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ABSTRACT At the end of a production process, the manufactured products must usually be visually
inspected to ensure their quality. Often, it is necessary to inspect the final product from several viewpoints.
However, the inspection of all possible aspects might take too long and thus create a bottleneck in the
production process. In this paper we propose and evaluate a methodology for adaptive, robot-aided visual
quality inspection. With the proposed method, the most probable defects are first predicted based on the
production process parameters. A suitable classifier for defect prediction is learnt in an unsupervised manner
from a database that includes the produced parts and the associated parameters. A robot then steers the camera
only towards viewpoints associated with predicted defects, which implies that the trajectories of robot motion
for the inspection might be different for every product. To enable dynamic planning of camera trajectories,
we describe a methodology for evaluation and selection of the most appropriate autonomous motion planner.
The proposed defect prediction approach was compared to other methods and evaluated on the products from
a real-world production line for injection moulding, which was implemented for a producer of parts in the
automotive industry.

INDEX TERMS industrial informatics, injection moulding, machine learning, production parameters,
quality inspection, robot motion planning

I. INTRODUCTION
HE required increase in the quality of products, services
and processes of the Industry 4.0 paradigms [1] gave rise
to the Zero Defects Manufacturing (ZDM) approach [2]. Per

spection process, based on different physical quantities. How-
ever, even if the part is deemed good after each intermediate
step, the final part, when inspected by a human worker, is
sometimes still classified as bad, because defects such as,

se, ZDM does not explicitly rely on defect and fault detection,
but rather on defect and fault prediction and provision of sug-
gestions on how those can be avoided [3]. However, quality
inspection remains an integral step of production processes,
sometimes in the form of selective inspections based on the
analysis of impact of the action on the overall economic,
production logistics and quality performance [4].

In a multi-stage production process, the quality of produced
parts is often checked during or after every stage [5]. For
example, in production of injection-moulded parts that have
added motor windings, which is also the main use-case for
this paper, the product gets inspected after the insertion of
side windings, after injection moulding, after cooling, after
additional machining of parts, etc. In this example, each stage
of the production is followed by an intermediate quality in-
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e.g., porous material, are difficult to detect [6]. Thus, one of
the solutions to prevent faulty products, besides sampling of
products and inspecting them manually, is to visually inspect
the parts also in the final stage of the production [7].

Visual inspection of all possible aspects of a complex
product, however, requires the observation of the part from
many different viewpoints. As stated in [8], this process can
be automated in two different manners. The first option is to
install several cameras so that all the required aspects of the
object are observable at the same time. However, the cameras,
especially if there are a lot of them, could get in the way
of the production process or other means of quality control.
In our practical example with an automotive parts producer,
inspection with dial indicators was already integrated into
the production line and prevented installation of additional
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cameras.

The second option is to move the camera around the object
with a robot using an in-hand camera to sequentially collect
the required images [9]. The caveat of the solution with the
moving camera is that the process might take more time
and thus generate a bottleneck in the production process. A
conceptually similar solution of moving the object around the
camera is also a possibility [8], but often not a viable one
because the object is partially occluded when grasped by the
robot.

Machine learning approaches are increasingly being ap-
plied to improve the reliability and robustness of quality con-
trol and even production processes themselves [10], including
injection moulding [11]. They can detect anomalies that are
difficult or even impossible to identify for a production-line
engineer. In this paper, we advance the application of machine
learning approaches to deal with such challenges.

A. PROBLEM FORMULATION

The problem can be formulated as follows. A visual quality
inspection with an in-hand camera needs to be added to an
existing production line, and it should not create a bottleneck.
This implies that only the most likely defective aspects of the
object should be inspected. However, such aspects need to be
first determined, and later the robot needs to move the camera
so that they can be observed. This further implies that the
motion of the robot might be different for every workpiece,
and thus the motion of the camera needs to be generated
dynamically as a part of the inspection cycle.

B. CONTRIBUTION

The contribution of this paper is a methodology for adaptive
robot-aided visual quality inspection, where not all aspects
of the product but only the most likely predicted areas with
defects are inspected. To achieve this goal, we predict the
possible defects using a database of the available production
parameters and perform visual quality inspection only from
viewpoints that provide clear images of the possible defects.

The methodology for the prediction of defects is based on a
database of production parameters. Starting with the analysis
of several classification methods, we propose an approach
based on clustering of production parameters projected into
a latent space of a deep autoencoder, which is trained with
the parameters of all available good and faulty parts. The
latent space projections of faulty parts are clustered based on
different types of defects, which can be checked from specific
viewpoints. For each new part, the system checks the posterior
probability of its latent space projection belonging to the clus-
ters, and the robot then steers the camera to the appropriate
viewpoint with sufficiently large posterior probabilities in
descending order to check the area where the predicted defect
is located.

Because the camera path is not determined in advance but
dynamically defined by the sequence of potential viewpoints,
the robot motion cannot be pre-programmed. We therefore
rely on a motion planner to generate the required motion tra-
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jectories. While many robot motion planners exist, we outline
and evaluate a methodology to test and select the best motion
planner using the planner arena motion planning evaluation
tool [12]. In our experiments, motion planners available in the
Open Motion Planning Library (OMPL) [13] were evaluated.

All aspects of the proposed adaptive visual quality ap-
proach, the prediction of defects and the planning of robot
camera steering trajectories were evaluated on data from a
real-world injection-moulding production of a parts producer
in the automotive industry. A simulated image of the experi-
mental environment and its physical twin are depicted in Fig.
1.

(b)

FIGURE 1. Physical implementation of the visual quality inspection cell
(a) and its visualization in RViz (b)

Il. RELATED WORK

This paper deals with the application of machine learning
methods for quality prediction, robot-aided visual quality
inspection, and robot motion planning. The related works in
each of these areas are discussed separately.

A. MACHINE LEARNING METHODS FOR QUALITY
PREDICTION

Machine learning methods have been applied in different
manners for quality prediction [10]. In [14], the authors show
that four examined machine learning (ML) algorithms ade-
quately predict quality in injection moulding even with very
little training data. Pressure data from the mould cavity was
used for quality prediction. A similar analysis was performed
in [15], where tree-based algorithms, regression based algo-
rithms, and autoencoder were compared. Using a plethora of
collected data, the paper shows that autoencoder outperforms
other examined tree-based machine learning algorithms in
accuracy, precision, recall, and Fl-score. Artificial neural
networks (ANN) were compared to decision trees in [16]
for prediction of parts quality in thermoplastics injection
moulding, showing over 99% accuracy rates. On the other
hand, Silva et al. [17] show that only a combination of ANN
and support vector machines (SVM) allowed them to reach
accuracy above 99%. That work was extended to identify
the relevant parameters [18]. Since many injection moulding
machines are not prepared to access their data on a real-time
basis, digitalization of such devices was explored in [19].
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Given that in the real-world the datasets are often uneven or
imbalanced, different methods of dealing with such datasets
have been proposed. [20]. Supervised methods are known
to need large quantities of data [21]. Undersampling of the
majority class [22] or ovesampling of the minority class with
repeated or synthetic data are often used [23]. Both can lead
to overfitting or loss of characteristics. On the other hand,
unsupervised classification methods can be applied for un-
even databases [24]. These include, among others, clustering
and autoencoders. The latter can be used to detect difference
through the reconstruction error [25]. Clustering and deep
autoencoders can be combined with deep embeded clustering
(DEC) [26].

In this paper we compare several supervised classifiers
and evaluate our proposed unsupervised approach based on
clustering in the latent space of a deep AE.

B. ROBOT-AIDED VISUAL QUALITY INSPECTION

Robot-aided visual quality inspection has been applied in
different manners, either by moving the camera around the
object, or by moving the object to be inspected in front of
the camera [8]. In both cases, achieving a proper spatial
relation between the camera and the object is critical for
obtaining high quality images for subsequent processing and
detection of defects, for example by using advanced deep
learning methods [27], [28]. Thus, camera location, [29], [30]
including a robot-supported autofocus mechanism, [31] and
camera motion [9] are often the subject of optimization for
quality inspection. Even so, the space in production lines is
usually rather confined due to the production and inspection
equipment and the robot may not be able to achieve optimal
viewpoints for all the aspects of the object that need to be
inspected. Thus, robot in-hand camera motion is sometimes
combined with a rotation of the object to be inspected [8]. In
this paper we use an in-hand camera that is moved around the
product, but the motion of the robot is not predefined — it is
planned on-line using a motion planner.

C. ROBOT MOTION PLANNING

In recent years, considerable progress was made to realize
fast and robust algorithms for robot motion planning [32].
Their goal is to enable robots to automatically compute their
motions from descriptors of tasks and models acquired from
sensors [33]. As per the definition, the task of a path-planner
is to “find a collision-free motion between an initial (start) and
a final configuration (goal) within a specified environment”
[34]. Various software packages offer readily available plan-
ning algorithms, one notable example being Movelt! [35].
There exist several planning libraries that offer different types
of planners. For instance, the Open Motion Planning Library
(OMPL) [13] provides geometric and control-based planners
and also includes algorithms for constrained planning [36]. In
addition, alternatives such as Stochastic Trajectory Optimiza-
tion for Motion Planning (STOMP) [37], Gradient Optimiza-
tion Techniques for Efficient Motion Planning (CHOMP)
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[38], and Search-based Planning Library (SBPL) [39] are
available.

Tools are available within the Robot Operating System
(ROS) framework to evaluate the performance of different
motion planners. This includes the aforementioned Movelt!,
RViz for visualization, and Planner arena [12] for bench-
marking of different planners. Open Motion Planning Library
(OMPL) [13] is an integral part of available motion planning
tools. We used it in the context of visual quality inspection to
find planners that can generate collision-free motion trajecto-
ries in a fast and reliable manner when steering the camera to
the desired viewpoints.

IIl. METHODOLOGY
In this section we provide the methodology of the proposed
defect prediction algorithm.

The proposed defect prediction approach is based on the
assumptions that 1. similar production parameters produce
a similar output and 2. there is a subset of most common
defects, which cover the large majority of all cases. Therefore,
we use the production parameters from previously produced
parts to predict the outcome of the production process for each
new produced part, i.e., we compute the most probable defects
based on its production parameters.

As discussed in Section II, there exist different classifi-
cation approaches. The most important factors in deciding
which of these classifiers can be applied effectively are the
type and amount of production parameters gathered in the
training database. In this section, we outline our unsupervised
approach that relies on clustering of faulty parts in the latent
space of a deep autoencoder (AE), which is trained on all
available production data. In Section IV we show why other
methods, such as for example a random forest classifier [40]
or a deep neural network classifier with or without a softmax
layer, cannot be effectively applied in our case.

In the proposed approach, we first train a deep AE using
the complete database of production parameters. We then
project the production parameters of parts onto a low dimen-
sional latent space of a deep AE. The autoencoder passes
its input data to the output so that the output matches the
input with the highest possible precision. The data are pushed
through differently sized layers, including through the lowest-
dimensional layer, known as bottleneck or latent space. The
projected data in the latent space now encodes the data with a
small number of parameters. To discover the set of most com-
mon defects, the production parameters of available faulty
parts are projected onto this latent space and clustered using
GMM clustering. It is important to note that the real-world
data is used to match the clusters and the defects. This process
is illustrated in Fig. 2. Each defect type is associated with
a camera viewpoint or a set of viewpoints from where its
occurrence can be inspected.

At production time, the production parameters of each new
part are projected onto the AE latent space. The posterior
probabilities of Gaussian mixture components are then com-
puted to predict the most probable defects. They determine
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FIGURE 2. Diagram of data clustering.

the sequence of viewpoints, where the robot should place the
camera to check for the most probable defects, as detailed in
Algorithm 1. Note that only potential defects where the poste-
rior probability is larger than a cut-off posterior probability p,,
determined empirically based on the producer’s requirements,
are checked. Thus, time is saved by performing less quality
checks, testing only the defects that are likely to occur.

Algorithm 1 Procedure for inspecting the viewpoints of one
product based on the process parameters

procedure Check viewpoints
project new part 6 (Table 1) into the latent space
of a previously trained AE;
compute posterior probabilities P of the established ¢
GMM clusters associated to ¢ most common defects;
arrange P in descending order;
seti=1
for probabilities p € P:
ifp > p.:
choose viewpoint(s) V; corresponding to p;;
plan trajectory 7 between current robot posture
and V;;
execute trajectory 7 and seti =i+ 1;
if vision check (Fig. 11) returns error:
discard product;
break

9AE

end

IV. EVALUATION OF CLASSIFICATION APPROACHES

In the following section, we introduce a functional database
containing production parameters derived from the injection-
moulding process used in manufacturing car parts. We then
discuss and analyze design choices and the effectiveness of
the proposed approach by utilizing the data obtained from this
production process.

A. PRODUCTION PARAMETERS IN INJECTION MOULDING
During the production process, hundreds of production pa-
rameters are stored for every product (part). However, a large
portion of the parameters is not relevant for the process
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itself (server name, user name, folder, ...). In collaboration
with a production engineer working at the manufacturer, we
identified 22 relevant production parameters. They are listed
in Table 1. Some can easily be understood, while the others,
such as PD_DIA average and minimum values, were pro-
posed by the engineer. Normalized data from the production
production process are, without identifiers, made available at
https://github.com/abr-ijs/production_parameters.

TABLE 1. Injection Moulding Parameters 0 Used for Prediction of Defects

cycle time

injection time

max injection pressure
switch after pressure
dozing time

material cushion

tool 7 heating circuit
tool 10 heating circuit
tool 11 heating circuit
cooling nest

marking nest

switch after volume
machine cycle counter
feeder housing temperature
tool 1 heating circuit
tool 2 heating circuit
tool 4 heating circuit
blasting nest

nest insertion

nest withdraw

PD_DIA minimum value
PD_DIA average value

B. DATABASE

For evaluation we gathered a database that consists of pro-
duction parameters for 4436 good (OK) parts and 45 faulty
(NOK) parts. The production parameters for good parts were
collected in 5 days. We also had 32 faulty physical parts
with associated parameters available. The faulty parts were
collected by workers at the production line by manually in-
specting samples of products over the course of three months.
We refer to this complete database as DBI.

The main reason for many more entries for good parts is
that a typical industrial production process produces signif-
icantly more good than bad parts. In addition, the parts that
reach the end of the production line have already passed inter-
mediate checks, and thus the number of bad parts is relatively
small [10]. In the use-case of this paper, the parts that are
deemed faulty at the intermediate checks are discarded and
their production data is not stored or is incomplete. In any
case, the data about faulty parts identified at the end of the
production line can initially only be collected by assigning
a human worker with sufficient knowledge [41] to manually
inspect the parts. Thus in general, the data for faulty parts is
difficult to obtain.

To obtain the production parameters for each part, their QR
code identifier is scanned and used to extract the data from the
complete production line database. In our practical example,
the discrepancy between the number of faulty physical parts
and the number of data for faulty parts in database DB1 is
due to some parts having the (small) QR code identifier not
readable.

C. DEFECT PROBABILITY PREDICTION USING DEEP AE
AND CLUSTERING

As explained in Algorithm 1, we pass all the parameters gath-
ered in DB1 through a deep autoencoder (AE). The projected
data is then normalized for each parameter. The autoencoder
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FIGURE 3. Mean Squared Error (MSE) of samples after pushing the data
through AEs with different latent space dimensions.

was designed empirically, with a 22 dimensional input and
output layers and 5 hidden layers of the size 15, 10, x.g, 10,
15, respectively. The hyperbolic tangent sigmoid activation
function was used for the neurons and mean squared error
(MSE) for the cost function. We first checked the size of the
latent space that still preserves most of the information. As
shown in Fig. 3, the mean squared error remains consistent
after x;,s—3. Anillustrative example projections of parameters
of parts onto the latent space of a deep AE for DB1 is depicted
in Fig. 4.

From the manufacturer we know that there are 5 typi-
cal errors that occur with the considered parts. These in-
clude porous material, faulty/broken sides, incomplete bot-
tom edge, fault/broken pins and faulty windings as a result of
the injection moulding process. The defects are depicted in
Fig. 5. We therefore partitioned the data into ¢ = 5 clusters.
In order to exclude the effect of the selected clustering method
on the result of clustering, we tested two methods; k-means
and Gaussian Mixture Model (GMM) clustering, with 5 target
clusters for each. The former, which is the most commonly
used clustering approach, forms spheres around the centers
of the clusters and performs hard classification, while the
latter can handle non-round shapes of clusters and perform
soft classification [42]. To check if the clustering depends on
the autoencoder, we also trained the deep AE with different
random initial parameters of the deep AE network. The results
of clustering using both methods in latent spaces of 6 different
AEs are for illustration shown in Fig. 7. Clusters are marked

e good
« bad

05 o 05

0 = 0

OAF -0.5 ) -0.5 9AF

FIGURE 4. Database DB1 datapoints projected into the 3-dimensional
latent space of a deep AE with red dots marking datapoints for faulty
parts and smaller black dots for good parts.
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(d) (e

FIGURE 5. Five typical defects: (a) porous material — e1, (b) faulty/broken
sides - e5, (c) incomplete bottom edge -e2, (d) faulty/broken pins - e3,
and (e) faulty windings as a result of the injection moulding process -e4.

with different colors. Except for one object, both algorithms
clustered the data in the same manner in all shown cases.
This shows that training of deep AE with different initial
parameters will change the latent space but not necessarily the
clustering. Due to its soft classification outcome, we utilized
the GMM clustering method in our methodology.

Thus, for any new data point, we check to which cluster it
belongs using the posterior probability for all GMM compo-
nents in the latent space. Results for the posterior probability
of all DB1 data points are shown in Fig. 6.

Note, that clustering starts with random initial seeds. As
depicted in Fig. 2, to use the clusters for classification of real
data, they have to match. By associating the latent space data
points with the physical parts with known defects, shown in
Fig. 8, we can see that only one one part fits into two clusters
(green and purple, shown in Fig. 8 in the 5-th row left). This
result confirms that the clustering procedure is appropriate.

2 | 2| A

FIGURE 6. Probability of defect determined by posterior distribution of
GMM components. The colors of the highest defect probability are
associated with defects in Fig. 5.
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FIGURE 7. Clustering of faulty datapoints in the latent space of six autoencoders trained with different randomly selected initial autoencoder parameters.
(a): k-means, (b): GMM clustering. In all cases, the clustering and color coding is the same as in Fig. 5.

FIGURE 8. The defects on physical parts coincide with the clustering of
the associated production parameters in the latent space of the
autoencoder, highlighted with the same colors in Fig. 7.

D. COMPARISON OF CLASSIFICATION WITH DIFFERENT
CLASSIFIERS

As stated in Section II, there exist various classifiers that
can be used to classify the data. In this section we compare
the classification results of our proposed approach based on
clustering in the latent space of the AE with three different
supervised classifier methods on the parts with defects from
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DB1: simple neural network classification, softmax neural
network classification and random forest classification. For
each of these three methods, we used 70% of the data points of
parts with defects for training, 15% for validation and 15% for
testing. We additionally tested another unsupervised method,
i.e., classification based on AE reconstruction error.

Deep neural network classification (DNN): We defined a
deep neural network with the input and output normalized
in range [-1,1], with the sizes of hidden layers [15 10 6 3].
When performing the forward pass, the denormalized output
was rounded to the closest number in range [1, 5], with the
rounded output corresponding to the identity of the defect.
Softmax deep neural network classification (DNN+Softmax):
We used the same deep neural network but added a softmax
layer at the end.

Random Forest Classification (RF): We used 50 estimators
that describe how many trees are trained. The minimal num-
ber of leaf node observations was set to 1.

Autoencoder Reconstruction Error (AE-re): The error of AE
reconstruction can be used, e.g., see [25]. For this case,
we trained the autoencoder on the good parts and then
checked the reconstruction of good and bad parts, when
passed through the AE. We clustered the reconstruction error
to check if it can match with the real data.

GMM clustering in the latent space of an AE (AE LS GMM)
We clustered the projection in the latent space to match with
the real data We also tested whether clustering the data points
in the latent space of an AE is consistent. To do this, we
first obtained the clusters that match the real-world data and
then re-clustered the data by changing the initial center of the
clusters.

Note, as mentioned above, the choice of classifier highly
depends on the available database and potentially, with a more
even database, supervised classifier would do much better.
Please see also the discussion in Section VII.

Results in Table 2 show that, as expected, the three super-
vised classifiers do not perform well with a low number of
data samples because each data point that is left out for vali-
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TABLE 2. Average classification and clustering results for 100 attempts
using different classifiers and the proposed AE LS GMM clustering
algorithm.

Classifier DNN DNN-+Softmax RF
Accuracy (%)  0.29167 0.353 0.579
Classifier AE-re AE LS GMM
Accuracy (%) 0.5545 0.969

dation makes a large difference. Using all the data, however,
would lead to over-fitting. Unsupervised anomaly detection
performed better. AR-re could reliably predict that there was
adefect for 78.44% cases, but could not be used to classify the
defect, as the defect classification was only 55.45% accurate.
GMM clustering in the latent space of an AE (AE LS GMM),
on the other hand, led to better classification rates, where 31
out of 32 items are correctly classified (96.9%), and was more
consistent with the real-world data, as changing the cluster
centers still matched the data in 85% of the time.

Our approach proceeds with checking the parts in the
descending order of probabilities of possible defects. This
means that the motion of the robot is potentially different for
each part that needs to be inspected. We therefore generate the
robot motions that place the camera at the required viewpoints
online using a suitable motion planner.

V. ADAPTIVE VISUAL QUALITY INSPECTION

The production example presented in the introduction calls
for the inspection of parts from 10 different viewpoints, even
though there are only 5 most common defects. This is because
some of the defects have to be inspected from more than one
viewpoint (e.g. pins, porous material). In addition, there is the
starting point of the robot. Thus, the robot potentially needs
to move between 11 different postures. The physical imple-
mentation and simulation of the real visual quality inspection
cell are depicted in Fig. 1.

A. INSPECTION VIEWPOINTS

The task of the production engineer is to associate the poten-
tial defects with the predefined camera viewpoints (V). The
viewpoints must be selected in such a way that the critical
surface area of the part is visible and that the acquired images
are sharp. Additionally, the engineer should make sure that
the associated robot postures are reachable in the confined
space of the workcell. Some of the robot postures that provide
good viewpoints of the observed part are displayed in Fig. 9.
Because the part is small, some of the postures are quite close
together. In our practical example, the engineer selected two
viewpoints from the side of the object, one for the sides and
windings and one for the bottom of the product. The other
defects were observed from the top.

The issue with adaptive visual quality inspection is that
potentially there are a lot of different motion trajectories
between viewpoints. If we consider the trajectories from one
viewpoint to another and back as two different motion tra-
jectories and there are m different camera viewpoints (plus
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the initial robot posture), then there are (m + 1) x m possible
motion trajectories between different viewpoints. In our prac-
tical example, this results in 110 possible trajectories. They
can be either generated in advance and stored or they can be
generated online.

B. MOTION PLANNERS

Many different motion planners exist, as presented in the
related work section. We used Movelt! [35] software package
for motion planning and Planner arena [12] for benchmarking
of different planners for steering the camera in adaptive visual
quality inspection. We tested 21 different motion planners
available in Open Motion Planning Library (OMPL) [13].
The planners are listed in Table 3 and the number associated
with each planner is used to present the results of our evalua-
tions.

TABLE 3. List of tested OMPL planning algorithms

Pl.#  Planner name
1 BiEST (Bidirectional version of EST)

2 ProjEST (Projection-based version of EST)
3 LazyPRM

4 LazyPRM*
5

6

7

SPARS (SPArse Roadmap Spanner algorithm)
SPARS2
SBL (Single-query, Bi-directional and
Lazy Collision Checking)

8 EST (Expansive Space Trees)

9 LBKPIECE (Lazy BKPIECE)

10 BKPIECE (Bidirectionnal KPIECE)

11 KPIECE (Kinematic Planning by Interior-Exterior
Cell Exploration)

12 RRT (Rapidly-exploring Random Trees)

13 RRT Connect

14 RRT*

15 T-RRT (Transition-based RRT)

16 PRM (Probabilistic roadmap)

17 PRM*

18 FMT (Fast Marching Tree algorithm)

19 PDST (Path-Directed Subdivision Trees)

20 STRIDE (Search Tree with Resolution Independent
Density Estimation)

21 BiTRRT (Bi-directional Transition-based RRT)

C. EXPERIMENTAL PROTOCOL AND METRICS

Each planner was used to generate trajectories between all
possible pairs of 11 robot postures (10 viewpoints + the start-
ing point), 250 times for each pair. Several executions were
executed because the planners use random sampling when
generating the trajectory points. In general, there is no motion
planner that is optimal for every given use-case [12]. Thus,
we checked various parameters to determine which planner
performed best in our practical example. The calculations
were done on a PC with AMD Ryzen Threadripper PRO
5975WX processor and 512GB of RAM.

First, one needs to check if the robot motion generated
by the selected planner reaches the desired final pose. If the
planner does not converge, it is immediately ruled out.

Next, since short cycle times are needed to prevent bot-
tlenecks in the production, the average time required for

7
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FIGURE 9. Seven out of eleven postures for visual quality inspection shown in RViz visualization (a) and in real world (b).

planning was checked.

The length of motion, as the next evaluation metrics, was
computed as the sum of joint angle differences travelled by all
robot joints starting at the initial and final robot configuration
qo and qy, respectively

L=Y lla—a1] ()
i=1

Finally, smoothness S of the Cartesian space path, as in-
troduced in [43], was evaluated. It was obtained by averaging
the squared angles between consecutive trajectory segments

1 n—1
S=-3 ¢ e
i=1

n-

To compute the angles, we sampled a sequence of n + 1
positions rg,ry,...,r, € R3 on the Cartesian space path,
distributed from the beginning to the end of the path. The
angle ¢; between each triple of consecutive points {r;_1, r;,
riy1} can be calculated using

) (r — 1
¢; = T — arccos ((r,1 ri) (v r,)) .03

lricy —rill[Jries — il

VI. MOTION PLANNER EVALUATION

We evaluated the planners listed in Table 3. The results of
convergence to the desired posture are shown in Table 4. It can
be seen that some planners did not converge to the solution in
all 250 planning sessions. These planners were immediately
ruled out.

TABLE 4. Success rate of planners for 250 planning attempts and 110
movements between the specified camera postures

# 1 2 3 4 5 6 7 8 9 10 11
P 1 1 1 1 098 0.66 1 1 1 1 1
# 12 13 14 15 16 17 18 19 20 21

% 099 1 099 098 1 1 1 1 1 1

As shown in Fig. 10a, some of the planners took an order
of magnitude longer than the others and reached the cut-off

8

time of 2 seconds. These planners were also excluded from
further consideration.

Length of motion metrics results, as defined in (1), are
presented in Fig. 10b. These were combined with Cartesian
path smoothness. Considering the results in Table 4 and Fig.
10, the best result was obtained by planner #21, Bi-directional
Transition-based Rapidly-exploring Random Trees (BiRRT).
This planner combines the exploratory strength of RRTs with
the efficiency of stochastic optimization methods (e.g., Monte
Carlo optimization) [44]. The BiRRT method converged to a
solution all the time, was very fast, and the resulting trajec-
tories were smooth and short. Variations of RRT, such as T-
RRT performed on the same level if not better, but did not
converge in all planning attempts. Planners #1, 2, 19 and 20
were excluded because of longer and less smooth trajectories,
even though the results were close to the chosen planner.

VIl. DISCUSSION

It is important to note that parts for the automotive industry
are produced in large series. Any possible defects are prob-
lematic for the overall production process because they might
cause delays in the time of delivery of the final product or even
recall of the vehicles that are already being used in traffic.
Since such recalls can be expensive for the manufacturer and
cause the loss of trust from the customers, it is important for
the manufacturers to invest and implement better methods for
visual quality inspection. It is desirable to reduce the number
of undetected faulty parts to zero. Note that technological
limitations still cannot provide 100% optical control in real-
world production environments.

The defect prediction approach presented in this paper
mostly depends on the available data. Additional data-points
can always be added and the clustering re-trained. Thus, with
an increasing amount of data points for good and faulty parts,
it is possible to raise the trust in the prediction of possible
defects. Manufacturing companies, however, tend to produce
orders of magnitude more of good parts than faulty parts.
Thus, collecting a large database, especially at the end of the
production process where the parts that reached this point
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FIGURE 10. Planner evaluation results. (a) planning times. (b) length as defined in (1), cut at 50 rad. (c) smoothness as defined in (2).

have already passed the intermediate quality checks, is not
easy. As can be seen in the practical production example
considered in this paper, the database of good and faulty parts
(DB1) can be extremely lopsided.

With more data available, the choice of classification algo-
rithms may also change. Our proposed approach shows good
classification results even though the amount of relevant data
was low. Furthermore, the comparisons show that some ap-
proaches are really not appropriate in this case, i.e, supervised
learning classifiers are known to require a lot of data [21].
The proposed approach combines both AEs and clustering.
Using them separately, for clustering in the data space, or for
detecting defects through reconstruction error has not shown
good results. Conceptually similar to our method is also deep
embedded clustering (DEC), where the clustering is imple-
mented as an additional layer of the encoder. Since it can only
be trained on the outcome of already implemented clustering,
it offers only an additional implementation which will take
the data as the input and provide directly the possibility of
belonging to a cluster, without the need to check separately.
Thus, the results will be the same.

Our approach can be used in two ways: either to i) check
all the parts after the final production stage, but using the
prediction model to change the order of inspections, or ii):
to only checks the most likely defects. Under 1), all defects
will be found, but it will take the longest, as shown in Table
5, which shows the average times for 100 iterations of the
inspections for all the defect combinations. With enough
confidence in the prediction model, we can save close to 80%
of the time when checking for only one defect, or around
55% of the time when checking for two, as listed in Table 5.
Checking for 3 defects saved roughly 36% of the time, while
checking for 4 out of the five most likely defects on average
saved around 23% of the inspection time.

In our approach, the robot must frequently move between
different pairs of viewpoints no matter if we check for all or
only some of the defects. We therefore tested which of the
available motion planners is best for our practical production
process. As stated in [12], there is no motion planner that

VOLUME 11, 2023

TABLE 5. Time required for inspecting different combinations of defects

using the selected BiRRT motion planner. The Table shows the mean and

standard deviation of computational time needed for trajectory planning
and execution for different defect combinations as well as the percent of
the saved time compared to the inspection from all viewpoints.

Inspected defect w(s) o(s) saved (%)
All 4221 0,51  0.00+1.21
bottom 2.66 0.40  93.69 £ 1.02
pins 2492 050  40.96 £191
porous 11.06 044 7380+ 1.36
windings 2.68 0.38  93.66 +0.98
sides 2.67 0.38  93.67 £0.98
Average 1 8.80 042  79.16 £1.25
bottom + pins 29.12 085 31.01 £2.84
bottom + porous 20.23 146  52.07 =4.04
bottom + windings 8.34 044  80.24 +1.29
bottom + sides 8.73 022 79.32+£0.77
pins + porous 28.08 0.25 3347+ 1.39
pins + windings 2920 037 3082+ 1.72
pins + sides 2922 038  30.77 £ 1.73
porous + windings 18.13  0.17  57.054+0.93
porous + sides 1842 038 5637+ 144
windings + sides 2.71 0.38  93.59 +0.98
Average 2 1922 049 5447+ 1.71
bottom + pins + porous 3207 047 24.03+£2.04
bottom + pins + windings 3297 047  21.88 £2.06
bottom + pins + sides 3293 043 22.00 £ 1.96
bottom + porous + windings 2490 222  41.024+597
bottom + porous + sides 24779  1.80  41.26 £4.97
bottom + windings + sides 8.71 0.19  79.37 +£0.70
pins + porous + windings 3191 044 24404195
pins + porous + sides 3207 038 24.03+£1.83
pins + windings + sides 29.10 047 31.05+1.94
porous + windings + sides 18.18 0.35 56.94 + 1.35
Average 3 26.76  0.72  36.6 +2.48
bottom + pins + porous + windings 35.82  0.32 15.15 £ 1.78
bottom + pins + porous + sides 3579 0.48 15.22 £2.17
bottom + pins + windings + sides 32.83 041 2223 +£1.92
bottom + porous + windings + sides  24.77 255 < 41.32 +£6.76
Average 4 3227 0.84  23.56 +2091

works best in every situation. For the considered produc-
tion process, the extensive statistical evaluation has shown
that several planners might be appropriate. The best results
were obtained with Bi-directional Transition-based Rapidly-
exploring Random Trees (BiTRRT) method. In this example,
learning 110 trajectories and then recalling them from the
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database is still viable. Nonetheless, it is easy to imagine
visual inspection processes where many more motion tra-
jectories would need to be generated. This is, however, not
necessary because the available motion planners can generate
trajectories for visual quality inspection in a fast and reliable
manner.

For completeness of the adaptive visual quality inspection
approach, we implemented a deep neural network classifier
that takes the image as the input and classifies the part as good
or faulty at the output. The results of this classification for the
incomplete bottom edge defect are shown in Fig. 11.

FIGURE 11. Results of final visual quality inspection for the "incomplete
bottom edge" (e2) defect of several parts. Faulty parts are marked with a
red edge.

VIil. CONCLUSION

The presented approach, demonstrated on real-world data
and objects, takes the production parameters of an injection
moulding line to predict potential defects of the manufactured
parts. We have shown that both supervised and unsupervised
classification methods can struggle with the problem. As is
common with learning approaches, a small database prevents
the use of supervised learning classifiers, as they either overfit
or achieve poor classification results. Our proposed, unsuper-
vised method shows how to use autoencoders and clustering
of production parameters to predict what kind of defect might
be present.

The evaluation has shown that the clustering and clas-
sification are robust against the training of AE networks.
The classification results and the comparison to the real data
show, that the proposed method can be effectively applied
for default prediction. The use of the proposed method can,
without having to check the most common defects, reduce
their number without introducing a delay in the production.
it should be noted, that the proposed approach provides the
initial, starting point in the production. Once added to the
production line, the database can be potentially increased.
Thus, either our approach or even supervised deep learning
classification approaches could, at a later stage, be applied
more effectively.

We have also analyzed different motion planners to gen-
erate motions that bring visual inspection cameras to the
required viewpoints in a collision-free manner. The timing
results show that considerable time can be saved when only

0

some of the most common potential defects are inspected.
However, it is the prediction which potential defects need to
be checked for, that makes the approach more reliable.

While in our approach we close the feedback loop be-
tween the prediction of the defect and the camera viewpoint,
for a true ZDM approach the closed loop should consider
changing the production parameters based on the prediction
of feedback. This remains an open research question and
future work. With a larger database, one could improve the
confidence in the predictions from model. Additionally, a
larger database would enable one to evaluate the effect of spe-
cific models on the outcome of the production, for example
with Shapely values [45], and thus influence the production
process in a closed-loop manner.
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