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Abstract: Rivers are an important mediator between human activities and the natural environment.
They provide multiple functions, including irrigation, transportation, food supply, recreation, and
water supply. Therefore, evaluations of water quality and pollution sources are of great significance
for ecological restoration and management of rivers. In this study, the improved “vušekriterijumska
optimizacija i kompromisno rješenje” (VIKOR in Serbian; in English: Multicriteria Optimization and
Compromise Solution), and a geodetector were used to analyze the water quality characteristics and
pollution sources of the Maotiao River Basin (Gizhou province, SW China). The results showed that
the water quality of the Maotiao River Basin deteriorated significantly during the summer drought
period, as was evident in the reservoirs and lakes. It improved in the wet season (i.e., during the
summer period) due to runoff dilution. Water quality decreased along the river’s course, from
upstream to downstream sections. The results of the geographic detector analysis showed that
agricultural areas were the primary factor affecting the spatial distribution of water quality in the
river basin. In July, August, and November 2020, the influence of agricultural land was 0.72, 0.60,
or 0.80, respectively, and the interactions among urban, industrial, agricultural, and forested areas
explained 99.2%, 83.2%, or 99.9% of the spatial differentiation of water quality, respectively. Due
to the influence of spatial scale, settlements have a small influence on the spatial distribution of
water quality. Their impact factors were 0.38, −0.24, and −0.05, respectively. Notably, the negative
relationship of water quality and forested areas reflects that topography, types of landscapes, and
soil thickness have considerable influences on the Maotiao River Basin’s water quality. Based on the
findings, we infer that good farmland water conservancy projects and comprehensive management
of different types of landscapes, such as forests, agriculture, and urban area and water bodies, are of
great significance for improving water quality.

Keywords: water quality; source analysis; improved multicriteria optimization and compromise
solution; geodetectors
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1. Introduction

Since entering the Anthropocene, the impact of human activities on the global eco-
logical environment has become increasingly prominent [1]. Unlike the shortage of water
resources in the arid regions of Northwest China, structural water shortages in southern
China are caused by water pollution, and have gradually become one of the most common
problems faced by the Chinese society. Rivers are an important ecological and economical
link between human society and the natural environment. Through their self-purification
processes, rivers are efficient means of supplying water, both in terms of quality and quan-
tity [2]. They play an important role in high-quality and intensive economic development.
Therefore, effective and accurate assessing of river water quality (and quantity) is a neces-
sary condition for the comprehensive management of different types of landscape: urban,
agricultural, and forested, including the high-mountain regions [3–10]. Currently, there
are two main principles that are adopted for river water quality evaluations. Both are
based on DPSIR: Drivers, Pressures, Status, Impacts, Reactions [11]. The first principle uses
biological sensitivity and biodiversity to assess the impact of human activities on rivers.
However, this method focuses on a wide biological community structure and cannot reflect
the complexity of the river’s habitats, i.e., biotic and abiotic elements [12–14]. The second
method involves the comprehensive index method, which integrates water quality, hydrol-
ogy, river characteristics, biology, and types of landscapes through the construction of an
evaluation index system, already incorporated in the European standards for freshwater
(The EU Water Framework Directive—integrated river basin management for Europe) [15].
Furthermore, the latter method can comprehensively analyze the health of a river using
mathematical models, such as the entropy model [16], the cloud model [17], an analytic
hierarchy process [18], the matter-element model [19], or the set pair analysis extension
model [20]. The TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution)
model was proposed by Hwang and Yoon in 1984. It works by calculating the geometric
distances of alternatives from the ideal solution. It is used in risk assessments and resource
utilization assessments [21,22]. Fuzzy mathematics is used in another comprehensive
evaluation method [23]. Among these, the TOPSIS model has been extensively used in
river health assessments owing to its numerous advantages, including ease of usage, low
information distortion, and freedom from reference sequences. However, this model has
certain limitations. In some cases, unreasonable priorities may be obtained, resulting in
an inability to effectively distinguish between the pros and cons of the proposal [24]. Con-
sidering these limitations, the VIKOR model was proposed, which can effectively express
the relative importance of indicators, achieve a balance between overall satisfaction and
individual satisfaction, and effectively compensate for the shortcomings of the TOPSIS
model [25,26]. However, there have been very few studies investigating the VIKOR method
for water evaluations.

The Maotiao River Basin is located in the karst region of the central Guizhou Province,
and represents a typical urbanized area in southwest China (Figure 1). Industrial and
agricultural areas are well developed in the region, and immigration is high. Under
the pressure of intensive urbanization, along with water requirements and competition
between users (agriculture, industry, households), the problem of water quality has become
multidimensional and critical, especially during scarcity [27]. Therefore, in order to solve
the conflicting interests among users, to explore the sources of river pollutants in traditional
agricultural areas and enhance agricultural production efficiency, this study combined
the fuzzy matter-element model with the VIKOR model. The CRITIC model (criteria
importance though intercriteria correlation) and the improved analytical hierarchy process
(IAHP) were used to reduce the subjectivity of the water quality assessment process [28].
The aim of this study was to analyze the temporal and spatial characteristics of the water
quality of the Maotiao River Basin, based on the fuzzy matter-element–VIKOR model, and
a geodetector was used to explore the sources of nutrients in the basin.
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locations were recorded by a global satellite positioning system (G1388D). Three parallel 
samples were collected at each sampling location: (a) samples for heavy metal analyses; 
(b) samples for nutrient analyses; (c) samples for chlorophyll-a analyses. Samples for 
heavy metal analyses were treated with analytical grade nitric acid (HNO3) immediately 
after collection to decrease the pH to ≤2: Samples for nutrient and chlorophyll-a analyses 
were not treated with chemicals but immediately placed in a dark cold box (c. 4 °C) for 
storage and transportation. In the laboratory, samples were stored in a refrigerator at 4 
°C. Samples were analyzed within 48 after collection. The samples for heavy metal 
analyses were filtered through a 0.45 μm membrane filter. Determination of Pb, Ni, and 
Cu was performed using a flame atomic absorption spectrometer (ZEEnit 7001, Analytical 
Instruments in Jena, Germany), and a graphite furnace atomic absorption spectrometer 
(ZEEnit 7001) was used to measure As and Hg. Samples for chlorophyll-a were filtered 
through a cellulose filter. The amount of filtered volume was recorded. Filters were stored 
in glass vials with acetone for further analyses. Afterwards, the concentrations were 
determined by colorimetric methods using UV spectrophotometry at 750, 664, 647, and 
630 nm. Samples for total nitrogen (TN) and total phosphorus (TP) were collected 
unfiltered, whereas those for nitrate (NO3−), nitrite (NO2−), ammonium (NH3-N), and 

Figure 1. The Maotiao River Basin (Gizhou province, SW China) and sampling sites.

2. Materials and Methods
2.1. Study Area

The Maotiao River, forming the Maotiao River Basin (105◦59′–106◦22′ E, 26◦09′–26◦56′ N),
is the first-level tributary on the right bank of the middle reaches of the Wujiang River,
flowing from south to north through the Pingba District of Anshun City, Qingzhen City of
Guiyang City, Guanshan Lake District, Baiyun District, and Xiuwen County, and merging
into the Wujiang River in Xiuwen County [29]. The river basin is located in the central part
of Guizhou Province, and covers an area of about 3250 km2. The main stream is 179 km
long, and drops for 549 m within the basin, with an average slope of 3%. The climate of the
basin is a humid subtropical monsoon climate, with a multi-year averaged temperature
of 14.1 ◦C, an average annual frost-free period of 260–275 days, and multi-year averaged
annual precipitation of 1206 mm. The maximum annual precipitation was 1633 mm, and
the average reference crop evaporation was between 900 and 1000 mm.

2.2. Sampling and Analysis

In July, August, and November 2020, three sets of samples from 17 locations (S1–S17)
were collected (Figure 1). Samples were collected 0.5 m below the water’s surface; locations
were recorded by a global satellite positioning system (G1388D). Three parallel samples
were collected at each sampling location: (a) samples for heavy metal analyses; (b) samples
for nutrient analyses; (c) samples for chlorophyll-a analyses. Samples for heavy metal
analyses were treated with analytical grade nitric acid (HNO3) immediately after collection
to decrease the pH to ≤2: Samples for nutrient and chlorophyll-a analyses were not
treated with chemicals but immediately placed in a dark cold box (c. 4 ◦C) for storage and
transportation. In the laboratory, samples were stored in a refrigerator at 4 ◦C. Samples were
analyzed within 48 after collection. The samples for heavy metal analyses were filtered
through a 0.45 µm membrane filter. Determination of Pb, Ni, and Cu was performed
using a flame atomic absorption spectrometer (ZEEnit 7001, Analytical Instruments in
Jena, Germany), and a graphite furnace atomic absorption spectrometer (ZEEnit 7001) was
used to measure As and Hg. Samples for chlorophyll-a were filtered through a cellulose
filter. The amount of filtered volume was recorded. Filters were stored in glass vials
with acetone for further analyses. Afterwards, the concentrations were determined by
colorimetric methods using UV spectrophotometry at 750, 664, 647, and 630 nm. Samples
for total nitrogen (TN) and total phosphorus (TP) were collected unfiltered, whereas those
for nitrate (NO3

−), nitrite (NO2
−), ammonium (NH3-N), and orthophosphate (PO4

3−)
were pre-filtered through membrane filters (0.45 µm). Chemical oxygen demand (CODMn)
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was measured by potassium permanganate oxidation method, and the five-day biological
oxygen demand (BOD5) was measured via dilution and inoculation method. All analyses
followed standard methods [30]. Prior to each set of analyses, standards with known
concentrations of the parameters in question, provided by the National Standards Center,
were analyzed to verify accuracy of the instruments and analytical processes. Chemical and
biological parameters were analyzed by means of software programs Excel 2019, SPSS 23.0,
ArcGIS 10.8, and Origin 2021.

2.3. Statistical Analysis Method
2.3.1. Weight Calculation

The traditional analytic hierarchy process is easily affected by subjective prefer-
ences [31]. To avoid this, the judgment matrix was replaced until the consistency check was
passed. The transfer matrix was established based on the proportional scale construction
method, which eliminates the need to check the consistency of the matrix. The judgment
matrix should meet the following conditions: (1) rij > 0; (2) rij = 1; (3) rij = 1/rji, where rij
is the scale value of the ratio of index i to index j. The scale values used in this study are
presented in Table 1.

Table 1. Meaning of scale value.

Scale Value Meaning

1 Equally important
1.2 Slightly important
1.4 Strongly important
1.6 Obviously important
1.8 Absolutely important

The index factors (t1, t2, . . . ) are sorted in descending order of importance to construct
an importance transfer matrix. The two adjacent indicators are compared with each other
to determine the degree of importance and marked as ti; finally, the judgment matrix R is
obtained, as shown in Equation (1). With this construction, the matrix always satisfies the
consistency test; thus, the subjective weight of the index can be directly calculated without
the test, as shown in Equation (2).

R =


1 t1 t1t2 · · ·

n−1
∏
i=1

ti

...
. . .

...
1

∏n−1
i=1 ti

· · · 1

 (1)

αi =

(
n

∏
j=1

rij

) 1
n

/
n

∑
i=1

(
n

∏
j=1

rij

) 1
n

(2)

where αi is the subjective weight of indicator i.
The CRITIC model is an objective weighting method that uses the comparative inten-

sity and conflicts of the indicators to measure their importance. Conflict was measured
using the correlation coefficients between pairs of indicators. The comparative intensity
was measured by the standard deviation. Equations (3) and (4) were used to normalize
indicators, Equation (5) was used to measure the amount of information for the factor, and
Equation (6) was used to calculate the objective weight of each indicator.

x′ij =
xij

max
(

xij
) (3)
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x′ij = 1−
xij

max
(
xij
) (4)

Gi = Si ∑n
j

(
1− ρij

)
(5)

βi =
Gi

∑n
i Gi

(6)

where ρij is the correlation coefficient between indicator i and other indicator, βi is the
objective weight of indicator i, Gi is the information contained in indicator i, and si is the
standard deviation.

2.3.2. Fuzzy Matter-Element–VIKOR Model

The improved analytic hierarchy process and the CRITIC method were used to de-
termine the weights of the water quality indicators. According to the principle of min-
imum identification information, a Lagrangian function was established to obtain the
combined weights.

The VIKOR method is a complex system based on the multi-criteria decision-making
method proposed by Opricovic (1998) [25]. Based on the Hamming and Chebyshev dis-
tances, the aggregation function was constructed to show the pros and cons of the proposals.
In the matter-element analysis process, for a case M, with respect to the magnitude U of its
feature vector C, an ordered triplet R (M, U, C,) is used as the basic unit to describe case M.
If the magnitude U is fuzzy, then the triplet is called a fuzzy matter-element.

Equations (7) and (8) were used to calculate grade of membership; then, the composite
fuzzy matter-element matrix was established (Equation (9)).

u(xij)
=

xij

max
(
xij
) (7)

when xij is a positive indicator.

u(xij)
=

min
(
xij
)

xij
(8)

when xij is a negative indicator.

RMN =
M1 · · · Mm

C1
...

Cn

u11 · · · um1
...

. . .
...

u1n . . . umn

(9)

The standard fuzzy matter-element R∇ (Equation (10)) was determined from the
maximum and minimum values of the favorable membership degrees of each index in the
fuzzy matter-element RMN, and ∇ij represents the square of the difference between the
standard fuzzy matter-element matrix and the compound fuzzy matter-element matrix.
The difference squared fuzzy matter-element can be described as:

R∇ =
M1 · · · Mm

C1
...

Cn

∇11 · · · ∇m1
...

. . .
...

∇1n . . . ∇mn

(10)

To avoid instability of the evaluation results due to changes in the number of solutions,
the positive and negative ideal solutions were set as constants:

Positive ideal solution:
z+ = 1 (11)
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Negative ideal solution:
z− = 0 (12)

Weighted Hamming Distance can be expressed as:

S+
i = ∑n

i wi

(
z+ − x′ij

)
. (13)

Weighted Chebyshev distance can be expressed as:

R+
i = max

(
Wi ∗

(
Z+ − x′ij

))
(14)

where S+
i and R+

i represent the group effect and individual regret based on the positive
ideal solution, respectively.

Qi = v
si −minsi

maxsi −minsi
+ (1− v)

Ri −minRi
maxRi −minRi

(15)

where v is the decision coefficient; v > 0.5 indicates that the decision-maker pays more
attention to group benefits; v < 0.5 indicates that the decision-maker prefers individual
regret. However, v = 0.5 indicates that the decision-maker has considered group benefits
and individual regrets, maintaining a neutral standpoint.

To verify the applicability of the fuzzy matter-element-VIKOR model (FME-VIKOR
model) and discuss the stability of the decision result when the decision coefficient V
changes, we set the coefficient V to be within an interval of 0.1. For different decision
coefficients, the ranking below was analyzed by Spearman correlation and compared with
the simple linear weighted (SLW), Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS), and water quality index (WQI).

2.3.3. Geodetector Model

A geodetector is a statistical method used to reveal the spatial differentiation of vari-
ables and their driving forces [32]. Compared with traditional factor analysis, geodetectors
have evident advantages in analyzing the quantitative contributions of multiple factors,
and their interactions. Although geodetectors are mainly used for studying the ecological
environment and human health, in recent years, they have been gradually used in studies
related to heavy metal pollution, karst rocky desertification, soil organic matter, etc. [33–36].
The geographic detector model is composed of factor detectors, interaction detectors, eco-
logical detectors, and risk detectors. This study mainly uses factor detectors and interaction
detectors to reveal the impacts of different types of landscape structure on the water quality
of the Maotiao River Basin at different spatial scales.

The factor detector can reveal the degrees of influence of the different types of land-
scape, i.e., land use and land cover, on the spatial distribution of water quality in the
Maotiao River Basin, as the landscape structure had the greatest explanatory power for the
spatial differentiation of the water quality index (Equation (15)), when the buffer radius
was 1 km. A geodetector can only characterize the degree of factor interpretation and
cannot analyze the direction of factor influence. In this study, we used Pearson correlation
analysis to determine the direction of influence [37].

3. Results
3.1. Spatiotemporal Characteristics of Water Quality Parameters
3.1.1. Physical Parameters

The temporal and spatial changes in dissolved oxygen (DO), electric conductivity
(Cond.), oxidation–reduction potential (ORP), water temperature (WT), and pH during the
study period in the Maotiao River Basin are shown in Figure 2. The average concentration
of DO in the surface stratum increased from 7.2 mg·L−1 (July) to 8.4 mg·L−1 (November).
The average EC values ranged from 415 to 830 µs·cm−1. In the summer, with a low-water
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level, values decreased in the direction of waterflow. The minimum value was 235 µs·cm−1

(location S10), and the maximum was 718 µs·cm−1 (location S2). In autumn, the EC trend
was in the opposite direction. The minimum value was 546 µs·cm−1 (location S1), and the
maximum value was 830 µS·cm−1 (location S14). pH values were relatively stable in July
and November, and varied from 7.92 to 8.50 (i.e., slightly alkaline), but values fluctuated
considerably in August, when the coefficient of variation was 11.96% and values ranged
from acidic (pH5.32 at location S10) to alkaline (pH 8.50 at location S8). In summer, the ORP
ranged from −77.8 to −43.5 mv, and the minimum was observed in location S9. However,
as the redox conditions of the water in autumn underwent significant changes, the ORP
ranged from 157.4 to 234.6 mv, and the water body showed notable oxidation characteristics.

Water 2022, 13, x FOR PEER REVIEW 7 of 20 
 

 

and cannot analyze the direction of factor influence. In this study, we used Pearson 
correlation analysis to determine the direction of influence [37]. 

3. Results  
3.1. Spatiotemporal Characteristics of Water Quality Parameters  
3.1.1. Physical Parameters 

The temporal and spatial changes in dissolved oxygen (DO), electric conductivity 
(Cond.), oxidation–reduction potential (ORP), water temperature (WT), and pH during 
the study period in the Maotiao River Basin are shown in Figure 2. The average 
concentration of DO in the surface stratum increased from 7.2 mg·L−1 (July) to 8.4 mg·L−1 
(November). The average EC values ranged from 415 to 830 μs·cm−1. In the summer, with 
a low-water level, values decreased in the direction of waterflow. The minimum value 
was 235 μs·cm−1 (location S10), and the maximum was 718 μs·cm−1 (location S2). In 
autumn, the EC trend was in the opposite direction. The minimum value was 546 μs·cm−1 
(location S1), and the maximum value was 830 μS·cm−1 (location S14). pH values were 
relatively stable in July and November, and varied from 7.92 to 8.50 (i.e., slightly alkaline), 
but values fluctuated considerably in August, when the coefficient of variation was 
11.96% and values ranged from acidic (pH5.32 at location S10) to alkaline (pH 8.50 at 
location S8). In summer, the ORP ranged from −77.8 to −43.5 mv, and the minimum was 
observed in location S9. However, as the redox conditions of the water in autumn 
underwent significant changes, the ORP ranged from 157.4 to 234.6 mv, and the water 
body showed notable oxidation characteristics.  

WT was consistent with the seasonal changes, and the spatial differences in 
temperature were small between July and August, but quite large in November, when the 
wet period started.  

 
Figure 2. Spatiotemporal values of water quality parameters at 17 locations within the Maotiao River 
Basin (Gizhou province, SW China) in 2020. Cond: electric conductivity; ORP: oxidation–reduction 
potential; WT: water temperature; DO: dissolved oxygen; pH: acidity/alkalinity. 

3.1.2. Particulate and Dissolved Organic Material 
The potassium permanganate index (CODMn) changed in time and space (Figure 3). 

During the study period, the average concentration of CODMn ranged from 1.50 to 1.86 
mg·L−1. The maximum value was 3.80 mg·L−1 at location S11 in autumn. In general, the 
concentration of CODMn had an increasing trend from S1 to S11, but a decreasing trend 
from S11 to S17. 
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Basin (Gizhou province, SW China) in 2020. Cond: electric conductivity; ORP: oxidation–reduction
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WT was consistent with the seasonal changes, and the spatial differences in temper-
ature were small between July and August, but quite large in November, when the wet
period started.

3.1.2. Particulate and Dissolved Organic Material

The potassium permanganate index (CODMn) changed in time and space (Figure 3).
During the study period, the average concentration of CODMn ranged from 1.50 to 1.86 mg·L−1.
The maximum value was 3.80 mg·L−1 at location S11 in autumn. In general, the concentration
of CODMn had an increasing trend from S1 to S11, but a decreasing trend from S11 to S17.
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3.1.3. Nutrients

Five-day biological oxygen demand (BOD5) was high: the maximum value in summer
was 9.0 mg·L−1 (location S3), and in autumn was 7.0 mg·L−1 (location S2). In other
sampling points, BOD5 ranged from 3.0 to 5.0 mg·L−1, and exceptionally dropped to 2.0
(locations S12 and S17).

The values of total nitrogen (TN) and total phosphorus (TP) exhibited evident temporal
and spatial changes (Figure 4). The TN concentration ranged from 0.95 to 8.47 mg·L−1. The
average concentration was 3.05 mg·L−1. The highest and lowest values were observed in
autumn at locations S11 and S3, respectively. The nitrate (NO3

−) concentration ranged
from 0.47 to 5.19 mg·L−1. The average concentration was 2.19 mg·L−1. The nitrite (NO2

−)
concentration ranged from below the level of detection (LoD) to 0.61 mg·L−1. The average
concentration was 0.08 mg·L−1. The ammonium (NH4

+-N) concentration ranged from
0.01 to 2.92 mg·L−1. The average concentration was 0.34 mg·L−1. NO3

− represented,
during the study period, between 45% and 90% of the total nitrogen present in the water
bodies, whereas the proportions of inorganic nitrogen from the remaining two forms were
low (Figure 4).
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The average TP concentration was 0.01 to 0.30 mg·L−1. The average concentration
was 0.06 mg·L−1. The highest concentration appeared in July, and the lowest in November.
The orthophosphate (PO4

3−) concentration ranged from LoD to 0.05 mg·L−1. The aver-
age concentration was 0.01 mg·L−1. The highest concentration was found in November,
whereas the lowest values appeared in summer. Moreover, the upstream TP concentration
was significantly lower than in the downstream locations. The PO4

3− concentration in the
river was significantly higher than in the reservoirs, indicating that the phytoplankton in
the reservoirs more efficiently utilized orthophosphate than phytobenthos in the rivers.

The chlorophyll-a concentration indicated a seasonal trend (Figure 5). It increased in
summer and decreased in autumn, and the increase of primary producers (i.e., unicellular
algae and their colonies and macrophytes) in the reservoirs was considerably higher than
in the rivers. The maximum concentration of chlorophyll-a (Chl-a) was found in summer
at location S7 (36.7 mg·m−3), whereas the minimum was at location S14 (1.4 mg·m−3)
in November.
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3.1.4. Heavy Metals

Arsenic (As), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), and lead (Pb)
had evident temporal and spatial distribution dynamics (Figure 6). The concentration of Hg
varied from below the LoD to 0.03 µg·L−1. The average concentration was 0.01 µg·L−1. The
lowest concentration was found in August (location S17) and the highest in July (location S4).
The As concentration varied from 0.22 to 2.38 µg·L−1. The average concentration was
1.12 µg·L−1. The minimum concentration was found in July (location S2), and the maximum
concentration was found in August (location S17). The Cr concentration varied from LoD
to 9.78 µg·L−1. The average concentration was 5.07 µg·L−1. The Cu concentration varied
from 0.80 to 4.87 µg·L−1. The average concentration was 2.81 µg·L−1. The maximum and
minimum values were in July at locations S9 and S6, respectively. The Ni concentration
varied from 3.46 to15.36 µg·L−1. The average concentration was 5.84 µg·L−1. The maximum
and minimum values were in August at locations S10 and S17, respectively. The Pb
concentration varied from 0.07 to 0.24 µg·L−1. The average concentration was 0.16 µg·L−1.
The maximum and minimum values were found in July at locations S8 and S2, respectively.
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Two heavy metals, Cr and Ni, were the dominating pollutants in the Maotiao River
Basin (Figure 6). Along the river’s course, the dissolved Ni concentration significantly de-
creased. The values of Cr concentrations were shifted downstream, where its concentrations
significantly increased between locations S12 and S13.

3.2. Spatial Distribution of Land Use Structures

Among the types of landscape in the Maotiao River Basin, the agricultural area was
the largest, and accounted for 49.74% of the total watershed area, followed by forest
(26.31%), grassland (9.68%), and urban (7.01%) areas (Figure 7). Shrublands and water
bodies were the smallest, accounting for 5.38% and 1.69%, respectively. As the buffer zone
area increased, as strips of land around the water bodies, from 100 m (a standard distance)
to 5 km (this study), the proportion of agricultural areas in the buffer zone increased
from 22.8% to 44.8%, and that of forest increased from 15.03% to 33.00%. The proportions
of shrubland and urban areas reached their maxima when the buffer zone was set at
900 m, which were 6.30% and 3.10%, respectively. The proportions of grassland and water
continued to decrease, indicating that as the river buffer zone increasesd, the types of land
use also changed significantly, and the landscape pattern underwent significant changes.
Meanwhile, urban areas along the Maotiao River are primarily concentrated near locations
S8 and S9, respectively, and are relatively far from the river. From the perspective of spatial
changes in land use structures, with the expansion of the buffer zone, human activity in the
Maotiao River Basin has gradually increased.

3.3. Comprehensive Evaluation of Water Quality Based on the Fuzzy
Matter-Element-VIKOR Model

The improved analytical hierarchy process (IAHP) has strong subjectivity and is
affected by the knowledge of the decision-making participants. The subjective weights of
chlorophyll-a and TP for the basin in 2020 were set at 0.44 and 0.24, respectively (Figure 8),
indicating that the current water environmental management of the basin is focused on
controlling phosphorus emissions and preventing water eutrophication. On the basis of
the CRITIC model, the objective weights of Chl-a, TP, TN, CODMn, EC, and DO were 0.20,
0.18, 0.16, 0.16, 0.16, and 0.14, respectively. Among them, Chl-a and TP had the greatest
impacts on the decision-making results, but compared with the IAHP method, the levels
of importance of the water quality indicators were relatively close. The weights of Chl-a
and TP significantly reduced; the weights of EC, DO, and CODMn increased significantly;
and the weights of TN increased slightly. By combining the advantages of subjective
and objective weights, the results showed that the primary productivity of aquatic plants,
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as a result of N and P concentrations, is of great significance to environmental water
management.
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Figure 8. The weight composition of the water quality index of the Maotiao River Basin (Gizhou
province, SW China) in 2020, based on three different models: CRITIC, IAHP, and combined. TN: total
nitrogen; TP: total phosphorus; CODMn: chemical oxygen demand; Chl.a: chlorophyll-a; EC: electric
conductivity; DO: dissolved oxygen. According to the fuzzy matter-element–VIKOR model, TN, DO,
TP, EC, CODMn, and Chl-a were selected to calculate the aggregation function Q (Equation (15)). The
water quality of the Maotiao River Basin in July was generally low (Figure 9). The low-value areas
were mainly distributed in the HF Reservoir (locations S6, S7) and the Yangchang River (location S2)
in spots, and their water quality index values were lower than 0.08; high value areas mainly included
areas near locations S8, S14, and S16, where the water quality index values were 0.67, 0.50, and
0.60 respectively. The water quality of the Maotiao River Basin further decreased in August, and
the low-quality areas were distributed in blocks, mainly concentrated in the lower reaches of the
Maotiao River, including locations S8 (0.16), S9 (0.19), S10 (0.21), S11 (0.004), S12 (0.14), S13 (0.18),
and S16 (0.20), whereas the high-value areas were mainly distributed in the HF Reservoir [38]. The
water quality of the river was significantly improved in November, and the low-value areas shrank
from south to north; they were distributed in points, mainly in locations S11 (0.28), S12 (0.31), and
S13 (0.02). The high-value areas significantly expanded from north to south, including locations
S1 (0.50), S2 (0.65), and S3 (0.45), and were spatially high in the south and low in the north.
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3.4. Relationships between Land Cover and Water Quality
3.4.1. Factor Detector

The analysis of factor detector revealed that the factors affecting the spatiotemporal
changes in the water quality of the basin during different periods have relatively significant
effects (Table 2). In July, August, and November, agricultural land use, which was the
main factor affecting water quality changes, had effect intensity values of 0.72, 0.60, and
0.80, respectively. The effect intensity of urban land use decreased from 0.381 to 0.054.
The effect of water areas was the strongest in July (0.69) and the weakest in August (0.09).
The maximum factor intensities of forested areas and shrublands were 0.34 and 0.50,
respectively, both observed in August. However, the change in the effect intensity of
grassland showed an opposite trend, with the minimum value being 0.10 in August.

Table 2. Factor analysis results by type of landscape and water quality characteristics in the Maotiao
River Basin (Gizhou province, SW China) in 2020.

Agriculture Forest Grassland Shrub Land Water Bodies Impervious Surfaces

July 0.724 −0.062 −0.491 −0.493 −0.693 0.381
August 0.600 −0.325 0.104 0.498 0.086 −0.242

November 0.798 −0.137 0.452 −0.076 −0.119 −0.054

3.4.2. Interaction Detector

The interactions among agricultural areas and forests, shrubs, and water bodies
exceeded 0.90 in July, showing bivariate or nonlinear enhancement (Figure 10). The in-
teractions were far greater than the impact of a single factor. In August, the interaction
intensities of shrubland and cultivated land, and arable land and woodland, were 0.98 and
0.91, showing bivariate enhancement and nonlinear enhancement, respectively. The in-
teraction intensities in autumn of arable land and forest; grassland and cultivated land;
and water body and cultivated land were 0.999, 0.96, and 0.94, respectively, all showing
bivariate enhancement.

3.5. Sensitivity Analysis

With an increase in the decision-making coefficient V (Equation (15)), the correlations
between the decision-making results at different standpoints gradually decreased, indi-
cating that the subjective positions of people in multi-dimensional decision-making have
a great impact on the decision-making results (Figure 11). However, the results of the
Spearman correlation analysis indicated that although the coefficient V was constantly
changing, there was a highly significant correlation between the different ranking results
of the FME–VIKOR model [39]. This study maintains neutrality in multi-dimensional
decision-making based on the principle of attribute compromise; that is, when V = 0.5, the
ranking result of the FME–VIKOR model was used as the basis for decision-making [40].
The correlation between the FME–VIKOR model and other ranking results was greater
than 0.95 (p < 0.01), indicating that the model was stable for water quality discrimination,
and the ranking results were essentially the same as the results of the SLW, TOPSIS, and
WQI models. We found that as the decision coefficient V increased in the FME–VIKOR
model, the coefficient of variation of the aggregation function Q decreased from 81.85%
to 54.43%, whereas the coefficients of variation of the SLW, TOPSIS, and WQI models
were 13.26%, 17.94%, and 12.6%, respectively—much lower than those of the FME–VIKOR
model. Among them, WQI had the lowest degree of discrimination for water quality eval-
uation results, primarily because the essence of its modeling idea is based on the Delphi
method. The water quality parameters were divided into intervals, and the parameters of
different intervals were directly assigned. Thus, the proposed method was used to perform
a preliminary assessment of the water quality. The smaller the number of hierarchical
gradients of water quality parameters, the greater the ambiguity of the result.
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4. Discussion

In a changing environment, water quality is a complex process controlled by a variety
of factors. The use of interaction detectors to reveal the degrees of influence of variables
provides a powerful tool for the application of effective measurements for control of water
quality pollutants. The most intuitive representation of changes in the terrestrial environ-
ment, as a result of human activities, is analysis of the types of land cover and land use.
According to the results of the present geographical detector analysis, urban areas had
a negative correlation with water quality in the dry season, because wastewater is less
diluted by runoff, and rivers and lakes have become important recipients of pollutants. This
results in negative effects correlated with higher temperature and low precipitation [41–43].
However, in this study, the impact of urban areas on water quality was weak, with a factor
influence of <0.39. The urban areas in the Maotiao River Basin are mainly distributed in
the areas surrounding the Hongfeng and the Baihua reservoirs, which are mainly affected
by point source pollution. Upstream river sections are affected by agriculture. Heavy
metal pollution in suspended material is heavily dependent on precipitation and water-
flow, although their distribution is dependent on species (Figure 6). Along the river, the
concentrations of some species increased, and those of some species decreased. Local
concentrations could be attributed to the subtropical monsoon climate that has evident
impacts on transport of fine suspended material associated with heavy metals through
erosion and deposition. In July, Guizhou Province experiences a rainy season, during
which surface runoff carries cations to rivers attached to fine suspended inorganic and/or
organic particles and increases the concentrations of heavy metals there. When the rainfall
belt shifted northward, the area was gradually controlled by the subtropical high-pressure
zone, and the dilution effect of the runoff on the pollutants gradually weakened, resulting
in pollution diffusion. Water body evapotranspiration activities were vigorous, and the
concentrations of dissolved heavy metals also decreased accordingly due to reduced runoff
into the rivers or sedimentation processes within the reservoirs. The reservoirs become
important deposition regions for this type of pollutants during the dry season, which
deteriorates the water quality of the lakes [44]. The spatial club effect of dissolved Cr was
evident from its distribution in August. Except for S17, high-value areas were distributed in
reservoirs, and the level of Cr in the rivers entering the reservoir was significantly reduced,
indicating that the source of it was heavily dependent on leaching from terrestrial areas.

In order to increase yield, chemical fertilizers and pesticides are widely used in
agriculture, which increase the concentrations of N, P, and heavy metals in water bodies
and cause the deterioration of water quality. As example of an indicator of water quality is
BOD5, which is among the standard parameters correlated with eutrophication (presence of
T and P compounds). According to China’s surface water environmental quality standard
(GB3838-2002), in July, the BOD5 values were <3.0 mg·L−1—water quality Class II—in
12 (out of 17) locations; and five locations, where values ranged from 4.0 to 6.0 mg·L−1,
belonged to water quality Class IV. In August, watery quality decreased, as seven locations
(S1, S3, S4, S9, S10, S13, S14) moved to water quality Class V, representing 41.18% of the
total number of sampling points.

However, it should be noted that although the agricultural land use in the basin
plays a leading role in the spatial distribution of water quality along the rivers, there was
some positive succession. This contradiction may be related to changes in the ecological
efficiency of agricultural production [45]. Agricultural land use has a multi-dimensional
impact on river pollution. Agricultural production has improved in Guizhou Province,
based on the strategy of comprehensively managing different types of land use, and both
terrestrial and aquatic habitats. Ecological agricultural production has been gradually
moved toward a new model, which reduces the concentrations of pollutants at their
sources. The diversification of crops and maintaining natural vegetation also contribute to
the potential of biological retention and the transformation of pollutants.
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Arable land in the basin is mainly distributed in the upper reaches of the river, where
the terrain is flat and the runoff velocity is slow, which indirectly prolongs the discharge
time, increasing the potential for adsorption of water pollutants on soil particles, and it
provides temporary opportunities to reduce the concentration of pollutants in the river.
During monsoon precipitation, some erosion occurred in the terrestrial zone, forming
fine sediment on the river bed, which was transported downstream, where after entering
reservoirs, much of it sunk into the sediment.

Fang et al. reported that as the slope increases, the loss of N and P in the soil is
greater. Actively adopting soil conservation measures is important in order to hinder runoff
erosion and slow down waterflow [46]. Wu and Lu also reported that relief affects land
use through insolation, heat, water resources, soil retention capability, and soil structure,
thereby affecting the spatial distributions of pollution sources. The composition of the
landform mainly affects the speed, direction of flow, and diffusion of pollutants [42,47–49].
In this study, the forested areas and the spatial distribution of water quality had a negative
relation, which is different from what previous studies have found. This study showed that
forested areas have an important interception effect on N, P, and other pollutants. However,
within the 1 km buffer zone within the basin, as the fragmentation of the landscape is
relatively large, the adsorption and interception of pollutants by natural vegetation was
weakened [50–52]. At the same time, accumulations of litter and fallen leaves may cause
the buildup of refractory organic matter during the biological decomposition process and
flow into the river along with runoff. This observation was consistent with that from the
study by Zhou et al. [53]. In the Maotiao River Basin, the region is dominated by karst
landforms with thin soil layers and short vegetation, which are not conducive to the growth
of forests. Forest is mainly present in areas with steep terrain, and surface runoff was an
important contributor to the loss of soil TN and TP.

5. Conclusions

The results obtained by the fuzzy matter-element–VIKOR model showed that the
pollutant concentrations in Maotiao River Basin were affected by precipitation and were
low in the wet period and high in the dry period. Geographical detector analysis revealed
that agricultural land use was the main factor influencing the spatial changes in the water
quality of the river. The comparison of area size between agricultural land and forest could
explain 99% of the spatial differentiation of water quality, whereas the contribution of urban
areas was low. Based on the findings of this study, we conclude that good and coordinated
agricultural management techniques and the construction of interception dams, fish-scale
pits, and other water and soil conservation projects within the river basin would be a
great move forward to improve river water quality. However, this study still has some
limitations. For example, river water quality is a constantly changing thing, and long-term
series studies may be more effective at explaining the sources of pollutants in water bodies.
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