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Abstract
Cell lines which are currently used in genotoxicity tests lack enzymes which activate/detoxify mutagens. Therefore, rodent-
derived liver preparations are used which reflect their metabolism in humans only partly; as a consequence misleading results 
are often obtained. Previous findings suggest that certain liver cell lines express phase I/II enzymes and detect promutagens 
without activation; however, their use is hampered by different shortcomings. The aim of this study was the identification 
of a suitable cell line. The sensitivity of twelve hepatic cell lines was investigated in single cell gel electrophoresis assays. 
Furthermore, characteristics of these lines were studied which are relevant for their use in genotoxicity assays (mitotic activ-
ity, p53 status, chromosome number, and stability). Three lines (HuH6, HCC1.2, and HepG2) detected representatives of 
five classes of promutagens, namely, IQ and PhIP (HAAs), B(a)P (PAH), NDMA (nitrosamine), and AFB1 (aflatoxin), and 
were sensitive towards reactive oxygen species (ROS). In contrast, the commercially available line HepaRG, postulated to be 
a surrogate for hepatocytes and an ideal tool for mutagenicity tests, did not detect IQ and was relatively insensitive towards 
ROS. All other lines failed to detect two or more compounds. HCC1.2 cells have a high and unstable chromosome number 
and mutated p53, these features distract from its use in routine screening. HepG2 was frequently employed in earlier studies, 
but pronounced inter-laboratory variations were observed. HuH6 was never used in genotoxicity experiments and is highly 
promising, it has a stable karyotype and we demonstrated that the results of genotoxicity experiments are reproducible.
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Introduction

One of the fundamental problems of in vitro tests is the 
inadequate representation of drug metabolizing enzymes 
in cell lines which are currently used in routine screening 
of chemicals. Therefore, exogenous liver-derived enzyme 
homogenates are prepared from rodents which have been 
treated with enzyme inducers (Kirkland 1990). The homoge-
nates contain phase I enzymes that convert chemicals to 
genotoxic metabolites and are added in experiments with 
bacteria and mammalian cells to mimic the biotransforma-
tion of chemicals in humans (Brandon et al. 2003). These 
experimental models do not reflect the situation in vivo, 
for example, the detoxification of electrophilic DNA reac-
tive intermediates by phase II enzymes. As a consequence, 
often false results are obtained and animal experiments with 
rodents are performed which could be avoided with more 
reliable in vitro models (Kirkland et al. 2007). To develop 
more reliable in vitro tests, attempts were made to improve 
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the sensitivity and specificity of existing tests (Fowler et al. 
2012) and to establish new systems. The latter approaches 
include the development of 3D models, the immortalisation 
of primary human liver cells, the insertion of genes encoding 
for drug metabolizing enzymes in currently used cells, and 
attempts to find lines which have retained the activities of 
drug metabolizing enzymes (for reviews see Brandon et al. 
2003; Donato et al. 2013; Zeilinger et al. 2016). Attempts to 
use primary hepatocytes and 3D cultures were only partly 
successful as they are costly and time consuming while lines 
expressing individual drug metabolizing enzymes are useful 
for mechanistic studies but not for routine testing.

In the early 1990s, Darroudi and Natarajan (1991) showed 
that the human-derived hepatoma line HepG2 detects rep-
resentatives of many groups of genotoxic procarcinogens 
without addition of exogenous rodent-derived enzyme 
homogenate. Their findings were confirmed in subsequent 
experiments and it was shown that this line is able to identify 
DNA reactive carcinogens which give false negative results 
in conventional in vitro tests. Furthermore, it was found that 
these cells can discriminate between structurally related 
mutagens and non-mutagens (for review see Knasmuller 
et al. 1998). The cells possess a variety of drug metabolizing 
phase I and II enzymes in inducible form, which play a role 
in the activation and detoxification of chemical mutagens. 
Therefore, HepG2 cells were also considered as a suitable 
tool for the detection of synergistic and antagonistic effects 
in complex mixtures (Mersch-Sundermann et al. 2004). 
However, comparison of results obtained with HepG2 cells 
in different labs showed that the sensitivity of this line var-
ies strongly (Knasmuller et al. 2004). One of the reasons for 
the poor reproducibility of experiments with these cells may 
be strong variations of the transcription of drug metaboli
zing enzymes (Wilkening et al. 2003). In the following 
years, a few other human hepatoma cell lines were identi-
fied which express xenobiotic drug metabolizing enzymes 
and can be used to detect promutagens. These lines include 
Hep3B (Majer et al. 2004), HCC1.2 (Winter et al. 2008) 
and HepaRG (Le Hegarat et al. 2014). Recently, it was pos-
tulated that the latter line is more suitable for mutagenicity 
and biotransformation studies than HepG2 cells (Le Hega-
rat et al. 2014); however, the majority of experimental data 
comes from one laboratory and further confirmation of this 
assumption is required.

The use of the different human-derived liver cells in muta-
genicity tests was not based on targeted comparative screen-
ing of currently available cell lines and we hypothesized that 
other lines which are currently available may be equally or 
even more suitable for the detection of mutagens. Therefore, 
we performed a comprehensive study in which we compared 
the sensitivity of a panel of cell lines towards representa-
tives of different classes of genotoxic carcinogens which 
require enzymatic activation in genotoxicity experiments. 

In addition to HepG2, Hep3B, HCC1.2 and HepaRG, eight 
lines were included which have never been used in geno-
toxicty assays before. The test compounds which were used 
are listed in Table 1; all of them are of human relevance and 
require metabolic activation by different phase I and phase 
II enzymes. Hydrogen peroxide (H2O2) was included in all 
experimental series as a positive control, this compound is 
directly active and causes damage of the DNA via formation 
of reactive oxygen species (ROS).

The DNA damaging properties of the different com-
pounds were monitored in single cell gel electrophoresis 
(SCGE) assays which are based on the determination of 
DNA damage in an electric field and are increasingly used 
in genetic toxicology (Azqueta and Collins 2013; Collins 
2015).

Additionally, we studied characteristics of the different 
cell lines which are relevant in regard to their potential use 
in genotoxicity tests, namely, (1) the morphology of the cells 
which provides information about their origin and similarity 
to primary liver cells, (2) their karyotype allowing to draw 
conclusions concerning their chromosomal stability, (3) 
measurements of the mitotic activities providing informa-
tion about the duration of the repair phase which is needed 
for the design of tests which require cell division (e.g., gene 
mutation and micronucleus tests) and (4) the p53 status of 
the cells as it was found that it plays an important role in 
regard to the reliability of results obtained with mammalian 
cell lines in mutagenicity experiments (Kirkland et al. 2007; 
Pfuhler et al. 2011).

Materials and methods

Chemicals

Citric acid (CAS-No. 77-92-9) and di-natriumhydrogen-
phosphate-dihydrate (CAS-No. 10028-24-7) for McIlvaine 
buffer were obtained from Merck (Darmstadt, Germany). 
Quinacrine dihydrochloride (CAS-No. 69-05-6) and 
Thymol (CAS-No. 89-83-8) for quinacrine staining solu-
tion, aflatoxin B1 (AFB1, CAS-No. 1162-65-8), benzo(a)
pyrene (B(a)P, CAS-No. 50-32-8), hydrogen peroxide 
(H2O2, CAS-No. 7722-84-1) and N-nitrosodimethylamine 
(NDMA, CAS-No. 62-75-9) were purchased from Sigma-
Aldrich (St Louis, Missouri, USA). 2-amino-3-methyl-
3H-imidazo[4,5-f]quinolone (IQ, CAS-No. 76180-96-6) 
came from Toronto Research Chemicals (Toronto, Ontario, 
Canada) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]
pyridine (PhIP, CAS-No. 105650-23-5) from Santa Cruz 
Biotechnology, Inc. (Dallas, Texas, USA). Anti-GADPH 
antibody (ab9485), anti-mutant-p53 antibody (ab32049) 
and anti-p53 antibody (ab1101) were purchased from 
Abcam plc (Cambridge, UK). Anti-rabbit IgG HRP 
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conjugate (W4018), anti-mouse IgG HRP (W4028) con-
jugate came from Promega Corporation (Madison, WI, 
USA).

Low melting point agarose (LMPA) and normal melting 
point agarose (NMPA) were acquired from Gibco (Paisley, 
UK). Inorganic salts, dimethyl sulfoxide (DMSO), pro-
pidium iodide, hydrogen peroxide, Triton X-100, Trizma 
base, fetal bovine serum (FBS), Dulbecco’s Phosphate 
Buffered Saline (DPBS), Dulbecco’s modified Eagle 
Medium (DMEM), Eagle’s Minimum Essential Medium 
(EMEM), Minimal essential Medium Eagle (MEME), 
Roswell Park Memorial Institute Medium (RPMI-1640) 
were purchased from Sigma-Aldrich (Steinheim, Ger-
many). William’s E medium came from Thermo Fisher 

Scientific (Vienna, Austria). Trypsin–EDTA was ordered 
from Life Technologies (Karlsruhe, Germany).

Cell lines

The origin of the cell lines is listed in Table 2 which pro-
vides also information on the cultivation conditions.

All lines were cultivated at 37 °C, 96.0% humidity in 5.0 
or 8.0% CO2. All lines except HepaRG™ were grown in 
TC-treated flasks and dishes (Sigma-Aldrich, St Louis, Mis-
souri, USA) as described in previous publications (for details 
see Table 2) and were routinely checked for mycoplasma 
contaminations by PCR (Mycoplasma Plus PCR Primer Set, 
Cat. No. 302008, Agilent Technologies, Santa Clara, CA, 
USA). HepaRG™ cells were cultivated and used according 

Table 2   Origin and cultivation of the cell lines

ATCC​ American Type Culture Collection, DMEM Dulbecco’s Modified Eagle Medium, EMEM Eagle’s Minimum Essential Medium, IDIBELL 
Instituto de Investigación Biomédica de Bellvitge, MEME Minimal Essential Medium Eagle, MUW Medizinische Universität Wien, NEAA Non-
Essential Amoni Acids, RPMI Roswell Park Memorial Institute Medium
a HuH6 cells were grown in 4.0% FBS, all other lines were grown in 10.0% FBS, and HCC 1.2 and JHH6 were cultivated in heat-inactivated FBS 
(10.0%). All lines were cultivated in 5.0% CO2, except HuH7 and WRL68 (both 8.0% CO2). HepaRG™ cells were cultivated as described by the 
provider (reconstitution with 1.0% glutamine, for thawing: 5 × HepaRG™ Thaw, Plate and General Purpose Medium Supplement, for passaging 
and toxicological experiments: 5 × HepaRG™ ToxMed Supplement)

Cell line Provider Origin of line Cultivationa Reference

HCC 1.2 M. Eisenbauer (Institute of Can-
cer Research, MUW, Vienna, 
Austria)

Hepatocellular carcinoma of 
a 56-year-old male from the 
General Hospital of Vienna

RPMI-1640, 2.0 g/L NaHCO3 (Sagmeister et al. 2008)

Hep3B ATCC (Manassas, VA, USA) Hepatocellular carcinoma of a 
8-year-old black male from the 
United States

EMEM, 2.2 g/L NaHCO3 (Aden et al. 1979)

HepaRG™ Thermo Fisher Scientific 
(Waltham, Massachusetts, 
USA)

Liver tumor of a female patient 
suffering from hepatitis C in 
France

William’s E medium (Aninat et al. 2006)

HepG2 ATCC (Manassas, VA, USA) Hepatocellular carcinoma of a 
15-year-old Caucasian male 
from Argentina

MEME, 2.2 g/L NaHCO3, 1% 
NEAA, 1 mM CH3COCOONa

(Aden et al. 1979)

HuH6 Isabel Fabregat (IDIBELL, Bar-
celona, Spain)

Hepatoblastoma of a one-year-
old Japanese boy

RPMI-1640, 2.0 g/L NaHCO3 (Doi 1976)

HuH7 Isabel Fabregat (IDIBELL, Bar-
celona, Spain)

Well-differentiated hepatocellu-
lar carcinoma of a 75-year-old 
Japanese male

DMEM, 3.7 g/L NaHCO3 (Clayton et al. 2005)

JHH6 Gabriele Grassi (Department 
of Life Sciences, University 
Hospital of Cattinara, Trieste, 
Italy)

Hepatocellular carcinoma of a 
57-year-old Japanese female

William’s E medium, 1% glu-
tamine

(Grassi et al. 2007)

PLC/PRF ATCC (Manassas, VA, USA) Primary liver carcinoma of a 
24-year-old Shangaan male

MEME, 2.2 g/L NaHCO3 (Macnab et al. 1976)

SK-Hep1 ATCC (Manassas, VA, USA) Adenocarcinoma of a 52-year-
old Caucasian male

EMEM, 2.2 g/L NaHCO3 (Heffelfinger et al. 1992)

SNU-398 Isabel Fabregat (IDIBELL, Bar-
celona, Spain)

Hhepatocellular carcinoma of a 
Korean (42 years, male) patient

RPMI-1640, 2.0 g/L NaHCO3 (Park et al. 1995)

SNU-449 Isabel Fabregat (IDIBELL, Bar-
celona, Spain)

Hepatocellular carcinoma of a 
Korean (52 years, male) patient

RPMI-1640, 2.0 g/L NaHCO3 (Park et al. 1995)

WRL68 Isabel Fabregat (IDIBELL, Bar-
celona, Spain)

Spontaneous transformation from 
human embryonic liver tissue

DMEM, 3.7 g/L NaHCO3 (Gutierrezruiz et al. 1994)
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to the instructions of the manufacturer (Thermo Fisher Sci-
entific, Vienna, Austria).

Flasks and dishes for experiments with HepaRG™ were 
coated with Collagen R. Collagen R stock solution (Serva 
Electrophoresis GmbH, Heidelberg, Germany) was diluted 
to obtain a final concentration of 0.2 mg/ml collagen. Subse-
quently, the growth areas of the flasks or dishes were covered 
with 0.1 ml/cm2 of this solution for 30–40 min, subsequently 
collagen R solution was removed, then the flasks or dishes 
were air dried.

The identity of the cell lines (except of HepaRG™) was 
verified by short tandem repeat (STR) analyses (van Zijl 
et al. 2011).

From all lines, except HepaRG™, cryopreserved cultures 
were made; cells from confluent T75 flasks were harvested 
and resuspended after centrifugation (200 g, 5 min, 21 °C) in 
5.0 ml medium. DMSO was added drop-wise (final concen-
tration 5.0%), then the suspensions were distributed equally 
to cryovials (Carl Roth, Karlsruhe, Germany), which were 
placed in a polystyrene box at − 80 °C for 24 h (to ensure 
slow freezing) and transferred to liquid nitrogen.

Proliferation kinetics

The proliferation kinetics and size of the cells were moni-
tored by use of a CASY® Cell Counter and Analyzer Sys-
tem (TTC-2EA-1087, Schärfe System GmbH, Reutlingen, 
Germany) which was used as described by the manufacturer 
(Schärfe-System GmbH, Reutlingen, Germany). Cell lines 
were grown in Petri dishes (Ø 6 cm, Sigma-Aldrich, St Lois, 
Missouri, USA) in 5.0 ml medium; ca. 5 × 105 cells were 
seeded in each dish at the start of the experiments. After 
24 h intervals, the cells were detached with trypsin–EDTA 
(Szabo-Scandic, Vienna, Austria) and 50 µl of these sus-
pensions were transferred to CASY-cups (OLS OMNI Life 
Science GmbH & Co. KG, Bremen, Germany). For each 
experimental point, three plates were evaluated. On the basis 
of the results, means and standard deviations (SDs) were 
calculated. Nonlinear fits with exponential growth equations 
(least square fits) were calculated to determine the doubling 
times (http://www.graphpad.com/guides/prism/5/user-guide/
prism5help.html?reg_exponential_growth.htm).

Karyotyping

Cell lines were cultured and prepared according to standard 
cytogenetic techniques; at least 20 metaphases per cell line 
were karyotyped. Slides, which had been stained with quina-
crine solution (Sigma-Aldrich, St Louis, Missouri, USA), 
were incubated in McIlvaine solution (Merck, Darmstadt, 
Germany), covered with a cover slip and analyzed using 
Applied Spectral Imaging Case Data Manager (Version 
5.5.2.2, Applied Spectral Imaging, Carlsbad, CA, USA).

Determination of the p53 status

The expression of the p53 gene in the different cell lines 
was analyzed using real-time quantitative PCR (RT-qPCR) 
according to the description of Straser et al. (2013). The 
protein was quantified by Western blotting as described by 
Pezdirc et al. (2013). Furthermore, the induction of p53 
protein and of mRNA were investigated in all experiments 
after incubation of the cell lines with 30 µM B(a)P.

SCGE assays

The SCGE experiments were conducted as described in an 
international guideline (Tice et al. 2000). Reagents for the 
assays (lysis solution and alkaline electrophoresis buffer) 
and agarose-coated slides were prepared according to Col-
lins and Dusinska (2009).

Briefly, cells were sub-cultured in 1.0 ml medium in 
24–well tissue-culture plates (Sarstedt Inc., Newton, NC, 
USA). After 24 h, the media were changed and the cells 
exposed to different concentrations of the test compounds 
or to the solvent controls (PBS or DMSO). H2O2 and 
NDMA were dissolved in PBS (pH 7.0), all other com-
pounds in DMSO. The final DMSO concentrations in the 
media did not exceed 1.0%. The exposure time in expe
riments with AFB1, B(a)P and NDMA was 24 h and in 
assays with PhIP and IQ 48 h. To terminate the treatment, 
the cells were washed twice with PBS (1.0 ml), trypsi-
nized (100 µl T/E per well, 4 min) and then resuspended 
in 400 µl culture medium containing FBS. Subsequently, 
the suspensions were transferred to Eppendorf tubes and 
centrifuged (200g, 5 min). Cell pellets were resuspended 
in cold PBS. H2O2 treatment was conducted with cells 
embedded on the slides by exposure to different concentra-
tions (10–50 µM) of cold H2O2 solution in PBS for 5 min, 
followed by washing with cold PBS (5 min).

In all experiments, acute toxic effects were determined 
with a CASY® Cell Counter and Analyzer System (Schärfe-
System GmbH, Reutlingen, Germany) (Lindl et al. 2005). 
SCGE assays were only performed when the viability of 
the cultures was ≥ 70% (Koppen et al. 2017). Per experi-
mental point, two cultures were set up in parallel and from 
each one slide with two separate gels (30,000 cells/gel) was 
prepared. After unwinding (40 min, pH > 13) and electro-
phoresis (30 min, 0.75 V/cm, ~ 300 mA, 4 °C, pH > 13), 
50 cells were evaluated per gel (200 cells per experimental 
point). As an endpoint, we determined the tail intensities (“% 
DNA in tail”) with a computer-aided system Comet Assay 
IV (Perceptive Instruments, Bury St Edmunds, UK), which 
is at present the most widely used parameter (Collins et al. 
2008; Moller 2006). For each gel, the median of the tail 
intensity was calculated.

http://www.graphpad.com/guides/prism/5/user-guide/prism5help.html%3freg_exponential_growth.htm
http://www.graphpad.com/guides/prism/5/user-guide/prism5help.html%3freg_exponential_growth.htm
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Statistical analyses

The results of the genotoxicity screening experiments were 
analyzed using GraphPad Prism 5 to perform ordinary one-
way ANOVA followed by Dunnett’s multiple comparisons. 
The results of the RT-qPCR analyses were evaluated with 
the ΔΔCt method; GAPDH was used as a reference gene. 
P values ≤ 0.05 were considered as statistically significant.

Results

General characteristics of the liver cell lines

Figure S1 shows morphology of the different cell types, 
their morphological characteristics are described in Table 3, 

which contains also information concerning their size, 
which was in a relatively narrow range (i.e., between 16 
and 22 µm). In agreement with literature data (see Table 2), 
we found that most lines have an epithelial morphology, 
however, some cell types (SNU-398, SNU-449, SK-Hep1 
and WRL68) had mesenchymal features and most of them 
(except SK-Hep1) had a polygonal form.

The features of HuH6 cells differ from those of the other 
cell types, i.e., they are relatively undifferentiated and we 
found in agreement with previous studies that they contain 
numerous glycogen granules, which are only rarely seen in 
other liver-derived cells (Figure S1E) (Doi 1976).

The proliferation kinetics of the different cells are shown 
graphically in Figures S2a and b. On the basis of the experi-
mental data, the doubling times were calculated (Table 3). 
The “fastest” lines were HuH7 and WRL68 (23–27 h and 

Table 3   Characterization of the morphology, growth kinetics, karyotype and p53-status of the different cell lines

a Analysis of 50 quinacrine-stained metaphase spreads
b In HCC 1.2 and SNU-398 mutated p53 was detected with an anti-mutant-p53 antibody
c TaqMan® Gene Expression Assay, TP53 Hs00153349_m1, AB (Coverage: 7 transcripts for p53), for Hep3B, HepaRG™, JHH6 and SNU-449 
TaqMan® Gene Expression Assay, TP53 Hs01034249_m1, AB (Coverage: 15 transcripts for p53) was used
d Induction of p53-protein expression was monitored after treatment with 30 µM B(a)P for 24 h. No expression is indicated with −, background 
expression with +, induced expression with ++ and highly induced expression with +++
e Statistically significant induction of gene expression after treatment with 30 µM B(a)P for 24 h is indicated with asterisks

Cell line Morphology Doubling time (h) Chromo-
some 
numbera

P53 protein expression 
(Western Blot)b

P53 gene expression (RT-
qPCR)c

Size (µm)

Background Inducedd Background Inducede

HCC 1.2 Epithelial 46–53 111–127 + + 1 1.50 ± 0.33 Ø 22
Hep3B Epithelial liver parenchymal 41–53 62–67 − − 0 0 Ø 19
HepaRG™ Epithelial granular hepatocyte-like 48–69 46–47 + + 1 0.87 ± 0.14 Ø 20
HepG2 Epithelial resemble liver paren-

chym
41–57 49-53 + +++ 1 1.48 ± 0.18 Ø 18

HuH6 Epithelial desmosomes and glyco-
gen granules in the cytoplasm

45–50 82–86 + ++ 1 1.26 ± 0.01 Ø 23

HuH7 Epithelial, grow in multilayered 
islands, often piled up, periph-
eral cells surrounding the island 
appeared to be flattened

23–27 65–111 + + 1 1.13 ± 0.01 Ø 22

JHH6 Epithelial undifferentiated mor-
phology

33–47 53–70 + + 1 1.00 ± 0.03 Ø 19

PLC/PRF Epithelial polygonal in shape 
with well-defined borders, many 
binucleated cells

36–43 39–58 + + 1 0.89 ± 0.05 Ø 20

SK-Hep1 Mesenchymal, HCC-like cell 
shape

35–54 59–61 + + 1 1.04 ± 0.12 Ø 19

SNU-398 Mesenchymal round-spindle, 
multinuclear, trabecular arrange-
ments, anaplastic small cells

30–33 59–64 + + 1 1.03 ± 0.15 Ø 16

SNU-449 Mesenchymal polygonal, single 
or double nuclear cells, compact 
growth pattern, trabecular

28–33 52–55 + + 1 0.95 ± 0.03 Ø 21

WRL68 Mesenchymal polygonal to spindle 
shape, some cells rounded, 
morphology similar to human 
hepatocytes

25–30 61–254 + + 1 0.96 ± 0.03 Ø 20



927Archives of Toxicology (2018) 92:921–934	

1 3

25–30 h, respectively), relatively slow mitotic activities were 
found with HepaRG and HuH6 cells (48–69 h and 45–50 h).

The results of the karyotyping experiments are summa-
rized in column four of Table 3. It can be seen that the chro-
mosome numbers and also the range varied substantially. 
High numbers (i.e. more than 100 chromosomes per cell) 
were detected in HCC1.2, HuH7 and WRL68. The numbers 
in HepaRG and HepG2 are similar to those found in primary 
human hepatocytes. Figure S3 shows a representative karyo-
gram of HuH6 cells. The typical number of chromosomes 
in this cell line was between 82 and 86. In some lines, the 
number of chromosomes was in a narrow range (SK-Hep1, 
Hep3B, HepaRG, and HuH6) while a broader range was 
found in other cell types (e.g., in WRL68).

Western Blot and RT-qPCR analyses (Table 3; Figure S4) 
revealed that Hep3B cells lack p53 expression at the trans
criptional and at the protein level while HCC1.2 and SNU-
398 possess mutated p53 protein. The protein was induced 
in HepG2 and HuH6 after B(a)P treatment for 24 h.

Sensitivity of the different hepatic cell lines 
towards model mutagens

The results which were obtained in representative SCGE 
experiments with the different liver lines are summarized 
in Table 4. It can be seen that the responses varied strongly. 
Five lines (PLC/PRF, SK-Hep1, SNU-398, SNU-449, and 
WRL68) were not responsive to the different model com-
pounds. In HuH7, induction of DNA damage was found 
with high doses of B(a)P and NDMA but not with the other 
genotoxins. Hep3B cells were in general insensitive but a 
moderate effect was obtained with B(a)P. HepaRG cells 
detected four out of five genotoxins (all compounds except 
IQ). In HCC1.2, HepG2, and HuH6 cells, all compounds 
induced positive results. It is also notable that the latter line 
and HCC1.2 cells were the most sensitive ones, i.e., positive 
results were observed with most mutagens at relatively low 
concentrations.

H2O2 was used in all experiments as a positive control. 
We observed strong differences of the sensitivity of the dif-
ferent cell lines towards this peroxide. The results which 
were obtained in subsequent dose response experiments with 
selected cell lines are summarized in Fig. 1. Interestingly, 
HepaRG cells were by far less sensitive as HepG2, HuH6, 
and HCC1.2.

Reproducibility of HuH6 experiments

The reproducibility of results obtained with HuH6, HepG2, 
and HCC1.2 cells with different diagnostic mutagens in 
two independent experiments is depicted in Fig. 2. The 
reproducibility of results obtained with HuH6, HepG2, and 

HCC1.2 cells with the different model mutagens in two inde-
pendent experiments is depicted in Fig. 2.

Induction factors (IF) represent the ratios of %DNA 
in tail induced in chemically treated cells and respective 
untreated controls. It can be seen that the values obtained in 
two independent experiments with different mutagens are 
in general similar in experiments with HuH6 and for certain 
model compounds (AFB1, H2O2 and IQ) also in assays with 
HCC1.2 while relatively strong differences of the responses 
were observed with HepG2. Experiments with HepaRG 
were not included as the reproducibility of comet experi-
ments was addressed already in a study by Le Hegarat et al. 
(2014).

Discussion

The results of the SCGE experiments confirm our assump-
tion that several human-derived hepatoma cell lines detect 
the genotoxic properties of different groups of DNA reactive 
carcinogens without addition of exogenous enzyme activa-
tion mix. Seven out of twelve lines were sensitive towards 
AFB1, six detected B(a)P, five NDMA, four PhIP, and three 
IQ. Three hepatic lines (HepG2, HuH6, and HCC1.2) were 
sensitive towards representatives of all groups, HepRG to 
four compounds, HuH7 to two; only four lines were not 
responsive at all.

The sensitivity of the different hepatic lines was in gene
ral similar. The most pronounced effects were observed in 
general with AFB1 and B(a)P, which were positive at con-
centrations between 5 and 10 µM while higher doses of 
IQ and NDMA (in most cases ≥ 100 mM) were required 
to cause significant effects. It is notable that HCC1.2 was 
clearly more sensitive towards these latter compounds as 
the other lines.

The most important finding of the present study is the 
identification of a hepatic line (HuH6) which is apparently 
more suitable for the detection of genotoxins as the other 
liver-derived lines. This line was isolated more than 40 years 
ago from a hepatic tumor of a 1-year-old boy (Doi 1976). 
HuH6 cells have never been used in genotoxicity studies 
before according to our knowledge, however, some articles 
have been published concerning the impact of drugs on pro-
grammed cell death and cell signaling (Canal et al. 2015; 
Soini et al. 2017); furthermore, some data are available 
which concern the expression of drug metabolizing enzymes 
(i.e., CYP3A4, CYP3A7, CYP4F2, CYP4F3 and CYP2B6, 
and UGT1A1) in this line (Goldstein et al. 2013; Hosomi 
et al. 2011; Sugatani et al. 2010). In the present investiga-
tion, we obtained positive results with all test compounds; 
as shown in Fig. 2, these results were highly reproducible. 
The line has an intact and inducible p53 and an epithelial 
morphology, its chromosome number is in a narrow range 
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and twice as high as in primary hepatocytes; the doubling 
time is similar to that of most other lines.

Also HepG2 and HCC1.2 detected all five diagnostic gen-
otoxins in the present experiments. The sensitivity of HepG2 
can be explained by representation of a broad variety of drug 
metabolizing enzymes (Donato et al. 2013; Mersch-Sunder-
mann et al. 2004); with HCC1.2, no results of enzyme meas-
urements have been published, but gene expression analyses 
indicate that various phase I and II enzymes are present in 
this line (Winter et al. 2008). Our findings with HCC1.2 
are in agreement with earlier findings (Winter et al. 2008). 
However, we found in the present study that these cells have 
an abnormal and unstable karyotype (i.e., 111–127 chromo-
somes) and a mutated p53. These findings indicate that they 
are not suitable for routine testing of chemicals; as men-
tioned above, it was stressed by Fowler et al. (2012) that 
p53 competent cell lines are less prone to give false results 
as cells with mutated p53.

With HepG2 cells, clear positive results were obtained 
with all reference compounds in the present study. These 
results are in agreement with earlier reports (Knasmuller 
et al. 2004; Winter et al. 2008). However, the main problem 
of the use of this line is the poor reproducibility which is 
evident when results of experiments from different groups 
are compared in which similar or identical experimental 
concentrations were used (Knasmuller et al. 2004). Com-
parison of the LOEC values which were obtained in diffe
rent laboratories show strong variations. For example, the 
concentration of AFB1 which was required to induce sig-
nificant DNA migration was in previous experiments under 
identical conditions 20-fold lower as in the present study 
(Winter et al. 2008). Also the levels of B(a)P which caused 
positive results varied strongly in different labs (Uhl et al. 
2000; Valentin-Severin et al. 2003). Another reason for this 
phenomenon may be strong fluctuations of the expression of 
genes encoding for drug metabolizing enzymes (Wilkening 
et al. 2003). Figure 2 concerns the reproducibility of comet 
experiments with different cell lines. It is evident that the 
results which were obtained with HepG2 vary over a rela-
tively broad range, while results with HuH6 were in both 
experimental series similar. The reproducibility of experi-
ments with HepaRG are described in a paper of Le Hega-
rat et al. (2014), the extent of comet formation which was 
observed in several independent experiments with cyclo-
phosphamide was similar. Further information concerning 
the reproducibility of assays with HCC1.2 cells can be found 
in the publication of Winter et al. (2008). It is interesting that 
we found in the present study similar effects in independent 
experiments with hydrogen peroxide but fluctuations were 
observed with promutagens (which require metabolic activa-
tion). This indicates that the differences are probably due to 
instability of activities of drug metabolizing enzymes.
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Recently, it was suggested that HepaRG cells, which 
are only commercially available, have a unique potential to 
detect genotoxins (Josse et al. 2012; Le Hegarat et al. 2014) 
and it was also stressed that these cells represent a reliable 
surrogate to human hepatocytes as they express high levels 
of phase I and II enzymes (Aninat et al. 2006; Antherieu 
et al. 2010). In the present study, HepaRG cells detected only 
four of five promutagens (AFB1, B(a)P, PhIP, and NDMA) 
and their sensitivity was in most cases identical or lower as 
that of the other cell types (HCC1.2, HepG2 or HuH6). With 
the heterocyclic aromatic amine IQ, negative results were 
obtained under all experimental conditions. These observa-
tions are in agreement with previous findings of Lehegerad 
et al. (2010) in SCGE and micronucleus experiments. They 
may be due to lack of metabolic activation of this hetero-
cyclic aromatic amine which is catalyzed by CYP1A and 
N-acetyl transferase (NAT) (IARC 1993; Turesky et al. 
1998). The latter enzyme is also essential for the activa-
tion of aromatic amines (Chevereau et  al. 2017) which 

are an important group of genotoxic carcinogens (Vineis 
and Pirastu 1997). In this context, it is notable that nega-
tive results were obtained in SCGE experiments with Hep-
aRG cells with two representatives of this group (2-acety-
laminofluorene and 2,4-diaminotoluene) (Le Hegarat et al. 
2014); data for di-nitro-PAHs (another relevant group of 
environmental mutagens) which require activation by NAT 
(Rothman et al. 1996; Talaska et al. 1996) are not available 
according to our knowledge. The cells have not been charac-
terized in regard to their NAT activities, and results of gene 
expression analyses (RT-qPCR) showed that the expression 
of genes encoding for NAT1/NAT2 is not affected by HAAs 
(Dumont et al. 2010). Another disadvantage of HepaRG cells 
is their insensitivity towards induction of DNA damage by 
reactive oxygen species. As shown in Fig. 1, these cells were 
by far less responsive towards H2O2-induced DNA damage 
as the other lines (HepG2, HuH6, and HCC1.2). It is well 
documented that ROS play a crucial role in the induction 
of DNA damage by a large number of chemicals including 

Fig. 1   Induction of DNA damage in different human-derived liver cell lines by H2O2. Bars indicate mean ± SD of medians of four measure-
ments (per experimental point in total 200 cells), asterisks indicate statistical significance (Dunnett’s Multiple Comparison Test, P ≤ 0.05)
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peroxides and PAHs and also by radionuclides (Knasmuller 
et al. 2008; Ward et al. 1987).

An ideal cell type for the detection of genotoxic carcin-
ogens would be primary human hepatocytes. However, it 
is difficult to obtain these cells (in particular from healthy 
individuals) and they are not available for routine testing. 
We found only two papers concerning comet assays with 
primary liver cells. The first by Monteith and Vanstone 
(1995) describes results which were obtained with B(a)P. 
An increase of DNA migration was found after treatment 
of the cells (for 3 h) with 50 µM. This concentration is sim-
ilar to the dose which was required to induce significant 
DNA migration in the different hepatoma lines in the pre-
sent study; however, the results were statistically not ana-
lyzed. Wilkening et al. (2003) compared the sensitivity of 
HepG2 and primary hepatocytes towards B(a)P, PhIP and 
DMN. They found no difference towards B(a)P, with the 
nitrosamine and the HAA substantially stronger effects were 

observed in the primary cells. The increased sensitivity of 
the hepatocytes is probably due to higher activities of drug 
metabolizing enzymes (in particular of cytochrome P450 
isozymes which are involved in the activation of promuta-
gens). Westerink and Schoonen (2007a, b) analyzed com-
paratively the levels of the phase I and phase II enzymes 
in human hepatocytes and HepG2, and found substantially 
higher activities in the primary cells.

Taken together, the results of the present study show that 
several human-derived liver cell lines detect promutagens 
without addition of rodent-derived liver homogenate. Fur-
thermore, they indicate that HuH6 is the most promising 
line which may be useful for routine testing of chemicals. 
Results of experiments with HepaRG cells indicate that 
differentiated cells express higher levels of drug metaboli
zing enzymes (Aninat et al. 2006; Kanebratt and Andersson 
2008); therefore protocols for genotoxicity assays with such 
cells were developed (Josse et al. 2012; Le Hegarat et al. 

Fig. 2   Reproducibility of SCGE experiments with different model 
mutagens in hepatoma cell lines. The cells were treated with diffe
rent concentrations of the model compounds either for 24 h (AFB1, 
B(a)P) or for 48 h (IQ and PhIP), and H2O2. IF values represent the 
ratio of chemically induced comet formation (% DNA in tail) vs. 
DNA migration in corresponding controls. Bars show the results of 

two separate experiments; for each experimental point, at least two 
different cultures were set up in parallel, one slide with two gels was 
made per culture and 100 cells were counted per slide. Bars indicate 
mean ± SD of medians of four measurements; asterisks indicate sta-
tistical significance (Student T Test, p ≤ 0.05)
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2010, for reasons of comparison, we also used differentiated 
HepaRG in the present experiments). Another possibility to 
improve the sensitivity and possibly also the reproducibi
lity of experiments is the development of three dimensional 
models. It was recently suggested that 3D growth of HepG2 
cells in spheroids is more suitable for cytotoxicity screen-
ing of chemicals (Ramaiahgari et al. 2014). Furthermore, 
preliminary findings of SCGE experiments with these cells 
indicate that growth in spheroids makes the cells more 
sensitive towards B(a)P as a consequence of increased levels 
of CYP1A1 (Shah et al. 2015). The possibility to increase 
the sensitivity and reproducibility of experiments with 
Huh6 by optimization of the cultivation conditions and of 
the exposure time is currently explored. Further experimen-
tal work with compounds that give false positive results in 
conventional in vitro tests as well as the characterization of 
drug metabolizing enzymes to confirm this assumption is 
also in progress.
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