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Abstract

Purpose Increased sedimentation due to land use intensifica-
tion is increasingly affecting carbon processing in streams and
rivers around the globe. This study describes the design of a
laboratory-scale flow-through incubation system as a tool for
the rapid estimation of sediment respiration. The measure-
ments were compared with those obtained using an in situ
closed chamber respiration method. The influence of sediment
size on respiration rates was also investigated.

Materials and methods Measurements were conducted on a
pre-alpine gravel-bed river sediment separated into the follow-
ing grain size fractions: > 60 mm (14.3%), 60—5 mm (60.2%),
5-2 mm (13.7%), 2-0.063 mm (11.1%) and <0.063 mm
(0.6%). Concurrently, in situ and laboratory measurements
were carried out on a naturally heterogeneous sediment. In
situ respiration was determined in closed chambers as O, con-
sumption over time, while in the laboratory, respiration was
determined using flow-through respiration chambers. Oxygen
concentrations were measured using a fibre-optic oxygen me-
ter positioned at the inflow and outflow from the chamber.
Results and discussion The mean respiration rates within nat-
urally mixed riverbed sediments were 1.27 + 0.3 mg O,
dn>h' (n=4)and 0.77 £ 0.1 mg O, dm > h™' (n = 3) for
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the flow-through chamber system and closed chamber system,
respectively. Respiration rates were statistically significantly
higher in the flow-through chamber system (¢ test, p < 0.05),
indicating that closed chamber measurements underestimated
the oxygen consumption within riverbed sediments. Sediment
grain size was found to significantly affect respiration rates in
both systems (ANOVA, p < 0.001) with the fine sediment frac-
tion (particle size <0.063 mm) having the highest respiration rate
(Tow-through = 31 =23 mg O, dm > h™"). The smallest fractions
(2-0.063 and <0.063 mm), which represent approximately 12%
of total sediment volume, contributed 60% of total respiration.
Conclusions The study demonstrated that flow-through respi-
ration chambers more accurately estimate the respiration rate
within riverbed sediments than in situ closed chambers, since
the former experiment imitates the natural conditions where
continuous interstitial flow occurs in the sediments. We also
demonstrated that fine sediments (<5 mm) substantially contrib-
ute to heterotrophic respiration in the studied gravel-bed river.

Keywords Carbon fluxes - Freshwaters - Geomorphology -
Hyporheic zone - Respiration - Sediments

1 Introduction

Riverbed sediments are biogeochemically active zones playing
a key role in the energy flow and carbon processing in running
waters (Grimm and Fischer 1984; Findlay 1995; Battin et al.
2016). The surface of riverbed sediments forms only the visible
part of a vast continuous area extending beneath and alongside a
river bed known as the hyporheic zone (Orghidan 1955). In this
three-dimensional zone, where mixing of water, nutrients and
organic matter occurs between the surface and subsurface
(Boulton et al. 1998), a substantial part of decomposition and
nutrient turnover takes place (Naegeli and Uehlinger 1997).
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Here, the interlinked surface and subsurface processes are com-
plex and multidimensional and are driven mainly by hydrolog-
ical patterns and the geomorphology of the riverbed and adja-
cent aquifer (Valett et al. 1996; Mermillod-Blondin et al. 2000,
2014). From this aspect, hydrogeomorphological characteristics
serve as a structural template that shapes the ecological process-
es in the hyporheic zone and modes of interaction with surface
and ground water. River hydromorphology has been recognized
by river managers as an important element of surface waters
affecting biological components, such as fish and the benthic
invertebrate habitat (Commission of the European Communities
2000), but not as an important driver of key functions, such as
organic matter decomposition and nutrient transformation.
Moreover, the accumulation of fine sediments on the riverbed
surface and within the hyporheic zone is known to have deteri-
orated effects on carbon fluxes within riverbed sediments and is
increasingly enhanced by human pressures such as forestry and
agriculture (Hancock 2002; Crawford and Stanley 2016). In
order for it to be implemented in river management, more in-
depth knowledge is needed on the functioning of river ecosys-
tems in relation to hydrogeomorphology and increased sedi-
mentation (Elosegi et al., 2010).

The cycling of carbon, nutrients and pollutants in river
sediments is linked to the activity and functional capabilities
of the resident microbial communities, which are predomi-
nantly in the form of a biofilm covering the available substrate
(Battin et al. 2016). Invertebrates that inhabit the interstitial
spaces contribute mostly to particulate organic matter process-
ing and the top-down control of microorganisms (Foulquier
et al. 2010). The heterotrophic respiration of both biofilm and
invertebrates is one of the key processes in lotic ecosystems
(Naegeli and Uehlinger 1997; Pusch et al. 1998) and, as such,
is one of the most frequently measured functional ecosystem
parameters. Mechanistically, aerobic respiration is the biotic
conversion of organic carbon to carbon dioxide (Yvon-
Durocher et al. 2012). In an ecosystem, the respiration rate
indicates the patterns of carbon fluxes whereas aerobic respi-
ration is expressed as either oxygen consumption or carbon
dioxide production (Lampert 1984; Boyd, 1995).

Several methods for measuring oxygen consumption within
riverbed sediments have been developed for determining res-
piration including in situ and laboratory-based closed and
continuous-flow chambers. The majority estimate oxygen con-
sumption above the sediment-water interface and do not con-
sider the flow of water through the sediment (e.g. Bowman and
Delfino 1980; Jeppesen 1982; Prahl et al. 1991; Jones et al.
1995; Naegeli and Uehlinger 1997; Doering et al. 2011; Ruegg
et al. 2015; Sim¢i¢ et al. 2015). Pusch and Schwoerbel (1994)
have developed a portable device with recirculating water to
simulate unidirectional flow of water through a quasi-natural
sediment sample, enabling them to measure hyporheic com-
munity respiration in the field. Uzarski et al. (2001) improved
this approach by developing an in situ open system flow-

@ Springer

through sediment chambers that included hyporheic zone res-
piration. Meanwhile, in the laboratory, Mermillod-Blondin
et al. (2005) applied gravel-sand filtration columns, modified
from those developed by Danielopol and Niederreiter and used
by Griebler (1996), to measure biogeochemical transforma-
tions, oxygen consumption and microbial activity in hyporheic
sediments. Each of these techniques has its limitations, often
raising concerns regarding metabolic approximations on a
reach or whole stream scale (Uzarski et al. 2004). Despite this,
laboratory experiments on a small scale, i.e. in microcosms, in
heterogeneous sediments and under realistic interstitial flow
conditions, are a promising tool for measuring biogeochemical
processes (Mermillod-Blondin et al. 2005). Unfortunately,
such studies, with a few exceptions (e.g. Mermillod-Blondin
et al. 2005), are lacking.

Hence, the objectives of this study was to test the applica-
bility of a newly designed laboratory flow-through respiration
chamber that mimics the interstitial flow through the sediment
and where the temperature and other biologically important
variables such as oxygen concentrations, nutrients and flow
velocity are easy to manipulate. Following the work of Pusch
and Schwoerbel (1994), the system used in this study was
designed to be used in the laboratory, where different research
questions can be addressed under controlled conditions. It dif-
fers from gravel-sand filter columns (Mermillod-Blondin et al.
2005), since the interstitial flow velocities and the incubation
temperature can be modified and controlled. Respiration mea-
surements obtained using this newly designed system were
compared with an in situ closed chamber system, which is
proven as an efficient tool for estimating heterotrophic respira-
tion in stream sediments (Naegeli and Uehlinger 1997;
Uehlinger et al. 2002; Doering et al. 2011). Finally, already
known relationship between sediment granulometry and het-
erotrophic respiration rates (e.g. Doering et al. 2011; Bodmer
etal., 2016) was tested using the new flow-through chamber in
order to underline the importance of stream channel geomor-
phology to the flux of carbon in riverbed sediments.

2 Material and methods

Sediment samples were collected on 5 May 2015 from the
Kamniska Bistrica River along the downstream reach located
near the confluence with the Sava River (46°04'34.08"S;
14°38'11.09” N, 264 m a.s.l.). Nine subsamples of sediments
(three transversal transects with three samples) were taken
from the river channel to account for any riverbed heteroge-
neity (Fig. 1). A PVC tube (30 cm in diameter and 60 cm in
height) was placed into the wetted river channel (water levels
from 30 to 40 cm) and held there by the hand. The sediment
was then collected from the bottom (20 cm of depth layer) of
the sampling tube. Using this approach, sediment loss due to
water flow was prevented. Part of the naturally heterogeneous
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(mixed) sediment was stored for respiration measurements (in
situ and in the laboratory). The sediment sample was then
fractionated into five grain-size classes (>60, 60-5, 5-2, 2—
0.063, <0.063 mm) using a series of stainless steel sieves
(Endecotts, London, England). Benthic organisms (e.g.
Chironomidae, Nematoda and Oligochaeta) occasionally
present in the sediments were removed from the sample. A
portion of the sieved sediment fractions were then used for in
situ respiration measurements in closed chambers while a por-
tion was transported to the laboratory for flow-through respi-
ration measurements.

In situ respiration was measured in closed chambers as O,
consumption over time (Uehlinger et al. 2002). The mixed and
sieved sediment was gently placed into a series of Plexiglas
tubes (32 cm long, 5.2 cm in diameter). Afterward, the tubes
were half-filled with sediment and then filled to the top with
surface water collected from the sampling site and sealed with
rubber stoppers. The tubes were then incubated in situ by
burying them into the sediment at the sampling site for ap-
proximately 2 h. Each sediment fraction was incubated in
triplicate and controls, i.e. tubes filled with water but without
the sediment were incubated in the same way. The incubation
time was experimentally determined prior to the measure-
ments. During the shorter incubation times (<1 h), oxygen

consumption was below the limits of detection. The tubes
were incubated in the dark to avoid formation of artefacts
(i.e. photosynthetic activity) and to prevent loss due to strong
currents. The oxygen levels were measured using an optical
dissolved oxygen sensor (FDO® 925) connected to a WTW
Multi 3430 set instrument. Based on the oxygen consumption
in the tube (r, g O, h™"), the respiration per sediment volume
R, g0, m > h™') was calculated (after Lampert 1984).

In the laboratory, respiration was measured using flow-
through respiration chambers (V = 0.7 L) with internal and
external water flow (Fig. 2). The chambers were filled with
~600 mL of sediments. The internal water flow through the
sediments was maintained using a peristaltic pump
(ISM404B, ISMATEC, Wertheim, Germany) with a pump
rate of 7 mL min ' (+2.5 mL min ). The retention time was
sufficient to produce a difference of 10% in the O, concentra-
tion between the inlet and outlet water (Prahl et al. 1991). The
flow rate applied in the experiment resulted in flow velocities
similar to the interstitial flow velocities of gravel-bed rivers,
similar to the river surveyed in this study (Wagner and
Bretschko 2002). A constant temperature of 15 + 0.5 °C was
maintained by water circulating water through the thermal
jacket surrounding the chambers. The temperature was the
same as the temperature during closed chamber respiration
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Fig. 2 Schematic presentation of a)
flow-through incubation system
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measurements in the field. The inflow water was aerated to
maintain O, concentration close to 100% saturation. The ox-
ygen concentrations were measured using an fibre-optic oxy-
gen meter (OXY-4, PreSens, Regensburg, Germany) at the
inflow and outflow from the inner chamber. The oxygen con-
sumption in the chamber (r, mg O, dm > h™") was calculated
as follows:

;= (OZin_OZOut)f_O2control (1)
Vsed

where O,;, and O, are oxygen concentrations of water
(mg O, L") at inflow and outflow, respectively; f is the
chamber through-flow (L h™); Ozcontrol represents oxygen
consumption in the controls (mg O, h™') and Vg is vol-
ume of the sediment (dm>) (after Lampert 1984).
Respiration measurements were performed for 1 h. Prior
to the experiment, the flow-through system was running
for 8 h to observe the response of respiration over the
incubation time. Four replicate measurements were ob-
tained for both the naturally heterogeneous sediment and
for each sediment fraction. Control measurements (no
sediment) were also performed.

Chemical analyses of the water used for the flow-through
experiment were made in two replicates to assess the
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biogeochemical processes occurring in the sediments.
Nutrients (NH4*, NO3~, NO, ) were measured in the inflow
and outflow water using ion chromatography (761 Compact
IC, Metrohm AG, Herisau, Switzerland) with a precision of
+2%. Detection limits were 0.035 mg L™ for cations and
0.01 mg L™" for anions.

A t test was applied to determine if respiration rates
within naturally heterogeneous (mixed) sediment in
closed and flow-through chambers were significantly dif-
ferent from each other. A two-way analysis of variance
(ANOVA) with the type of measurement (closed or
flow-through chamber) and sediment size class (>60,
60-5, 5-2, 2-0.063, <0.063 mm) as independent variables
and respiration as response variable was conducted to ex-
amine the effect of measurement method and sediment
size class on respiration rates. The respiration data were
tested for normality prior to both analyses (7 test,
ANOVA) and were log transformed prior to two-way
ANOVA to fit the normality assumptions better.

To estimate patterns of carbon fluxes in relation to sed-
iment granulometry, a conversion factor of 0.38 and re-
spiratory coefficient of 0.85 (Dilly 2001) was used to
convert the amounts of consumed oxygen (mg O,
dm > h™") into amounts of carbon processed during respi-
ration (mg C dm > hY) (after Lampert 1984).
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Fig. 3 Respiration rates of natural (mixed) riverbed sediments measured
continuously for 8.5 h with the flow-through system

3 Results

When observing the change in respiration rates over the time,
the respiration rate of the natural (mixed) sediments reached
the highest value (0.9 mg O, dm > h™') in approximately
30 min after beginning the measurements in the flow-
through system (Fig. 3). After two hours, the respiration rate
decreased steeply and after five hours reached 0.5 mg O,
dm ™ h™". The rate then stayed constant until the end of the
measurements (3.5 h). An increase in nitrite and nitrate and
decrease in ammonium was observed at the outflow (Fig. 4).

The mean respiration rates of natural (mixed) riverbed sed-
iments were 0.77 + 0.1 mg O, dm > h™' when measured in the
closed chamber system and 1.27 +0.3 mg O, dm > h™" for the
flow-through system (Fig. 5) and were statistically significant-
ly higher in the latter (¢ test, p < 0.05). When comparing the
respiration rates of different sediment size classes (60-5, 5-2,
2-0.063, <0.063 mm), the highest mean respiration rate was
observed for the smallest size class (<0.063 mm) and was

51 23 mg O, dm > h™' for the flow-through system and
3.8+ 0.7 mg O, dm > h™' for the closed chamber system.
The lowest respiration rates were measured for the largest size
class (60—5 mm) and were 0.27 £ 0.1 and 0.27 £ 0.1 mg O,
dm™ h™' for the flow-through and closed chamber system,
respectively. There was also a statistically significant interac-
tion between the effects of measurement and sediment size
class on respiration rate (two-way ANOVA, F (2,
27)=169.09, p <0.001). Simple main effects analysis showed
that respiration rates were significantly higher during mea-
surements in the flow-through incubation system for the sed-
iment classes <0.063, 2—0.063, and 5-2 mm (p < 0.01), but
there was no significant difference between the two methods
in terms of respiration rates for the sediment class of 60—-5 mm
(p = 0.927). During incubation, an increase in nitrite and ni-
trate and a decrease in ammonium were observed in the out-
flow water for all the sediment fractions (Fig. 6). The carbon
turnover in the flow-through system was 0.41 + 0.09 mg C
dm > h ' or97.3+21.7mg Cm *day ' for naturally hetero-
geneous sediments (Table 1). The carbon turnover exponen-
tially increased with a decrease in sediment particle size.

The studied riverbed sediments were composed predominant-
ly of sediment size class 60—5 mm (60.2%) with the fine particles
(<0.063 mm) contributing 0.6% to the total amount of sediment
(Fig. 7). The calculated contribution of respiration rates to total
respiration were 11.5% for size class 60—5 mm, 28.7% for size
class 5-2 mm, 38% for size class 2-0.063 mm and 21.9% for
size class <0.063 mm (Fig. 6). Over 60% of total respiration
takes place on the sediments with a grain size of 2 mm or less.

4 Discussion

The experimental flow-through system that we designed
allowed us to quantify the heterotrophic respiration and

Fig. 4 Nitrite, nitrate, 11.0
ammonium and oxygen
concentrations measured in the
inflow water (n = 2) and in the 10.0 +
outflow water (n = 2) after 2 h and
at the end of the measurement
9.0 +
8.0
2 10 —A— nitrate
—¥— nitrite
—4— ammonium
—O— oxygen
0.5 A
+
0.0 T T T
inflow outflow 2 h outflow 8 h
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Fig.5 Respiration rates measured on natural (mixed) riverbed sediments
and selected sediment fractions in the closed chamber and flow-through
systems

biogeochemical processes in riverbed sediments that are me-
diated by microorganisms. In comparison to in situ closed
chamber measurements, the respiration rates are significantly
higher in the newly designed flow-through system. This sys-
tem imitates the interstitial flow in riverbed sediments and
hence presumably provides estimates of respiration rates and
nutrient transformations that are more realistic. Similarly,
Uzarski et al. (2001, 2004) showed that the flow-through
chambers more accurately represent the total system metabo-
lism than do closed chambers. In closed chambers, it is pos-
sible to underestimate metabolism because of the limited ex-
change between interstitial and surface water within the cham-
bers (Grimm and Fisher 1984; Uzarski et al. 2004). For ex-
ample, Sim¢i¢ and Mori (2007) demonstrated higher metabol-
ic rates, measured as respiratory potential, in riverbed sedi-
ments that more intensively exchange surface and subsurface
water, than in the gravel bar sediments where this exchange is
less intense. The interstitial flow-paths determined by hydrau-
lic conductivity and sediment permeability appear to play an
important role in their study. Similarly, Battin (2000) shows a

clear link between microbial activity and streambed hydrody-
namics. Nutrient availability that is linked to interstitial flow
(Findlay 1995) can also play an important role in higher res-
piration rates in the flow-through system. Addition of bio-
available organic carbon (acetate) resulted in increased respi-
ration of hyporheic sediments in the Flathead River (Craft
et al. 2002). Unfortunately, we did not measure the levels of
nutrients during the closed chamber experiment and we can-
not confirm this assumption from the results of our study.

The measured heterotrophic respiration of naturally hetero-
geneous sediments was 1.27 = 0.03 mg O, dm > h™' or
3.05+0.07 g O, m > day ' in the flow-through system and
was within the range of previously measured rates from dif-
ferent studies applying the comparable methodology (i.e.
flow-through chambers measuring oxygen consumption with-
in the sediments). For example, respiration rates ranged be-
tween 0.01 and 0.33 mg O, dm > h™! in sediments (8—12-mm
fraction) from the hyporheic and phreatic sites along the
Flathead River, USA (6 m deep) (Craft et al. 2002); were
0.13 mg O, dm > h™" in the filtering columns containing het-
erotrophic bacteria from the River Rhone, France (Mermilod-
Blondin et al. 2005); ranged between 0.1 and 1.7 mg O,
dm ™ h™" in the sand and fine gravel shallow hyporheic sedi-
ments from Sycamore Creek, USA (Jones et al. 1995) and
between 2 and 6.8 mg O, dm > h™! in the shallow hyporheic
zone of several mid-order Michigan sand—gravel rivers
(Uzarski et al. 2004). From these results, it is clear that respi-
ration decreases with depth and varies over the seasons and
between river systems. This is probably due to differences in
temperatures, nutrient availability and hydromorphology (sed-
iment composition, direction and the rate of interstitial flow
(Jones et al. 1995; Uzarski et al. 2004; Battin 2000).

The observed increase in nitrates and decrease in am-
monium in the outflow water indicates that aerobic pro-
cesses prevail in the incubated sediments, which is also
shown by the relatively high oxygen concentrations in the
outflow water (>7 mg L™"). Similarly, Ruegg et al. (2015)
observed a linear decrease in ammonium concentrations

14 05 1.2 12
12 T i i
04 4 1.0 10
7 08 8
— T — . 0.8 8 __
o = 0.3 4 <
o 81 l o > ;
E E E 06 L6 2
s 6 ' g ~
O 0.2 T ~
4_

Inflow Mixed 60-5 5-2 2-0.063<0.063

Fig. 6 Nitrate, nitrite and ammonium concentrations measured in the
water entering the flow-through system (inflow) and in the water at the
outflow. The columns represent the measurements during incubation of
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Table 1 Estimated mean (+SD) carbon fluxes for natural
heterogeneous sediment and single sediment fractions from Kamniska
Bistrica River sampled in spring 2015

mgCdm > h! mg C m* day
Natural sediment 0.41+0.09 973 +21.7
Sediment fractions
60-5 mm 0.09 £ 0.03 20.5+6.3
5-2 mm 0.94+0.10 226.1 £22.8
2-0.063 mm 1.53+£0.26 368.4 £ 61.7
<0.063 mm 16.27 £7.33 3904 + 1759

in the closed chamber, where during the first 2 h of incu-
bation, the concentration decreased by 30%. This is indic-
ative of nitrification processes. In anaerobic or low oxy-
gen environments, biogeochemical processes shift to-
wards denitrification, where the levels of nitrate decrease
and ammonium increase. For example, Nogaro et al.
(2007) detected anaerobic denitrification processes in the
presence of oxygen concentrations as low as 0.25 mg L™
in the slow infiltration columns. Pallud et al. (2007),
looking at the influence of flow rates on nitrate and nitrite
consumption in brackish and freshwater sediments using
flow-through sediment incubators, revealed that during
decreased flow rates and increased water residence time
in the incubator results in an increase in nitrate consump-
tion. These results reveal the influence of redox condi-
tions, which are related to hydrology, on the biogeochem-
ical processes in riverbed sediments.

Sediment composition is one of the most important physi-
cal parameters underlying the hydromorphological character-
istics of freshwater ecosystems determining the ecosystem-
level processes such as primary and secondary production
and decomposition. However, empirical studies that
demonstrate this assumption are rare. For example, Hargrave

(1969) found an inverse relationship between particle size and
oxygen consumption, which is a measure of microbial
respiration, while Cardinale et al. (2002) were able to show
a clear link between the level of sediment heterogeneity and
stream metabolism. Here, the respiration rates of the stream
biofilm were on average 65% greater in a stream riffle with
high substrate heterogeneity vs. low heterogeneity riftles,
which is likely due to changing hydrological patterns.
Marxsen (2001) was able to show that only 17% of the total
biofilm carbon production is attributed to coarse sediments in
the studied stream while the remainder is produced on sandy
sediments. Interestingly, Santmire and Leff (2006) found no
difference in the bacterial community composition among dif-
ferent sediment fractions indicating that in their case, function-
ing rather than structure underlies these differences. Also,
Thomaz et al. (2001) found no correlation between particle
size and microbial respiration in waterbodies of the upper
Paranéd River floodplain but did recognize the phosphorus
contents as important variable. In contrast to our study, their
study compared fine sediments, with four sediment classes of
sizes below 0.070 mm.

Our study clearly demonstrates the effect of sediment grain
size on metabolic processes and biogeochemical transforma-
tions. The heterotrophic respiration recalculated per dry
weight of the measured sediment was the highest for the finest
sediment fraction (<0.063 mm), while the ammonium and
oxygen uptake was the most intensive for sediments with sizes
between 2 and 5 mm. The larger area-to-volume ratio of
smaller particles, and hence the larger area available for mi-
crobial colonization, is one possible explanations for the high
respiration observed in the finest sediments (Baker et al.,
2000). Moreover, the amounts of particulate organic matter
(POM) were two to three times higher in the smallest fractions
as measured in previous unpublished experiments on the in-
vestigated sediments. Hence, respiration and mineralization
processes in sediments are linked to the amount of POM

Fig. 7 Composition of riverbed 100% - 0.6
sediments and contribution of
each size class to the total 90% -
respiration 80% -
70%
H<0.063 mm
60% -
M@ 2-0.063 mm
50%
60.2 E5-2 mm
40%
0 60-5 mm
30%
— 0O0>60 mm
6 -
o/
205 14.3 11.5
0% T

Sediment composition

Contribution to the total
respiration
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(Nogaro et al. 2007). Interestingly, the most intense nutrient
transformations took place on the medium sediment fractions
(2-5 mm), indicating a trade-off between the surface area
available for biofilm formation and interstitial permeability
that determines the hyporheic respiration.

5 Conclusions

The study demonstrated the applicability of a newly de-
signed flow-through system for laboratory experiments on
a small scale, where mimicking realistic interstitial flow
conditions enables the design of different experiments re-
lated to hyporheic zone processes. It also confirmed that
previously known observations that closed respiration
chambers underestimate heterotrophic respiration and that
substrate composition has a substantial effect on respira-
tion rate. This study is also important in terms of river
basin management since it shows that increasing sedimen-
tation strongly affects respiration processes; fine sedi-
ments contribute most to ecosystem respiration but exces-
sive sedimentation may clog the interstices, creating an-
oxic environments and limiting heterotrophic respiration.
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