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A B S T R A C T   

A candidate digital PCR (dPCR)-based reference measurement procedure for quantification of human cyto
megalovirus (hCMV) was evaluated in 10 viral load comparison schemes (seven external quality assessment 
(EQA) and three additional training schemes) organized by INSTAND e.V. over four years (between September 
2014 and March 2018). Four metrology institutes participated in these schemes using the same extraction 
method and dPCR measurement procedure for the hCMV specific target sequence of UL54 gene. The calibration 
independent reference measurement procedure results from the metrology institutes were compared to the re
sults of the clinical diagnostic laboratories applying hCMV qPCR measurement procedures calibrated to reference 
materials. While the criteria for the acceptable deviation from the target value interval for INSTAND’s EQA 
schemes is from − 0.8 log10 to +0.8 log10, the majority of dPCR results were between − 0.2 log10 to +0.2 log10. 
Only 4 out of 45 results exceeded this interval with the maximum deviation of − 0.542 log10. In the training 
schemes containing samples with lower hCMV concentrations, more than half of the results deviated less than 
±0.2 log10 from the target value, while more than 95% deviated less than ±0.4 log10 from the target value. 
Evaluation of intra- and inter-laboratory variation of dPCR results confirmed high reproducibility and trueness of 
the method. This work demonstrates that dPCR has the potential to act as a calibration independent reference 
measurement procedure for the value assignment of hCMV calibration and reference materials to support qPCR 
calibration as well as ultimately for routine hCMV load testing.   
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1. Introduction 

Molecular methods for detection and quantification of nucleic acids 
are increasingly being used as diagnostic tools by laboratories in a va
riety of medical fields. As well as assessment of human sequences, to aid 
human genetics and increasingly cancer management, infectious dis
eases diagnostics apply molecular methods for detection of the causative 
agents, potential antidrug resistance, and estimation of pathogen loads 
before and during the treatments [1–3]. One of the most commonly used 
molecular diagnostic methods is the quantitative polymerase chain re
action (qPCR) applied as commercial kits and in-house developed 
methods. While there are many examples of successfully applied mo
lecular tests, as their use becomes more demanding, such as measuring 
quantity of multiple pathogens, the challenges associated with repro
ducible measurements increase. Many technical factors, including 
specimen type, sampling method, nucleic acid extraction, calibration 
and qPCR reaction components, can lead to discrepancies between re
sults within or among clinical laboratories that use qPCR-based tests to 
quantify pathogen load. Consequently, laboratory may inaccurately 
assess the pathogen burden and lead to incorrect clinical decision. 

To account for such technical discrepancies diagnostic laboratories 
can assess their methods by participating in organized inter-laboratory 
comparisons, such as External Quality Assessment (EQA) schemes 
[4,5]. A prerequisite for reliable comparison among laboratories are 
stable, homogenous, and ideally commutable, materials of known 
composition. Depending on the analyte, EQA materials may be value 
assigned by reference methods, by comparison to other reference ma
terials, or through the calculation of consensus of participants’ results 
[6,7]. One of the challenges in EQA schemes for molecular analysis of 
infectious agents is determining the concentration values of the mate
rials. Due to the absence of reference methods and limited availability of 
reference materials in the field of nucleic acid based analysis of infec
tious agents, a ‘’target value’’ is determined using consensus of partic
ipants’ results [6]. Depending on the infectious agent, variability of 
participants’ results can be very high. 

In case of the INSTAND EQA for virus genome detection of human 
Cytomegalovirus (hCMV), target value is calculated from participating 
laboratories results which can vary for more than 100-fold [8–15]. This 
variability is higher compared to other frequently quantified viruses like 
HIV, and hepatitis B and C and differences in results from different 
laboratories using qPCR persist in spite of availability of two global 
standards. The 1st WHO International Standard for Human Cytomega
lovirus for Nucleic Acid Amplification Techniques (09/162) has been 
available since 2010, and provides an assigned concentration of ~5 ×
106 International Units (IU) per mL based on the results of a worldwide 
collaborative study [16]. NIST Standard Reference Material 2366 
Cytomegalovirus (CMV) for DNA Measurements has been available since 
2011 and consists of three components with different concentrations of 
genome copies per µL (cp/µL) [17]. These standards can serve for value 
assignment of secondary reference materials for the development of 
traceable quantitative calibrators, and secondary standards for method 
validation or daily controls [2]. 

Since the introduction of the 1st WHO International Standard for 
Human Cytomegalovirus in 2010 the number of commercial kits 
enabling reporting in IU/ml has slowly increased. However, the intro
duction of the standard has not led to a reduction of variation in the 
hCMV quantification in the INSTAND EQA schemes expressed in an 
overall success rates (fraction of laboratories with correct results for all 
samples) which remain between 62.8% [18] and 100% [9] for a ±0.8 
log10 target range interval for results in IU/ml in the EQA schemes be
tween 2014 and 2017 (with an average success rate of 86.6%). This is in 
contrast to other clinical viral targets like HBV, where with only a ±0.6 
log10 target range interval the overall success rates in IU/ml are between 
92.0% [19] and 98.5% [20]. Moreover, laboratories are reporting their 
results in different units, IU or copies per unit volume. 

Recognizing the need to support hCMV quantification and lack of 

reference methods, we developed and evaluated qPCR and digital PCR 
(dPCR) based methods for quantification of UL54 gene, which codes for 
hCMV DNA polymerase [21]. Due to its higher tolerance to inhibitors, 
high reproducibility and simpler calibration, dPCR was selected for 
further evaluation, developed and validated as a reference measurement 
procedure [22]. While standards for hCMV are available for almost a 
decade, this reference measurement procedure to value assign the con
centration of hCMV genomic DNA in solution was internationally 
accepted only very recently by Joint Committee for Traceability in 
Laboratory Medicine (JCTLM) and has not been integrated into medical 
guidelines yet. The method is described here in its application within 
seven EQA schemes ‘’Virus Genome Detection – Cytomegalovirus’’ 
(INSTAND code 365) and in three additional schemes ‘’Virus Genome 
Detection – Cytomegalovirus – Additional Training Program’’ 
(INSTAND code 368) between September 2014 and March 2018. Three 
national metrology institutes or designated institutes, as well as the 
Joint Research Centre (JRC-GEEL) (from here on, “metrology labora
tories”) have participated in these schemes providing data for the 
evaluation of the reproducibility and trueness of the developed method. 

2. Materials and methods 

The “Minimum Information for Publication of Quantitative Digital 
PCR Experiments for 2020” (dMIQE2020) checklist [23] is given in 
(Supplementary Table S1). 

2.1. INSTAND’s EQAs 

INSTAND e.V. is a reference institution of the German Medical As
sociation and conducts EQA schemes for various areas of medical lab
oratory diagnostics. INSTAND’s EQAs are organized according to the 
basic principles of internal and external quality assurance specified in 
the Guidelines of the German Medical Association on quality assurance 
in medical laboratory testing (Rili-BÄK) [6,24]. The detection of con
centration of hCMV nucleic acids is one of the virus diagnostics specified 
for external quality assessment and subject to mandatory participation 
in the corresponding EQA schemes in Germany. It has been provided 
since 2003. The EQA scheme “Virus Genome Detection – Cytomegalo
virus” (INSTAND code 365) is organized four times per year, with 
samples containing virus concentrations within the requirements stated 
in the Rili-BÄK and results within an interval of − 0.8 log10 to +0.8 log10 
in respect to the target value are considered as being consistent. 

In addition to the main EQA scheme a training program for virus 
genome detection “Cytomegalovirus – Additional Training Program” 
(INSTAND code 368) is available once per year. It contains low- 
concentration samples to verify test linearity for concentration values 
approaching the limit of quantification. The low-concentration samples 
are directly linked to the main EQA scheme (INSTAND code 365) within 
the corresponding EQA scheme term by application of an overlapping 
sample. The target value of a given EQA scheme sample is derived from 
the consensus value (based on the robust average according to algorithm 
A/DIN ISO 13528/Annex C) [25] from all quantitative and qualitative 
results reported by the participants. All reports can be found at: htt 
ps://www.instand-ev.de/no_cache/en/eqas-online/service-for-eqa-test 
s/. 

2.2. EQA samples and sample pre-treatment 

hCMV-positive samples used in EQAs were plasma pools of healthy 
blood donors spiked with a lysate of hCMV infected cells (isolate of a 
patient) and hCMV-negative samples consisted of negative plasma pool 
of healthy blood donors [9–15,26–35]. Each laboratory received 2 or 3 
units (tubes) of each sample (lyophilized plasma). After receipt, the 
samples were stored in refrigerators (+2 ◦C to +8 ◦C) until analysis. The 
lyophilized samples were reconstituted in 1.1 mL water (sterile, 
pyrogen-free, PCR-grade) directly before analysis according to 
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Instructions for Test Performance [26–28,30,32,33,35]. All evaluated 
hCMV-positive samples are listed in the supplement (Supplementary 
Tables S2 and S3). 

2.3. DNA extraction and dPCR in metrology laboratories 

One or two 200 μL aliquots were prepared from each sample unit and 
extracted, using High Pure Viral Nucleic Acid kits (Roche), according to 
the manufacturer’s instructions. The extracted gDNA was either directly 
analyzed or stored at – 20 ◦C for further use. Negative extraction controls 
were included in each experiment. 

hCMV DNA was quantified using an assay targeting a specific 
sequence of the UL54 gene [21,36]. 20 μL reactions were used, 
composed of 10 μL 2× ddPCR Supermix for Probes (Bio-Rad Labora
tories, USA); primers and probe mix (600 nM primers/200 nM probe); 7 
μL or 8 μL sample and nuclease-free water. Negative template controls 
were included in each experiment. Positive control templates (e.g. 
hCMV strain AD-169 genomic DNA at approx. 5000 cp/μL (ATCC VR- 
538) or positive samples from previous studies) were used in some ex
periments. The reactions were performed in duplicates or triplicates in 
96-well plates using universal PCR conditions: 2 min at 50 ◦C, 10 min at 
95 ◦C, followed by 45 cycles of 15 s at 95 ◦C and 1 min at 60 ◦C and 10 
min at 98 ◦C at the end of the cycling. Ramp rate was set to 2 ◦C/s. One 
laboratory did not use the first step, 2 min at 50 ◦C, of PCR cycling and 
repeated 40 cycles only. The reactions were performed on the 
GeneAmp® PCR System 9700 (ABI), T100 (Bio-Rad) and C1000 (Bio- 
Rad). After the PCR step, the 96-well plates were loaded onto QX100/ 
200 droplet readers. The analysis of the droplet fluorescence was done 
with QuantaSoft Software versions 1.3.2.0, 1.6.6.320 and 1.7.4.0917 
and QuantaSoft Pro 1.0.596 (all Bio-Rad). The fluorescence was moni
tored over the FAM spectral region. All of the thresholds were set up 
manually to allow the distinction between positive and negative drop
lets. Only the reactions with more than 10,000 accepted droplets were 
used for analysis and reactions with less than 3 positive droplets were 
considered negative. Limit of detection of the method has been set to 5.7 
copies per total reaction volume [21]. 

2.4. DNA extraction and qPCR in other participating laboratories 

Other laboratories participating in the EQA scheme for hCMV 
genome detection utilize extraction methods routinely used in detection 
of hCMV from various providers (Abbott, BioMerieux, ELITech, 
Chemagen, GeneProof, Macherey-Nagel, Promega, Qiagen, Roche, 
Sacace Biotechnologies, Siemens), and different kits or in-house devel
oped nucleic acid amplification methods as well as different qPCR 
platforms. In some participating laboratories, automated methods have 
been used combining DNA extraction and qPCR (for example, COBAS 
AmpliPrep/COBAS TaqMan CMV test (Roche)). Manufacturers, tests 
and equipment are provided in the Supplementary material (Table S4). 

2.5. Data analysis 

Metrology laboratories reported all results in cp/mL of reconstituted 
samples including expanded measurement uncertainty, corresponding 
to a 95% confidence interval for the submitted value. Standard mea
surement uncertainties, equivalent to within-laboratory precision for a 
stipulated level of replicate unit and technical (dPCR) measurement, 
were approximated by dividing the expanded uncertainty by the 
coverage factor (k = 2). Relative expanded uncertainties (%) correspond 
to the uncertainty in cp/mL divided by the submitted value. 

Other laboratories participating in ’Virus Genome Detection – 
Cytomegalovirus’’ (INSTAND code 365) and ‘’Virus Genome Detection – 
Cytomegalovirus – Additional Training Program’’ (INSTAND code 368) 
EQA schemes reported their results in IU/mL or in cp/mL or in both. 

In this paper, all results from EQA schemes reported in cp/mL were 
tested for normality of the distribution using Shapiro Wilk test 

(Descriptive statistics and Normality, Real Statistics, Excel 2016) and 
log10 transformed. Transformed data was used to evaluate the deviations 
from the target values. 

3. Results 

Four metrology laboratories (up to three per scheme or program) 
participated in seven INSTAND EQA schemes for Virus Genome Detec
tion – Cytomegalovirus (code 365) and three training programs (code 
368) between 2014 and 2018. These laboratories were using the same 
validated extraction method and the same dPCR measurement method 
for hCMV specific target sequence of UL54 gene. They reported the re
sults in copies per mL (cp/mL) and their results were compared to the 
results of other participants reporting in cp/mL measured with qPCR 
using various tests (Supplementary Table S4). 

3.1. Virus Genome Detection – Cytomegalovirus schemes (INSTAND code 
365) 

In the INSTAND EQA scheme for virus genome detection of cyto
megalovirus (INSTAND code 365) four samples with different sample 
properties were provided. Target hCMV concentrations – calculated as a 
consensus from all reported quantitative results in cp/mL – ranged from 
2037 to 12,194,816 cp/mL. In seven Virus Genome Detection – Cyto
megalovirus schemes between 46 and 64 participants, including the 
metrology laboratories, reported results in cp/mL. All results reported 
by metrology laboratories based on dPCR measurements were within the 
acceptable deviation, namely within interval from − 0.8 log10 to +0.8 
log10 (Fig. 1). Metrology laboratories determined all hCMV negative 
samples (pool of plasmas from healthy blood donors) as negative. 

In five out of seven main EQA schemes the maximum deviations of 
metrology laboratories dPCR results were below ±0.25 log10. Higher 
deviations of dPCR results were observed in June 2017 EQA scheme 
[12] and November/December 2017 EQA scheme [14] (Fig. 1) and may 
be connected to sample properties. In June 2017 EQA scheme samples 
365113 and 365116 represented different dilution steps at the extremes 
of the tested concentration range (107 and 103 cp/mL respectively), 
while sample 365115 was from a different source. Maximum deviations 
for samples 365113 and 365116 were − 0.335 log10 and − 0.542 log10, 
respectively, while for the sample 365115 (target value 3789.2 cp/mL) 
the deviation was very low, less than − 0.08 log10. In the November/ 
December 2017 EQA results with dPCR showed very high deviation with 
the lowest hCMV level, 0.353 log10 for sample 365121 (target value 
4554 cp/mL). In addition, measurement uncertainty corresponding to a 
95% confidence interval was high for all samples in this EQA scheme 
(67–97% relative expanded uncertainty) (Supplementary Table S2). 

Samples 365073 and 365076, provided in November / December 
2014 EQA scheme [10], were identical (Fig. 1). Comparison of results of 
identical samples showed that the majority of results were within the 
acceptance interval (Fig. 2). 

However, in several laboratories discrepancies between the results 
from the two samples were observed, indicating suboptimal reproduc
ibility. On the other hand, with dPCR measurements the results of these 
two samples were in better agreement than in the majority of other 
laboratories. 

3.2. Virus Genome Detection Cytomegalovirus – Additional Training 
Program (INSTAND code 368) 

The participation in the INSTAND EQA scheme Virus Genome 
Detection – Cytomegalovirus – Additional Training Program (INSTAND 
code 368) is not obligatory for medical laboratories in Germany and thus 
the number of participants is lower compared to the number of partic
ipants in Virus Genome Detection – Cytomegalovirus (INSTAND code 
365). In the three training programs described below there were up to 14 
participants, including metrology laboratories (Supplementary 
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Table S3). In the Cytomegalovirus – Training Program (368) schemes 
four samples with different sample properties are provided. The con
centration of hCMV in hCMV positive samples is lower than in the 
samples of the corresponding main EQA scheme (INSTAND code 365). 
The target concentrations of hCMV – calculated as a consensus from all 
reported quantitative results in cp/mL – of these training samples were 
between 42 and 8278 cp/mL. With the exception of one result, all results 
reported by metrology laboratories based on dPCR measurements were 
within the acceptable deviation, namely within interval from − 0.8 log10 
to +0.8 log10 (Fig. 3). Metrology laboratories determined all hCMV 
negative samples (pool of plasmas from healthy blood donors) as 
negative. 

The deviations of dPCR results from the target value were higher in 
the training programs compared to the main EQA schemes. Only in 
September 2014 Cytomegalovirus – Training Program (368) [34] the 

deviation from the target value was below ±0.25 log10 for all results 
from metrology laboratories, with one exception for very low hCMV 
level sample 368007 (target value 42 cp/mL) (Fig. 3). In EQA scheme 
Virus Genome Detection – Cytomegalovirus – Additional Training Pro
gram in March 2017 [29] maximum deviation from the target value was 
− 0.376 log10 for the sample 368022 with the lowest hCMV concentra
tion of 532 cp/mL, while in March 2018 [31] maximum deviation from 
the target value was − 0.286 log10 for the sample 368026 with the 
highest hCMV concentration of 6271 cp/mL. 

Each training program was directly linked to the corresponding main 
EQA scheme through an overlapping (identical) sample (Fig. 4). In 
September 2014 the overlapping sample was marked 365071 in the 
main EQA scheme and 368005 in the training program [34]. Compari
son of results for the overlapping samples measured in both studies 
showed a high coefficient of determination indicating good intermediate 
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precision for all labs (Fig. 4A). While in the main EQA scheme the target 
value for the overlapping sample was 11,034 cp/mL (calculated from 64 
results) in the training program the target value was 8278 cp/mL 
(calculated from 14 results). Results of measurements at metrology 
laboratories obtained with dPCR were similar in both studies. They were 
ranging from 8116 cp/mL to 8687 cp/mL in the main EQA scheme 
(Supplementary Table S2) and from 7860 cp/mL to 8459 cp/mL in the 
training program (Supplementary Table S3), leading to higher de
viations of the results from the target value in the main EQA study 
(Fig. 4A). In March 2017 the overlapping sample was marked 365109 in 
the main EQA scheme and 368021 in the training program [29]. Target 
value of the overlapping sample was 8742 cp/mL (calculated from 57 
results) in the main EQA scheme, while in the training scheme its target 
value was 12,196 cp/mL (calculated from 11 results). Results obtained 
with dPCR were reproducible, 7152 cp/mL in the main EQA scheme and 
7373 cp/ml in the training program in one laboratory, and 5800 cp/ml 
and 6690 cp/ml, respectively, in the other laboratory, leading to higher 
deviations of the results from the target value in the main EQA study and 
a low coefficient of determination in the correlation plot (Fig. 4B). 

In the last scheme, in March 2018, the overlapping sample was 
marked 365127 in the main EQA scheme and 368109 in the training 
program [31]. Target value of the overlapping sample was 2037 cp/mL 
(calculated from 53 results) in the main EQA scheme, while in the 
training scheme its target value was 2475 cp/mL (calculated from 11 
results). Results obtained for the overlapping sample in three metrology 
laboratories using dPCR measurements were comparable and below 
both target values (Fig. 4C, Supplementary Tables S2 and S3). 

3.3. dPCR Intra- and Inter-laboratory variation 

Results obtained by the metrology laboratories using dPCR in the 
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September 2014 and Virus Genome Detection – Cytomegalovirus – Additional 
Training Program (368) September 2014 A; Virus Genome Detection – Cyto
megalovirus (365) March 2017 and Virus Genome Detection – Cytomegalovirus 
– Additional Training Program (368) March 2017 B; Virus Genome Detection – 
Cytomegalovirus (365) March 2018 and Virus Genome Detection – Cytomeg
alovirus – Additional Training Program (368) March 2018 C; blue dots – qPCR, 
green dots – dPCR; ±0.8 log10 (dashed line) is the acceptable deviation of a 
quantitative result measured by an individual laboratory with respect to the 
target value. Target values for particular EQA scheme were calculated as a 
consensus from all reported quantitative results in cp/ml. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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main EQA schemes were further evaluated in terms of intra-and inter- 
laboratory variation. For three EQA schemes (September and November 
2014 and March 2018) where a minimum of three metrology labora
tories participated, intra-laboratory variation, expressed as relative 
standard uncertainty, was generally below 20% in concentration range 
between 103 cp/mL and 106 cp/mL and below 35% for concentrations 
between 102 cp/mL and 103 cp/mL (Fig. 5A). Inter-laboratory variation 
expressed as CV (n = 3) was ≤16% in the concentration range 104 cp/mL 
to 106 cp/mL and less than 25% in concentration range between 102 cp/ 
mL and 103 cp/mL (Fig. 5B). Regression analysis of results from the two 
metrology laboratories (NML, NIB) that have participated in five com
mon EQA schemes showed good agreement over a concentration range 
spanning five decades (Fig. 5C), confirming excellent reproducibility of 
the measurement procedure including extraction. 

4. Discussion 

Evaluation of dPCR measurement results from seven EQA schemes 
‘’Virus Genome Detection – Cytomegalovirus’’ (INSTAND code 365) and 
in three schemes ‘’Virus Genome Detection – Cytomegalovirus – Addi
tional Training Program’’ (INSTAND code 368) showed lower de
viations from target values (defined as consensus values) compared to 
majority of qPCR results. While the acceptable deviation from the target 
value interval for INSTAND’s EQAs is from − 0.8 log10 to +0.8 log10, the 
majority of dPCR results was between − 0.2 log10 to +0.2 log10 in ‘’Virus 
Genome Detection – Cytomegalovirus’’ (INSTAND code 365). Only 4 out 
of 45 dPCR results exceeded this interval with the maximum deviation of 
− 0.542 log10. In the EQA scheme ‘’Virus Genome Detection – Cyto
megalovirus – Additional Training Program’’ (INSTAND code 368) more 
than half results deviated less than ±0.2 log10 from the target value, 
while more than 95% deviated less than ±0.4 log10 from the target 
value. 

Metrology laboratories were using the same extraction method and 

the same nucleic acid amplification method; however, they were not 
using any calibration in their measurements. The dPCR measurement 
used by metrology laboratories in this study has been previously 
compared to qPCR [21] and the whole procedure, including extraction, 
has been evaluated in a small inter-laboratory comparison [22]. It has 
also been tested for direct amplification of 1st WHO standard and EQA 
samples [37]. All previous comparisons and the present evaluation, led 
to a well evaluated method for quantification of purified hCMV genomic 
DNA in solution, which has been listed in the database of reference 
measurement methods of the Joint Committee for Traceability in Lab
oratory Medicine (JCTLM) in July 2020 (https://www.bipm.org/jctlm/ 
). It is only the second reference measurement method for nucleic acids 
listed in the JCTLM database and the first on infectious agents. 

The reproducibility of the dPCR measurements was confirmed in 
EQA studies with overlapping samples. The dPCR results obtained are 
close to the averaged results of qPCR with a minute tendency to deter
mine lower concentrations, which may be the result of the calibrators 
used in qPCR. While measurement results of these EQA samples were 
reproducible, the deviations from target values of overlapping samples 
were different due to the different numbers of participants’ results used 
for target value calculations in the main EQA schemes compared to the 
training programs leading to variable target values. The majority of 
measurements of samples from the main EQA schemes showed low 
variance with measurement uncertainties and 95% confidence intervals 
below 30%. Variance of measurement values was higher in training 
programs with lower hCMV concentrations. Higher variance of dPCR 
measurement results in some main EQA schemes (e.g. September 2017 
and November/December 2017) could be connected to suboptimal 
reconstitution or homogeneity of samples. Namely, metrology labora
tories were using one or two times 200 µL subsamples in extraction 
procedures and measured the quantity of hCMV DNA in duplicates or 
triplicates. 

For standardization of nucleic acid amplification technique-based 

Fig. 5. dPCR Intra- and inter-laboratory variation. A-B: Intra- and inter-laboratory variation of metrology laboratories’ dPCR results are plotted against the 
magnitude of the copy number concentration (copies/mL) individual or average result, shown for schemes where three metrology laboratories participated. C: 
Comparison of results for all schemes where both NIB and NML participated; linear regression analysis (dashed line) applies to log10-transformed copy number 
concentration (copies/mL) results. 
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assays for hCMV, 1st WHO International Standard for Human Cyto
megalovirus for Nucleic Acid Amplification Techniques NIBSC, code: 
09/162, was developed. This material has an assigned value of ~5 × 106 

International Units (IU) [16]. The value has been assigned based on the 
results of a worldwide collaborative study and is valid when the 
lyophilized material is reconstituted in 1 mL of nuclease-free water. In 
our previous studies this standard has been measured by dPCR mea
surement procedure used in this study providing concentration in copies 
per mL either after the extraction of standard spiked in human plasma 
(4.46 × 106 cp/mL) or in buffer (3.9 × 106 cp/mL) or by direct quan
tification (5.25 × 106 cp/mL) [37]. Due to the availability of this stan
dard and in line with the Specified Section B3 (Table B 3-2a, column 4) 
of the Guideline of the German Medical Association for quality assur
ance of medical laboratory analyses [6] in INSTAND’s EQA schemes 
primarily IU/mL are considered as the measurement unit for reporting 
quantitative results of genome detection of hCMV. However, the 
participating laboratories are reporting in line with specifications of 
amplification kits they are using. For example, participants using Abbott 
RealTime CMV assay (Abbott) are reporting in IU/mL as this kit is 
standardized to the 1st WHO International Standard for Human Cyto
megalovirus, while participants using artus® CMV PCR Kit (Qiagen) are 
reporting in cp/mL as this kit includes a quantitation standard with 
values assigned in cp/µL. The latter producer has established conversion 
factor from cp/mL to IU/mL, but only for detection of hCMV DNA in 
EDTA plasma using specific amplification platform in combination with 
automated sample preparation and specific assay setup platform. 
Consequently, this conversion factor cannot be used generally. More
over, a wide range of conversion factors (cp/mL to IU/mL) for the 1st 
WHO International Standard for Human Cytomegalovirus was found in 
a study of 11 laboratories participating in the Italian Infections and 
Transplant Working Group using dilution series of the IS in whole blood 
and plasma. The conversion factors calculated for the whole blood 
ranged from 0.21 to 1.17 and for plasma from 0.39 to 2.2 [38]. However 
generally the cp/mL to IU/mL conversion factor is close to 1.0 [8], 
which is consistent with the results of our study mentioned above, with 
conversion factor 1.12 for human plasma [37]. 

With a dPCR approach, absolute count of target sequences is 
possible, and the results are determined in copies per unit of volume. In 
addition, the accuracy of dPCR is capable of primary SI-traceability 
when measuring DNA in aqueous solution [39]. To further support 
standardization in nucleic acid amplification technique-based assays for 
hCMV multi-laboratory comparison studies are needed. This will allow 
laboratories to establish the correlation between IU and copies including 
consideration of pre-analytics. In addition, secondary standards could be 
better evaluated using dPCR as accurate secondary standards for viruses 
are lacking [40]. As reviewed in Hayden and Caliendo [41], dPCR has 
already been utilized as a reference standard method for measurements 
of commutability of reference materials and commutability of different 
assays. The importance of the assessment of dPCR for the improvement 
of the standardization of copy number assignment for secondary stan
dards has been recognized in the Third International Consensus Guide
lines on the Management of Cytomegalovirus in Solid-organ 
Transplantation [42]. 

In addition to serving as a reference measurement procedure, the 
dPCR method described here could serve clinical diagnostics directly. 
One factor influencing the high variability of results in routine hCMV 
load testing is amplicon size, with small amplicon sizes (≤100 base 
pairs) tending to give higher viral loads compared to larger amplicons 
[43,44]. This may be particularly important when plasma is used for 
diagnostics, as in plasma the vast majority of hCMV DNA is cell-free 
(98–100%), highly fragmented, and not virion-associated [41,45], 
therefore the small amplicon of 72 bp utilized by our dPCR method is 
well suited to amplifying a higher proportion of the viral cell-free DNA 
present. 

Introduction of this method to routine diagnostics or its use as a 
reference measurement procedure could support other aspects of 

standardization of routine hCMV testing. For example, there is still no 
consensus on the optimal biological specimen for testing as either 
plasma or whole blood are recommended [42] and better reliability and 
comparability of results could lead to selection of the optimal biological 
specimen. Similarly, as this method enables absolute quantification, it 
could support establishment of broadly applicable criteria for hCMV 
DNA thresholds or cut-off values that could be used in clinical decision 
making and are currently missing [38]. This could be achieved either in 
support of qPCR, via improved value assignment of calibration mate
rials, or, as the method becomes more established, as direct method for 
clinical evaluation. 

This work demonstrates that dPCR is well suited for the assignment 
of values of hCMV calibration and reference materials as well as for 
routine hCMV load testing. In EQA schemes, this method would allow 
the evaluation of hCMV concentration on the basis of reference mea
surement values instead of an evaluation on basis of consensus values 
mainly influenced by the market leaders. 
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