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ABSTRACT

PaintOmics is a web server for the integrative anal-
ysis and visualisation of multi-omics datasets using
biological pathway maps. PaintOmics 4 has several
notable updates that improve and extend analyses.
Three pathway databases are now supported: KEGG,
Reactome and MapMan, providing more comprehen-
sive pathway knowledge for animals and plants. New
metabolite analysis methods fill gaps in traditional
pathway-based enrichment methods. The metabolite
hub analysis selects compounds with a high number
of significant genes in their neighbouring network,
suggesting regulation by gene expression changes.
The metabolite class activity analysis tests the hy-
pothesis that a metabolic class has a higher-than-
expected proportion of significant elements, indicat-
ing that these compounds are regulated in the ex-
periment. Finally, PaintOmics 4 includes a regulatory
omics module to analyse the contribution of trans-
regulatory layers (microRNA and transcription fac-
tors, RNA-binding proteins) to regulate pathways.
We show the performance of PaintOmics 4 on both
mouse and plant data to highlight how these new
analysis features provide novel insights into regu-
latory biology. PaintOmics 4 is available at https:
//paintomics.org/.

GRAPHICAL ABSTRACT

INTRODUCTION

Multi-omics approaches have become popular in the study
of a wide range of biological domains, with multi-omics
datasets being now commonly obtained by individual inves-
tigators as well as large consortia (1–3). Moreover, the num-
ber and diversity of measured omics modalities have also in-
creased, with former studies combining at most two or three
omics platforms, and more recently genomics, transcrip-
tomics, methylomics, chromatin accessibility, proteomics,
metabolomics and/or lipidomics often combined in a sin-
gle study (4–6). Multiple approaches have been proposed
for the integrative analysis of these data (see (7,8) for re-
views). Current methods can be broadly divided into three
groups: detecting biomarkers, classifying samples, and in-
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ferring functional relationships between molecular layers
(9). Regardless of the aim of these analyses, the subsequent
biological interpretation of the analysis results is frequently
difficult and time-consuming, as it requires human interac-
tion and comprehension. Biological interpretation of multi-
omics models is a grand challenge faced by investigators in-
terrogating multi-omics data (9).

Three major strategies may be applied for the inter-
pretation of multi-omics data. Overrepresentation and en-
richment analyses are widely used in genomics and tran-
scriptomics analyses (10). These methodologies have been
adapted to the different omics data types (11–13), as well as
to their integrative analysis (14–16). Enrichment methods
are powerful tools to identify which biological processes are
regulated in a given condition, but they are limited by the
vocabulary, lack of comprehensive annotations and absence
of mechanistic insight within and across omics layers.

An alternative approach is to use multi-partite networks,
where nodes depict molecular entities and edges indicate
regulatory or covariance information that can be extracted
from the integrative statistical analysis (17). A variety of
network (graphical) resources (e.g. Cytoscape (18), 3Omics
(19), VisANT (20), OmicsAnalyst (21)) may be used to visu-
alise relationships among biomolecules. Unfortunately, net-
works are frequently too large and interpretability is limited
by the lack of context. A recent novel related method is mul-
tiSlide, which visualizes interconnected molecular features
in heatmaps of multi-omics data sets (22).

A third option is to leverage existing biological knowl-
edge represented in pathway maps to project multi-
omics data and visualise them within a highly inter-
pretable format. Examples are kaPPA-view 4 (23), Map-
Man4 (24) and PaintOmics 3 (14). Some tools may in-
clude several of these options. For instance, Cytoscape,
OmicsAnalyst and Paintomics 3 also support enrichment
analysis.

Pathway-based visualization methods also have limita-
tions. First, they lack the flexibility to incorporate signifi-
cant features suggested by the statistical analysis since ab-
sent in the available map. Moreover, interpretation is lim-
ited by the pathway boundaries decided by curators and
by the amount and identity of the molecular features cap-
tured in the maps (25). Some of the measured features may
not have a pathway location and some pathway compo-
nents might not be measured. Additionally, some pathway
elements might correspond to multiple measured features,
such as a protein complex or a gene family. The limitations
of pathway methods are particularly evident in untargeted
and semi-targeted metabolomics data, since many mea-
sured compounds are unidentified, or only identified based
on a large class of similar compounds (i.e. lipids) and there-
fore not present on current maps. Consequently, pathway-
based enrichment methods behave poorly on metabolomics
data and other strategies, such as metabolite-class enrich-
ment (26) might be more appropriate. Here we present
PaintOmics 4, a substantial expansion of the Paintomics
3 web server for pathway-based multi-omics data analysis
(14,27), that addresses some of these current limitations in
pathway definitions, metabolomics data integration and vi-
sualisation across molecular layers. An overview of the new
functionalities is provided in Supplementary Figure S1.

MATERIALS AND METHODS

Implementation of Reactome and MapMan pathway
databases into PaintOmics 4

Next to KEGG, PaintOmics 4 adds Reactome and Map-
Man to the list of pathway databases supported by the ap-
plication (Supplementary Figure S2) (24,28). The new path-
way data was incorporated into the existing PaintOmics
MongoDB where pathways are classified into categories
and features are mapped to the lowest pathway level. All
PaintOmics data structures were modified to include a
‘source database’ field. This resulted in 904 new path-
ways distributed into 29 categories from Reactome and 25
new pathways in two categories from MapMan added to
PaintOmics 4. Queries to the integrated database now pro-
ceed in batches to accommodate the larger number of enti-
ties to be searched. PaintOmics represents multi-omics data
on pathways by overlaying feature expression and inten-
sity values on their box positions in the pathway map using
a colour scheme. In order to display multi-omics data on
Reactome pathways, node coordinates available in pathway
XML files were used. Since MapMan BIN coordinates are
approximate, all ManMap pathway images were manually
inspected and when required, XML files were edited to en-
sure the correct painting of data. Currently, Paintomics 4
implements KEGG Release 102.0 April 1 2022, Reactome
Version 76 21 March 2021 and GoMapMan 25 May 2018.
Databases are updated annually.

Regulatory Omics functionality

PaintOmics 3 provided the Regulatory Omics option de-
signed to upload data on features such as microRNA-seq,
acting as regulators of gene expression. PaintOmics 4 ex-
tends this functionality to accept any type of trans-acting
element operating on genes, transcripts or proteins and in-
cludes filtering functions to extract meaningful regulatory
relationships. In addition to microRNA-seq, transcription
factors (TF) and splicing factors (SF), detected by RNA-
seq, RNA-binding proteins identified by CLIP-seq, etc., can
be analysed with this option. The Regulatory Omics option
takes a trans-regulatory-feature data matrix with expres-
sion or activity values for regulators in the conditions of
the study. The regulator-gene/protein mapping file is pro-
vided by the user, together with an optional list of signifi-
cant deferentially expressed regulators. PaintOmics 4 filter-
ing options include thresholds for positive or negative cor-
relation to select the expected regulatory relationships. Ap-
plying these criteria, regulatory features will be mapped to
their targeted features and their corresponding pathways.
A pathway enrichment score is calculated either based on
the number of regulators mapping to each pathway or on
the number of regulated genes present in the pathway. En-
riched pathways for the Regulatory Omics modality repre-
sent biological processes that are significantly impacted by
that regulatory layer.

Novel metabolomics interpretation methods

Metabolite hub analysis. One of the goals of multi-omics
studies that combine metabolomics and gene expression or
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proteomics data is to associate changes in metabolite lev-
els with the regulation of the enzymes that may contribute
to metabolite turnover. PaintOmics 4 leverages pathway in-
formation to identify metabolites that have a high propor-
tion of differentially expressed features in their close net-
work. Two tests were implemented (Figure 1). The bino-
mial test is used to evaluate for each differentially expressed
metabolite (DEM) the hypothesis that, given the overall
percentage of differentially expressed genes (DEG) p0 in the
dataset, the proportion of DEG linked to the metabolite
is significantly higher than p0. The hub analysis evaluates
genes directly connected in the network (step 1) or genes
associated with the metabolite through up to 3 intermedi-
ate nodes (steps 2 to 4). P-values are corrected for multi-
ple testing (29). Alternatively, the distribution in the over-
all metabolic network of the percentage of neighbouring
DEG for metabolite nodes is computed and the percentile
position of each measured metabolite in this distribution is
calculated. Metabolites with a high percentile value have a
higher proportion of connecting DEG than the majority of
the metabolites in the database.

Metabolite class activity. To test the hypothesis of a
metabolite class being regulated, PaintOmics 4 implements
a metabolite class activity analysis tool, where a binomial
test is used to assess the hypothesis of the proportion of sig-
nificant compounds in a given measured metabolite class
being higher than a user-defined threshold. In case the user
does not define an activity threshold, PaintOmics 4 will use
the average percentage of significant metabolites as thresh-
old for the null hypothesis. P-values are corrected for mul-
tiple testing (29). These novel metabolomics analysis tools
are provided as a separate tab in the main PaintOmics re-
sults panel that includes hyperlinks to facilitate navigation
between metabolite data, neighbouring genes and metabolic
pathways (Figure 1).

Metagenes for nodes and pathways

PaintOmics displays omics data on pathways maps by
colouring the node position of the omic feature according
to its experimental value. When a node contains multiple
features, e.g. MapMan BINs, the map topology may not be
able to accommodate the amount of data. In order to ad-
dress this problem, metagenes are computed for pathway
nodes with more than four matching features (30), resulting
in a compressed representation of omics data in complex
nodes that fits available space on the map. Note that when
one node contains features with different profiles, the anal-
ysis might return multiple metagenes for the node, one per
profile type.

Use case datasets

PaintOmics 4 functionalities were demonstrated using two
different multi-omics datasets. The STATegra data that col-
lects multi-omics data for a mouse B-cell differentiation
process triggered by the expression of the Ikaros TF (4).

The second dataset corresponds to an Arabidopsis study
that evaluated the root transcriptional and metabolic pro-
file of a BRL3 overexpressing mutant in drought conditions.

BRL3 is a vascular-enriched member of the brassinosteroid
family, which was speculated to confer drought tolerance
(31).

RESULTS

STATegra data analysis with PaintOmics 4 reveals novel reg-
ulatory events during B-cell differentiation

We used the STATegra multi-omics dataset describing the
differentiation of the murine B3 cell line from a proliferat-
ing pre-BI state to differentiated pre-BII (4) to demonstrate
PaintOmics 4 functionalities. RNA-seq, micro-RNA-seq,
DNase-seq, metabolomics and TF data were available. The
dataset contains temporal data for 13 123 genes, 469 mi-
croRNAs, 10 272 DNaseq regions, 320 TFs and 60 metabo-
lites, of which 5224, 172, 5099, 180 and 40 features, respec-
tively, were found to have significant differences along the
differentiation course (4). Five STATegra omics modalities
were run in PaintOmics 4 selecting both KEGG and Reac-
tome as pathway databases. KEGG disease and organismal
pathways were excluded from the analysis. Data mapped
to a total of 169 KEGG and 439 Reactome pathways, of
which 14 and 11, respectively, were found significant by the
Fisher combined P-value method (32) that jointly considers
all omics modalities. The full list of significant pathways is
provided in Supplementary Table S1.

PaintOmics 4 indicates a multi-layered control of B-cell dif-
ferentiation. We first analysed the overall patterns of path-
way changes across molecular layers using the pathway net-
work analysis in PaintOmics 4 to focus attention on the
analysis of our Regulatory Omics types, microRNA and
TFs (Supplementary Figure S3). This tool revealed that
pathways change during B-cell differentiation according
to 2–3 patterns. For gene expression, most metabolic and
genetic information pathways were downregulated, while
signalling pathways showed both up and down regula-
tion trends. microRNAs associated genes in these path-
ways tended to be upregulated at late-time points (pre-
BII stage) in metabolic and genetic information processing
pathways, while upregulation for signalling pathways took
place at early time points (pre-BI stage). Finally, TF regu-
lation showed the opposite behaviour, with TFs that bind
metabolic and genetic information processing pathways be-
ing downregulated as differentiation progresses but upreg-
ulated for signalling pathway genes. These results indicate
a highly coordinated control of biological pathways during
B-cell differentiation, characterized by the transcriptional
activation of signalling pathways and the downregulation
of metabolic activities, with transcriptional (TF) and post-
transcriptional (microRNA) mechanisms contributing to
this program.

KEGG and Reactome complemented each other in the analy-
sis of STATegra multi-omics data. The analysis of enriched
KEGG and Reactome pathways indicated commonalities
and differences between the two resources (Supplementary
Table S1). Both databases reported enrichment of glucose,
amino-acids and nucleotide metabolic processes, and of
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Figure 1. New metabolomics analysis in PaintOmics 4. (A) Neighbouring genes for each metabolite at 1 to 4 network steps are identified. (B) The percentile
and binomial tests are used to identify metabolites with a high density of DEGs in their proximal network. (C) Metabolites and Genes identified in the
analysis are shown as heatmaps with links to associated pathways. DEM: differentially expressed metabolite; DEG: differentially expressed gene.

p53 signalling. However, most significant signalling path-
ways did not coincide, possibly due to different pathway
definitions between KEGG and Reactome. The combined
analysis revealed many of the known processes operating
during the differentiation of the hematopoietic and im-
mune cell lineages, e.g. Interleukin-2 family signalling, In-
terferon gamma signalling, RAF-independent MAPK1/3
signalling, for Reactome, and JAK-STAT signalling, FOXO
signalling, and Hippo signalling for KEGG (33). Reac-
tome but not KEGG identified the RET signalling path-
way as enriched (combined P-value = 0.029). RET is a
tyrosine kinase receptor essential for embryonic develop-
ment (34) which has also been found to be expressed in
hematopoietic tissues, suggesting a role in the develop-
ment of the immune system. Specifically, RET induces the
expression of chemokines and cytokines, and downregu-
lates chemokine/cytokine receptors (35). In the B3 cell dif-
ferentiation process, we found a strong upregulation of
RET and other associated membrane receptors (Figure 2A
and B). A concordant regulation by many microRNAs
and transcription factors was also found (Figure 2C). In-
terestingly, a different component of the RET signalling
pathway is the DOK protein, represented by three fam-
ily members (1, 3 and 4) in our data. These genes were
downregulated at the transition between pre-BI and pre-
BII stages, together with their only significant TF (STAT4:
ENSMUSG00000062939), meanwhile the associated mi-
croRNA (mir-188-3p) was strongly upregulated. STAT4 is
a key TF of the immune cell lineage (36), and mir-188-
3p has been reported to regulate cell proliferation (37).
Whether these different regulatory relationships in the RET
signalling pathway represent specific contributions to the
differentiation of B-cells remains to be investigated. Our re-
sults showcase the power of PaintOmics 4 pathway-based

multi-omics analysis to present and dissect a diversity of
multi-layered regulatory relationships.

PaintOmics 4 novel metabolomics analysis tools highlight
metabolite roles in B-cell differentiation. Pathway enrich-
ment analysis based on metabolomics data did not detect
any significant pathways, possibly due to the limited num-
ber of metabolites in this dataset. However, the Metabo-
lite Class Activity analysis identified amino acids as sig-
nificant and, marginally, also carboxylic acids (Figure 3A).
Accordingly, most amino acids had higher values at early
time points (Figure 3B), which is consistent with the high
proliferative state of the pre-BI stage where protein syn-
thesis is highly active (38). Moreover, the metabolite hub
analysis of the STATegra data highlighted a number of
compounds as having a high proportion of DEG in their
proximal network, among them three polyamines: spermi-
dine, putrescine, and spermine (Figure 3C). These metabo-
lites have higher levels at the pre-BI stage and decrease
as cells differentiate towards pre-BII (Figure 3D). Neigh-
bouring genes for these metabolites included Srm (Sper-
midine synthase), Sms (Spermine synthase) and Amd1
(S-adenosylmethionine decarboxylase proenzyme 1) which
were downregulated during differentiation (Figure 3E).
Ikaros triggers pre-B-cell differentiation through repression
of the c-Myc transcription factor (39), which is known to
regulate the expression of polyamine synthesis genes such
as Srm, Sms and Amd1 genes (40). Therefore, repression
of c-Myc is consistent with the observed downregulation of
these genes and of the three polyamines in the STATegra
dataset. Moreover, spermidine, putrescine, and spermine
have an established role in cell proliferation (41) and are
likely to play a key role in T-cell and B-cell differentiation
(42). The PaintOmics 4 analysis highlights the polyamine
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Figure 2. PaintOmics multi-omics analysis of RET signalling pathway. (A) RET signalling pathway. (B) Multi-omics data for metagene 1 containing
receptor proteins. (C) Multi-omics data for DOK gene family.

Figure 3. Metabolite class and hub analyses of STATegra data. (A) PaintOmics 4 panel with Metabolite Class Activity analysis results. (B) Heatmap of
amino-acid values during B3 cell differentiation. (C) PaintOmics 4 panel with Metabolite Hub Analysis results. (D) Neighbouring network for spermine
and spermidine in KEGG. (E) Expression values for spermine neighbouring differentially expressed genes.
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metabolite/gene regulatory hub during the murine B3 cell
differentiation course.

PaintOmics 4 analysis of Arabidopsis drought response lever-
ages MapMan and KEGG pathways for novel pathway in-
sights

We used the Arabidopsis BRL3ox study (31) to show-
case the utility of PaintOmics 4 for the interpretation of
multi-omics data from plants. This study evaluated the re-
sponse to drought conditions of a mutant overexpressing
BRL3, a plant brassinosteroid receptor. Roots RNA-seq
and metabolomics data after 5 days of drought treatment,
together with a list of differentially expressed features, were
available.

We run PaintOmics 4 on the BRL3ox data using the
KEGG and MapMan databases. While KEGG is a gen-
eral pathway database, MapMan is tailored to plants and
contains a more detailed representation of plant-specific
pathways. A total of 18 and 8 enriched pathways were
found for KEGG and MapMan databases, respectively
(combined adjusted P-value < 0.05) (Figure 4A, Supple-
mentary Table S2). KEGG results indicated enrichment of
multiple metabolic pathways (e.g. Phenylpropanoid biosyn-
thesis, Biosynthesis of secondary metabolites, Brassinos-
teroid metabolism, among others), as well as signalling
pathways, including MAPK signalling pathway, ABC trans-
porters and the general Plant hormone signal transduction.
MapMan, however, returned an enrichment picture that
highlighted the role of specific hormones (synthesis of jas-
monic acid, GABA, abscisic acid), secondary metabolites
(flavonoids, chorismate, polyamines) and the synthesis of
lignin in the BLR3ox response to drought, complementing
the biological interpretation provided by KEGG. Many of
these processes were discussed in the original publication,
supporting the robustness of PaintOmics 4 analysis. Here,
we discussed two novel results not identified in the previous
study.

The Synthesis of Chorismate pathway was found en-
riched by the PaintOmics 4 MapMan analysis. Visual in-
spection of this pathway indicated a general downregula-
tion in the BRL3ox mutant under drought conditions (Fig-
ure 4B). This pathway catalyses the formation of choris-
mate, the last step in the shikimate pathway and a branch-
point metabolite used for the synthesis of aromatic amino
acids, p-aminobenzoic acid, folate, and other cyclic metabo-
lites such as ubiquinone (43). Under abiotic stress condi-
tions, plants activate the synthesis of aromatic compounds
through the shikimate pathway, improving salt stress toler-
ance but not causing oxidative or drought stress (44). How-
ever, some aromatic compounds, such as m-tyrosine, inhibit
the growth of many plant species by slowing down root de-
velopment, and high tryptophan levels have been reported
to inhibit root growth (45). Interestingly, both tyrosine and
tryptophan were down regulated in BRL3ox plants com-
pared to the WT plants under drought conditions (31). We
speculate that BRL3ox overexpression results in downregu-
lation of chorismate pathway and aromatic compound syn-
thesis under drought, improving drought tolerance without
growth arrest.

Another significant MapMan pathway was synthesis of
lignin, which shows upregulation in treated BRL3ox plants
compared to the WT (Figure 4C). This pathway is repre-
sented in the MapMan database by 113 different genes dis-
tributed into 12 reactions, which implies that multiple steps
in the pathways are associated with a large number of genes.
For example, the last steps of the pathways represent the
conversion from aldehyde to alcohol of coumaryl, coniferyl
and synapil, catalysed by cinnamyl alcohol dehydrogenase
protein family, with 44 associated genes, which would be
difficult to include in the map. The PaintOmics metagene
function calculated two major upregulating trends for this
node, providing a more interpretable representation for the
reaction (Figure 4C). Lignin is known to play an important
role in improving plants’ drought resistance through wa-
ter transport and mechanical support (46). The PaintOmics
4 analysis suggests that the coordinated upregulation of
gene families catalysing monolignol synthesis is part of the
BRL3ox mechanism of drought resistance.

DISCUSSION

While multi-omics studies have increased in number, scope,
sample size and diversity of measured omics modalities, and
a wide range of integrative statistical data analysis tools
have been proposed, the biological interpretation of these
data is still a major challenge. PaintOmics 4 addresses this
problem by projecting processed values of multi-omics fea-
tures onto pathway maps. However, the success of a path-
way analysis strategy depends on the amount and identity
of the features captured in the database and on their dis-
tribution among pathway definitions. Different biological
pathway tools focus on different types of organisms, cellu-
lar processes, and types of reactions, thereby offering dif-
ferent but complementary views of the biology. Our use
cases showed that, by implementing different databases in
PaintOmics 4, complementary information about the exper-
iment is gained, and interpretation of the data is improved.
To the best of our knowledge, PaintOmics 4 is the only tool
to combine these three pathway databases under one anal-
ysis.

Another distinctive aspect of PaintOmics 4 is its versatil-
ity in representing virtually any omics modality on path-
ways. This implies that omics layers that act as direct or
indirect regulators of pathway activities, such as epigenetic
marks or microRNAs, can be interpreted from the perspec-
tive of the pathways that they impact. PaintOmics 4 not
only provides enrichment analysis for these layers, but fur-
ther improves interpretability by showing the relationship
between the regulatory feature and regulated gene on the
pathway maps. Importantly, and in contrast to other meth-
ods that do accept regulatory omics data for pathway views
(21) PaintOmics 4 displays multiple regulatory information
simultaneously on the pathway representation both glob-
ally and for each pathway node, allowing for different levels
of granularity in the analysis. This unique functionality im-
plies that both cis and trans regulatory relationships can be
directly linked to the mechanistic representation of the bi-
ological process captured by the pathway, thereby facilitat-
ing the understanding of the multi-layer component of the
multi-omics study.
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Figure 4. PaintOmics 4 analysis of Arabidopsis BRL3ox data. (A) List of enriched pathways. (B) MapMan synthesis chorismate pathway. The pathway
shows a downregulation trend at 5 days. (C) MapMan synthesis lignin pathway. The pathway contains a large number of BINs with many associated genes.
The figure shows both metagene representations and the heatmaps of the corresponding genes linked by green connectors.

Analysis and interpretation of metabolomics experiments
are particularly challenging because usually pathways only
accurately represent a fraction of the measured metabolites
(e.g. in lipidomics, many different compounds might be rep-
resented by the same entity in the pathway) and/or, many
metabolites present in the metabolic network are not mea-
sured in the metabolomics experiment. Moreover, a priori
hypotheses of metabolite relevance for the study may dic-
tate the type of metabolomics assay to be run (our STATe-
gra and BLR3ox use cases are examples of this). In such
a case, a large fraction of the measured compounds may
show significant changes, and this jeopardises any enrich-
ment analysis strategy. To still be able to evaluate if the tar-
geted metabolite types are affected in the experiment, we
introduced the Metabolite Class Activity analysis, where we
test the hypothesis of the measured metabolite class having
a high proportion of compounds with significant changes.
Another type of question that multi-omics studies involv-

ing metabolomics may pose is the link between the metabo-
lite change and the regulation of the expression of the
genes, proteins or other compounds that could modify their
metabolite levels. This is relevant, for example, when look-
ing for metabolite biomarkers or targets of metabolic con-
trol. This question can be addressed by a gene-metabolite
bipartite network analysis (47) or by a flux balance analy-
sis (FBA) strategy (48). However, gene-metabolite correla-
tion networks usually lack the pathway context and FBA
returns information on fluxes rather than compounds, re-
quires a complex mathematical formulation, and still has
limited adaptations to multi-omics data (49). In PaintOmics
4, we propose a simple approach based on the analysis of
the local metabolite network to identify the proportion of
differentially expressed features. Applied to our STATegra
dataset, this method identified a number of metabolites dis-
playing hub-like properties (spermidine, spermine, citric-
acid, etc.) and complemented the limited metabolomics en-
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richment analysis results. As the hub analysis panel also
provides links to the involved features and pathways, the
user has all the information on hand to navigate and inter-
pret the data.

In summary, PaintOmics 4 is a web server for the multi-
layered biological interpretation of multi-omics data that
includes a wealth of resources for a comprehensive and
interactive analysis. Future developments will address the
growing applications of the multi-omics paradigm to assist
precision medicine and single-cell analyses.

DATA AVAILABILITY
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