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Abstract: A simulation of the effect of metal nano-oxides at various concentrations (25, 50, 100, and
200 milligrams per millilitre) on cell viability in THP-1 cells (%) based on data on the molecular
structure of the oxide and its concentration is proposed. We used a simplified molecular input-line
entry system (SMILES) to represent the molecular structure. So-called quasi-SMILES extends usual
SMILES with special codes for experimental conditions (concentration). The approach based on
building up models using quasi-SMILES is self-consistent, i.e., the predictive potential of the model
group obtained by random splits into training and validation sets is stable. The Monte Carlo method
was used as a basis for building up the above groups of models. The CORAL software was applied
to building the Monte Carlo calculations. The average determination coefficient for the five different
validation sets was R2 = 0.806 ± 0.061.
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1. Introduction

Nano-safety assessments are often conducted in live organisms, including fish, mice,
and rats [1,2]. However, since the European Union and US regulatory authorities consider
the development of alternative animal-free testing strategies as the most important chal-
lenge for future chemical risk assessment of nano-materials, interest in developing in silico
approaches to solving the above task has increased considerably [3]. The lack of structured
and systematized databases remains a factor that hinders the development of methods for
the simulation of the physicochemical and biochemical behaviour of nano-materials [4–10].
Nevertheless, work on the creation of methods for assessing nano-safety is being carried
out, and their flow is growing [11–22]. Nano-safety assessments are in high demand and
refer to a wide variety of nano-materials that are increasingly penetrating the everyday
life of modern society. One of the main directions of these studies is the development of
models of environmental consequences of the use of nano-substances in industry, medicine,
and everyday life.

The first attempts to develop in silico approaches to solving the above problem were
based on the set of developed molecular descriptors used for traditional substances (organic,
inorganic, coordination). At the same time, the combined use of calculated molecular
descriptors and experimentally determined numerical data on various physicochemical
and biochemical characteristics of nano-materials was used for the development of in silico
models of the properties of nano-materials [7].

The development of a special format for presenting data on nano-materials is another
concept for building in silico models for nano-materials. This format would be abbreviated
ISO-TAB-nano (Investigation/Study/Assay Tabular) [8].
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A convenient compromise between the need to have expensive experimental data on
nano-materials and the need to quickly evaluate a rapidly expanding list of nano-materials
in practical use is the “read-across” approach [9].

Finally, the quasi-SMILES method is an effective method for constructing models of
nano-materials’ physicochemical and biochemical behaviour in the absence of systematized
databases [23–35]. The essence of this method in the first approximation is two steps. First,
a list of conditions (for example, concentrations of reagents) and circumstances (presence
of certain chemical elements) is made, designating each of them with a special code; and
secondly, the correlation contribution of each code to some stochastic model of a given
endpoint is evaluated using the Monte Carlo method.

The advantages of using quasi-SMILES are the convenience of formulating problems
for in silico modelling and the clarity of the results obtained. The disadvantage of this
approach is a significant variance in the results, as a result of which practical reliability can
be achieved only when conducting a large number of stochastic computer experiments.
It is to be noted that, previously, the index of ideality of correlation and the correlation
intensity index have not been used in building models.

Here, the possibility of using the above-mentioned approach to simulate the impact of
nano-oxide metals (in different concentrations) on cell viability in THP-1 cells expressed
by a percentage was examined. The calculations described here were carried out with the
CORAL software (http://www.insilico.eu/coral, accessed on 10 January 2023, Italy).

2. Results
2.1. Models

The computational experiments with five random splits gave models characterized
by quite close predictive potential (average determination coefficient R2 = 0.806 ± 0.061).
Table 1 shows the statistical characteristics of the models. Figure 1 shows the graphical
representation of the model for cell viability in THP-1 cells observed for split-1.
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Table 1. The statistical characteristics of models for cell viability were observed for five random splits.

Set * n R2 CCC IIC CII Q2 RMSE F

Split1 A 29 0.7094 0.8300 0.6843 0.8115 0.6683 19.6 66

NCW = 25 P 31 0.6104 0.6880 0.7323 0.7830 0.5186 21.5 45

C 29 0.5656 0.7312 0.7500 0.7744 0.4437 12.9 35

V 31 0.7226 - - - - 13.7

Split2 A 32 0.7602 0.8638 0.6782 0.8582 0.7179 17.6 95

NCW = 28 P 30 0.6793 0.7287 0.4444 0.8133 0.4913 16.2 59

C 29 0.5281 0.6999 0.7261 0.8126 0.4225 14.5 30

V 29 0.8541 - - - - 14.3

Split3 A 29 0.7751 0.8733 0.7153 0.8868 0.7434 18.1 93

NCW = 27 P 31 0.6325 0.6949 0.6134 0.7897 0.5575 23.2 50

C 29 0.5639 0.5557 0.7509 0.8253 0.3264 13.5 35

V 31 0.7790 - - - - 10.9

Split4 A 31 0.7035 0.8260 0.6907 0.8278 0.6678 21.5 69

NCW = 27 P 28 0.7345 0.1563 0.0408 0.8449 0.6879 31.8 72

C 31 0.6849 0.8205 0.8275 0.8654 0.6012 12.6 63

V 30 0.7801 - - - - 15.5

Split5 A 29 0.7065 0.8280 0.6829 0.8274 0.6571 18.9 65

NCW = 28 P 29 0.8444 0.7829 0.6637 0.9040 0.8239 20.9 146

C 31 0.6057 0.6661 0.7779 0.8176 0.2765 11.8 45

V 31 0.8964 - - - - 7.0

* A = Active training set; P = Passive training set; C = Calibration set; V = Validation set; n = the number of quasi-
SMILES in a set; R2 = the determination coefficient; CCC = the concordance correlation coefficient; IIC = the index of
ideality of correlation; CII = correlation intensity index; Q2 = cross-validated leave-one out R2; RMSE = root mean
squared error; F = Fischer F-ratio, NCW = the number of parameters involved in the Monte Carlo optimization.

2.2. Mechanistic Interpretation

Having the numerical data on the correlation weights of codes applied in quasi-
SMILES, which was observed in several runs of the Monte Carlo optimization, one is able
to detect three categories of these codes:

I. Codes that have a positive value of the correlation weight in all runs. These are
promoters of endpoint increase;

II. Codes that have a negative value of the correlation weight in all runs. These are
promoters of endpoint decrease;

III. Codes that have both negative and positive values of the correlation weight in different
optimization runs. These codes have an unclear role (one cannot classify these features
as a promoter of endpoint increase or decrease).

In the case of the analysis of cell viability, promoters of decrease have a practical
significance. Table 2 shows the collection of promoters of decrease in cell viability.

Table 2. Promoters (↓) of decreased cell viability in THP-1 cells, according to computational experi-
ments with five random splits.

Split1 Split2 Split3 Split4 Split5

[Mn] ↓ ↓ ↓ ↓ ↓
[Co] ↓ ↓ ↓ ↓ ↓
[Cu] ↓ ↓ - - -
[Zn] - - - ↓ -

[c200,00] - - ↓ ↓ -
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2.3. Applicability Domain

The applicability domain for the described model calculated with Equation (1) is
defined by the so-called statistical defects of quasi-SMILES codes [36]. The percentage
of outliers according to the criterion equals 27%, 13%, 17%, 10%, and 13% for split 1,
split 2 . . . split 5, respectively.

3. Discussion

In this study, only one additional parameter was available for model development in
addition to the molecular structure (transmitted via SMILES), namely the concentration
of metal oxide nano-particles. Nevertheless, the results obtained are, in fact, quite reliable
models of cell viability in THP-1 cells.

It should be noted that the present approach makes it possible to quite easily im-
prove the predictive potential of the model if additional experimental data are available
that can be represented as additional codes for the quasi-SMILES extension. There are
examples of works where representative lists of codes for quasi-SMILES are applied in
practice [36,37]. Thus, simulation by means of the quasi-SMILES technique claims both
simplicity and universality. Consequently, quasi-SMILES can find numerous applications
as a tool for developing models for phenomena characterized by an eclectic set of factors
influencing them.

It is possible to use the optimal descriptors considered here in conjunction with classi-
cal descriptors developed based on information theory ideas, physicochemical parameters
(solubility, density, octanol/water distribution coefficient), biochemical characteristics (tox-
icity, drug effects), or the invariants of the molecular graph (multigraph). The above
abilities of the quasi-SMILES technique are especially convenient for a situation related to
non-standard objects for the simulation, such as mixtures, peptides, and nano-materials.

No less interesting are the prospects for the development of the objective functions
described here used for optimization by the Monte Carlo method. Currently, objective
functions based on correlations have been studied, but instead of correlations, the basis
for them can be selected entropy values of fuzzy sets generated by various divisions of
available data into training and verification subsets.

Like most stochastic approaches, the quasi-SMILES technique makes it possible to
analyse existing experimental data, but the possibilities for extrapolating the considered
approach are limited. In other words, this approach can be useful only for situations close
to those that have been studied in detail in a direct experiment. At the same time, work
with experimentally determined data sets can be used for the inverse problem, that is, the
selection of experimental characteristics that are promising or, on the contrary, useless,
according to the number of available experimental states of the data system under study.

Supplementary materials contain input files for the five splits examined here, together
with the CORAL method used in this work.

4. Materials and Methods
4.1. Data

In [3], data on the impact of nano-oxide nano-particles on cell viability in THP-1 cells
was tested at eight dilutions (0, 3.1, 6.2, 13, 25, 50, 100, and 200 µg/mL). Non-zero effects
of impact on cell viability in THP-1 cells by the mentioned nano-particles were observed
starting from a concentration of just 25. Only non-zero effects were used to build the
model. Under such circumstances, the total number of situations (oxide–concentration–
cell viability) equals 120. Quasi-SMILES represents each situation. These quasi-SMILES
are distributed into four special sub-sets: (i) active training set; (ii) passive training set;
(iii) calibration set; and (iv) validation set. Five random splits were examined here as a
basis to build up the model of cell viability in THP-1 cells. Each above sub-set contains
about 25% of the total list of quasi-SMILES.

Each of the above sets had a defined task. The active training set was used to build
the model. Molecular features extracted from quasi-SMILES of the active training set were
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involved in the process of Monte Carlo optimization aimed to provide correlation weights
for the above features, which give maximal target function value, which was calculated
using descriptors (the sum of the correlation weights), and endpoint values on the active
training set. The task of the passive training set is to check whether the model obtained for
the active training set is satisfactory for quasi-SMILES which were not involved in the active
training set. The calibration set should detect the start of overtraining (overfitting). The
optimization must stop if overtraining starts. After stopping the optimization procedure,
the validation set was used to assess the predictive potential of the obtained model.

Figure 2 demonstrates the generalized scheme of construction of quasi-SMILES for
the above-mentioned arbitrary situation. Figure 3 includes the general scheme of applying
quasi-SMILES (Qk) codes to calculate the optimal descriptor for a defined arbitrary situation.
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weights (CW) of codes of quasi-SMILES (i.e., Qk); the correlation weights CW(Qk) are obtained by the
Monte Carlo method.

Table 3 contains split-1 for the total list of quasi-SMILES together with experimental
and calculated values of cell viability in THP-1 cells.

4.2. Optimal Descriptor

The optimal descriptor is the sum of the correlation weights of the quasi-SMILES
codes obtained by the Monte Carlo method (Figure 3). The values of the optimal descriptor
serve as the basis for the model of cell viability calculated by the formula

cell viabilityk = C0 + C1 × DCW(T, N) (1)

The optimal descriptor depends on the style of the Monte Carlo optimization. T and N
are parameters of the optimization procedure. T is a threshold applied to define rare codes;
if T = 1, this means that codes absent in the active training set are rare. The rare codes are
not involved in the modelling process (their correlation weights are zero). N is the number
of epochs in the Monte Carlo optimization.
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Table 3. The list of quasi-SMILES, experimental and calculated percentage of cell viability in THP-1
cells. A = active training set; P = passive training set; C = calibration set; V = validation set.

Set ID Quasi-SMILES Experiment (%) Calculation (%)

C 1 O=[Al]O[Al]=O[c25,00] 102.7800 134.3224

V 2 O=[Al]O[Al]=O[c50,00] 103.4400 126.9137

V 3 O=[Al]O[Al]=O[c100,00] 99.8800 116.2402

A 4 O=[Al]O[Al]=O[c200,00] 93.2600 109.9123

P 5 O=[Bi]O[Bi]=O[c25,00] 98.6300 112.2648

A 6 O=[Bi]O[Bi]=O[c50,00] 100.7300 104.8562

A 7 O=[Bi]O[Bi]=O[c100,00] 99.6300 94.1827

A 8 O=[Bi]O[Bi]=O[c200,00] 100.2600 87.8548

P 9 O=[Ge]=O[c25,00] 97.8300 85.6033

P 10 O=[Ge]=O[c50,00] 100.1900 78.1946

P 11 O=[Ge]=O[c100,00] 99.5000 67.5211

P 12 O=[Ge]=O[c200,00] 96.7000 61.1932

C 13 [Co]=O[c25,00] 54.4100 52.4457

P 14 [Co]=O[c50,00] 15.5500 45.0370

P 15 [Co]=O[c100,00] 5.6600 34.3635

A 16 [Co]=O[c200,00] 3.2600 28.0356

A 17 [Co]=O.O=[Co]O[Co]=O[c25,00] 95.4400 61.3872

P 18 [Co]=O.O=[Co]O[Co]=O[c50,00] 84.9300 53.9786

C 19 [Co]=O.O=[Co]O[Co]=O[c100,00] 49.9600 43.3051

V 20 [Co]=O.O=[Co]O[Co]=O[c200,00] 22.6500 36.9772

P 21 O=[Cr]O[Cr]=O[c25,00] 101.7700 89.0326

P 22 O=[Cr]O[Cr]=O[c50,00] 94.8500 81.6240

V 23 O=[Cr]O[Cr]=O[c100,00] 65.8100 70.9505

C 24 O=[Cr]O[Cr]=O[c200,00] 46.3600 64.6226

A 25 [Cu]=O[c25,00] 99.1700 45.0965

V 26 [Cu]=O[c50,00] 60.4100 37.6879

A 27 [Cu]=O[c100,00] 19.8700 27.0144

P 28 [Cu]=O[c200,00] 0.1000 20.6865

C 29 O=[Dy]O[Dy]=O[c25,00] 97.6000 109.6235

A 30 O=[Dy]O[Dy]=O[c50,00] 104.1500 102.2148

C 31 O=[Dy]O[Dy]=O[c100,00] 95.0600 91.5413

V 32 O=[Dy]O[Dy]=O[c200,00] 89.7000 85.2134

C 33 O=[Er]O[Er]=O[c25,00] 100.1600 89.0326

V 34 O=[Er]O[Er]=O[c50,00] 96.5800 81.6240

P 35 O=[Er]O[Er]=O[c100,00] 95.1000 70.9505

P 36 O=[Er]O[Er]=O[c200,00] 89.7400 64.6226

V 37 O=[Eu]O[Eu]=O[c25,00] 99.4800 106.8651

P 38 O=[Eu]O[Eu]=O[c50,00] 99.9800 99.4564

A 39 O=[Eu]O[Eu]=O[c100,00] 95.7800 88.7829

V 40 O=[Eu]O[Eu]=O[c200,00] 86.5300 82.4550
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Table 3. Cont.

Set ID Quasi-SMILES Experiment (%) Calculation (%)

C 41 [Fe+3].[Fe+3].[O-2].[O-2].[O-2][c25,00] 99.9200 108.3871

C 42 [Fe+3].[Fe+3].[O-2].[O-2].[O-2][c50,00] 98.8800 100.9784

C 43 [Fe+3].[Fe+3].[O-2].[O-2].[O-2][c100,00] 97.3700 90.3049

C 44 [Fe+3].[Fe+3].[O-2].[O-2].[O-2][c200,00] 99.9200 83.9770

C 45 [Fe]=O.O=[Fe]O[Fe]=O[c25,00] 95.6700 112.7077

P 46 [Fe]=O.O=[Fe]O[Fe]=O[c50,00] 100.6200 105.2991

A 47 [Fe]=O.O=[Fe]O[Fe]=O[c100,00] 97.5800 94.6256

C 48 [Fe]=O.O=[Fe]O[Fe]=O[c200,00] 99.0300 88.2977

V 49 [Gd+3].[Gd+3].[O-2].[O-2].[O-2][c25,00] 100.3700 108.3871

V 50 [Gd+3].[Gd+3].[O-2].[O-2].[O-2][c50,00] 98.1200 100.9784

P 51 [Gd+3].[Gd+3].[O-2].[O-2].[O-2][c100,00] 94.3400 90.3049

V 52 [Gd+3].[Gd+3].[O-2].[O-2].[O-2][c200,00] 86.9100 83.9770

C 53 O=[Hf]=O[c25,00] 100.2900 85.6033

P 54 O=[Hf]=O[c50,00] 102.6100 78.1946

P 55 O=[Hf]=O[c100,00] 101.7900 67.5211

P 56 O=[Hf]=O[c200,00] 95.0000 61.1932

V 57 [In+3].[In+3].[O-2].[O-2].[O-2][c25,00] 100.6200 106.6455

C 58 [In+3].[In+3].[O-2].[O-2].[O-2][c50,00] 97.9200 99.2368

C 59 [In+3].[In+3].[O-2].[O-2].[O-2][c100,00] 94.2200 88.5633

A 60 [In+3].[In+3].[O-2].[O-2].[O-2][c200,00] 87.9600 82.2354

V 61 [La+3].[La+3].[O-2].[O-2].[O-2][c25,00] 100.7500 108.3871

V 62 [La+3].[La+3].[O-2].[O-2].[O-2][c50,00] 97.5400 100.9784

C 63 [La+3].[La+3].[O-2].[O-2].[O-2][c100,00] 92.7000 90.3049

C 64 [La+3].[La+3].[O-2].[O-2].[O-2][c200,00] 82.8000 83.9770

A 65 O=[Mn]=O[c25,00] 48.8900 55.2509

A 66 O=[Mn]=O[c50,00] 32.7700 47.8423

P 67 O=[Mn]=O[c100,00] 22.0400 37.1688

A 68 O=[Mn]=O[c200,00] 1.7500 30.8409

A 69 O=[Mn]O[Mn]=O[c25,00] 54.9500 28.3280

A 70 O=[Mn]O[Mn]=O[c50,00] 31.5800 20.9193

A 71 O=[Mn]O[Mn]=O[c100,00] 11.1200 10.2458

V 72 O=[Mn]O[Mn]=O[c200,00] 5.1400 3.9179

C 73 O=[Nd]O[Nd]=O[c25,00] 100.2400 110.9428

A 74 O=[Nd]O[Nd]=O[c50,00] 100.3200 103.5342

P 75 O=[Nd]O[Nd]=O[c100,00] 95.3200 92.8607

P 76 O=[Nd]O[Nd]=O[c200,00] 89.9300 86.5328

P 77 [O-2].[Ni+2][c25,00] 103.3200 112.4964

A 78 [O-2].[Ni+2][c50,00] 102.3000 105.0877

A 79 [O-2].[Ni+2][c100,00] 99.7700 94.4142

A 80 [O-2].[Ni+2][c200,00] 86.6000 88.0863
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Table 3. Cont.

Set ID Quasi-SMILES Experiment (%) Calculation (%)

C 81 [Ni+3].[Ni+3].[O-2].[O-2].[O-2][c25,00] 102.7800 96.5984

P 82 [Ni+3].[Ni+3].[O-2].[O-2].[O-2][c50,00] 103.4400 89.1897

V 83 [Ni+3].[Ni+3].[O-2].[O-2].[O-2][c100,00] 87.7500 78.5162

A 84 [Ni+3].[Ni+3].[O-2].[O-2].[O-2][c200,00] 45.3300 72.1883

C 85 O=[Sb]O[Sb]=O[c25,00] 99.7200 89.0326

P 86 O=[Sb]O[Sb]=O[c50,00] 99.9100 81.6240

P 87 O=[Sb]O[Sb]=O[c100,00] 99.6800 70.9505

P 88 O=[Sb]O[Sb]=O[c200,00] 98.8300 64.6226

V 89 O=[Sm]O[Sm]=O[c25,00] 99.6700 115.8481

A 90 O=[Sm]O[Sm]=O[c50,00] 101.1200 108.4395

V 91 O=[Sm]O[Sm]=O[c100,00] 94.0300 97.7660

V 92 O=[Sm]O[Sm]=O[c200,00] 86.9700 91.4381

C 93 O=[Sn]=O[c25,00] 98.8000 111.6224

C 94 O=[Sn]=O[c50,00] 103.5400 104.2137

V 95 O=[Sn]=O[c100,00] 98.7200 93.5402

A 96 O=[Sn]=O[c200,00] 95.1500 87.2123

V 97 O=[Ti]=O[c25,00] 101.2200 85.6033

V 98 O=[Ti]=O[c50,00] 100.2700 78.1946

C 99 O=[Ti]=O[c100,00] 99.2700 67.5211

V 100 O=[Ti]=O[c200,00] 99.2300 61.1932

V 101 O=[W](=O)=O[c25,00] 103.8200 102.0069

V 102 O=[W](=O)=O[c50,00] 96.3200 94.5982

V 103 O=[W](=O)=O[c100,00] 103.3000 83.9248

V 104 O=[W](=O)=O[c200,00] 98.2600 77.5969

C 105 O=[Y]O[Y]=O[c25,00] 97.7000 110.9296

V 106 O=[Y]O[Y]=O[c50,00] 98.1200 103.5209

C 107 O=[Y]O[Y]=O[c100,00] 92.8300 92.8474

A 108 O=[Y]O[Y]=O[c200,00] 86.7300 86.5195

C 109 [O-2].[O-2].[O-2].[Yb+3].[Yb+3][c25,00] 106.5900 108.3871

V 110 [O-2].[O-2].[O-2].[Yb+3].[Yb+3][c50,00] 99.1900 100.9784

P 111 [O-2].[O-2].[O-2].[Yb+3].[Yb+3][c100,00] 99.4400 90.3049

P 112 [O-2].[O-2].[O-2].[Yb+3].[Yb+3][c200,00] 92.3800 83.9770

P 113 [Zn]=O[c25,00] 91.8300 80.0461

A 114 [Zn]=O[c50,00] 87.9600 72.6374

V 115 [Zn]=O[c100,00] 47.6400 61.9639

A 116 [Zn]=O[c200,00] 6.7600 55.6360

C 117 O=[Zr]=O[c25,00] 99.6500 115.9612

C 118 O=[Zr]=O[c50,00] 98.4900 108.5525

A 119 O=[Zr]=O[c100,00] 101.0700 97.8790

P 120 O=[Zr]=O[c200,00] 100.0200 91.5511
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4.3. Monte Carlo Method

Equation (1) needs the numerical data of the above correlation weights. Monte Carlo
optimization is a tool to calculate those correlation weights. Here, two target functions for
the Monte Carlo optimization are examined:

TF0 = rAT + rPT − |rAT − rPT | × 0.1 (2)

TF1 = TF0 + (I IC + CII )× 0.3 (3)

The rAT and rPT are correlation coefficients between the observed and predicted
endpoints for the active and passive training sets, respectively. The IIC is the index of
ideality of correlation [33,34]. The IIC is calculated using data from the calibration set
as follows:

I IC = R min(−M AEC ,+M AEC)
max(−M AEC ,+M AEC)

min(x, y) =
{

x, i f x < y
y, otherwise

max(x, y) =
{

x, i f x > y
y, otherwise

−M AEC = 1
−N ∑|∆k|, −N is the number o f ∆k < 0

+M AEC = 1
+N ∑|∆k|, +N is the number o f ∆k ≥ 0

∆k = observedk − calculatedk

The observedk and calculatedk are corresponding values of the endpoint.
The correlation intensity index (CII), similar to the above IIC, was developed as a tool

to improve the quality of the Monte Carlo optimization aimed at building up QSPR/QSAR
models. The CII is calculated as follows:

CIIC = 1−∑ Protestk

Protestk =

{
R2

k − R2, i f R2
k − R2 > 0

0, otherwise

R2 is the correlation coefficient for a set that contains n substances. R2
k is the correlation

coefficient for n − 1 substances of a set after removal of the k-th substance. Hence, if
(R2

k − R2) is larger than zero, the k-th substance is an “oppositionist” for the correlation
between experimental and predicted values of the set. A small sum of “protests” means a
more “intensive” correlation.

The Monte Carlo method aims to minimize the target functions [37], TF1, based
on the application of two new criteria of predictive potential: the index of ideality of
correlation [33,34] and correlation intensity index [38,39].

5. Conclusions

The quasi-SMILES technique gives quite satisfactory models for cell viability in THP-1
cells, as we have shown the reproducibility of the predictive potential of corresponding
models obtained for different splits into sets of training and validation sets. There is
variation in the statistical characteristics of the above models; however, this variation is
not too large. In other words, the results can be assessed as acceptable for practical use. In
addition, that the predictive potential of models can be improved by applying the index of
ideality of correlation and the correlation intensity index is confirmed.
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