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ABSTRACT
In this paper, we study the bivariate truncated moment problem
(TMP) on curves of the form y = q(x), q(x) ∈ R[x], deg q ≥ 3 and
yx� = 1, � ∈ N \ {1}. For even degree sequences, the solution based
on the size of moment matrix extensions was first given by Fialkow
[Fialkow L. Solution of the truncated moment problem with variety
y = x3. Trans Amer Math Soc. 2011;363:3133–3165.] using the trun-
cated Riesz–Haviland theorem [Curto R, Fialkow L. An analogue of
the Riesz–Haviland theorem for the truncated moment problem. J
Funct Anal. 2008;255:2709–2731.] and a sum-of-squares represen-
tations for polynomials, strictly positive on such curves [Fialkow
L. Solution of the truncated moment problem with variety y = x3.
Trans Amer Math Soc. 2011;363:3133–3165.; Stochel J. Solving the
truncated moment problem solves the moment problem. Glasgow
J Math. 2001;43:335–341.]. Namely, the upper bound on this size
is quadratic in the degrees of the sequence and the polynomial
determining a curve. We use a reduction to the univariate set-
ting technique, introduced in [Zalar A. The truncated Hamburger
moment problem with gaps in the index set. Integral Equ Oper The-
ory. 2021;93:36.doi: 10.1007/s00020-021-02628-6.; Zalar A. The trun-
catedmoment problem on the union of parallel lines. Linear Algebra
Appl. 2022;649:186–239. doi.org/10.1016/j.laa.2022.05.008.; Zalar A.
The strong truncatedHamburgermomentproblemwithandwithout
gaps. J Math Anal Appl. 2022;516:126563. doi: 10.1016/j.jmaa.2022.
126563.], and improve Fialkow’s bound to deg q − 1 (resp. �+ 1)
for curves y = q(x) (resp. yx� = 1). This in turn gives analogous
improvements of the degrees in the sum-of-squares representations
referred to above. Moreover, we get the upper bounds on the num-
ber of atoms in theminimal representingmeasure, which are k deg q
(resp. k(�+ 1)) for curves y = q(x) (resp. yx� = 1) for even degree
sequences, while for odd ones they are k deg q − ⌈ deg q

2

⌉
(resp. k(�+

1)− ⌊
�
2

⌋ + 1) for curves y = q(x) (resp. yx� = 1). In the even case,

ARTICLE HISTORY
Received 20 December 2022
Accepted 18 April 2023

COMMUNICATED BY
L. Molnar

KEYWORDS
Truncated moment
problems; K-moment
problems; K-representing
measure; minimal measure;
moment matrix extensions;
positivstellensatz; linear
matrix inequality

AMS CLASSIFICATIONS
Primary 44A60; 47A57;
47A20; Secondary 15A04;
47N40

CONTACT A. Zalar aljaz.zalar@fri.uni-lj.si. Faculty of Computer and Information Science, University of
Ljubljana, Večna pot 113, Ljubljana, Slovenia; Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica,
19, Ljubljana, Slovenia; Institute of Mathematics, Physics and Mechanics, Jadranska ulica, 19, Ljubljana, Slovenia

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in anyway. The terms onwhich this article has been
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/03081087.2023.2212316&domain=pdf&date_stamp=2024-07-16
http://orcid.org/0000-0001-9630-4014
http://dx.doi.org/10.1007/s00020-021-02628-6
http://dx.doi.org/10.1080/1450434
http://dx.doi.org/10.1016/j.jmaa.2022.126563
mailto:aljaz.zalar@fri.uni-lj.si.
http://creativecommons.org/licenses/by-nc-nd/4.0/


LINEAR ANDMULTILINEAR ALGEBRA 1923

these are counterparts to the result by Riener and Schweighofer
[Riener C, SchweighoferM. Optimization approaches to quadrature:a
new characterization of Gaussian quadrature on the line and quadra-
ture with few nodes on plane algebraic curves, on the plane and in
higher dimensions. J Complex. 2018;45:22–54., Corollary 7.8], which
gives the same bound for odd degree sequences on all plane curves.
In the odd case, their bound is slightly improved on the curves we
study. Further on, we give another solution to the TMP on the curves
studied based on the feasibility of a linear matrix inequality, corre-
sponding to the univariate sequence obtained, and finally we solve
concretely odd degree cases to the TMP on curves y = x�, � = 2, 3,
and add a new solvability condition to the even degree case on the
curve y = x2.

1. Introduction

Given a real two-dimensional sequence

β(d) = {β0,0,β1,0,β0,1, . . . ,βd,0,βd−1,1, . . . ,β1,d−1,β0,d}
of degree d and a closed subsetK ofR2, the truncatedmoment problem (K -TMP) supported
on K for β(d) asks to characterize the existence of a positive Borel measure μ on R2 with
support in K, such that

βi,j =
∫
K
xiyj dμ for i, j ∈ Z+, 0 ≤ i + j ≤ d. (1)

If such a measure exists, we say that β(d) has a representing measure supported on K and
μ is its K -representing measure (K-rm).

Let k = �d
2�. In the degree-lexicographic order 1,X,Y ,X2,XY ,Y2, . . . ,Xk,Xk−1Y ,

. . . ,Yk of rows and columns, the corresponding moment matrix to β is equal to

Mk = Mk(β) :=

⎛⎜⎜⎜⎝
M[0, 0](β) M[0, 1](β) · · · M[0, k](β)
M[1, 0](β) M[1, 1](β) · · · M[1, k](β)

...
...

. . .
...

M[k, 0](β) M[k, 1](β) · · · M[k, k](β)

⎞⎟⎟⎟⎠ , (2)

where

M[i, j](β) :=

⎛⎜⎜⎜⎜⎜⎝
βi+j,0 βi+j−1,1 βi+j−2,2 · · · βi,j
βi+j−1,1 βi+j−2,2 βi+j−3,3 · · · βi−1,j+1
βi+j−2,2 βi+j−3,3 βi+j−4,4 · · · βi−2,j+2

...
...

...
. . .

...

βj,i βj−1,i+1 βj−2,i+2 · · · β0,i+j

⎞⎟⎟⎟⎟⎟⎠
and for odd d, the lower right corner M[k, k] of Mk(β) is undefined. Until the end of
this section, we assume thatMk is fully determined, i.e. it corresponds to the even degree
sequence β(2k). Let R[x, y]k := {p ∈ R[x, y] : deg p ≤ k} stand for the set of real polyno-
mials in variables x, y of degree at most k, where for p �≡ 0 the degree deg p stands for the
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maximal sum i+ j over all monomials xiyj appearing in p with a nonzero coefficient aij,
while for p ≡ 0, deg p = 0. For every p(x, y) = ∑

i,j aijx
iyj ∈ R[x, y]k, we define its evalua-

tion p(X,Y) on the columns of thematrixMk by replacing each capitalizedmonomialXiYj

in p(X,Y) = ∑
i,j aijX

iYj by the column of Mk, indexed by this monomial. Then p(X,Y)
is a vector from the linear span of the columns ofMk. If this vector is the zero one, i.e. all
coordinates are equal to 0, then we say p is a column relation ofMk. Recall from [1], that β
has an rmμwith the support supp(μ) being a subset ofZ(p) := {(x, y) ∈ R2 : p(x, y) = 0}
if and only if p is a column relation ofMk.We say that thematrixMk is recursively generated
(rg) if for p, q, pq ∈ R[x, y]k such that p is a column relation ofMk, it follows that pq is also
a column relation ofMk.

A concrete solution to the TMP is a set of necessary and sufficient conditions for the exis-
tence of a K-rm that can be tested in numerical examples. Among necessary conditions,
Mk must be positive semidefinite (psd) and rg [1,2]. A crucial tool to tackle the TMP, dis-
covered by Curto an Fialkow in 1996, was a flat extension theorem (FET) [1, Theorem 7.10]
(see also [3, Theorem 2.19] and [4] for an alternative proof), which states that β(2k) admits
a (rankMk)-atomic rm if and only if Mk is psd and admits a rank-preserving exten-
sion to a moment matrix Mk+1. Using the FET as the main tool the bivariate TMP has
been concretely solved in the following cases: K is the variety defined by a polynomial
p(x, y) = 0 with deg p ≤ 2 [5–8]; K = R2, k = 2 and M2 is invertible [9], first solved
nonconstructively in [10]; K is the variety y = x3 [11]; Mk has a special feature such as
recursive determinateness [12] or extremality [13]. Some special cases have also been solved
in [14–16] based on the FET and in [17–25] using different approaches.

References to some classical work on the TMP are monographs [26–28], while for a
recent development in the area we refer a reader to [29]. We also mention some variants
of the TMPs, which attracted a recent research interest, such as versions of the infinite
dimensional TMPs [30–32], the TMP on subspaces of polynomial algebra [33], the TMP
for commutative R-algebras [34], matrix and operator TMPs [35–43], etc.

In our previous work, we introduced a new approach to tackle the singular bivariate
TMP, namely a reduction to the univariate setting technique. The idea is to use one of the
column relations to transform the problem into the equivalent univariate TMP, where also
negative moments of the measure could be present or not all moments between the lowest
and highest degree ones are known. In the case all moments from degree 0 to the highest
degree are known, the situation is well understood in terms of the existence and uniqueness
of the rm and has been solved in full generality [44,45] formeasures with supportR, [a,∞)

or [a, b] ⊂ R, a, b ∈ R, a<b, as well as for even and odd degree sequences. In the pres-
ence of negative moments, we gave a solution along the lines of the classical case in [46],
where we note that the existence of the solution even in the matrix case was already estab-
lished by Simonov [47] (but the measure is not constructively obtained and the number
of atoms in a minimal measure does not directly follow from this more general approach).
Using these results, we presented [38,46,48,49] alternative solutions with shorter proofs
compared to the original ones to the TMPs on the curves xy = 0, y = x3, y2 = y, xy = 1,
but also obtained solutions to new cases, namely on the curve y2 = x3, on the union of
three parallel lines and on xy2 = 1.

The motivation for this paper was to use a reduction technique to the TMP on curves
of the form y = q(x) and yq(x) = 1, where q ∈ R[x]. In [11, Section 6], Fialkow gave a
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solution to the TMP on these curves for even degree sequences in terms of the bound on
the degree m for which the existence of a positive extension Mm of Mk is equivalent to
the existence of a rm. Namely, his bound is quadratic in k and deg q. Using a reduction
technique we are able to decrease his bound in the even degree case for all curves of the
form y = q(x), deg q ≥ 3, to deg q − 1 and for curves of the form yx� = 1, � ∈ N \ {1}, to
�+ 1, which is our first main result. Moreover, the reduction technique also works in the
odd degree case. A corollary to this improved bounds are also improvements of the sum-
of-squares representations for polynomials, strictly positive on such curves, by decreasing
the degrees of the polynomials in the representation. Our secondmain result are the upper
bounds on the number of atoms in theminimal rm, which are for curves y = q(x), deg q ≥
3, equal to k deg q in the even and k deg q − �deg q

2 � in the odd case and for curves yx� = 1,
� ≥ 2, equal to k(�+ 1) in the even and k(�+ 1)− � �2� + 1 in the odd case. In the even
case these results are counterparts to the result of Riener and Schweighofer [50, Corollary
7.8], who proved that for all plane curves, odd degree sequence has at most k deg q atoms
in the minimal measure. For curves of the above form, we improve their bound slightly in
the odd degree case. The third main result of the paper is another solution to the TMPs
studied, which is based on the feasibility of a linear matrix inequality corresponding to
the univariate sequence obtained. Moreover, we give concrete solutions to the odd degree
TMPs on the curves y = x2 and y = x3 and an alternative solution to the even degree case
on y = x2 with a new solvability condition, which will be crucially needed in the solution
of the TMP on the reducible curve y(y − x2) = 0 in our forthcoming work.

1.1. Reader’s guide

This paper is organized as follows. In Section 2, we fix some further notation and known
results on the TMP, which will be used in the proofs of our results. In Section 3, we give two
solutions to the K-TMP for K = {(x, y) ∈ R2 : y = q(x)}, q ∈ R[x], deg q ≥ 3, one based
on the size of psd extensions of the moment matrix needed (see Theorems 3.1 and 3.2
for the even and odd degree cases, respectively) and the other one based on the feasibility
question of a certain linear matrix inequality (see Theorem 3.8). Theorems 3.1 and 3.2 also
give bounds on the number of atoms in a minimal K-rm. Moreover, Theorem 3.1 gives a
Positivstellensatz on K as a corollary (see Corollary 3.3). Further on, we solve concretely
the TMPs on the curve y = x2 (see Theorems 3.4 and 3.7 for the even and odd degree cases,
respectively) and on y = x3 for the odd case (see Theorem 3.13). In Section 4, we give the
corresponding results to the ones from Section 3 for curves yx� = 1, � ∈ N \ {1}. Theo-
rems 4.1 and 4.2 are the counterparts of Theorems 3.1 and 3.2, respectively, Corollary 4.3
of Corollary 3.3 and Theorem 4.4 of Theorem 3.8.

2. Preliminaries

In this section, we fix some terminology, notation and present some tools needed in the
proofs of our main results.

WewriteRn×m for the set of n × m real matrices. For amatrixM, we call the linear span
of its columns a column space and denote it by C(M). The set of real symmetric matrices of
size n will be denoted by Sn. For a matrix A ∈ Sn, the notation A 
 0 (resp. A � 0) means
A is positive definite (pd) (resp. positive semidefinite (psd)).
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In the rest of this section, let d ∈ N and β = β(d) = {βi,j}i,j∈Z+, 0≤i+j≤d be a bivariate
sequence of degree d.

2.1. Momentmatrix

Let k = �d
2� and Mk = Mk(β) be the moment matrix of β (see (2)). Let Q1,Q2 be sub-

sets of the set {XiYj : i, j ∈ Z+, 0 ≤ i + j ≤ k}. We denote by (Mk)|Q1,Q2 the submatrix of
Mk consisting of the rows indexed by the elements of Q1 and the columns indexed by the
elements of Q2. In case Q := Q1 = Q2, we write (Mk)|Q = (Mk)|Q,Q for short.

Remark 2.1: WheneverQ1,Q2 will be subsets of {xiyj : i, j ∈ Z+, 0 ≤ i + j ≤ k} in the rest
of the paper, in the notation (Mk)|Q1,Q2 all monomials from Q1, Q2 are meant capitalized,
i.e. xiyj �→ XiYj.

2.2. Atomicmeasures

For x ∈ Rm, δx stands for the Dirac measure supported on x. By a finitely atomic positive
measure onRm, wemean ameasure of the formμ = ∑�

j=0 ρjδxj , where � ∈ N, each ρj > 0
and each xj ∈ Rm. The points xj are called atoms of the measureμ and the constants ρj the
corresponding densities.

2.3. Riesz functional

The functional Lβ : R[x, y]≤d → R, defined by

Lβ(p) :=
∑

i,j∈Z+,
0≤i+j≤d

ai,jβi,j, where p =
∑

i,j∈Z+,
0≤i+j≤d

ai,jxiyj,

is called the Riesz functional of the sequence β .

2.4. Affine linear transformations

Let K ⊆ R2. The existence of a K-rm for β is invariant under invertible affine linear
transformations (alts) of the form

φ(x, y) = (φ1(x, y),φ2(x, y)) := (a + bx + cy, d + ex + fy), (x, y) ∈ R
2, (3)

a, b, c, d, e, f ∈ R with bf − ce �= 0 in the sense which we now explain. We denote by β̃ the
two-dimensional sequence defined by

β̃i,j = Lβ
(
φ1(x, y)i · φ2(x, y)j

)
,

where Lβ is the Riesz functional of β .

Proposition 2.1 ([7, Proposition 1.9]): Assume the notation above and let d = 2k.

(1) Mk(β) is psd if and only if Mk(β̃) is psd.
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(2) rankMk(β) = rankMk(β̃).
(3) Mk(β) is rg if and only if Mk(β̃) is rg.
(4) β admits a r-atomic K-rm if and only if β̃ admits an r-atomic φ(K)-rm.

In case d = 2k−1 is odd, the block M[k, k] of Mk(β) is undefined. We say that Mk(β)

is psd completable if there exists an extension β(2k) of β such thatMk(β
(2k)) is psd.

Proposition 2.2: Assume the notation above and let d = 2k−1, k ∈ N.

(1) Mk(β) is psd completable if and only if Mk(β̃) is psd completable.
(2) Let r ∈ N. There exists an extension β(2k) of β such that rankMk(β

(2k)) = r if and only
if there exists an extension β̃(2k) of β̃ such that rankMk(β̃

(2k)) = r.
(3) Let r ∈ N. There exists an extension β(2k) of β such that Mk(β

(2k)) is rg if and only if
there exists an extension β̃(2k) of β̃ such that Mk(β̃

(2k)) is rg.
(4) β admits a r-atomic K-rm if and only if β̃ admits an r-atomic φ(K)-rm.

Proof: Proposition 2.2 follows easily from Proposition 2.1 by defining the extension β̃(2k)

of β̃ from the extension β(2k) of β using the same transformation φ together with the Riesz
functional Lβ(2k) of the extension. Similarly, for the other direction one uses φ−1 together
with the Riesz functional Lβ̃(2k) of the extension. For (4) we note that any r-atomic K-rm
of the sequence β generates the extension β(2k) and then use (4) of Proposition 2.1. �

2.5. Hankel matrices and univariate sequences

Let k ∈ N. For v = (v0, . . . , v2k) ∈ R2k+1, we define the corresponding Hankel matrix as

Av :=
(
vi+j

)k
i,j=0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

v0 v1 v2 · · · vk

v1 v2 . .
.

. .
.

vk+1

v2 . .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
.

v2k−1
vk vk+1 · · · v2k−1 v2k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ Sk+1. (4)

Let vj := (vj+�)k�=0 be the (j + 1)-th column ofAv, 0 ≤ j ≤ k. In this notation, we have that

Av = (
v0 · · · vk

)
.

As in [44], the rank of v, denoted by rank v, is defined by

rank v =
{
k + 1, if Av is nonsingular,
min

{
i : vi ∈ span{v0, . . . , vi−1}

}
, if Av is singular.

We denote

• the upper left-hand corner (vi+j)
m
i,j=0 ∈ Sm+1 of Av of sizem+ 1 by Av(m)

• the lower right-hand corner (vi+j)
k
i,j=k−m ∈ Sm+1 of Av of sizem+ 1 by Av[m].
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We write

v(rev) := (v2k, v2k−1, . . . , v0)

for the reversed sequence of v.
A sequence v = (v0, . . . , v2k) is called positively recursively generated (prg) if, denoting

r = rank v, it holds that Av(r − 1) 
 0 and in case r< k+ 1, also

vj =
r−1∑
i=0

ϕivj−r+i for j = r, . . . , 2k,

where (
ϕ0 · · · ϕr−1

)
:= Av(r − 1)−1 (vr · · · v2r−1

)T . (5)

A sequence v = (v0, . . . , v2k) is called negatively recursively generated (nrg) if, denoting r =
rank v(rev), it holds that Av[r − 1] 
 0 and in case r< k+ 1, also

v2k−r−j =
r−1∑
i=0

ψiv2k−r+1−j+i for j = 0, . . . , 2k − r,

where (
ψ0 · · · ψr−1

)
:= Av[r − 1]−1 (v2k−2r+1 · · · v2k−r

)T .
2.6. Univariate truncatedmoment problem

Given a real sequence

γ (k1,k2) = (γk1 , γk1+1, . . . , γk2−1, γk2)

of degree (k1, k2), k1, k2 ∈ Z, k1 ≤ k2, a subset K of R, the truncated moment problem sup-
ported on K for γ (k1,k2) ((K, k1, k2)–TMP) asks to characterize the existence of a positive
Borel measure μ on R with support in K, such that

γi =
∫
K
xi dμ for i ∈ Z, k1 ≤ i ≤ k2. (6)

If such a measure exists, we say that γ (k1,k2) has a rm supported on K and μ is its K -rm.
The (R, 0, k)-TMP with k ∈ Z+ is the usual truncated Hamburger moment problem

(THMP) of degree k, which was solved in full generality in [44]. Algorithm 2.1 is a numer-
ical procedure to determine the existence and extract an rm. It is an adaptation of [51,
Algorithm 4.2], which is an algorithm to extract an rm in the multivariate TMP under
the assumption that an rm exists, to the univariate setting with the addition of deciding
whether a rm exists. For the latter, the solution from [44] is used.
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Algorithm 2.1 Solution to the (R, 0, 2k) -TMP
Input: A univariate sequence γ = (γ0, γ1, . . . , γ2k).
Output: A negative answer to the existence of an rm for γ or

the points x1, . . . , xr ∈ R and densities ρ1, . . . , ρr such that μ = ∑r
j=1 ρjδxj is an

R -rm for γ .

Algorithm:
1. Try to compute Cholesky factorization VVT of Aγ , where V ∈ R(k+1)×r is a lower
triangular matrix. In case of a failure, an rm does not exist.
2.1 If r < k + 1, reduce V to a column echelon form U using Gaussian elimination on
columns.
2.2 Else r = k + 1. Choose γ2k+1 ∈ R arbitrarily and solve a linear system Vw =(
γk+1 . . . γ2k+1

)T . Reduce Ṽ = (
VT w

)T to a column echelon form U using
Gaussian elimination on columns.
3.1. If r < k + 1 and U is of the form U = (

Ir B
)T for some B ∈ Rr×(k+1−r) or r =

k + 1, define N as an Rr×r matrix consisting of rows 2, . . . , r + 1 of U.
3.2. If r < k + 1 and U is not as in 3.1, then an rm for γ does not exist.
4.Compute the Schur decompositionN = QTQT ofN. The diagonal elements x1, . . . , xr
of T are atoms in an rm for γ .
5. Solve the system Wρ = (

γ0 . . . γr−1
)T , where W is the r × r Vandermonde

matrix with ith row equal to
(
xi−1
j

)
j=1,...,r

. The coordinates ρj, j = 1, . . . , r, of ρ are

the densities of an rm measure for γ .

Remark 2.2: (1) Correctness of Algorithm 2.1: Step 1 checks whether Aγ is psd. Step
2.1 only changes a basis of the column space of V. If Step 2.2 applies, then one can
choose γ2k+1 arbitrarily and then compute γ2k+2 such that for the extended sequence
γ̃ = (γ , γ2k+1, γ2k+2) Step 2.1 applies, i.e.Aγ̃ is psd, rankAγ̃ = k + 1 < k + 2 and its
Cholesky decomposition is equal to Ṽ(Ṽ)T . In the situation of Step 3.1, Aγ (r) is pd
and hence γ is prg. If Step 3.2 applies, the latter is not true. By [44, Theorem 3.9], an rm
exists iff γ is prg. Since U(v(0,r−1)

xi ) = v(0,r−1)
xi for every atom xi in an rm for γ , where

v(0,p)x = (
1 x . . . xp

)T , it follows that N(v(0,r−1)
xi ) = xiv

(0,r−1)
xi and the atoms of an

rm is the eigenvalues of N. These are computed in Step 4 and finally, a Vandermonde
system in Step 5 determines the densities.

(2) Uniqueness of an rm: If r< k+ 1 and Step 3.1 applies, then the rm for γ is unique.
Otherwise, in case r = k+ 1, there are infinitely many choices of (k + 1)-atomic rms.
Each choice of γ2k+1 gives a different one.

(3) An adaptation of Algorithm 2.1 to solving (R, 0, 2k + 1) -TMP: One has to do the
following modifications:
(a) Let γ̃ = (γ0, γ1, . . . , γ2k+1) and γ as in Algorithm 2.1.
(b) If Step 3.1 applies with r< k+ 1, one has to check whether the system Vw =(

γk+1 . . . γ2k+1
)T is solvable. If not, an rm does not exist. Otherwise it does

and compute it as in Algorithm 2.1.
(c) If Step 3.1 applies with r = k+ 1, one does not choose γ2k+1, since it is already

given. Hence, the minimal (k + 1)-atomic rm is unique.
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The (R \ {0}, k1, k2)-TMP with k1, k2 ∈ Z, k1 < 0 < k2 is the strong truncated Ham-
burger moment problem (STHMP) of degree (k1, k2). For even k1 and k2, the solution is [46,
Theorem 3.1], but the technique in the proof can be extended to establish also the cases,
where k1, k2 are not both even.

Let R[x−1, x] = {∑r2
i=r1 aix

i : ai ∈ R, r1, r2 ∈ Z, r1 ≤ r2} be the set of Laurent poly-
nomials. For k1, k2 ∈ Z, k1 ≤ k2, we denote by V(k1,k2) a vector subspace in R[x−1, x]
generated by the set {xk1 , xk1+1, . . . , xk2}. For a sequence γ := γ (k1,k2) the functional Lγ :
V(k1,k2) → R, defined by

Lγ (p) :=
∑

k1≤i≤k2

aiγi, where p =
∑

k1≤i≤k2

aixi,

is called the Riesz functional of the sequence γ .

Remark 2.3 (An adaptation of Algorithm 2.1 to solving (R,−2k1, 2k2)–TMP,
k1, k2 ∈ N): One has to do the following modifications (see [46, Theorem 3.1]):

(1) The input is a sequence γ = (−γ2k1 , γ−2k1+1, . . . , 2k2). The output is a negative
answer to the existence of an rm for γ or the points x1, . . . , xr ∈ R and densities
ρ1, . . . , ρr such that μ = ∑r

j=1 ρjδxj is an R-rm for γ .
(2) One forms a sequence γ̃ = (γ̃0, . . . , γ̃2(k1+k2)), where γ̃i = γi−2k1 , i = 0, 1, . . . , 2(k1 +

k2), and do all computations from Algorithm 2.1 on γ̃ .
(3) If Step 2.2 applies, one chooses γ2(k1+k2)+1 arbitrarily except for the number vTC−1v

in case C is invertible, where C is a submatrix of Aγ̃ consisting of rows 1, . . . , k1 + k2
and columns 2, . . . , k1 + k2 + 1, and v = (

γ−k1+k2+1 · · · γ−2k2
)T is a vector.

(4) If Step 3.1 applies with r < k1 + k2 + 1, one has to check whether (r + 1)th column
of Aγ̃ is in the span of columns 2, . . . , r. If yes, then an rm does not exist. Other-
wise it does. Equivalently, one can compute the Cholesky decomposition V1VT

1 of the
restriction of Aγ̃ to the principal submatrix on rows and columns 2, 3, . . . , r + 1 and
see whether V1 has rank r or not.

(5) If Step 3.1 applies with r = k1 + k2 + 1, then an rm exists.
(6) The atoms are computed as in Step 4.
(7) The densities in Step 5 are obtained by solving the systemWρ = (γ−2k1 γ−2k1+1 . . .

γ−2k1+r−1)
T , where W is the r × r Vandermonde matrix with ith row equal to(

x−2k1+i−1
j

)
j=1,...,r

. The coordinates ρj, j = 1, . . . , r, of ρ are the densities of an rm

measure for γ .

3. The TMP on the curves y = q(x)

In this section, we study the K-TMP for K being a curve of the form y = q(x), q ∈ R[x].
In Section 3.1, we first give a solution of the K -TMP, deg q ≥ 3, based on the size of pos-
itive semidefinite extensions of the moment matrix needed and also bound the number
of atoms in the K-rm with the smallest number of atoms (see Theorem 3.1 for the even
degree and Theorem 3.2 for the odd degree sequences). As a result, we obtain a sum-of-
squares representation for polynomials, which are strictly positive onK (see Corollary 3.3).
This improves bounds on the degrees in the previously known result [11, Proposition 6.3].
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In Section 3.2, we apply the technique from the proofs of the results from Section 3.1 to
give a concrete solution to the TMP on the curve y = x2, which is an alternative solution
to the one from [6] in the even case (see Theorem 3.4) and is new in the odd case (see
Theorem 3.7). In Section 3.3, we give a solution to the K-TMP based on a feasibility of
the corresponding linear matrix inequality (see Theorem 3.8). Finally, in Section 3.4 we
concretely solve the TMP on the curve y = x3 in the odd degree case (see Theorem 3.13).

3.1. Solution to the TMP in terms of psd extensions ofMk, bounds on the number of
atoms in theminimalmeasure and a positivstellensatz

Theorem 3.1 (Even case): Let K := {(x, y) ∈ R2 : y = q(x)}, where q ∈ R[x]with deg q ≥
3, and β := β(2k) = (βi,j)i,j∈Z+,i+j≤2k with k ≥ deg q. The following statements are equiva-
lent:

(1) β has a K-representing measure.
(2) β has a s-atomic K-representing measure for some s satisfying

rankMk ≤ s ≤ k deg q.

(3) Mk satisfies Y = q(X) and admits a positive semidefinite, recursively generated extension
Mk+deg q−2.

(4) Mk satisfies Y = q(X) and admits a positive semidefinite extension Mk+deg q−1.

Theorem 3.2 (Odd case): Let K := {(x, y) ∈ R2 : y = q(x)}, where q ∈ R[x] with deg q ≥
3, and β(2k−1) = (βi,j)i,j∈Z+,i+j≤2k−1 with k ≥ deg q. Then the following statements are
equivalent:

(1) β has a K-representing measure.
(2) β has a s-atomic K-representing measure for some s satisfying

rankMk−1 ≤ s ≤ k deg q −
⌈
deg g
2

⌉
.

(3) β(2k−1) can be extended to a sequence β(2k) such that Mk satisfies Y = q(X) and admits
a positive semidefinite, recursively generated extension Mk+deg q−2.

(4) β(2k−1) can be extended to a sequence β(2k) such that Mk satisfies Y = q(X) and admits
a positive semidefinite extension Mk+deg q−1.

Remark 3.1: (1) Previous bounds on the size of extensions in (4) of Theorem 3.1: In
[52], Curto and Fialkow studied polynomials p ∈ R[x, y] for which the existence of
the Z(p)-rm is equivalent to the psd moment matrix extension of some size. In
[11, Section 6], the author considered polynomials of the form p(x, y) = y − q(x),
where q ∈ R[x], and proved that a sequence of degree 2k admits a Z(p)-rm, if Mk
admits a psd extension Mk+r, where r = (2k + 1) deg q − k [11, Propositions 6.1,
6.3]. The proof of this result relies on the truncated Riesz–Haviland theorem [52,
Theorem 1.2] and a sum-of-squares representations for polynomials, strictly positive
on Z(p) ([11, Proposition 6.3] and [53, Proposition 5.1]). Part (4) of Theorem 3.1
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improves Fialkow’s result by decreasing the size of the extensions to r = deg q − 1.
We mention that this was known for the case of the curve y = x3 [11, Corollary 5.3].

(2) Known bounds on the number of atoms in (2) of Theorems 3.1, 3.2: In [50], the authors
also studied odd degree sequences β , which are moments of a positive Borel measure
supported on a plane curve Z(p), p ∈ R[x, y], and proved that every such sequence
admits a (k deg p)-atomic Z(p)-rm [50, Corollary 7.6]. In the proof, they use their
variant of Bézout’s theorem on the number of intersection points of two plane alge-
braic curves [50, Theorem 7.3]. Part (2) of Theorem 3.1 gives an analogue of [50,
Corollary 7.6] for even degree sequences on curvesZ(y − q(x)), deg q ≥ 3, while part
(2) of Theorem 3.2 improves [50, Corollary 7.6] for curvesZ(y − q(x)), deg q ≥ 3, by
decreasing the upper bound on the number of atoms needed by �deg g

2 �.
(3) Theorem 3.1 in case deg q = 2: If deg q = 2 in Theorem 3.1, then y = q2x2 + q1x +

q0 ∈ R[x] with q2 �= 0 or equivalently 1
q2 y − q1x − q0 = x2. By applying an alt

φ(x, y) = (x, 1
q2 y − q1x − q0) to the sequence β we get a sequence β̃ with themoment

matrix Mk(β̃) satisfying Y = X2. So it is enough to observe the case of a parabola,
which was concretely solved in [6] by the use of the FET. The technique used in the
proof of Theorem 3.1 can be used to give an alternative proof of the solution from [6]
and also obtain a new solvability condition (see Theorem 3.4). This condition will be
essentially used in the solution of TMP on the cubic reducible curve y(y − x2) = 0
in our forthcoming work, similarly as for the TMP on the union of three parallel
lines [49, Theorem 4.2], where we needed such version of the solution to the TMP
on the union of two parallel lines [49, Theorem 3.1]. The upper bound on the num-
ber of atoms in a minimal rm is 2k+ 1 and this is sharp (e.g. if Mk has only column
relations coming from Y = X2 by rg, then it is of rank 2k+ 1 and so every rm must
have at least 2k+ 1 atoms). So the equivalence (1) ⇔ (2) of Theorem 3.1 does not
extend to deg q = 2. (The moment γk deg q−1 is not independent from β for deg q = 2
as opposed to deg q > 2 and hence in the last step of the proof below decreasing the
number of atoms in the rm from k deg q + 1 to k deg q cannot be done.)Also the equiv-
alence (1) ⇔ (3) of Theorem 3.1 is not true for deg q = 2, but we need to replace
k + deg q − 2 by k + deg q − 1 in (3), because we do not get the information about
γ2k deg q+1 = γ4k+1 and γ2k deg q+2 = γ4k+2 from Mk+deg q−2 = Mk for deg q = 2 as
opposed to deg q > 2. However, the equivalence (1) ⇔ (4) still holds for deg q = 2
with the argument given in Theorem 3.4.

(4) Theorem 3.1 in case deg q ≤ 1: If deg q ≤ 1 in Theorem 3.1, then q(x) = ax + by + c,
a, b, c ∈ R. If (a, b) �= (0, 1), then the following statements are equivalent:
(a) β has a K-rm.
(b) β has a s-atomic K-rm for some s satisfying

rankMk ≤ s ≤ k + 1.

(c) Mk satisfies Y = aX+ bY + c, is psd and rg.
The equivalence (a) ⇔ (c) follows from [52, Proposition 3.11], while the equiva-

lence (a) ⇔ (b) follows from the solution [44, Theorem 3.9] to the R–TMP, which
corresponds to (Mk)|{1,X,...,Xk}. Namely, if the atoms x1, . . . , xm represent βi,0, i =
0, . . . , 2k, then the atoms (xi, yi), where yi = 1

1−b (axi + c) will represent β if b �= 1.
If b = 1 and a �= 0, then we change the roles of x and y in the argument above. If
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b = 1 and a = 0, then y = q(x) only makes sense if c = 0, but in this case there are
no relations in the moment matrix and for k>2 the solution to the TMP is not known
(for k = 2 the solution is known [9,10]).

(5) Uniqueness and description of all solutions in Theorems 3.1 and 3.2: These questions
are nontrivial, being equivalent to the descriptions of psd completions of a par-
tially defined Hankel matrix Aγ , where γ ∈ R2k�+1 is a partially defined univariate
sequence, i.e. γt is defined by the formula (16) below. Namely, the original sequence
β determines only those γt for which tmod �+ � t

�
� ≤ 2k (resp. 2k−1) in the even

(resp. odd) case. However, in a very special case y = x3 the structure of the miss-
ing entries is simple enough (only γ6k−1 is missing) to answer these questions. The
description is not explicitly stated in [48, Theorem 3.1], which solves y = x3 using
the univariate reduction technique, but one of the main steps of the proof is [48,
Lemma 2.11], which actually describes all psd completions and among them there are
one or two minimal ones (in terms of the rank). However, already for y = x4 describ-
ing all psd completions concretely and among them minimal ones does not seem to
be possible due to the structure of missing entries of Aγ , see Example 3.11.

(6) Complexity of checking conditions in (4) of Theorems 3.1 and 3.2:Checking ifY = q(X)
is a column relation only requires checking whether the corresponding vector is
in the kernel for Mk, while the existence of a psd extension Mk+deg q−1 of Mk is
a feasibility question of a semidefinite programme (SDP) in the variables βi,j with
2k < i + j ≤ 2(k + deg q − 1), i, j ∈ Z+, i.e. an SDP with matrices of size

(k+deg q+1
2

)
in

(2(k+deg q)
2

) − (2(k+1)
2

) = (deg q − 1)(4k + 2 deg q + 1) variables. The complexity
of the SDP feasibility question is still unknown (see [54,55]), but for a fixed number of
variables or size of matrices it has polynomial time complexity [56]. By Theorem 3.8,
the feasibility question in (4) of Theorems 3.1 and 3.2 is equivalent to the feasibility
question of a smaller SDP, i.e. the matrices are of size k deg q + 2 and the number of
variables is 1

2 (deg q − 2)(deg q − 1)+ 2.

Remark 3.2 (Basic idea of the proof of the implication (3) ⇒ (2) of Theorem 3.1): The
main steps are the following:

(1) Due to the column relation Y = q(X) satisfied by Mk and Mk being rg, the column
space of Mk+�−2 is spanned by the set B of columns, indexed by monomials YiXj,
where i = 0, . . . , k, j = 0, . . . , deg q − 1, and i + j ≤ k + �− 2.

(2) Writing q(x) = ∑�
i=0 qix

i, the point (1) implies, on the level of the sequence βi,j, the
following linear relations:

βi,j = q�βi+�,j−1 + q�−1βi+�−1,j−1 + . . .+ q0βi,j−1, (7)

where i ∈ Z+, j ∈ N and i + j ≤ 2(k + �− 2).
(3) Using relations (7) one can show that the sequence

βi,j, i, j ∈ Z+, i + j ≤ 2(k + �− 2),

can be uniquely parametrized by

γi := βi,0, i = 0, . . . , 2k�+ 2.

(See (16) and Claim 4 in the proof of Theorem 3.1 below.)
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(4) The next step is to note that the original sequence βi,j, i, j ∈ Z+, i + j ≤ 2k has aK-rm
if and only if the univariate sequence γ0, γ1, . . . , γ2k� has anR-rm. (See Claim 5 in the
proof of Theorem 3.1.)

(5) Now one can use the solution to the R-TMP due to Curto and Fialkow [44,
Theorem 3.9] and derive the solution to the K -TMP. Namely, the sequence γ (0,2k�) =
(γ0, γ1, . . . , γ2k�) ∈ R2k�+1 has a (rank γ (0,2k�))-atomic R-rm iff a Hankel matrix
Aγ (2k�+2) is psd for some extension γ (2k�+2) = (γ , γ2k�+1, γ2k�+2) ∈ R2k�+3 of γ (0,2k�).
Observing that the restriction (Mk+�−2)|B is equal to PAγ (2k�+2)PT for a certainmatrix
P (See Claim 6 in the proof of Theorem 3.1 below.), translates the condition ofAγ (2k�+2)

being psd, to (Mk+�−2)|B (and henceMk+�−2) being psd.
(6) The last step is to decrease the number of atoms in the solution to the R-TMP for

γ (0,2k�) by 1 in case Aγ (0,2k�) has full rank, i.e. rankAγ (0,2k�) = k�+ 1. This can be
achieved in the following three steps:
(a) Applying an appropriate alt φ to β , one can assume that the coefficient q�−1 of

q(x) is equal to 0. (See Claim 1 in the proof of Theorem 3.1.)
(b) Due to (a) none of themoments of the original sequence βi,j, i, j ∈ Z+, i + j ≤ 2k,

depends on γ2k�−1.
(c) One can replace γ2k�−1 with γ̃2k�−1 to obtain a sequence γ̃ (0,2k�) with a (k�)-

atomic R-rm.

Proof of Theorem 3.1.: Before starting a proof we do an alt φ which will be used in the
proof of the implication (3) ⇒ (2) to justify in an easier way that the upper bound in (2) is
k deg q instead of k deg q + 1. We write � := deg q and let q(x) = ∑�

i=0 qix
i, where q� �= 0

and each qi ∈ R.

Claim 1: Wemay assume that q�−1 = 0.

Proof of Claim 1.: Defining φ : R2 → R2 by φ(x, y) = (x + q�−1
�q� , y) =: (x̃, y), note that

the relation y = q(x) becomes

y = q
(
x̃ − q�−1

�q�

)
=

�∑
i=0

qi
(
x̃ − q�−1

�q�

)i

= q�x̃� +

⎛⎜⎜⎜⎝−q� · �q�−1

�q�
+ q�−1︸ ︷︷ ︸

=0

⎞⎟⎟⎟⎠ x̃�−1 +
�−2∑
i=0

q̃ix̃i,

for some q̃0, . . . , q̃�−2 ∈ R. Since the solution of the K-TMP is invariant under applying φ
by Proposition 2.1, the conclusion of Claim 1 follows. �

Now we start the proof of the theorem. The implications (1) ⇒ (4) and (2) ⇒ (1) are
trivial. The implication (4) ⇒ (3) is [1, Theorem 3.14]. It remains to prove the implication
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(3) ⇒ (2). Assume thatMk admits a psd, rg extensionMk+�−2. Let

B =
{
1, x, . . . , x�−1, y, yx, . . . , yx�−1, . . . , yk−1, . . . , yk−1x�−1, yk, ykx

}
(8)

be a set of monomials and V a vector subspace in R[x, y]k+�−2 generated by the set B.
Since Mk+�−2 satisfies XiYj = Xiq(X)j for every i, j ∈ Z+ such that i + j� ≤ k + �− 2, it
follows that the columns fromB span C(Mk+�−2). Let p(x, y) = ∑

i,j pijx
iyj ∈ V be a poly-

nomial and p̂ a vector of its coefficients ordered in the basisB. Before we define a univariate
polynomial gp(x) corresponding to p(x, y), we prepare some computations. We have that

xi(q(x))j = xi
⎛⎝ ∑

0≤i1,...,ij≤�
qi1qi2 · · · qijxi1+...+ij

⎞⎠

=
j�∑

p=0

⎛⎜⎜⎜⎝ ∑
0≤i1,...,ij≤�,
i1+...+ij=p

qi1qi2 · · · qij

⎞⎟⎟⎟⎠ xi+p

=
i+j�∑
s=i

qi,j,sxs, (9)

for all i, j ∈ Z+, where

qi,j,s =

⎧⎪⎪⎨⎪⎪⎩
∑

0≤i1,...,ij≤�,
i1+...+ij=s−i

qi1qi2 . . . qij , if i ≤ s ≤ i + j�,

0, otherwise.

(10)

Later on we will need the following observation about the numbers qi,j,s.

Claim 2: Let i1, i2, j1, j2, s ∈ Z+. Then

qi1+i2,j1+j2,s =
s∑

t=i1

qi1,j1,tqi2,j2,s−t . (11)

Proof of Claim 2.: We write m1 := i1 + i2 and m2 := i1 + i2 + (j1 + j2)�. We separate
two cases: s ∈ {m1,m1 + 1, . . . ,m2} and s /∈ {m1,m1 + 1, . . . ,m2}.

Case 1: s ∈ {m1,m1 + 1, . . . ,m2}. We have that

qi1+i2,j1+j2,s =1
∑

0≤k1,...,kj1+j2≤�,
k1+...+kj1+j2=s−i1−i2

qk1qk2 · · · qkj1qkj1+1 · · · qkj1+j2

=2
s∑

t=i1

∑
0≤k1,...,kj1≤�,

k1+...+kj1=t−i1

∑
0≤kj1+1,...,kj2≤�,

kj1+1+...+kj2=s−t−i2

qk1qk2 · · · qkj1qkj1+1 · · · qkj1+j2
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=3
s∑

t=i1

⎛⎜⎜⎜⎝ ∑
0≤k1,...,kj1≤�,

k1+...+kj1=t−i1

qk1qk2 · · · qkj1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝ ∑

0≤kj1+1,...,kj2≤�,
kj1+1+...+kj2=s−t−i2

qkj1+1 · · · qkj1+j2

⎞⎟⎟⎟⎠
=4

s∑
t=i1

qi1,j1,tqi2,j2,s−t ,

where the first equality follows by definition (10) of qi1+i2,j1+j2,s, in the second we decom-
posed the sum into three sums, in the third we used independence of the inner two sums,
while the last equality follows by definitions (10) of qi1,j1,t and qi2,j2,s−t .

Case 2: s /∈ {m1,m1 + 1, . . . ,m2}. For s > m2 we have qi1+i2,j1+j2,s = 0 and

s∑
t=i1

qi1,j1,tqi2,j2,s−t =
i1+j1�∑
t=i1

qi1,j1,t qi2,j2,s−t︸ ︷︷ ︸
=0,since

s−t>i2+j2�

+
s∑

t=i1+j1�+1

qi1,j1,t︸ ︷︷ ︸
=0,since
t>i1+j1�

qi2,j2,s−t = 0,

which implies that (10) holds. Similarly, for s < m1 we again have qi1+i2,j1+j2,s = 0 and∑s
t=i1 qi1,j1,tqi2,j2,s−t = 0, since qi2,j2,s−t = 0 for every t due to s − t < i2. Also in this

case (10) holds. �

Now we define a univariate polynomial gp(x) corresponding to p(x, y) by

gp(x) := p(x, q(x)) =
∑
i,j

pij
i+j�∑
s=i

qi,j,sxs =:
k�+1∑
s=0

gp,sxs ∈ R[x]k�+1,

where we used (9) in the second equality.
Let ĝp be its vector of coefficients in the basis

B1 = {1, x, . . . , xk�+1}. (12)

The following claim expresses ĝp by p̂.

Claim 3: It holds that

ĝp = PTp̂, (13)

where

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I� 0 · · · · · · 0 0

P[1, 0] P[1, 1] 0 0
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0
...

P[k − 1, 0] P[k − 1, 1] · · · · · · P[k − 1, k − 1] 0
Q[0] Q[1] · · · · · · Q[k − 1] Q[k]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

(k�+2)×(k�+2)
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and

P[c, d] =

⎛⎜⎜⎜⎝
q0,c, d� q0,c, d�+1 · · · q0,c, d�+�−1
q1,c, d� q1,c, d�+1 · · · q1,c, d�+�−1
... · · · · · · ...

q�−1,c, d� q�−1,c, d�+1 · · · q�−1,c, d�+�−1

⎞⎟⎟⎟⎠ ∈ R
�×� for each c, d,

Q[d] =
(
q0,k, d� q0,k, d�+1 · · · q0,k, d�+�−1
q1,k, d� q1,k, d�+1 · · · q1,k, d�+�−1

)
∈ R

2×� for d = 0, . . . , k − 1,

Q[k] =
(
(q�)k 0
q1,k,k� (q�)k

)
∈ R

2×2.

Proof of Claim 3.: Wewrite �vx,y for the vector ofmonomials xiyj from the basisB (see (8))
and �vx for the vector of monomials from the basis B1 (see (12)). We have that p(x, y) =
(�vx,y)Tp̂ and gp(x) = (�vx)Tĝp. By (9) it follows that �vx,y = P�vx. Hence, the definition of gp
implies that gp(x) = (P�vx)Tp̂ = (�vx)TPTp̂. Thus ĝp = PTp̂, which proves Claim 3. �

Note that

qi,j,i+j� = (q�)j �= 0 (14)

and hence we can express xi+j� from (9) by the formula

xi+j� = 1
(q�)j

⎛⎝xi(q(x))j −
i+j�−1∑
s=0

qi,j,sxs
⎞⎠ . (15)

We define two univariate sequences

γ := γ (0,2k�) = (γ0, γ1, . . . , γ2k�) ∈ R
2k�+1,

γ̃ := γ (2k�+2) = (γ , γ2k�+1, γ2k�+2) ∈ R
2k+3,

recursively for t = 0, 1, . . . , 2k�+ 2 by the formula

γt = 1

(q�)�
t
�
�

(
βtmod �,� t

�
� −

t−1∑
s=0

qtmod �,� t
�
�,s · γs

)
. (16)

Note that tmod �+ � t
�
� ≤ �− 1 + 2k (here we used that � ≥ 3 and thus � t

�
� ≤ 2k) and so

βtmod �,� t
�
� is well-defined being an element of the matrix Mk+�−2 (since 2(k + �− 2) ≥

�− 1 + 2k for � ≥ 3).
Note that we defined γt by (16) only using βi,j with i < �. The following claim proves

we could define γt using any i, j with t = i + j�.

Claim 4: Let t ∈ {0, 1, . . . , 2k�+ 2} and t = i + j� with i, j ∈ Z+, i + j ≤ 2(k + �− 2).
Then

γt = 1
(q�)j

(
βi,j −

t−1∑
s=0

qi,j,s · γs
)
. (17)
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Proof of Claim 4.: If i < �, then (17) follows from definition (16) of γt . Let i0 ≥ �.
Assume (17) is true for every i = 0, 1, . . . , i0 − 1 and j ∈ N0 such that i + j ≤ 2(k + �− 2).
We will prove it is true for i0 and every j ∈ N0 such that i0 + j ≤ 2(k + �− 2). We have
that:

βi0,j = 1
q�

(
βi0−�,j+1 −

�−1∑
s=0

qsβi0−�+s,j

)

= 1
q�

⎛⎝ i0+j�∑
s=i0−�

qi0−�,j+1,sγs −
�−1∑
s=0

qs

⎛⎝i0+s+(j−1)�∑
u=i0−�+s

qi0−�+s,j,uγu

⎞⎠⎞⎠ (18)

where in the first equality we used that β(2(k+�−2)) = (βi,j)i,j∈Z+,i+j≤2(k+�−2) is rg and Y =
q(X) is a column relation, and in the second we used the induction hypothesis together
with the fact that qi,j,s = 0 if s< i and qi0−�,j+1,i0+j� = (q�)j+1. Note that

�−1∑
s=0

qs

⎛⎝i0+s+(j−1)�∑
u=i0−�+s

qi0−�+s,j,uγu

⎞⎠ =
�−1∑
s=0

qs

⎛⎝i0+s+(j−1)�∑
u=i0−�+s

qi0−�,j,u−sγu

⎞⎠
=

�−1∑
s=0

⎛⎝i0+s+(j−1)�∑
u=i0−�+s

qsqi0−�,j,u−sγu

⎞⎠
=

i0+j�−1∑
u=i0−�

qi0−�,j+1,uγu −
i0+j�−1∑
u=i0−�

q�qi0−�,j,u−�γu (19)

where in the first equality we used that qi0−�+s,j,u = qi0−�,j,u−s by definition (10), in the
second we moved qs inside the inner sum, in the third we used that for a fixed u, as s runs
from 0 to �− 1, the coefficients at γu run over all terms qi1 · · · qij+1 such that i1 + . . .+
ij+1 = u − i0 + � except those where qi1 = q�. But if qi1 = q�, all terms qi+2 · · · qij+1 such
that i2 + . . .+ ij+1 = u − i0 sum up to qi0−�,j,u−�. Using (19) in (18) we get

βi0,j = 1
q�

⎛⎝qi0−�,j+1,i0+j�γi0+j� +
i0+j�−1∑
u=i0−�

q�qi0−�,j,uγu

⎞⎠
= 1

q�

⎛⎝(q�)j+1γi0+j� +
i0+j�−1∑
u=i0−�

q�qi0−�,j,tγu

⎞⎠
= (q�)jγi0+j� +

i0+j�−1∑
u=i0−�

qi0−�,j,uγu. (20)

where in the second equality we used that qi0−�,j+1,i0+j� = (q�)j+1 and in the last we put
1
q� inside the bracket. But (20) is (17) for t = i0 + j�. �

By the following claim solving the K–TMP for β is equivalent to solving the R–TMP
for γ .
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Claim 5: Let u ∈ N. A sequence γ admits a u-atomic R-rm if and only if β admits a u-
atomic K-rm.

Proof of Claim 5.: First we prove the implication (⇒). Let x1, . . . , xu, be the atoms in the
R-rm for γ with the corresponding densities ρ1, . . . , ρu. We will prove that the atoms
(x1, q(x1)), . . . , (xu, q(xu)) with densities ρ1, . . . , ρp are the K-rm for β . We use induction
on the index i in βi,j, where i + j ≤ 2k. For i < � and any j such that i + j ≤ 2k we have
that

βi,j =1 (q�)jγi+j� +
i+j�−1∑
s=0

qi,j,sγs

=2 (q�)j
⎛⎝ u∑

p=0
ρp(xp)i+j�

⎞⎠ +
i+j�−1∑
s=0

qi,j,s

⎛⎝ u∑
p=0

ρp(xp)s
⎞⎠

=3
u∑

p=0
ρp(q�)j(xp)i+j� +

u∑
p=0

⎛⎝ρp i+j�−1∑
s=0

qi,j,s(xp)s
⎞⎠

=4
u∑

p=0

⎛⎝ρp
⎛⎝(q�)j(xp)i+j� +

i+j�−1∑
s=0

qi,j,s(xp)s
⎞⎠⎞⎠

=5
u∑

p=0

(
ρp(xp)i(q(xp))j

)
,

where we used (16) with t = i + j� in the first equality noticing that

i + j� = i + j + j(�− 1) ≤ 2k + 2k(�− 1) ≤ 2k�,

implying well-definedness of γs by s being bounded above by 2k�, the definitions of ρp, xp
in the second equality, we interchanged the order of summation in the third and fourth
equalities and in the last we used (15) for x = xp. So the atoms (x1, q(x1)), . . . , (xu, q(xu))
with densities ρ1, . . . , ρp indeed represent βi,j for i < � and any j such that i + j ≤ 2k. We
now assume that this holds for all i = 0, . . . ,m and j such that i + j ≤ 2k, wherem ≥ �− 1
and prove it for i = m+ 1 and any j ≤ 2k − i. We have that

βm+1,j =1 1
q�

(
βm+1−�,j+1 −

�−1∑
s=0

qsβm+1−�+s,j

)

=2 1
q�

⎛⎝⎛⎝ u∑
p=0

ρp(xp)m+1−�(q(xp))j+1

⎞⎠ −
�−1∑
s=0

qs

⎛⎝ u∑
p=0

ρp(xp)m+1−�+s(q(xp))j
⎞⎠⎞⎠

=3 1
q�

u∑
p=0

(
ρp

(
(xp)m+1−�(q(xp))j+1 −

�−1∑
s=0

qs(xp)m+1−�+s(q(xp))j
))
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=4 1
q�

u∑
p=0

(
ρp(xp)m+1−�(q(xp))j

(
q(xp)−

�−1∑
s=0

qs(xp)s
))

=5
u∑

p=0

(
ρp(xp)m+1(q(xp))j

)
,

where we used that β is rg in the first equality, the induction hypothesis in the second, in
the third we interchanged the order of summation, factored out (xp)m+1−�(q(xp))j in the
fourth and in the last we used that q(x)− ∑�−1

s=0 qsx
s = q�x� by definition of q. This proves

the implication (⇒).
It remains to prove the implication (⇐). Let (x1, q(x1)), . . . , (xu, q(xu)) be the atoms in

the K-rm for β with the corresponding densities ρ1, . . . , ρu. We will prove that the atoms
(x1, . . . , xu) with densities ρ1, . . . , ρp are the R-rm for γ . We use induction on the index
t in γt . For t = 0 the claim is trivial, since γ0 = β0,0 = ∑u

p=0 ρu. We now assume that the
claim holds for all t−1 with 0 ≤ t − 1 ≤ 2k�− 1 and prove it for t. We have that

γt =1 1

(q�)�
t
�
�

(
βtmod �,� t

�
� −

t−1∑
s=0

qtmod �,� t
�
�,s · γs

)

=2 1

(q�)�
t
�
�

⎛⎝ u∑
p=0

ρp(xp)tmod �(q(xp))�
t
�
� −

t−1∑
s=0

qtmod �,� t
�
�,s ·

⎛⎝ u∑
p=0

ρp(xp)s
⎞⎠⎞⎠

=3 1

(q�)�
t
�
�

u∑
p=0

(
ρp

(
(xp)tmod �(q(xp))�

t
�
� −

t−1∑
s=0

qtmod �,� t
�
�,s · (xp)s

))

=4 1

(q�)�
t
�
�

u∑
p=0

(
ρpqtmod �,� t

�
�,tmod �+� t

�
�� · (xp)tmod �+� t

�
��
)

=5 1

(q�)�
t
�
�

u∑
p=0

(
ρp(q�)�

t
�
�(xp)t

)

=6
u∑

p=0
ρp(xp)t ,

where we used the definition (16) of γt in the first equality, the definitions of ρp, xp
and the induction hypothesis in the second equality, we interchanged the order of sum-
mation in the third equality, used (9) for (i, j) = (tmod �, � t

�
�) in the fourth equality

and the observation (14) for (i, j) = (tmod �, � t
�
�) in the fifth equality. This proves the

implication (⇐). �

Let (Mk+�−2)|B be the restriction of Mk+�−2 to the rows and columns indexed by
monomials (capitalized) fromB. The following claim gives an explicit connection between
(Mk+�−2)|B and the Hankel matrix Aγ̃ of the sequence γ̃ .
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Claim 6: We have that

(Mk+�−2)|B = PAγ̃ PT . (21)

Proof of Claim 6.: Let p(x, y) = ∑
i,j pijx

iyj ∈ V and r(x, y) = ∑
i,j rijx

iyj ∈ V be polyno-
mials from the vector subspace V and p̂, r̂ vectors of their coefficients ordered in the basis
B (see (8)). Let β̃ := β(2(k+�−2)). Then we have

(̂r)T
(
(Mk+�−2)|B

)
p̂ =1 Lβ̃ (pr) = Lβ̃

⎛⎝ ∑
i1,i2,j1,j2

pi1j1ri2j2x
i1+i2yj1+j2

⎞⎠
=2

∑
i1,i2,j1,j2

pi1j1ri2j2βi1+i2,j1+j2

=3
∑

i1,i2,j1,j2

pi1j1ri2j2

⎛⎝i1+i2+(j1+j2)�∑
s=i1+i2

qi1+i2,j1+j2,sγs

⎞⎠
=4

∑
i1,i2,j1,j2

pi1j1ri2j2

⎛⎝i1+i2+(j1+j2)�∑
s=i1+i2

⎛⎝ s∑
t=i1

qi1,j1,tqi2,j2,s−t

⎞⎠ γs
⎞⎠

=5
∑

i1,i2,j1,j2

⎛⎝i1+i2+(j1+j2)�∑
s=i1+i2

⎛⎝ s∑
t=i1

pi1j1qi1,j1,tri2j2qi2,j2,s−t

⎞⎠ γs
⎞⎠

=6 Lγ̃

⎛⎝ ∑
i1,i2,j1,j2

⎛⎝i1+i2+(j1+j2)�∑
s=i1+i2

⎛⎝ s∑
t=i1

pi1j1qi1,j1,tri2j2qi2,j2,s−t

⎞⎠ xs
⎞⎠⎞⎠

=7 Lγ̃

⎛⎝ ∑
i1,i2,j1,j2

⎛⎝i1+i2+(j1+j2)�∑
s=i1+i2

s∑
t=i1

pi1j1qi1,j1,tx
t · ri2j2qi2,j2,s−txs−t

⎞⎠⎞⎠
=8 Lγ̃

⎛⎝ ∑
i1,i2,j1,j2

⎛⎝i1+j1�∑
t=i1

pi1j1qi1,j1,tx
t

⎞⎠⎛⎝i2+j2�∑
u=i2

ri2j2qi2,j2,ux
u

⎞⎠

=9 Lγ̃

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
∑
i1,j1

i1+j1�∑
t=i1

pi1j1qi1,j1,tx
t

︸ ︷︷ ︸
gp(x)

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
∑
i2,j2

i2+j2�∑
s=i1+i2

ri2j2qi2,j2,sx
s

︸ ︷︷ ︸
gr(x)

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
=10 ĝrTAγ̃ ĝp = (PT̂r)TAγ̃ (PTp̂) = r̂T(PAγ̃ PT )̂p,

where in the first line we used the correspondence between the moment matrix and the
Riesz functional Lβ̃ , the definition Lβ̃ in the second, Claim 4 in the third, Claim 2 in the
fourth, we moved the factor pi1j1ri2j2 into the inner sum in the fifth, used the definition
of Lγ̃ in the sixth, split xs into two parts and moved it into the inner sum in the seventh,
decomposed a double sum into the product of two sums in the eight using that qi1,j1,t is
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nonzero only for t ≤ i1 + j1� and qi2,j1,u is nonzero only for u ≤ i2 + j2�, decomposed a
sum into the product of two sums using independence of the factors in the ninth line, in
the tenth we used the correspondence between Aγ̃ and the Riesz functional Lγ̃ , where ĝp,
ĝr are the vectors of coefficents of gp and gr in the basis B1 (see (12)) and also Claim 3.
Since p and q were arbitrary from V, this proves Claim 6. �

Note that

P[c, c] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(q�)c 0 · · · · · · 0

q1,c,c� (q�)c 0
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

q�−1,c,c� · · · · · · q�−1,c,c�+�−1 qc�

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

�×� for c = 1, . . . , k − 1.

Since P is a lower triangular matrix with all nonzero diagonal entries, it is invertible.
Claim 5 implies that

Aγ̃ = P−1 ((Mk+�−2)|B
)
(P−1)T . (22)

Since (Mk+�−2)|B is psd, it follows from (22) that Aγ̃ is also psd. We separate two cases.
Either Aγ̃ is pd or Aγ̃ is singular. In the first case in particular Aγ̃ (k�) = Aγ is pd, while
in the second case Aγ̃ (k�) is psd and prg by [44, Theorem 2.6]. By [44, Theorem 3.9], γ
admits a (rankAγ )-atomic R-rm. Since rankMk ≤ rankAγ ≤ k�+ 1, using Claim 4 the
following holds:

(2′) β has an s-atomic K-rm for some s satisfying

rankMk ≤ s ≤ Aγ ≤ k�+ 1. (23)

To obtain (2) of Theorem 3.1 we need to decrease the upper bound in (23) by 1. Note
that the bound k�+ 1 occurs only in the case Aγ is pd, which we assume in the rest
of the proof. We denote by γ (z) a sequence obtained from the sequence γ by replacing
γ2k�−1 with a variable z. The matrix Aγ (z) is a partially pd matrix and by [48, Lemma 2.11]
there exist two choices of z, which we denote by z±, such that Aγ (z±) is psd and has rank
k�. Since rankAγ (z±)(k�− 1) = rankAγ (z±) = k�, the sequence γ (z±) is prg and by [44,
Theorem 3.9] it admits a k�-atomic R-rm. If none of the moments βi,j of the sequence
β depends on γ2k�−1, the R-rm for γ (z±) will generate a K-rm for β as in the proof of
Claim 4. By (9), the only moment from β , which could depend on γ2k�−1, is β0,2k. Note
that if q0,2k,2k�−1 = 0, then also β0,2k is independent from the value of γ2k�−1. We have
that

q0,2k,2k�−1 =
∑

0≤i1,...,i2k≤�,
i1+...+i2k=2k�−1

qi1qi2 . . . qi2k = 2k(q�)2k−1q�−1,

where in the first equality we used the definition (10) of q0,2k,2k�−1, while in the second we
used the fact that i1 + . . .+ i2k = 2k�− 1 could be fulfilled only if 2k−1 indices ij are �
and one is �− 1. So q0,2k,2k�−1 = 0 iff q�−1 = 0. But this is true by Claim 1 and concludes
the proof of Theorem 3.1. �
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To prove Theorem 3.2 for q(x) = x�, � ≥ 3, only a little adaptation of the last part of the
proof of Theorem 3.1 is needed, which we now explain.

Proof of Theorem 3.2.: The implications (1) ⇒ (4) and (2) ⇒ (1) are trivial. The impli-
cation (4) ⇒ (3) follows from [1, Theorem3.14]. It remains to prove the implication (3) ⇒
(2). Following the proof of Theorem 3.1 everything remains the same until (2’). It remains
to justify that the upper bound in (23) can be decreased tom := k�− � �2�. If rankAγ ≤ m,
then we are already done. From now on we assume that r := rankAγ > m. Since γ admits
a R–rm, which we denote by μ, γ is prg and rank γ = rankAγ = rankAγ (r − 1) by
[44, Theorem 3.9]. Hence, Aγ (r − 1) is pd and in particular also its submatrix Aγ (m)
is pd. We denote by γ (z1, . . . , z�) a sequence obtained from the sequence γ by replac-
ing γ(2k−1)�+1, γ(2k−1)�+2, . . . , γ2k� with variables z1, . . . , z�. The sequence γ (0,(2k−1)�) :=
(γ0, . . . , γ(2k−1)�) is represented byμ, being a subsequence of γ . If � is even, then (2k − 1)�
is also even and by [44, Theorem 3.9], γ (0,(2k−1)�) has a (rank γ (0,(2k−1)�))-atomic R-
rm. Otherwise � is odd, (2k − 1)� is also odd and by [44, Theorem 3.1], γ (0,(2k−1)�)

has a (rank γ (0,(2k−1)�−1))-atomic R-rm, where γ (0,(2k−1)�−1) := (γ0, . . . , γ(2k−1)�−1). We
denote the measure obtained in this way by μ1 and generate its moment sequence
γ (z1, . . . , z�), where z1, . . . , z� are the moments of degrees (2k − 1)�+ 1, . . . , 2k�. Hence,
rankAγ (z1,...,z�) is equal to rankAγ (0,(2k−1)�) for even � and rankAγ (0,(2k−1)�−1) for odd �.
Since (2k − 1)� = 2m for even � and (2k − 1)�− 1 = 2m for odd �,μ1 ism-atomic (since
Aγ (m) 
 0 by assumption). If none of the moments βi,j of the sequence β(2k−1) depends
on γ(2k−1)�+1, γ(2k−1)�+2, . . . , γ2k�, thenμ1 will generate aK-rm for β(2k−1) as in the proof
of Claim 5 of Theorem 3.1. But by definition (16), none of themoments of β(2k−1) depends
on γ(2k−1)�+1, γ(2k−1)�+3, . . . , γ2k�, which concludes the proof of Theorem 3.2. �

A corollary to Theorem 3.1 is an improvement of the bounds on the degrees of sums
of squares in the Positivstellensatz [11, Corollary 6.3] for the curves of the form y = q(x),
q ∈ R[x], deg q ≥ 3.

Corollary 3.3: Let K := {(x, y) ∈ R2 : y = q(x)}, where q ∈ R[x] satisfies deg q ≥ 3. Let
k ≥ deg q. If r(x, y) ∈ R[x, y]2k is strictly positive on K, then r admits a decomposition

r(x, y) =
�1∑
i=1

fi(x, y)2 + (y − q(x))
�2∑
i=1

gi(x, y)2 − (y − q(x))
�3∑
i=1

hi(x, y)2,

where �1, �2, �3 ∈ Z+, fi, gi ∈ R[x, y] and

deg f 2i ≤ 2m, deg((y − q(x))g2i ) ≤ 2m, deg((y − q(x))h2i ) ≤ 2m

with m = k + deg q − 1.

Proof: By the equivalence (1) ⇔ (3) of Theorem3.1, the setK has the property (Rk,deg q−2)

in the notation of [52, p. 2713]. Now the result follows by [52, Theorem 1.5]. �

Remark 3.3: The bound on m in Theorem 3.3 from [11, Corollary 5.4] is quadratic in k
and deg q, namely (2k + 1) deg q.
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3.2. Solution to the parabolic TMP

The following is a concrete solution to the parabolic TMP, first solved in [6]. We give an
alternative proof together with a new solvability condition, i.e. (6) below, where the variety
condition is removed.

Theorem 3.4 (Solution to the parabolic TMP, even case): Let

K := {(x, y) ∈ R
2 : y = q2x2 + q1x + q0},

where q0, q1, q2 ∈ R and q2 �= 0, be the parabola and β := β(2k) = (βi,j)i,j∈Z+,i+j≤2k, where
k ≥ 2. The following statements are equivalent:

(1) β has a K-representing measure.
(2) β has a (rankMk)-atomic K-representing measure.
(3) Mk is positive semidefinite, recursively generated, satisfies the column relation Y =

q2X2 + q1X + q0 and rankMk ≤ cardV(β), where

V(β) :=
⋂

g∈R[x,y]≤k,
g(X,Y)=0

Z(g).

(4) Mk satisfies Y = q2X2 + q1X + q0 and admits a positive semidefinite, recursively gen-
erated extension Mk+1.

(5) Mk satisfies Y = q2X2 + q1X + q0 and admits a positive semidefinite extension Mk+1.
(6) Mk is positive semidefinite, the relations βi,j+1 = q2βi+2,j + q1βi+1,j + q0βi,j hold for

every i, j ∈ Z+ with i + j ≤ 2k − 2 and, defining

B = {1, x, y, yx, . . . , yk−1, yk−1x, yk}, (24)

one of the following statements holds:
(a) (Mk)|B\{yk} is positive definite.
(b) rank(Mk)|B\{yk} = rankMk.

Proof: By applying an alt φ(x, y) = (x, 1
q2 y − q1x − q0) to the sequence β we get a

sequence β̃ with the moment matrix Mk(β̃) satisfying Y = X2. Using Proposition 2.1,
each of the statements (1)–(6) holds for the original sequence β with the column rela-
tion Y = q2X2 + q1X + q0 iff it holds for β̃ with the column relation Y = X2. So we may
assume (q2, q1, q0) = (1, 0, 0). Let us start by proving the equivalences (1) ⇔ (2) ⇔ (6).
By [57], (1) is equivalent to:

(1′) β has a s-atomic K-representing measure for some s ∈ N.

Let

γ := γ (0,4k) = (γ0, γ1, . . . , γ4k) ∈ R
4k+1, (25)

where γt = βtmod 2,� t
2 �, which is a special case of definition (16) in the proof of

Theorem 3.1. Claim 5 in the proof of Theorem 3.1 holds with the same proof also for
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q(x) = x2. Using Claim 5 and [44, Theorem 3.9] for γ , the equivalences (1′) ⇔ (2) ⇔ (6)
follow by noting that Aγ = (Mk)|B and Aγ (2k − 1) = (Mk)|B\{Yk}.

The implications (2) ⇒ (4) and (4) ⇒ (5) are trivial. The implication (1) ⇒ (3) fol-
lows from the necessary conditions for the existence of a K-rm (the variety condition
follows from [1, Proposition 3.1 and Corollary 3.7]).

Now we prove the implication (5) ⇒ (6). By [1, Theorem 3.14], it follows that Mk
is rg. Defining the sequence γ̃ := γ (0,4k+2) = (γ0, γ1, . . . , γ4k+1, γ4k+2) ∈ R4k+3, where
γt = βtmod 2,� t

2 �, which is a special case of definition (16) in the proof of Theorem 3.1,
it follows byMk+1 being psd that in particular (Mk+1)|B∪{yk+1} = Aγ̃ is also psd. If Aγ (0,4k)
is pd, then (Mk)|B\{yk} is pd, which is (a) of Theorem 3.4. OtherwiseAγ (0,4k) is singular and
prg by [44, Theorem 2.6]. In particular, rankAγ = rankAγ (2k − 1), which, by noting that
(Mk)|B\{yk} = Aγ (2k − 1), implies (b) of Theorem 3.4. This proves (5) ⇒ (6).

It remains to prove the implication (3) ⇒ (6). If (Mk)|B\{yk} is pd, we are done. Other-
wise (Mk)|B\{yk} is not pd. We have to prove that in this case rank(Mk)|B\{yk} = rankMk.
We assume by contradiction that rank(Mk)|B\{yk} < rankMk. Let γ be as in (25). The
inequality rank(Mk)|B\{yk} < rankMk implies that rankAγ (2k − 1) < rankAγ . Let r =
rank γ . Then, by [44, Theorem 2.6], rankAγ (2k − 1) = r and hence, [44, Theorems 3.9,
3.10] imply that γ (0,4k−2) = (γ0, . . . , γ4k−2) has a unique r-atomic R-rm with atoms
x1, . . . , xr. Hence, rankAγ = r + 1.Note that for every g(x, y) ∈ R[x, y], which is a column
relation of Mk, it follows that g(x, x2) ∈ R[x] is a column relation of Aγ (where columns
of Aγ are 1,X, . . . ,X2k). Since (x, y) ∈ V(β) and (x, y′) ∈ V(β), implies that y = y′ (due
to y = x2 and y′ = x2), it follows that V(β) ⊆ {(x1, x21), . . . , (xr, x2r )}. (This is true, since
the atoms of a finitely atomic measure always satisfy all column relations of the moment
matrix.Moreover, the sets are equal, but we do not need this in the rest of the proof.) Hence,
|V(β)| ≤ r. Since rankAγ = rankMk, this leads to a contradiction with the assumption
rankMk ≤ |V(β)|. �

Remark 3.4: (1) The proof of the implication (3) ⇒ (2) of Theorem 3.4 in [6]: [6] consid-
ers 5 different cases according to the form of the relations between the columns of B
defined by (24). The most demanding cases, which both use the FET as the main tool
in the construction of a flat extension Mk+1 of Mk, are cases where there is only one
relation and the column Yk occurs nontrivially in it or if there is no relation present.

(2) Complexity of checking conditions in the statements of Theorem 3.4: Among condi-
tions in (3) the most demanding is the variety condition rankMk ≤ cardV(β), since
it requires solving a system of polynomial equation, which can be numerically dif-
ficult and unstable. However, (6) of Theorem 3.4 requires less work and can be
stably checked numerically. Namely, one has to check if the column relations YiXj =
q(X)iXj, i + j ≤ k, i ∈ N, hold, then try to compute the Cholesky decompositionVVT

of (Mk)|B, compute the column echelon form U of V and in case U is of the form(
Ir B

)T for some matrix B, then (a) or (b) holds and an rm exists. This follows by
noting that (Mk)|B corresponds to the Hankel matrix of a univariate sequence (see the
proof above), for which the solution to the TMP is given in Algorithm 2.1.

The following example shows that the variety condition rankMk ≤ cardV(β)
from Theorem 3.4.(3) cannot be removed in contrast to the case of K being
a circle [5, Theorem 2.1] or a union of two parallel lines [49, Theorem 3.1].
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The Mathematica file with numerical computations can be found on the link
https://github.com/ZalarA/TMP_quadratic_curves.

Example 3.5: Let β = (βi,j)i,j∈Z+,i+j≤4 be a bivariate sequence of degree 4 with the
moment matrixM2 equal to

M2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 X Y X2 XY Y2

1 3 0 2 2 0 2
X 0 2 0 0 2 0
Y 2 0 2 2 0 2
X2 2 0 2 2 0 2
XY 0 2 0 0 2 0
Y2 2 0 2 2 0 3

⎤⎥⎥⎥⎥⎥⎥⎦.

M2 is psd with the eigenvalues 1
2 (9 + √

65) ≈ 8.53, 4, 1, 12 (9 − √
65) ≈ 0.47, 0, 0, and the

column relations Y = X2, XY = X. Hence,M2 is psd, rg and satisfies Y = X2. The variety
V(β) is equal to {(0, 0), (−1, 1), (1, 1)}. So 4 = rankM2 > cardV(β) = 3 and the variety
condition is not satisfied. Thus β does not admit a representing measure supported on the
parabola y = x2. So Mk being psd, satisfying Y = X2 and rg does not imply the variety
condition and the existence of a representing measure.

Note that by Remark 3.4.(2) it is cheaper and more stable to check only that Y =
X2 is a column relation and then solve the TMP for γ , such that Aγ = (M2)|B, using
Algorithm 2.1. Since the case 3.2 applies, an rm does not exist.

The following example demonstrates the solution of [6, Example 1.6] in the univari-
ate setting. The Mathematica file with numerical computations can be found on the link
https://github.com/ZalarA/TMP_quadratic_curves.

Example 3.6: Let β = (βi,j)i,j∈Z+,i+j≤6 be a bivariate sequence of degree 6 with the
moment matrixM3 equal to

M3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 X Y X2 XY Y2 X3 X2Y XY2 Y3

1 1 0 a a 0 b 0 b 0 c
X 0 a 0 0 b 0 b 0 c 0
Y a 0 b b 0 c 0 c 0 d
X2 a 0 b b 0 c 0 c 0 d
XY 0 b 0 0 c 0 c 0 d 0
Y2 b 0 c c 0 d 0 d 0 e
X3 0 b 0 0 c 0 c 0 d 0
X2Y b 0 c c 0 d 0 d 0 e
XY2 0 c 0 0 d 0 d 0 e 0
Y3 c 0 d d 0 e 0 e 0 f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with the inequalities a>0, b > a2, c > b2
a ,d >

b3−2abc+c2
b−a2 , which ensure that (M2)|{1,X,Y ,XY ,Y2,X2Y}

is psd and (M2)|{1,X,Y ,XY ,Y2} is pd. Note that M3 satisfies the column relations Y = X2,

https://github.com/ZalarA/TMP_quadratic_curves
https://github.com/ZalarA/TMP_quadratic_curves
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XY = X3 and Y2 = X2Y . We introduce the univariate sequence

γ ∈ (1, 0, a, 0, b, 0, c, 0, d, 0, e, 0, f ) ∈ R
13

as in the proof of Theorem 3.4. We denote the rows and columns of Aγ by 1,X, . . . ,X6.
Since (M2)|{1,X,Y ,XY ,Y2} is pd, it follows that Aγ (4) is pd. For

e = (
vγ (5, 4)

)T
(A(1,0,a,0,b,0,c,0,d))−1vγ (5, 4) = −c3 + 2bcd − ad2

b2 − ac
,

we have thatAγ (5) � 0 (e.g. using [58, Theorem1] forAγ (5)) andX5 ∈ span{1,X, . . . ,X4}
in Aγ (5), where the vector vγ (5, 4) = (0 c 0 d 0)T is the restriction of the column
X5 to the rows indexed by 1,X,X2,X3,X4. Hence, for γ to admit aR–rm,Aγ � 0 andXi ∈
span{1,X, . . . ,Xi−1} for i = 5, 6 [44, Theorem 3.9]. Since Aγ (5) � 0 and the last column
of Aγ (5) is a linear combination of the others, it only needs to hold by [58, Theorem 1],
that

vγ (6, 5) ∈ C(Aγ (5)) and f = (
vγ (6, 5)

)T
(Aγ (5))†vγ (6, 5)

= −bc4 − b2c2d − 2ac3d − b3d − b3d2 + 4abcd2 − a2d2

(b2 − ac)2
,

where vγ (6, 5) denotes the restriction of X6 to the rows indexed by 1, . . . ,X5 in Aγ and
(Aγ (5))† denotes the Moore–Penrose inverse of Aγ (5). Using Mathematica we check
that the equality Aγ (5)(Aγ (5))†vγ (6, 5) = vγ (6, 5) holds, which implies that vγ (6, 5) ∈
C(Aγ (5)) is true. By [44, Theorem 3.10], in this case the R-rm is unique, 5-atomic and
consists of the roots of the polynomial

p(x) = (
1 x x2 x3 x4 x5

)
(A(1,0,a,0,b,0,c,0,d))−1vγ (5, 4)

= x
(
x4 + ad − bc

b2 − ac
x2 + c2 − bd

b2 − ac

)
.

Since p(x) has roots 0, x1,−x1, x2,−x2 and the atoms for theK-rm for β are (0, 0), (x1, x21),
(−x1, x21), (x2, x

2
2), (−x2, x22).

The following theorem is a concrete solution to the parabolic TMP of odd degree, which
is solved using the same technique as in the proof of Theorem 3.2, but here we get explicit
conditions for the existence of the solution, similarly as in the even degree case.

Theorem 3.7 (Solution to the parabolic TMP, odd case): Let K := {(x, y) ∈ R2 : y =
x2} be the parabola and β := β(2k−1) = (βi,j)i,j∈Z+,i+j≤2k−1, where k ≥ 2. Let γ :=
(γ0, γ1, . . . , γ4k−2) be a sequence, defined by γt := βtmod 2,� t

2 � for t = 0, 1, . . . , 4k − 2. The
following statements are equivalent:

(1) β has a K-representing measure.
(2) β has a (rank γ )-atomic K-representing measure.
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(3) β can be extended to a sequence β(2k) such that Mk is psd, rg, has a column relation
Y = X2 and satisfies rankMk ≤ cardV(β(2k)), where

V(β(2k)) :=
⋂

g∈R[x,y]≤k,
g(X,Y)=0 in Mk

Z(g).

(4) β can be extended to a sequence β(2k+2) such thatMk+1 is psd and has a column relation
Y = X2.

(5) The relations βi,j+1 = βi+2,j hold for every i, j ∈ Z+ with i + j ≤ 2k − 1, Aγ � 0 and
the sequence γ is positively recursively generated.

(6) The relations βi,j+1 = βi+2,j hold for every i, j ∈ Z+ with i + j ≤ 2k − 1 and defining
βi,2k−i = βimod 2,2k−i+� i

2 � for 2 ≤ i ≤ 2k, the moment matrix (Mk)|B\{yk}, where B =
{1, x, y, yx, . . . , yk−1, yk−1x, yk}, is positive semidefinite and

(
β0,k β1,k β0,k+1 β1,k+1 · · · β0,2k−1

)T ∈ C((Mk)|B\{xyk−1,yk},B\{yk}). (26)

Proof: The equivalences (1) ⇔ (3) ⇔ (4) follow by Theorem 3.4. By [57], (1) is equiva-
lent to:

(1′) β has an s-atomic K-rm for some s ∈ N.

Claim 5 of Theorem 3.1 holds with the same proof also for q(x) = x2 and odd degree
sequence (i.e. i + j ≤ 2k − 1). Together with [44, Theorem 3.9], the equivalences (1′) ⇔
(2) ⇔ (5) follow. Note that (Mk)|B\{yk} = Aγ . By [39, Theorem 2.7.5], γ is prg if and only
if (26) holds. This establishes the equivalence (5) ⇔ (6). �

Remark 3.5: (1) Note that rank γ inTheorem3.7 is atmost 2k and it is 2k iffAγ is positive
definite.

(2) Theorem 3.7 also solves the odd degree TMP on any curve of the form y = q2x2 +
q1x + q0}, where q0, q1, q2 ∈ R and q2 �= 0. As in the proof of the even degree case
one applies φ from the proof of Theorem 3.4 to β to come into the case y = x2 and
then use Theorem 3.7.

3.3. A solution to the TMP based on a feasibility of a linearmatrix inequality

In this section, we give another alternative solution to the TMP on curves y = q(x), where
q(x) ∈ R[x] and deg q ≥ 3, which is based on a feasibility of a linear matrix inequality
associated to the univariate sequence γ , obtained from the original sequence β as in the
proofs of the results of previous subsections. The feasibility question appears as a result of
the fact that γ is not fully determined by β , but β admits a K-rm if and only if γ can be
completed to a sequence admitting an R-rm.

For n ∈ N, we denote by [n] the set of all nonnegative integers smaller or equal to n. Let
the sets N1,N2 form a partition of [n], i.e. N1,N2 ⊆ [n], N1 ∪ N2 = [n] and N1 ∩ N2 = ∅.
Let 
1 := (γt)t∈N1 be a sequence of real numbers indexed by integers from N1 and �2 :=
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(γ t)t∈N2 a tuple of variables indexed by integers from N2. Let

F
1(�2) : R|N2| → R
|N1|+|N2| (27)

be a function with the output a sequence (γ̃t)t∈[n] where γ̃t =
{
γt , if t ∈ N1,
γ t , if t ∈ N2.

In Theorem 3.8, the set N1 will be the set of indices, for which the corresponding uni-
variate sequence γ is determined by β , while the indices of the non-determined part will
belong to N2. Since we can either get an odd or an even sequence, for which the solutions
to the R-TMP are slightly different, we separate two cases for N1 ∪ N2 = [n] (see (29)).

Theorem 3.8: Let K := {(x, y) ∈ R2 : y = q(x)}, where q(x) = ∑�
i=0 qix

i ∈ R[x], � ≥ 3,
q� �= 0, and

β := β(d) = (βi,j)i,j∈Z+,i+j≤d,

where �d
2� ≥ deg q. For i, j, s ∈ Z+, such that i + j ≤ d, define real numbers

qi,j,s :=

⎧⎪⎪⎨⎪⎪⎩
∑

0≤i1,...,ij≤�,
i1+...+ij=s−i

qi1qi2 . . . qij , if i ≤ s ≤ i + j�,

0, otherwise.

Let

N1 :=
{
t ∈ Z+ : tmod �+

⌊
t
�

⌋
≤ d

}
,

γt = 1

(q�)�
t
�
�

(
βtmod �,� t

�
� −

t−1∑
s=0

qtmod �,� t
�
�,s · γs

)
for every t ∈ N1, (28)

and 
1 := (γt)t∈N1 . Let

[n] :=
{
[ d�+ 2], if d� is even,
[ d�+ 1], if d� is odd, (29)

�2 := (γ t)t∈N2 be a tuple of variables with N2 = [n] \ N1 and F
1(�2) be defined as in (27).
Then the following statements are equivalent:

(1) β has a K–representing measure.
(2) βi,j = ∑�

p=0 qpβi+p,j−1 for every i, j ∈ Z+, such that i + j ≤ d − �+ 1 and there exists
a tuple 
2 = (γt)t∈N2 ∈ RN2 such that AF
1 (
2) � 0.

Proof: Observing the proof of Theorem 3.1 for a general q(x) one can note that F
1(�2)

corresponds to the sequence γ̃ . The original sequence β determines only γt for t ∈ N1 by
(28), while for t ∈ N2, γ t are variables. By the proof of Theorem 3.1, β will have a K-rm iff
it satisfies the rg relations coming from the column relation Y = q(X) and there exists γ̃
such that Aγ̃ � 0. This proves Theorem 3.8 for even d.

Observing the proof of Theorem 3.2 in case d is odd one can notice that only γ (0, d�) =
(γ0, . . . , γ d�) needs to have aR-rm to obtain aK-rm for β . In case d� is even, this is by [44,
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Theorem 3.9] equivalent to Aγ (0, d�+2) � 0, where γ (0, d�+2) = (γ0, . . . , γ d�, γ d�+1, γ d�+2)

for some γ d�+1, γ d�+2. Since γ (0, d�+2) corresponds to the sequence F
1(
2), this proves
Theorem3.8 for even d�with d being odd. If d� is odd, then by [44, Theorem3.1] it suffices
that there is γ d�+1 such that Aγ (0, d�+1) � 0, where γ (0, d�+1) = (γ0, . . . , γ d�, γ d�+1), and
this proves Theorem 3.8 for odd d�. �

Wewill present the statement of Theorem 3.8 on a few examples. The following example
is for the case deg q = 3 and a sequence β of even degree.

Example 3.9: Let β = (βi,j)i,j∈Z+,i+j≤2k be a bivariate sequence of degree 2k, k ≥ 3, and
K := {(x, y) ∈ R2 : y = x3}. For the existence of a K-rm β must satisfy the relations βi,j =
βi+3,j−1 for every i, j ∈ Z+ such that i + j + 2 ≤ 2k. In the notation of Theorem 3.8 we
have

qi,j,s :=
{
1, if s = i + 3j,
0, otherwise, for i, j, s ∈ Z+, such that i + j ≤ 2k,

N1 :=
{
t ∈ Z+ : tmod 3 +

⌊
t
3

⌋
≤ 2k

}
= {t ∈ Z+ : t ≤ 6k, t �= 6k − 1} ,

[n] := [6k + 2] and N2 := {6k − 1, 6k + 1, 6k + 2}.
The formula (28) is equal to

γt = βtmod t,� t
3 � for every t ∈ N1

and the function F
1 : R3 → R6k+3 is defined by

F
1(�2) = F
1(γ 6k−1, γ 6k+1, γ 6k+2) := (γ0, γ1, . . . , γ6k−2, γ 6k−1, γ6k, γ 6k+1, γ 6k+2).

The matrix AF
1 (�2) is equal to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 γ2 γ3 · · · · · · γ3k γ3k+1

γ1 γ2 γ3 . .
. ...

γ2 γ3 . .
.

γ6k−2

γ3 . .
.

γ6k−2 γ 6k−1
... γ6k−2 γ 6k−1 γ6k
γ3k · · · · · · · · · γ6k−2 γ 6k−1 γ6k γ 6k+1
γ3k+1 · · · · · · · · · γ6k−2 γ 6k−1 γ6k γ 6k+1 γ 6k+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

The question of feasibility of AF
1 (�2) � 0 can be answered analytically, since the struc-
ture of the missing entries is simple enough. Actually it is even easier to work with
A(γ0,...,γ 6k−1,γ6k) and answer the feasibility question together with the condition from the
solution of [44, Theorem 3.9] (see [48, Theorem 3.1]).

Remark 3.6: If deg q = 3 in Theorem 3.1, then a polynomial is of the form y = q3x3 +
q2x2 + q1x + q0 ∈ R[x], where q3 �= 0, and using alts it can be transformed to y = x3.
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Indeed, by first applying an alt as at the beginning of the proof of Claim 1 of Theorem 3.1,
we can assume that q2 = 0, i.e. the polynomial becomes y = q3x3 + q1x + q0. Now we
apply an alt (x, y) �→ (x, y − q1x − q0), followed by (x, y) �→ ( 3

√q3x, y) and get a polyno-
mial y = x3.

The following example demonstrates the statement of Theorem 3.8 for the case deg q =
3 and a sequence β of odd degree.

Example 3.10: Let β = (βi,j)i,j∈Z+,i+j≤2k−1 be a bivariate sequence of degree 2k−1, k ≥ 3,
and K := {(x, y) ∈ R2 : y = x3}. For the existence of a K-rm β must satisfy the rela-
tions βi,j = βi+3,j−1 for every i, j ∈ Z+ such that i + j + 2 ≤ 2k − 1. In the notation of
Theorem 3.8, we have

qi,j,s :=
{
1, if s = i + 3j,
0, otherwise. for i, j, s ∈ Z+, such that i + j ≤ 2k − 1,

N1 :=
{
t ∈ Z+ : tmod 3 +

⌊
t
3

⌋
≤ 2k − 1

}
= {t ∈ Z+ : t ≤ 6k − 3 and t �= 6k − 4} ,

[n] = [6k − 2] and N2 := {6k − 4, 6k − 2}.
The formula (28) is equal to

γt = βtmod t,� t
3 � for every t ∈ N,

and the function F
1 : R2 → R6k−1 is defined by

F
1(�2) = F
1(γ 6k−4, γ 6k−2) := (γ0, γ1, . . . , γ6k−5, γ 6k−4, γ6k−3, γ 6k−2).

Since 6k − 3 = (2k − 1) · 3 is odd, only feasibility of the inequality AF
1 (�2) � 0 is impor-
tant for the existence of the rm for β , where AF
1 (�2) is equal to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 γ2 γ3 · · · · · · γ3k−1

γ1 γ2 γ3 . .
. ...

γ2 γ3 . .
.

γ6k−5

γ3 . .
.

γ6k−5 γ 6k−4
... γ6k−5 γ 6k−4 γ6k−3

γ3k−1 · · · · · · γ6k−5 γ 6k−4 γ6k−3 γ 6k−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This feasibility question can be answered analytically, since the structure of missing entries
is simple enough. See Theorem 3.13.

The following example demonstrates the statement of Theorem 3.8 for the case y = x4
and a sequence β of even degree.

Example 3.11: Let β = (βi,j)i,j∈Z+,i+j≤2k be a bivariate sequence of degree 2k, k ≥ 4, and
K := {(x, y) ∈ R2 : y = x4}. For the existence of a K-rm β must satisfy the relations βi,j =
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βi+4,j−1 for every i, j ∈ Z+ such that i + j + 3 ≤ 2k. In the notation of Theorem 3.8, we
have

qi,j,s :=
{
1, if s = i + 4j,
0, otherwise. for i, j, s ∈ Z+, such that i + j ≤ 2k,

N1 :=
{
t ∈ Z+ : tmod 4 +

⌊
t
4

⌋
≤ 2k

}
= {t ∈ Z+ : t ≤ 8k, t /∈ {8k − 5, 8k − 2, 8k − 1}} ,

[n] := [8k + 2] and N2 := {8k − 5, 8k − 2, 8k − 1, 8k + 1, 8k + 2}.
The formula (28) is equal to

γt = βtmod t,
⌊

t
4

⌋ for every t ∈ N,

the function F
1 : R5 → R8k+3 is defined by

F
1(�2) = F(γ 8k−5, γ 8k−2, γ 8k−1, γ 8k+1, γ 8k+2)

:= (γ0, γ1, . . . , γ8k−6, γ 8k−5, γ8k−4, γ8k−3, γ 8k−2, γ 8k−1, γ8k, γ 8k+1, γ 8k+2),

and the matrix AF
1 (�2) is equal to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 γ2 γ3 · · · · · · γ4k γ4k+1

γ1 γ2 γ3 . .
. ...

γ2 γ3 . .
.

γ8k−6 γ 8k−5 γ8k−4

γ3 . .
.

γ8k−6 γ 8k−5 γ8k−4 γ8k−3
... γ8k−6 γ 8k−5 γ8k−4 γ8k−3 γ 8k−2

γ8k−6 γ 8k−5 γ8k−4 γ8k−3 γ 8k−2 γ 8k−1
... γ8k−6 γ 8k−5 γ8k−4 γ8k−3 γ 8k−2 γ 8k−1 γ8k
γ4k γ8k−6 γ 8k−5 γ8k−4 γ8k−3 γ 8k−2 γ 8k−1 γ8k γ 8k+1
γ4k+1 · · · γ 8k−5 γ8k−4 γ8k−3 γ 8k−2 γ 8k−1 γ8k γ 8k+1 γ 8k+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In contrast to the situation y = x3 from Example 3.9, the structure of missing entries here
is too complicated for the analytic approach andwe believe the feasibility question can only
be answered numerically using linear matrix inequality solvers.

The following example demonstrates the statement of Theorem 3.8 for the case y = x4
and a sequence β of odd degree.

Example 3.12: Let β = (βi,j)i,j∈Z+,i+j≤2k−1 be a bivariate sequence of degree 2k−1, k ≥ 4,
and K := {(x, y) ∈ R2 : y = x4}. For the existence of a K–rm β must satisfy the relations
βi,j = βi+4,j−1 for every i, j ∈ Z+ such that i + j + 3 ≤ 2k − 1. In this case

qi,j,s :=
{
1, if s = i + 4j,
0, otherwise. for i, j, s ∈ Z+, such that i + j ≤ 2k − 1,
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N1 :=
{
t ∈ Z+ : tmod 4 +

⌊
t
4

⌋
≤ 2k − 1

}
= {t ∈ Z+ : t ≤ 8k − 4 and t /∈ {8k − 9, 8k − 6, 8k − 5}} ,

n := [8k − 2] and N2 := {8k − 9, 8k − 6, 8k − 5, 8k − 3, 8k − 2}.

The formula (28) is equal to

γt = βtmod t,� t
4 � for every t ∈ N,

the function F
1 : R5 → R8k−1 is defined by

F
1(�2) = F(γ 8k−9, γ 8k−6, γ 8k−5, γ 8k−3, γ 8k−2)

:= (γ0, γ1, . . . , γ8k−10, γ 8k−9, γ8k−8, γ8k−7, γ 8k−6, γ 8k−5, γ8k−4, γ 8k−3, γ 8k−2),

and the matrix AF
1 (�2) is equal to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 γ2 γ3 · · · · · · γ4k−2 γ4k−1

γ1 γ2 γ3 . .
. ...

γ2 γ3 . .
.

γ8k−10 γ 8k−9 γ8k−8

γ3 . .
.

γ8k−10 γ 8k−9 γ8k−8 γ8k−7
... γ8k−10 γ 8k−9 γ8k−8 γ8k−7 γ 8k−6

γ8k−10 γ 8k−9 γ8k−8 γ8k−7 γ 8k−6 γ 8k−5
... γ8k−10 γ 8k−9 γ8k−8 γ8k−7 γ 8k−6 γ 8k−5 γ8k−4

γ4k−2 γ8k−10 γ 8k−9 γ8k−8 γ8k−7 γ 8k−6 γ 8k−5 γ8k−4 γ 8k−3
γ4k−1 · · · γ 8k−9 γ8k−8 γ8k−7 γ 8k−6 γ 8k−5 γ8k−4 γ 8k−3 γ 8k−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Since 8k − 4 = (2k − 1) · 4 is even, the problem has the same structure as in the even
degree case (see Example 3.11).

3.4. A solution to the odd degree TMP on y = x3

The following theorem is a concrete solution to the TMPof odd degree on the curve y = x3,
which can be solved using the same technique as odd cases of the TMP on y = x�, � ≥ 3.
However, for � = 3 we get explicit conditions for the existence of the solution, similarly as
in the even degree case [48, Theorem 3.1].

Theorem 3.13 (Solution to the TMP on y = x3, odd case): Let K := {(x, y) ∈ R2 : y =
x3} and β := β(2k−1) = (βi,j)i,j∈Z+,i+j≤2k−1, where k ≥ 3. Let γ (z) := (γ0, γ1, . . . , γ6k−5,
z, γ6k−3) be a sequence, defined by γt := βtmod 3,� t

3 � for t = 0, 1, . . . , 6k − 5, 6k − 3, and z
is a variable. The following statements are equivalent:

(1) β has a K-representing measure.
(2) β has a (rankMk−1)-atomic or (rankMk−1 + 1)-atomic K-representing measure.
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(3) The relations βi,j+1 = βi+3,j hold for every i, j ∈ Z+ with i + j ≤ 2k − 4 and denoting
B = {1, x, x2, y, yx, yx2, . . . , yk−1}, one of the following holds:
(a) (Mk−1)|B 
 0.
(b) (Mk−1)|B �
 0, (Mk−1)|B � 0, denoting γ := (γ0, γ1, . . . , γ6k−6), r := rank γ and(

ϕ0 · · · ϕr−1
)
:= Aγ (r − 1)−1 (γr · · · γ2r−1

)T , (30)

it holds that

γ6k−u =
r−1∑
i=0

ϕiγ6k−u−r+i for u = 3, 5, (31)

where γ6k−4 is defined by (31) for u = 4.

Moreover, if a K-representing measure exists, then there does not exist a (rankMk−1)-
atomic one if and only if (Mk−1)|B 
 0 and γ6k−3 does not satisfy (31) for u = 3, where
γ6k−4 is obtained by (31) for u = 4 and one uses (30) with r = 3k−2.

Proof: By Theorem 3.8, (1) is equivalent to the validity of the relations βi,j+1 = βi+3,j
for every i, j ∈ Z+ with i + j ≤ 2k − 4 and feasibility of AF
1 (γ 6k−4,γ 6k−2) � 0, where the
linear matrix function AF
1 (γ 6k−4,γ 6k−2) is as in Example 3.10. The latter is further equiv-
alent to the existence of γ6k−4 and γ6k−2 such that F
1(γ6k−4, γ6k−2) has an R-rm. Here
we note that if AF
1 (γ6k−4,γ6k−2) � 0 is such that rank F
1(γ6k−4, γ6k−2) < AF
1 (γ6k−4,γ6k−2),
then rank F
1(γ6k−4, γ6k−2) = AF
1 (γ6k−4,γ6k−2) − 1 by [44, Corollary 2.5]. Since γ6k−2
occurs only in the bottom right corner of AF
1 (γ6k−4,γ6k−2), we can replace it with γ̃6k−2
such thatAF
1 (γ6k−4,γ̃6k−2) � 0 and rank F
1(γ6k−4, γ̃6k−2) = AF
1 (γ6k−4,γ̃6k−2), which by [44,
Theorem 3.9] indeed implies the existence of an R-rm. We have that (Mk−1)|B = Aγ . If
(Mk−1)|B 
 0, there exists γ6k−4 such that A(γ0,γ1,...,γ6k−4) 
 0 and by [44, Theorem 3.1],
the sequence (γ0, γ1, . . . , γ6k−3) has a (3k − 1)-atomic R-representing measure. Hence,
one also finds γ6k−2 such that F
1(γ6k−4, γ6k−2) has an R-rm. If (Mk−1)|B � 0 and
(Mk−1)|B �
 0, then by [44, Theorem 3.8], (γ0, γ1, . . . , γ6k−5) has a unique R-rm. This
measure also represents γ6k−3 iff (31) for u = 4 and u = 3 holds. This establishes the
equivalence (1) ⇔ (3). The equivalence of both with (2) follows by observing that
F
1(γ6k−4, γ6k−2) admits a (rank γ )-atomic or (rank γ + 1)-atomic R-rm. The first case
happens iff (b) holds or (a) holds and γ6k−4 is obtained by (31) for u = 4, where one
uses (30) with r = 3k−2, and γ6k−3 is obtained by (31) for u = 3. Since rankAγ =
rankMk−1, the equivalence follows. �

4. The TMP on the curves yx� = 1

In this section, we study the K-TMP for K being a curve of the form yx� = 1, � ∈ N,
� ≥ 2. In Section 4.1, we first give a solution to the K -TMP, based on the size of posi-
tive semidefinite extensions of the moment matrix needed and also bound the number of
atoms in theK-rmwith the smallest number of atoms (see Theorem 4.1 for the even degree
and Theorem 4.2 for the odd degree sequences). As a result we obtain a sum-of-squares
representation for polynomials, which are strictly positive on K (see Corollary 4.3). This
improves bounds in the previously known result [11, Proposition 6.4]. In Section 4.2, we
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give a solution to the K -TMP, based on a feasibility of the corresponding linear matrix
inequality (see Theorem 4.4).

4.1. Solution to the TMP in terms of psd extensions ofMk, bounds on the number of
atoms in theminimalmeasure and a positivstellensatz

Theorem 4.1 (Even case): Let K := {(x, y) ∈ R2 : yx� = 1}, where � ∈ N \ {1}, and β :=
β(2k) = (βi,j)i,j∈Z+,i+j≤2k, where k ≥ �+ 1. The following statements are equivalent:

(1) β has a K-representing measure.
(2) β has a s-atomic K-representing measure for some s satisfying

rankMk ≤ s ≤ k(�+ 1).

(3) Mk satisfies YX� = 1 and admits a positive semidefinite, recursively generated extension
Mk+�.

(4) Mk satisfies YX� = 1 and admits a positive semidefinite extension Mk+�+1.

Theorem 4.2 (Odd case): Let K := {(x, y) ∈ R2 : yx� = 1}, where � ∈ N \ {1}, and β :=
β(2k−1) = (βi,j)i,j∈Z+,i+j≤2k−1, where k ≥ �+ 1. The following statements are equivalent:

(1) β has a K-representing measure.
(2) β has a s-atomic K-representing measure for some s satisfying

rankMk ≤ s ≤ k(�+ 1)−
⌊
�

2

⌋
+ 1.

(3) β(2k−1) can be extended to a sequence β(2k) such that Mk satisfies YX� = 1 and admits
a positive semidefinite, recursively generated extension Mk+�.

(4) β(2k−1) can be extended to a sequence β(2k) such that Mk satisfies YX� = 1 and admits
a positive semidefinite extension Mk+�+1.

Remark 4.1: (1) Previous bounds on the size of extensions in (4) of Theorem 4.1: In [11,
Section 6], the author considered TMPs on Z(p) in terms of the size of psd exten-
sions of the moment matrix also for polynomials of the form p(x, y) = yq(x), where
q ∈ R[x]. Namely, by [11, Propositions 6.1, 6.4], a sequence of degree 2k admits a
Z(p)-rm, ifMk admits a psd extensionsMk+r, where r = (2k + 2)(2 + deg q)− (1 +
deg q + k). The proof of this result relies on the truncated Riesz–Haviland theorem
[52, Theorem 1.2] and a sum-of-squares representations for polynomials, strictly pos-
itive onZ(p) ([11, Proposition 6.4] and [53, Proposition 5.1]). Part (4) of Theorem 4.1
improves Fialow’s result in case q(x) = x�, � ≥ 2, by decreasing the size of the
extensions to r = �+ 1.

(2) Known bounds on the number of atoms in (2) of Theorems 4.1, 4.2: Similarly as in
Remark 3.1.(3.1), part (2) of Theorem 4.1 is a counterpart of [50, Corollary 7.6] for
even degree sequences on curvesZ(yx� − 1), while part (2) of Theorem 4.2 improves
[50, Corollary 7.6] for curvesZ(yx� − 1) by decreasing it for � �2� − 1.

(3) Uniqueness and description of all solutions in Theorems 4.1 and 4.2:The same comment
as for Remark 3.1.(5) applies here. Beyond the case yx2 = 1 (see Example 4.5) the
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structure of themissing entries ofAγ from the proof of Theorem4.1 is too complicated
to have control over all psd completions and consequently over the uniqueness and the
description of all solutions.

(4) Complexity of checking conditions in (4) of Theorems 4.1 and 4.2: The same comment
as for Remark 3.1.(6) applies here. Themain complexity question is the SDP feasibility
question, which is cheaper when dealt with on a univariate sequenceAγ̃ defined in the
proof. A precise SDP is stated in Theorem 4.4.

Proof of Theorem 4.1.: The implications (1) ⇒ (4) and (2) ⇒ (1) are trivial. The impli-
cation (4) ⇒ (3) follows by [1, Theorem 3.14]. It remains to prove the implication (3) ⇒
(2). Assume that YX� is a column relation andMk admits a psd, rg extensionMk+�. Let

B =
{
yk+1x�−1, yk, ykx, . . . , ykx�−1, . . . , y, yx, . . . , yx�−1, 1, x, . . . , xk+1

}
(32)

be the set of monomials and V the vector subspace in R[x, y]k+� generated by the set B.
SinceMk+� satisfies

XiYj =
{
Ximod �Yj−� i

�
�, if i, j ∈ Z+, i + j ≤ k, j ≥ � i

�
�,

Xi−j�, if i, j ∈ Z+, i + j ≤ k, j < � i
�
�,

it follows that the columns from B span C(Mk+�). Let p(x, y) = ∑
i,j pijx

iyj ∈ V be a poly-
nomial and p̂ a vector of its coefficients ordered in the basis B. We define a univariate
polynomial qp(x) corresponding to p(x, y), by

gp(x) := p(x, x−�) =
∑
i,j

pijxi−�j =:
k+1∑

s=−k�−1

gp,sxs ∈ R[x]k�+1. (33)

Let ĝp be its vector of coefficients in the basis

B1 = {x−k�−1, x−k�, . . . , xk+1}. (34)

The monomials xi1yj1 , xi2yj2 from B correspond to the same monomial xs by the corre-
spondence (33) iff i1 − �j1 = i2 − �j2, which is further equivalent to i1 = i2 and j1 = j2
(since i1 and i2 are at most �− 1 in B). Therefore

ĝp = p̂. (35)

We define two univariate sequences

γ := γ (−2k�,2k) = (γ−2k�, γ−2k�+1, . . . , γ0, . . . , γ2k) ∈ R
2k(1+�)+1,

γ̃ := γ (−2k�−2,2k+2) = (γ−2k�−2, γ−2k�−1, γ , γ2k+1, γ2k+2) ∈ R
2k(1+�)+5,
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by the formula

γt =
{
βt,0, if t ≥ 0,
βt+�

⌈ |t|
�

⌉
,
⌈ |t|
�

⌉, if t < 0. (36)

Note that for t<0 we have that t + �� |t|
�
� ≤ �− 1, � |t|

�
� ≤ 2k + 1 (since � ≥ 3) and hence

t + �

⌈ |t|
�

⌉
+
⌈ |t|
�

⌉
≤ �− 1 + 2k + 1 = 2k + �.

Thereforeβt+�� |t|
�

�,� |t|
�

� is well-defined being an element of thematrixMk+� (since 2k + � ≥
2k + 2�).

By the following claim solving the K-TMP for β is equivalent to solving the (R \ {0})-
TMP for γ .

Claim 7: Let u ∈ N. A sequence γ admits a u-atomic (R \ {0})-rm if and only if β admits
a u-atomic K-rm.

Proof of Claim 7.: First we prove the implication (⇒). Let x1, . . . , xu, be the atoms in
the (R \ {0})–rm for γ with the corresponding densities ρ1, . . . , ρu. We will prove that
the atoms (x1, (x1)−�), . . . , (xu, (xu)−�) with densities ρ1, . . . , ρp are the K-rm for β . We
separate two cases:

(1) � i
�
� ≥ j:

βi,j = βi−�j,0 = γi−�j =
u∑

p=0
ρp(xp)i−�j =

u∑
p=0

ρp(xp)i((xp)−�)j,

were we used the fact that β is rg in the first equality, (36) in the second equality, the
definitions of ρp, xp in the third equality and split (xp)i−�j into two parts in the last
equality.

(2) � i
�
� < j:

βi,j = βimod �,j−� i
�
� = γ−(j−� i

�
�)�+imod � =

u∑
p=0

ρp(xp)−(j−� i
�
�)�+imod �

=
u∑

p=0
ρp(xp)�

i
�
��+imod �((xp)−�)j

=
u∑

p=0
ρp(xp)i((xp)−�)j,

were we used the fact that β is rg in the first equality, (36) in the second equality, the
definitions of ρp, xp in the third equality, split the exponent at xp into two parts in the
fourth equality and used that � i

�
��+ imod � = i in the last equality.

This proves the implication (⇒).
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It remains to prove the implication (⇐). Let (x1, (x1)−�), . . . , (xu, (xu)−�) be the atoms
in theK-rm for β with the corresponding densities ρ1, . . . , ρu.Wewill prove that the atoms
(x1, . . . , xu) with densities ρ1, . . . , ρp are the (R \ {0})-rm for γ :

• For t ≥ 0 we have that

γt = βt,0 =
u∑

p=0
ρp(xp)t ,

where we use the definition (36) in the first equality and the definitions of ρp, xp in the
second.

• For t<0 we have that

γt = βt+�
⌈ |t|
�

⌉
,
⌈ |t|
�

⌉ =
u∑

p=0
ρp(xp)t+�

⌈ |t|
�

⌉
((xp)−�)

⌈ |t|
�

⌉
=

u∑
p=0

ρp(xp)t ,

where we use the definition (36) in the first equality and the definitions of ρp, xp in the
second.

This proves the implication (⇐). �

Let (Mk+�)|B be the restriction ofMk+� to the rows and columns indexed bymonomials
(capitalized) from B. The following claim gives an explicit connection between (Mk+�)|B
and the Hankel matrix Aγ̃ of the sequence γ̃ .

Claim 8: We have that

(Mk+�)|B = Aγ̃ . (37)

Proof of Claim 8.: Let p(x, y) = ∑
i,j pijx

iyj ∈ V and r(x, y) = ∑
i,j rijx

iyj ∈ V be polyno-
mials from the vector subspace V and p̂, r̂ vectors of their coefficients ordered in the basis
B. Let β̃ := β(2(k+1)�+2(�−1)). Then we have

(̂r)T
(
(Mk+�)|B

)
p̂ =1 Lβ̃ (pr) = Lβ̃

⎛⎝ ∑
i1,i2,j1,j2

pi1j1ri2j2x
i1+i2yj1+j2

⎞⎠
=2

∑
i1,i2,j1,j2

pi1j1ri2j2βi1+i2,j1+j2

=3
∑

i1,i2,j1,j2

pi1j1ri2j2γi1+i2−(j1+j2)�

=4 Lγ̃

⎛⎝ ∑
i1,i2,j1,j2

pi1j1ri2j2x
i1+i2−(j1+j2)�

⎞⎠
=5 Lγ̃

⎛⎝ ∑
i1,i2,j1,j2

pi1j1x
i1−j1� · ri2j2xi2−j2�

⎞⎠
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=6 Lγ̃

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
∑
i1,j1

pi1j1x
i1−j1�

︸ ︷︷ ︸
gp(x)

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
∑
i2,j2

ri2j2x
i2−j2�

︸ ︷︷ ︸
gr(x)

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
=7 ĝrTAγ̃ ĝp = r̂TAγ̃ p̂,

where in the first line we used the correspondence between the moment matrix and the
Riesz functional Lβ̃ , the definition Lβ̃ in the second, (36) and the fact thatβ is rg in the third
(rg is needed if i1 + i2 ≥ �), the definition of Lγ̃ in the fourth, decomposed the exponent
of x into two parts in the fifth, decomposed a sum into the product of two sums in the
sixth, in the seventh we used the correspondence between Aγ̃ and the Riesz functional Lγ̃ ,
where ĝp, ĝr are the vectors of coefficients of gp and gr in the basis B1 (see (34)) and (35).
Since p and q were arbitrary from V, this proves Claim 8. �

Since (Mk+�)|B is psd, it follows from (37) that Aγ̃ is psd. We separate two cases.
Either Aγ is pd or Aγ is psd, singular, prg by [44, Theorem 2.6] and nrg by [46, Propo-
sition 2.1.(5)]. By [46, Theorem 3.1], γ admits a (rankAγ )-atomic (R \ {0})-rm. Since
rankMk ≤ rankAγ ≤ k(�+ 1)+ 1, using Claim 8 the following holds:

(2′) β has an s-atomic K-rm for some s satisfying

rankMk ≤ s ≤ rankAγ ≤ k(�+ 1)+ 1. (38)

To obtain (2) of Theorem 4.1, we need to decrease the upper bound in (38) by 1. Note
that the bound k(�+ 1)+ 1 occurs only in the caseAγ is pd.We denote by γ (z) a sequence
obtained from the sequence γ by replacing γ−2k�+1 with a variable z. The matrix Aγ (z)
is a partially positive definite matrix and by [48, Lemma 2.11] there exist two choices
of z, which we denote by z±, such that Aγ (z±) is psd and has rank k(�+ 1). Using [46,
Proposition 2.5] for the reversed sequence (γ (z±))(rev) of γ (z±), we see that at least one of
(γ (z±))(rev) admits a (R \ {0})-rm. Hence, at least one of γ (z±) is prg and nrg, and admits
a k(�+ 1)-atomic (R \ {0})-rm. If none of the moments βi,j of the sequence β depends
on γ−2k�+1, the (R \ {0})-rm for (γ (z±))(rev) will generate the K-rm for β as in the proof
of Claim 8. But by definition (36), there is indeed no moment from β , which depends
on γ−2k�+1 (since we need to represent moments of degree at least −2k� and at most 2k,
while γ−2k�+1 corresponds to β�−1,2k in some extension of β), which concludes the proof
of Theorem 4.1. �

To prove Theorem 4.2 only a little adaptation of the last part of the proof of Theorem 4.1
is needed, which we now explain.

Proof of Theorem 4.2.: The implications (1) ⇒ (4) and (2) ⇒ (1) are trivial. The impli-
cation (4) ⇒ (3) follows from [1, Theorem3.14]. It remains to prove the implication (3) ⇒
(2). Following the proof of Theorem 4.1 everything remains the same until (2’). It remains
to justify that the upper bound in (38) can be decreased to m := k(�+ 1)− � �2� + 1. If
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rankAγ ≤ m, then we are already done. From now on we assume that r := rankAγ > m.
Since γ admits a (R \ {0})-representing measure, which we denote by μ, it is nrg and
rank γ = rankAγ = rankAγ [r − 1]. Hence, Aγ (2k−2(r−1),2k) is pd and in particular also its
submatrix Aγ (2k−2(m−1),2k) is pd. We denote by γ (z1, . . . ,z�) a sequence obtained from
the sequence γ by replacing the moments γ−2k�, γ−2k�+1, . . . , γ−2k�+�−1 with variables
z1, . . . ,z�. By [46, Theorem 3.1], the sequence γ (2k−2(m−1),2k) has a m-atomic (R \ {0})-
rm (to apply [46, Theorem 3.1] we used that 2k − 2(m − 1) = −2k�+ 2� �2� < 0). We
denote the measure obtained in this way by μ1 and generate its moment sequence
γ (z1, . . . , z�), where z1, . . . , z� are the moments of degrees −2k�,−2k�+ 1, . . . ,−2k�+
�− 1, respectively. If none of the moments βi,j of the sequence β(2k−1) depends on
γ−2k�, γ−2k�+1, . . . , γ−2k�+�−1, then μ1 will generate the K-rm for β(2k−1) as in the
proof of Claim 1 of Theorem 4.1. But by definition (36), there is indeed no moment
from β(2k−1) depending on γ−2k�, γ−2k�+1, . . . , γ−2k�+�−1, which concludes the proof of
Theorem 4.2. �

A corollary to Theorem 4.1 is an improvement of the bounds on the degrees of sums of
squares in the Positivstellensatz [11, Corollary 6.4] for the curves of the form yx� = 1,� ∈
N \ {1}.

Corollary 4.3: Let K := {(x, y) ∈ R2 : yx� = 1}, where � ∈ N \ {1} and k ≥ �+ 1. If
r(x, y) ∈ R[x, y]2k is strictly positive on K, then r admits a decomposition

r(x, y) =
�1∑
i=1

fi(x, y)2 + (yx� − 1)
�2∑
i=1

gi(x, y)2 − (yx� − 1)
�2∑
i=1

hi(x, y)2,

where �1, �2, �3 ∈ Z+, fi, gi, hi ∈ R[x, y] and

deg f 2i ≤ 2m, deg((yx� − 1)g2i ) ≤ 2m, deg((yx� − 1)h2i ) ≤ 2m

with m = k + �+ 1. where �1, �2, �3 ∈ Z+.

Proof: By the equivalence (1) ⇔ (3) of Theorem 4.1, the set K has the property (Rk,�) in
the notation of [52, p. 2713]. Now the result follows by [52, Theorem 1.5]. �

Remark 4.2: The bound onm in Theorem 4.3 in [11, Corollary 6.4] is quadratic in k and
�, namely (2k + 2)(2 + �)− (1 + �).

4.2. A solution to the TMP based on the feasibility of a linearmatrix inequality

In this subsection we give another alternative solution to the TMP on curves yx�, where
� ∈ N \ {1}, which is based on the feasibility of a linear matrix inequality associated to the
univariate sequence γ , obtained from the original sequence β as in the proof of the results
in the previous subsection. The feasibility question appears as a result of the fact that γ is
not fully determined by β , but β admits a K-representing measure if and only if γ can be
completed to a sequence admitting a (R \ {0})-representing measure.

For n1, n2 ∈ Z, n1 ≤ n2, we denote by [n1 : n2] the set of all integers between n1 and n2.
Let the setsN1,N2 form a partition of [n1 : n2], i.e.N1,N2 ⊆ [n1 : n2],N1 ∪ N2 = [n1 : n2]
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and N1 ∩ N2 = ∅. Let 
1 := (γt)t∈N1 be a sequence of real numbers indexed by integers
from N1 and �2 := (γ t)t∈N2 a tuple of variables indexed by integers from N2. Let

F
1(�2) : R|N2| → R
|N1|+|N2| (39)

be a function with the output a sequence (γ̃t)t∈[n1:n2] where γ̃t =
{
γt , if t ∈ N1,
γ t , if t ∈ N2.

In Theorem 4.4 the set N1 will be the set of indices, for which the corresponding uni-
variate sequence γ is determined by β , while the indices of the non-determined part
will belong to N2. Since we can either get a sequence with the lowest and highest degree
terms both of odd degree or both of even degree or only the highest term of odd degree,
for which the solutions to the STHMP are slightly different, we separate three cases for
N1 ∪ N2 = [n1 : n2] (see (41)).

Theorem 4.4: Let K := {(x, y) ∈ R2 : yx� = 1}, � ∈ N \ {1}, and

β := β(d) = (βi,j)i,j∈Z+,i+j≤d,

where �d
2� ≥ �+ 1. Define

N1 := {t ∈ Z− : t = −i�+ j for some 0 ≤ j < �, i ∈ Z+ and i + j ≤ d},

γt =
{
βt,0, if t ∈ (N ∪ {0}) ∩ N1,
βt+�

⌈ |t|
�

⌉
,
⌈ |t|
�

⌉, if t ∈ N1 \ (N ∪ {0}), (40)

and 
1 := (γt)t∈N1 . Let

[n1 : n2] :=
⎧⎨⎩
[ − d�− 2 : d + 2], if dis even,
[ − d�− 2 : d + 1], if only � is even,
[ − d�− 1 : d + 1], if d, �are odd,

(41)

�2 := (γ t)t∈N2 be a tuple of variables with N2 = [n1 : n2] \ N1 and F
1(�2) be defined as
in (39). Then the following statements are equivalent:

(1) β has a K-representing measure.
(2) βi+�,j+1 = βi,j for every i, j ∈ Z+ such that i + j ≤ d − �− 1 and there exists a tuple


2 = (γt)t∈N2 ∈ RN2 such that AF
1 (
2) � 0.

Proof: Assume that d is even. Observing the proof of Theorem 4.1 one can notice that
F
1(�2) corresponds to the sequence γ̃ . The original sequence β determines only γt for
t ∈ N1 by (40), while for t ∈ N2, γ t are variables. By the proof of Theorem 4.1, β will have
a K–rm iff it satisfies the rg relations coming from the column relation YX� = 1 and there
exists γ̃ such that Aγ̃ � 0. This proves Theorem 4.4 for even d.
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Observing the proof of Theorem 4.2 in case d is odd one can notice that only

γ (− d�,d) = (γ− d�, γ− d�+1, . . . , γd−1, γd)

needs to have a (R \ {0})-rm to obtain a K-rm for β . In case d� is even, this is equivalent
to Aγ (− d�−2,d+1) � 0, where

γ (− d�−2,d+1) = (γ− d�−2, γ− d�−1, . . . , γd, γd+1)

for some γ− d�−2, γ− d�−1 and γd+1. Since γ (− d�−2,d+1) corresponds to the sequence
F
1(�2) for even � and odd d, this proves Theorem 4.2 in this case. If d� is odd, then
it suffices that there are γ− d�−1 and γd+1 such that Aγ (− d�−1,d+1) � 0, where

γ (− d�−1,d+1) = (γ− d�−1, γ− d�, . . . , γd, γd+1).

Since γ (− d�−1,d+1) corresponds to the sequence F
1(�2) for odd d�, this proves
Theorem 4.2 in this case. �

Wewill present the statement of Theorem 4.4 on a few examples. The following example
is for � = 2 and a sequence β of even degree.

Example 4.5: Let β = (βi,j)i,j∈Z+,i+j≤2k be a bivariate sequence of degree 2k, k ≥ 3, and
K := {(x, y) ∈ R2 : yx2 = 1}. For the existence of aK-rm β must satisfy the relations βi,j =
βi+2,j+1 for every i, j ∈ Z+ such that i + j ≤ 2k − 3. In the notation of Theorem 4.4,

N1 := {t ∈ Z : − 4k ≤ t ≤ 2k, t �= −4k + 1},
[n1 : n2] := [−4k − 2 : 2k + 2], N2 = {−4k − 2,−4k − 1,−4k + 1, 2k + 1, 2k + 2},

the formula (36) is equal to

γt =
{
βt,0, if t ∈ Z+ ∩ N1,
βt+2

⌈ |t|
2

⌉
,
⌈ |t|

2

⌉, if t ∈ N1 \ (Z+ ∩ N1),

the function F
1 : R5 → R6k+4 is defined by

F
1(�2) = F
1(γ −4k−2, γ −4k−1, γ −4k+1, γ 2k+1, γ 2k+2)

:= (γ −4k−2, γ −4k−1, γ−4k, γ −4k+1, γ−4k+2, . . . , γ2k, γ 2k+1, γ 2k+2),

and the matrix AF
1 (�2) is equal to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ −4k−2 γ −4k−1 γ−4k γ −4k+1 γ−4k+2 · · · γk γk+1

γ −4k−1 γ−4k γ −4k+1 γ−4k+2 . .
.

γk+1 γk+2

γ−4k γ −4k+1 γ−4k+2 . .
.

γk+2
...

γ −4k+1 β0,2k−1 . .
. ...

...

γ−4k+2 . .
. ... γ2k

... γ2k γ 2k+1
γk+1 · · · · · · · · · γ2k−1 γ2k γ 2k+1 γ 2k+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The question of feasibility of AF
1 (�2) can be answered analytically, since the struc-
ture of the missing entries is simple enough. Actually it is even easier to work with
A(γ−4k,γ −4k+1,γ−4k+2,...,γ2k) and answer the feasibility question together with the conditions
from the solution of [46, Theorem 2.1] (see [46, Theorem 4.1]).

The following example demonstrates the statement of Theorem 4.4 for the case yx3 = 1
and a sequence β of even degree.

Example 4.6: Let β = (βi,j)i,j∈Z+,i+j≤2k be a bivariate sequence of degree 2k, k ≥ 4, and
K := {(x, y) ∈ R2 : yx3 = 1}. For the existence of aK–rm βmust satisfy the relations βi,j =
βi+3,j+1 for every i, j ∈ Z+ such that i + j ≤ 2k − 4. In the notation of Theorem 4.4,

N1 := {t ∈ Z : − 6k ≤ t ≤ 2k, t /∈ {−6k + 1,−6k + 2,−6k + 5}},
[n1 : n2] := [−6k − 2 : 2k + 2],

N2 := {−6k − 2,−6k − 1,−6k + 1,−6k + 2,−6k + 5, 2k + 1, 2k + 2},
the formula (36) is equal to

γt =
{
βt,0, if t ∈ Z+ ∩ N1,
βt+3

⌈ |t|
3

⌉
,
⌈ |t|

3

⌉, if t ∈ N1 \ (Z+ ∩ N1),

the function F
1 : R7 → R8k+4 is defined by

F
1(�2) = F
1(γ −6k−2, γ −6k−1, γ −6k+1, γ −6k+2, γ −6k+5, γ 2k+1, γ 2k+2)

:= (γ −6k−2, γ −6k−1, γ−6k, γ −6k+1, γ −6k+2, γ−6k+3, γ−6k+4,

γ −6k+5, γ−6k+6, . . . , γ2k, γ 2k+1, γ 2k+2),

and the matrix AF
1 (γ −6k−2,γ −6k−1,γ −6k+1,γ −6k+2,γ −6k+5,γ 2k+1,γ 2k+2) is equal to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ −6k−2 γ −6k−1 γ−6k γ −6k+1 γ −6k+2 γ−6k+3 γ−6k+4 γ −6k+5 · · · γk γk+1
γ −6k−1 γ−6k γ −6k+1 γ −6k+2 γ−6k+3 γ−6k+4 γ −6k+5 · · · · · · γk+1 γk+2

γ−6k γ −6k+1 γ −6k+2 γ−6k+3 γ−6k+4 γ −6k+5 . .
.

γk+2
...

γ −6k+1 γ −6k+2 γ−6k+3 γ−6k+4 γ −6k+5 . .
. ...

...

γ −6k+2 γ−6k+3 γ−6k+4 γ −6k+5 . .
. ...

...
... γ−6k+4 γ −6k+5 . .

. ...
...

... . .
.

. .
. ...

...
... . .

. ... γ2k
... γ2k γ 2k+1

γk+1 · · · · · · · · · · · · · · · · · · γ2k−1 γ2k γ 2k+1 γ 2k+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In contrast to the situation yx2 = 1 from Example 4.5, the structure of the missing entries
here is too complicated for the analytic approach and we believe the feasibility question
can only be answered numerically using linear matrix inequality solvers.

Remark 4.3: It would be interesting to know, to what extent does the result [50, Corollary
7.6] (see Remark 3.1.(3.1)) extend to even degree sequences on all plane curves. As
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explained in Remark 3.1. (3), one needs one more atom in the upper bound for curves
of the form y = q(x) with deg q = 2 and the same is true if deg q ≤ 1 by Remark 3.1.(4).
On the other hand, the results of the present paper suggest that for curvesZ(p), deg p ≥ 3,
the upper bound could be k deg p. Also from the concrete solution to the TMP on the curve
Z(y2 − x3) [48, Corollary 4.3] it follows that the same bound works. However, the forth-
coming result of Bhardwaj [59] shows that also for degree 3 curves the upper bound has to
be loosened, by constructing a truncated moment sequence of degree 2k = 6 on a curve
Z(p), where p(x, y) = y2 − x3 + ax − 1, a = 524287

262144 , with a minimal measure consisting
of 10 atoms, which is k deg p + 1.
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