Claim 8 the following holds:

(2") B has an s-atomic K-rm for some s satisfying

rank M <s <rankA, <k({+1)+ 1. (38)

To obtain (2) of Theorem 4.1, we need to decrease the upper bound in (38) by 1. Note
that the bound k(¢ 4 1) + 1 occurs only in the case A, is pd. We denote by y (z) a sequence
obtained from the sequence y by replacing y_jk¢41 with a variable z. The matrix A, ;)
is a partially positive definite matrix and by [48, Lemma 2.11] there exist two choices
of z, which we denote by z*, such that A, (z+) is psd and has rank k(¢ + 1). Using [46,
Proposition 2.5] for the reversed sequence (y (7)) of y (zF), we see that at least one of
(y (%)) admitsa (R \ {0})-rm. Hence, at least one of y (z¥) is prg and nrg, and admits
a k(£ + 1)-atomic (R \ {0})-rm. If none of the moments B;; of the sequence B depends
on y_ske+1, the (R\ {0})-rm for (y (z1)) V) will generate the K-rm for 8 as in the proof
of Claim 8. But by definition (36), there is indeed no moment from S, which depends
on y_ske+1 (since we need to represent moments of degree at least —2k¢ and at most 2k,
while y_x¢41 corresponds to By_ 2k in some extension of 8), which concludes the proof
of Theorem 4.1. [

To prove Theorem 4.2 only a little adaptation of the last part of the proof of Theorem 4.1
is needed, which we now explain.

Proof of Theorem 4.2.: The implications (1) = (4) and (2) = (1) are trivial. The impli-
cation (4) = (3) follows from [1, Theorem 3.14]. It remains to prove the implication (3) =
(2). Following the proof of Theorem 4.1 everything remains the same until (2’). It remains
to justify that the upper bound in (38) can be decreased to m := k(£ + 1) — L%J + 1. If
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rank A, < m, then we are already done. From now on we assume that r := rank A, > m.
Since y admits a (R \ {0})-representing measure, which we denote by u, it is nrg and
ranky = rankA, = rank A, [r — 1]. Hence, A ek-20-12k 18 pd and in particular also its
submatrix Ay(zk—z(m—l)jk) is pd. We denote by y(z1,...,2z¢) a sequence obtained from
the sequence y by replacing the moments y_sx¢, Y—2k¢+15 - - - » V—2ke+¢—1 With variables
Z1,...,Z¢. By [46, Theorem 3.1], the sequence y(Zk_z(m_l)’Zk) has a m-atomic (R \ {0})-
rm (to apply [46, Theorem 3.1] we used that 2k —2(m — 1) = —2kl + 2L§J < 0). We
denote the measure obtained in this way by w; and generate its moment sequence
y(z1,...,2¢), where z1, . . ., z¢ are the moments of degrees —2k¢, —2k¢ + 1,...,—2k(¢ +
€ — 1, respectively. If none of the moments B;; of the sequence Bk=D depends on
V_2kt> V—=2kt+1>- - -» V—2kt+0—1> then w1 will generate the K-rm for BE=D a5 in the
proof of Claim 1 of Theorem 4.1. But by definition (36), there is indeed no moment
from k=1 depending on y_ske, Y—2ke+15 - - - » V—2kt+¢—1, Which concludes the proof of
Theorem 4.2. |

A corollary to Theorem 4.1 is an improvement of the bounds on the degrees of sums of
squares in the Positivstellensatz [11, Corollary 6.4] for the curves of the form yx* = 1,£ €
N\ {1}.

Corollary 4.3: Let K := {(x,y) € R?: yx* =1}, where £ e N\ {1} and k> £+ 1. If
r(x, y) € Rlx, ylax is strictly positive on K, then r admits a decomposition

1 123 %3
rey) =Y fien)* + 02" =D gty — (o = 1Y hi(x )
i=1 i=1 i=1

where €1,€2,03 € Z, fi,gi»hi € Rx, y] and
degf? <2m, deg((yx' —1)g?) <2m, deg((yx* — 1)h?) <2m
withm =k + €+ 1. where £1,45,03 € Z.

Proof: By the equivalence (1) < (3) of Theorem 4.1, the set K has the property (Rk,) in
the notation of [52, p. 2713]. Now the result follows by [52, Theorem 1.5]. [ |

Remark 4.2: The bound on m in Theorem 4.3 in [11, Corollary 6.4] is quadratic in k and
¢, namely 2k +2)(2 + £) — (1 + £).

4.2. Asolution to the TMP based on the feasibility of a linear matrix inequality

In this subsection we give another alternative solution to the TMP on curves yx‘, where
¢ € N\ {1}, which is based on the feasibility of a linear matrix inequality associated to the
univariate sequence y, obtained from the original sequence § as in the proof of the results
in the previous subsection. The feasibility question appears as a result of the fact that y is
not fully determined by §, but 8 admits a K-representing measure if and only if  can be
completed to a sequence admitting a (R \ {0})-representing measure.

For n1,ny € Z,n1 < ny, we denote by [n; : 1] the set of all integers between #; and n,.
Let the sets N1, N, form a partition of [ : n2],i.e. N1, Ny € [n7 : n2], Ny U N, = [n] : m3]
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and Ny NNy = 0. Let I'; := (¥1)ten, be a sequence of real numbers indexed by integers
from Nj and I'; := (¥ ,)ten, a tuple of variables indexed by integers from N;. Let

Fr (I'y) : RIN2l _y RINIHIN:| (39)

Yt> ifte Nl,
Ve ifteN,.

In Theorem 4.4 the set N7 will be the set of indices, for which the corresponding uni-
variate sequence y is determined by B, while the indices of the non-determined part
will belong to N,. Since we can either get a sequence with the lowest and highest degree
terms both of odd degree or both of even degree or only the highest term of odd degree,
for which the solutions to the STHMP are slightly different, we separate three cases for
N1 UN, = [n7 : ny] (see (41)).

be a function with the output a sequence (¥;)¢e[n,:n,] Where y; = {

Theorem 4.4: Let K := {(x,y) € R?: yxe =1} £ € N\ {1}, and
B =Y = Bipijer, i+j<d>
where (‘%1 > { + 1. Define

Ny:={teZ_:t=—il+j forsome 0 <j<{,ieZyandi+j< d},

Bto> if t e (NU{0}) N Ny,
V= Brre[ W[4 if t e Ni \ (NU {0}), (40)

|t
l

and I'1 := (Vt)ten,- Let

[— de —2:d+2], ifdiseven,
[n:mp]:=3[— d€—2:d+1], if onlyZiseven, (41)
[—d¢—1:d+1], ifd, £Lareodd,

Iy := (y)ten, be a tuple of variables with Ny = [n; : n2] \ N1 and Fr,(I'2) be defined as
in (39). Then the following statements are equivalent:

(1) B has a K-representing measure.
(2)  Birej+1 = Bij for every i,j € Z such that i +j < d — € — 1 and there exists a tuple
'y = (Vt)ten, € RN2 sych thatAFrl ) = 0.

Proof: Assume that d is even. Observing the proof of Theorem 4.1 one can notice that
Fr, (I'2) corresponds to the sequence ¥. The original sequence 8 determines only y; for
t € N by (40), while for t € N,, y, are variables. By the proof of Theorem 4.1, 8 will have
a K-rm iff it satisfies the rg relations coming from the column relation YX* = 1 and there
exists ¥ such that Ay > 0. This proves Theorem 4.4 for even d.
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Observing the proof of Theorem 4.2 in case d is odd one can notice that only

(—ded) _

Y (Y=de> Y—de+1> - > Vd—1>Yd)

needs to have a (R \ {0})-rm to obtain a K-rm for 8. In case d¢ is even, this is equivalent
to Ay(_ de—2,d+1) > 0, where

(—de—2.d+1) _

14 (Y—de—2>V—dt—15- - -> Vd> Yd41)

for some y_q¢—2, Y—de—1 and y44q. Since y & de—2.d+1) corresponds to the sequence
Fr,(I'y) for even £ and odd d, this proves Theorem 4.2 in this case. If d¢ is odd, then
it suffices that there are y_ g¢—; and y,;41 such that Ay(f de-rd+1 > 0, where

(—de-1,d+1) _

14 (y—dg—li Y—de--->Vd> Vd—i—l)-

Since y(~4¢=Ld+D corresponds to the sequence Fr,(I';) for odd d¢, this proves

Theorem 4.2 in this case. |

We will present the statement of Theorem 4.4 on a few examples. The following example
is for £ = 2 and a sequence § of even degree.

Example 4.5: Let B = (Bi))ijez, i+j<2k be a bivariate sequence of degree 2k, k > 3, and
K := {(x,y) € R?: yx* = 1}. For the existence of a K-rm 8 must satisfy the relations Bij =
Bit2,+1 for every i,j € Z, such that i + j < 2k — 3. In the notation of Theorem 4.4,

Ny:={teZ: —4k <t <2k, t # —4k+ 1},
[ny:my] o= [—4k —2:2k+2], Ny={—4k—2,—4k—1,—4k+ 1,2k + 1,2k + 2},
the formula (36) is equal to
B0 ifteZy NNy,
Ve = ﬂtﬂ(%”lﬂ, if t € N1\ (Z4+ NNy),

the function Fr, : R> — R4 i defined by

Fri(T2) = Fri (¥ —ax—2 Y —ak—1> Y — 4kt 1> ¥V 2k+1> ¥ 2k42)

= (V_gk—2 Y —ak—1> V—4k> ¥ a4 1> V—4k+2> - - > V2ho Y2kt 1> Y 2k42)>

and the matrix Ap. (r,) is equal to

Y_4k—2 | V—4k-1 V—4k Y _akr1 V-4k+2 - Yk Vk+1
Y —4k—1 V—4k Y ak+1  V—-4k+2 - Vk+1 Vi+2

V—4k Y _ak+1  V—4k+2 - Vi+2
Y —ak+1 | Bo2k—1
V—ak+2 - : Y2k

Yok Y 2k+1
Vk+1 V2k—1  V2k  YVak+1 | Y2k+2
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The question of feasibility of Ap. (r,) can be answered analytically, since the struc-
ture of the missing entries is simple enough. Actually it is even easier to work with

A(y_4jo¥ —aier1V—iks2va) @0d answer the feasibility question together with the conditions
from the solution of [46, Theorem 2.1] (see [46, Theorem 4.1]).

The following example demonstrates the statement of Theorem 4.4 for the case yx® = 1
and a sequence B of even degree.

Example 4.6: Let 8 = (Bi))ijez, i+j<2k be a bivariate sequence of degree 2k, k > 4, and
K:={xy) € R2: yx3 = 1}. For the existence of a K-rm 8 must satisfy the relations f;; =
Bit3j+1 foreveryi,j € Z such that i +j < 2k — 4. In the notation of Theorem 4.4,
teZ: —6k <t <2kt¢{—6k+1,—6k+2,—6k+ 5}},

6k —2:2k+ 2],

1

N = {
[n1:m2] =
Ny :={

h = {—6k —2,—6k — 1,—6k + 1, —6k + 2, —6k + 5,2k + 1,2k + 2},
the formula (36) is equal to

Bto, ift e Z, NNy,
"= B[] FEENN @ 0N,

the function Fr, : R7 — R84 is defined by

Fr (F2) = Fri (¥ _¢k—2> ¥ —6k—1>Y —6k+1> Y —6k+2> ¥ —6k+5> ¥ 2k+1> ¥ 2k+2)
= (¥ _6k—2>Y —6k—1>V—6k> ¥ —6k+1> ¥ —6k+2> V—6k-+3> V—6k+4>

Y _6k+5> V—6k+6> - - -5 V2k> ¥ 2k+1> },Zk+2)’

and the MatriX AFr, (y g .0 g 17 g1V —6ict2¥ —gkss:¥ 2kt 1V 2ics2) 18 €qUal 1O

Y—6k—2 | ¥Y—6k—1 V—6k V_6k+1  Y_6k+2  V—6k+3 V—6k+4 Y _6k+5 Yk Vik+1
Y —6k—-1 V—6k Y_—6k+1 Y-ek+2  V-6k+3 V—6k+4 Y _6k+5 T s Vk+1 Vi+2
V—6k Y_6kt1 YV-ek+2 V—6k+3  V—6k+4 ¥V _6k+5 - Vi+2

Y_—6k+1 | ¥Y—6k+2  V—6k+3 V—6k+4 Y —6k+5
V_6k+2 | V-6k+3  V—6k+4 Y _6k+5

V—6k+4 ¥V —6k+5

Y2k

Y2k Y2k+1
Vi+1 Y2k—1 Y2k Yok41 | Vak+2

In contrast to the situation yx* = 1 from Example 4.5, the structure of the missing entries
here is too complicated for the analytic approach and we believe the feasibility question
can only be answered numerically using linear matrix inequality solvers.

Remark 4.3: It would be interesting to know, to what extent does the result [50, Corollary
7.6] (see Remark 3.1.(3.1)) extend to even degree sequences on all plane curves. As
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explained in Remark 3.1. (3), one needs one more atom in the upper bound for curves
of the form y = q(x) with degg = 2 and the same is true if degg < 1 by Remark 3.1.(4).
On the other hand, the results of the present paper suggest that for curves Z(p), degp > 3,
the upper bound could be k deg p. Also from the concrete solution to the TMP on the curve
Z(y* — x7) [48, Corollary 4.3] it follows that the same bound works. However, the forth-
coming result of Bhardwaj [59] shows that also for degree 3 curves the upper bound has to
be loosened, by constructing a truncated moment sequence of degree 2k = 6 on a curve
Z(p), where p(x,y) =y* — x> +ax—1,a = %, with a minimal measure consisting
of 10 atoms, which is kdegp + 1.
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