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Abstract: Muscle tissues of Mullus barbatus and Merluccius merluccius were analyzed for the presence
of selected trace elements (As, Hg, Cd, and Pb) to determine the value of the daily intake of trace ele-
ments from fish consumption and to assess the risk to human health. The mean concentrations of As in
the muscle tissue of M. barbatus and M. merluccius for the entire period were 19.689 mg/kg wet weight
(ww) and 8.356 mg/kg ww, Hg 0.497 mg/kg ww and 0.153 mg/kg ww, and Pb 0.031 mg/kg ww
and 0.025 mg/kg ww, respectively. The concentrations of Cd in all fish sampled were below the
detection limit (<0.02 mg/kg ww). The evaluation of the potential health risk assessments based
on the target hazard quotient (THQ) and estimated daily intake (EDI) indicated that the intake of
As in both fish species and Hg for M. barbatus could pose an appreciable risk to human health. The
calculated hazard index (HI) was higher than 1 for both fish species. The continuous monitoring of
trace elements’ concentrations in fish is strongly recommended, as the results demonstrate potential
health risks due to the presence of As and Hg.

Keywords: trace elements; Mullus barbatus; Merluccius merluccius; human health risk assessment;
Montenegro; Adriatic Sea

1. Introduction

The increasing presence of various pollutants in the marine environments poses a global
threat to marine organisms. Trace elements (TEs) are natural elements present in the environment
or introduced by different human activities [1]. They are persistent, and their bioaccumula-
tion/biomagnification in the food chain has been studied by various authors [2–5]. Some TEs
are of biogenic origin, but their increased concentration in the environment is usually the result
of various anthropogenic activities [1]. Fish is an important source of many essential nutrients
such as vitamins, minerals, proteins, and unsaturated fatty acids (omega-3) [3,4].

On the other hand, humans may suffer adverse effects from consuming fish contam-
inated with TEs such as arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd) [4].
TEs accumulated in fish may disrupt the beneficial nutritional values of fish and reach
humans through the food chain, leading to health risks [2]. Fish accumulate TEs through
food, water, and sediment. The accumulation of TEs in fish tissues varies depending on
the concentration of the TE in the environment, the natural habitat of fish, feeding habits,
age, trophic level, duration of exposure, as well as on the individual TE and the rate of
its absorption, deposition, and excretion [1,4,6,7]. The effects of toxic TEs disrupt various
metabolic processes, especially in the early stages of fish development. These adverse
effects can lead to developmental delays, morphological and functional deformities, or the
death of the most susceptible individuals [8].
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Many fish species are regarded as good bioindicators of aquatic environment pollu-
tants and represent a good monitoring tool to assess changes in the environment [9–11],
because they accumulate organic and inorganic pollutants well and are good indicators of
long-term effects [12]. Human exposure to arsenic (As), mercury (Hg), cadmium (Cd), and
lead (Pb) elements are among the top ten chemicals of public health concern [13].

European hake (Merluccius merluccius) and red mullet (Mullus barbatus) were selected
as bioindicators of TE pollution due to their widespread distribution and consumer and
economic importance off the coast of Montenegro. The red mullet, a benthic fish, was
recognized by the MedPol program (Mediterranean Pollution Monitoring and Research
Programme) as an important indicator species for pollution monitoring [14], while the
European hake, a benthopelagic demersal fish, was recommended as a bioindicator species
for TEs [15]. Habitat, age, gender, body mass, and feeding habits of fish, as well as the
geographic region, temperature, salinity, and the pH value of the surrounding water,
may influence the concentration, bioaccumulation, and biomagnification of contaminant
components [16]. Environmental factors such as the nature of sediments, temperature,
salinity, and the seasonal cycle of absorption/dissolution of elements in certain areas may
influence the seasonal variability in TEs’ concentration and TEs’ bioaccumulation by marine
organisms [17,18].

Montenegro occupies the south-eastern end of the Adriatic Sea. The water body of the
Adriatic Sea is recognized as highly dynamic and ecologically diverse. Large rivers such as
Vjosë, Bojana, Drin, Neretva, Krka, Soča, and Po, flowing into the Adriatic Sea, are signifi-
cant transporters of industrial and domestic waste to coastal and marine waters [19,20]. TE
pollution in the Montenegrin marine environment may derive from natural phenomena
and also be a result of anthropogenic activities, including industrial processes, industrial
and domestic waste, sewage discharges, the presence of commercial ports, and agricultural
activities [21,22].

The objective of the present study was to investigate, for the first time, concentra-
tions of As, Pb, Cd, and Hg in two commercially important fish species: European hake
(M. merluccius) and the red mullet (M. barbatus). Additionally, the objective of the present
study was to assess the health risk to humans on the Montenegrin coast of the Southern
Adriatic from the consumption of fish. The results of this study will provide important
information about the presence of TEs in fish species and health risk for humans related to
TE exposure from the consumption of the studied fish species. In addition, the results of
this study will serve as a basis for future research and analysis.

2. Materials and Methods
2.1. Sampling

M. barbatus and M. merluccius were sampled in two areas with different geographical
and ecological features and different levels of anthropogenic activities along the coast of
Montenegro in the southern part of the Adriatic Sea (Figure 1).

Fish samples were caught with triple set nets in Boka Kotorska Bay and demersal
nets in the coastal part of the open sea in water depths ranging from 50 to 160 m. Samples
were collected in the spring and autumn of 2019–2020. Ten fish (commercial size) were
collected from each area and sampling period. The collected fish samples were taken to the
laboratory, where the weight (g) and length (mm) of the studied fish species were measured.
The weight of the studied M. barbatus and M. merluccius ranged from 130.2 g to 183.3 g
(mean 158.7 ± 18.2 g) and from 247 g to 311.5 g (mean 270.7 ± 20.2 g), respectively, while the
length of the studied M. barbatus and M. merluccius ranged from 35.3 mm to 72.5 mm (mean
60.4 ± 24.3 mm) and from 177.4 mm to 321.7 mm (mean 220.5 ± 50.4 mm), respectively.
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Figure 1. Map of the studied area.

2.2. Trace Element Analyzes

Fish samples were washed with Milli-Q water and dissected to separate the muscle
tissues. The skin, bones, and internal components were removed and discarded, while
the muscle tissues were homogenized. To decompose the organic matter in the samples
and dissolve all TEs, the homogenized muscle tissues of the fish (1 g) were digested in
a microwave oven (Speedwave Xpert, Berghof, Germany) with 5 mL of HNO3 (>68%,
PrimarPlus—trace analysis grade, Fisher Chemical, Göteborg, Sweden) and 2 mL of H2O2
(>30%, analytical reagent grade, Fisher Chemical, Göteborg, Sweden). In each digestion,
alongside the sample blank, the certified reference materials (CRMs) of International Atomic
Energy Agency (IAEA) 407 and 436 were digested and analyzed. After digestion, the cu-
vettes were cooled to room temperature and the contents were transferred quantitatively
to polypropylene bottles. Arsenic (As) concentrations in red mullet and European hake
muscle tissues were determined using inductively coupled plasma optical emission spec-
trometry (ICP-OES), with a Thermo iCAP 7400 Duo 7400 device. Mercury (Hg) in fish
samples was measured using a direct mercury analyzer (DMA), the Advanced Mercury
Analyzer AMA 254 (Altec, Leco, St. Joseph, MI, USA), while cadmium (Cd) and lead (Pb)
were measured using graphite furnace atomic absorption spectrometry (GF-AAS) with
the Shimadzu AA 6800 device. All analytical data were subject to strict quality control.
The instruments were calibrated with the calibration standards. To increase the accuracy
of the analytical methods, all samples were analyzed in duplicate. The analytical limits
of detection (LODs) (mg/kg) were 0.009048 for As, 0.000382 for Cd, 0.001619 for Pb, and
0.000205 for Hg. Method recovery was evaluated using CRMs and ranged between 98.9 and
100.4% for all elements (Table 1). TE concentrations in fish muscle tissues were determined
in mg/kg wet weight (ww). Table 1 shows the comparison of certified and measured
concentrations of TEs in fish samples in CRMs.

Table 1. Comparison of certified and measured concentrations of TE in the muscle tissues of the
studied fish species (mg/kg ww) in certified reference materials (IAEA 407, 436).

Trace Elements
Certified Measured Recovery

(%) Certified Measured Recovery
(%)

IAEA 407 IAEA 436

Hg 0.222 0.223 100.4 / / /
Pb 0.12 0.12 100.0 / / /
As 12.6 12.5 99.2 1.98 1.97 99.5
Cd 0.189 0.187 98.9 0.052 0.052 100.0

/—CRM IAEA 407 was used for all studied TEs, while CRM IAEA 436 was used for As and Cd.
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The preparation of samples, as well as the analysis of TEs in muscle tissue of fish, was
carried out in the laboratory of the Centre for Ecotoxicological Research of Podgorica (Pod-
gorica, Montenegro) according to standard methods MEST EN 14084:2009 and according to
the laboratory manual of the IAEA agency, Monaco Marine Ecosystem Laboratory. In order
to reduce the possibility of contamination, the laboratory utensils used were prewashed
with 10% (v/v) HNO3.

2.3. Risk Assessment for Human Health
2.3.1. Target Hazard Quotient (THQ)

To determine the risk to human health from the consumption of the studied fish
contaminated with TEs, the Target Hazard Quotient (THQ) was calculated. The THQ
represents the ratio between exposure and the reference dose (RfDo) [23]. When the
exposure level is greater than the RfDo, the THQ is above 1, indicating that the exposed
population is at health risk from the ingestion of an individual TE through the consumption
of the studied fish [24]. The THQ is expressed by the following equation [25]:

THQ =
EF × ED × MS × C
RfDo × BW × AT

× 10−3 (1)

where EF—an exposure frequency (365 days/year); ED—an exposure duration—average
human lifetime (70 years); MS—a fish meal size (17.5 g/day) [26]; C—the average TE
concentration of each group of fish species (mg/kg ww); RfDo—the estimated oral reference
dose of the TEs (mg/kg of body weight per day) provided by the USEPA [27]. RfDo values:
As 0.0003 mg/kg·day; Hg 0.0001 mg/kg·day (assuming that Hg measured in fish was
integrally in its methylated form and Cd 0.0001 mg/kg·day); BW—body weight, adult
(70 kg); AT—an averaging exposure time (EF × ED).

As there is no evidence of a threshold below which it is harmless, the intake of Pb
could be allowed, but the USEPA declined to set an RfDo for Pb. The THQ for Pb was
calculated using the equation [28,29]:

THQ =
C

ML
(2)

where C—the average TE concentration of each group of fish species (mg/kg ww); ML—
1.5 mg/kg ww for Pb is the maximum permitted level of the contaminant (Maximum
Regulation Limit) set by the Regulation (EC) No 1881/2006 [30], amended by the Regulation
(EU) 2015/1005 [31].

2.3.2. Hazard Index (HI)

The hazard index (HI) was used to evaluate the potential risk assessment with asso-
ciated combined or interactive effects [32,33] triggered by TEs collectively present in the
studied fish. When the value of HI is above 1, there might be a concern for potential health
effects [25]. HI was determined by summing all the calculated THQ values for the specific
elements [25]:

HI =
n

∑
i=1

THQi (3)

where THQi—the target hazard quotient of a single element; n—the number of examined
elements (in the present study n = 4).

2.3.3. Estimated Daily Intake (EDI)

The Estimated Daily Intake (EDI) per fish meal was determined by multiplying the
mean concentrations of each TE by the amount of fish consumed per day for a 70 kg adult.
Based on USEPA guidance [34], it was assumed that cooking has no effect on contaminants
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and that the ingested dose was equal to the adsorbed contaminant dose. The EDI was
determined using the following equation [26]:

EDI =
C × MS

BW
(4)

where C—the average TE concentration of each group of fish species (mg/kg ww); MS—a
fish meal size (17.5 g/day) [26]; BW—a body weight, adult (70 kg).

2.4. Statistical Analyses

For statistical analysis, data were square root transformed based on Bray–Curtis
similarity matrices before analysis. To demonstrate the distribution and similarity of the TE
concentration in fish species based on the different sampling areas studied, seasons, and
for both years, a principal coordinate analysis (PCO) was performed. The Monte Carlo test
(PERMANOVA) was used to determine if there were any significant differences among
the studied species, studied areas, and seasons. All statistical significance was reported
for p < 0.05. PRIMER 7 software with the PERMANOVA+ add-on package (Albany, New
Zealand) [35] was used for all statistical analyses.

3. Results
3.1. Concentrations of TEs in Fish

The concentrations of studied TEs in muscle tissues of M. barbatus and M. merluccius
sampled in two areas and in two different seasons of the year are presented in Table 2.
Considering all the studied TEs in both fish species, sampling areas, and sampling periods
of this study, the obtained mean values were in the order of As > Hg > Pb > Cd.

Table 2. TE concentrations (mg/kg ww) in muscle tissues of the studied fish species.

Species Sampling
Period

Sampling Area Concentration of Trace Elements

As Hg Pb Cd

M. barbatus

Spring 19 Boka Kotorska Bay 12.489 0.744 0.037 <0.02
Coastal part of the open sea 23.520 0.181 0.033 <0.02

Autumn 19
Boka Kotorska Bay 8.572 0.548 0.053 <0.02

Coastal part of the open sea 21.606 0.547 0.034 <0.02

Spring 20 Boka Kotorska Bay 13.021 0.801 0.023 <0.02
Coastal part of the open sea 19.113 0.252 <0.02 <0.02

Autumn 20 Coastal part of the open sea 39.501 0.408 <0.02 <0.02

Mean value 19.689 ± 10.25 0.497 ± 0.233 0.031 ± 0.01 <0.02

M. merluccius

Spring 19 Coastal part of the open sea 9.522 0.176 0.034 <0.02
Autumn 19 Coastal part of the open sea 9.016 0.156 0.025 <0.02

Spring 20 Boka Kotorska Bay 2.593 0.055 <0.02 <0.02
Coastal part of the open sea 9,901 0.222 <0.02 <0.02

Autumn 20 Coastal part of the open sea 10.746 0.146 0.025 <0.02

Mean value 8.356 ± 3.28 0.153 ± 0.06 0.025 ± 0.01 <0.02

The concentrations of As, Hg, and Pb were higher in the muscle tissues of M. barbatus
during the entire research period in relation to the concentrations of the same TEs in the
muscle tissues of M. merluccius, while the concentrations of Cd in all fish sampled were
below the detection limit (Table 2).

As was the most abundant element in the muscle tissue of M. barbatus and M. mer-
luccius. The concentration of As in the muscle tissue of M. barbatus ranged from 8.572 to
39.501 mg/kg ww, and in the muscle tissue of M. merluccius from 2.593 to 10.746 mg/kg
ww throughout the study period. The mean concentration of As in the muscle tissue of
M. barbatus and M. merluccius for the entire period was 19.689 mg/kg ww and 8.356 mg/kg
ww, respectively (Table 2). The As concentrations in the muscle tissues of M. barbatus and M.
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merluccius were significantly higher in the coastal part of the open sea compared with the
Bay. Differences in As concentrations in the fish samples depended on the sampling season
(spring/autumn), with higher As concentrations in both fish species studied during the
autumn sampling period. In 2019, higher concentrations of As were detected in the muscle
tissue of M. merluccius, while higher concentrations of As were measured in M. barbatus
sampled during 2020.

On the other hand, the Hg concentration in M. barbatus muscle tissue ranged from 0.181
to 0.801 mg/kg ww, with a mean concentration of 0.497 mg/kg ww, and in M. merluccius
samples from 0.055 to 0.222 mg/kg ww, with a mean concentration of 0.153 mg/kg ww
(Table 2). The Hg concentrations in the spring were higher in the muscle tissue of
M. barbatus from the Bay than from coastal part of the open sea. Higher concentrations of
Hg were detected in M. barbatus from the Bay, i.e., M. merluccius sampled in the coastal part
of the open sea. There are no significant differences in Hg concentration in M. barbatus and
M. merluccius samples between the examined periods (2019–2020).

In addition, the Pb concentrations in the muscle tissue of M. barbatus and M. merluccius
were low throughout the study. The Pb concentration was higher in M. barbatus sampled in
the Bay in the autumn than in the other time periods and sampling areas, and it was also
higher than the Pb concentration in the muscle tissue of M. merluccius.

Figure 2 shows a graphical representation of TE concentrations in different fish species.
The results of the PCO performed on the data collected in this study (Figure 2) confirm the
results presented in Table 2. The PCO shows that two factors (PCO1 and PCO2) explain
96.6% of total variance for M. barbatus (Figure 2a) and 99.6% for M. merluccius (Figure 2b).
There were significant differences between the concentrations of selected TEs sampled in
different studied areas and between different fish species (PERMANOVA, Monte Carlo test,
p < 0.05).
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3.2. Health Risk Assessment

The THQ values of individual elements, as well as HI values due to the consumption
of fish from Boka Kotorska Bay and the coastal part of the open sea, as well as the mean
values in fish from the Montenegrin coast in general, based on the obtained results for these
two areas during the study period, are presented in Table 3. THQ values for Pb and Cd
were lower than 1 for both sampled fish species in both studied areas. THQ values for As
were higher than 1 for both sampled fish species in both studied areas, while THQ values
for Hg were higher than 1 only for M. barbatus sampled in Boka Kotorska Bay.

Table 3. THQ and HI values for the individual TEs in different fish species and in the study area for
fish consumers.

Species Trace Elements
THQ

Boka Kotorska Bay Coastal Part of the Open Sea Montenegrin Coast

M. barbatus

As 9.472 21.61 16.84
Hg 1.744 0.867 1.240
Pb 0.038 0.018 0.020
Cd 0.050 0.050 0.050

HI 11.304 22.545 18.15

M. merluccius

As 2.142 8.167 7.086
Hg 0.137 0.437 0.382
Pb 0.010 0.017 0.016
Cd 0.050 0.050 0.050

HI 2.339 8.671 7.534

The concentrations of all studied TEs, and therefore THQ and HI values, were higher
in the samples of M. barbatus than in the samples of M. merluccius. High THQ values for As
were recorded in M. barbatus from the coastal part of the open sea, being 21.606 mg/kg·day.
High THQ values for As and Hg were also recorded in M. barbatus from the Boka Kotorska
Bay, with 9.472 mg/kg·day and 1.744 mg/kg·day, respectively (Table 3). On the other hand,
THQ values for all studied TEs in M. merluccius were less than 1, except for As, which was
2.1417 mg/kg·day from Boka Kotorska Bay and 8.1667 mg/kg·day from the coastal part of
the open sea, as shown in Table 3. The values for the hazard index (HI), calculated as the
sum of THQ for each element, were above 1 for both studied fish species in both studied
areas (Table 3), which means that the exposed population could be exposed to health risks.

In this study, the dietary exposure to TEs through the consumption of M. barbatus and
M. merluccius in the studied areas was evaluated using the estimated daily intake (EDI) and
compared with the recommended daily dietary allowance (mg/day) by JECFA (2009), as
shown in Table 4. The results presented in Table 4 show that Cd and Pb have the lowest
daily intake, while Hg and As have the highest daily intake. The results of the EDI revealed
that values for the examined fish samples were below the recommended levels for Pb and
Cd and above the recommended As values for both fish species and the recommended Hg
values for M. barbatus.

Table 4. Comparison of EDI of TEs of the studied fish species with the recommended daily dietary allowances.

Species Trace Elements

EDI Recommended Daily
Dietary Allowance

of JECFA [36]
Boka Kotorska

Bay
Coastal Part of the

Open Sea
Montenegrin

Coast

M. barbatus

As 2.842 6.482 5.053 0.13
Hg 0.174 0.087 0.124 0.03
Pb 0.009 0.007 0.008 0.21
Cd 0.005 0.005 0.005 0.06
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Table 4. Cont.

Species Trace Elements

EDI Recommended Daily
Dietary Allowance

of JECFA [36]
Boka Kotorska

Bay
Coastal Part of the

Open Sea
Montenegrin

Coast

M. merluccius

As 0.643 2.450 2.126 0.13
Hg 0.014 0.044 0.038 0.03
Pb 0.005 0.006 0.006 0.21
Cd 0.005 0.005 0.005 0.06

4. Discussion

The differences in the concentrations of the studied TE in fish depending on different
seasons, areas, and years of sampling were not consistent. Such results are to be expected
to some degree because, unlike shellfish, these are migratory species that move, feed, and
live in different habitats, which may result in the uneven distribution and uptake of TEs
depending on various factors observed (biotic and abiotic). In this context, Alamdar et al.
(2017) point out that higher concentrations of TEs have been observed in benthic species
compared to benthopelagic and/or pelagic fish species [37], which in turn implies that TEs
are significantly more abundant in marine sediments than in seawater [38].

In general, the differences in the concentration of studied TEs in fish in relation to
the sampling area are the result of natural factors such as geographical, morphological,
pedological and hydrogeological differences between the two studied areas, but also various
anthropogenic influences [17].

Both studied fish species contained high concentrations of As. The mean As concen-
trations in the muscle tissues of M. barbatus (19.689 ± 10.25 mg/kg ww) and M. merluccius
(8.356 ± 3.28 mg/kg ww) were lower than the values reported from Italy [38,39] and higher
than the literature data for the same fish species from the Adriatic and Mediterranean Sea
(Table 5). As is a widespread metalloid that occurs naturally in the environment, especially in
rocks and sediments, which could explain the lower prevalence of As in a benthic-pelagic fish
species such as M. merluccius compared to a benthic fish species such as M. barbatus [40–43].
High concentrations of As in fish from the Adriatic Sea were previously reported by Bilandžić
et al. (2011) and Perugini et al. (2013) [17,18]. In a study from the coast of Norway, As content
was analyzed in different fish species fillets [44]. The authors reported that the content of
As varied highly between species, (from 0.3 to 110 mg/kg ww) [44], which is a very large
range compared to the range of As reported in the present study. Additionally, apart from
marine fish, high concentrations of As have been recorded in freshwater fish [4]. Fattorini
et al. (2008) believe that the differences in As concentration depending on the sampling area
may be due to the influence of seawater salinity on the modulation of TE accumulation [45].
For As compounds in fish or other seafood, no maximum permissible levels have yet been
established [30]. High As concentrations were detected in many fish, with the highest content
of this element deposited in muscle tissues [46,47].

Table 5. Comparison of TE concentrations in muscle of M. barbatus and M. merluccius found in this
study and previous studies from the Adriatic and Mediterranean Seas, expressed in mg/kg ww.

Species Sampling Site
TEs

Reference
As Hg Pb Cd

M. barbatus

Montenegro (Adriatic Sea) 19.689 0.497 0.031 <0.02 Present study
Croatia (Adriatic Sea) 5.91 0.06 0.02 0.002 [18]

Italy (Adriatic Sea) 59.91 0.48 0.05 0.07 [38]
Italy (Adriatic Sea) / 0.43 0.10 0.08 [48]
Italy (Adriatic Sea) / 0.55 0.06 0.02 [49]
Italy (Adriatic Sea) / 0.49 / / [50]
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Table 5. Cont.

Species Sampling Site
TEs

Reference
As Hg Pb Cd

Italy (Mediterranean Sea) 9.477 0.054 0.006 0.002 [51]
Italy (Mediterranean Sea) 12.09 0.18 0.05 <0.001 [23]
Italy (Mediterranean Sea) 27.01 0.027 0.04 0.001 [39]

Libya (Mediterranean Sea) / 0.07 0.19 0.6 [52]
Spain (Mediterranean Sea) 15.05 0.09 0.05 0.001 [53]

M. merluccius

Montenegro (Adriatic Sea) 8.356 0.153 0.02 <0.02 Present study
Montenegro (Adriatic Sea) / / 0.25 / [54]
Montenegro (Adriatic Sea) / / <0.1 <0.2 [55]

Croatia (Adriatic Sea) 4.38 0.295 <0.05 <0.01 [56]
Italy (Adriatic Sea) 38.70 0.59 0.03 0.06 [38]
Italy (Adriatic Sea) / 0.12 0.04 0.30 [49]
Italy (Adriatic Sea) / 0.18 / / [50]

Italy (Mediterranean Sea) 8.75 0.15 0.03 <0.001 [23]

/—In the presented studies, analyzes of the selected TEs were not performed.

The mean Hg concentration in M. barbatus (0.497 ± 0.233 mg/kg ww) is comparable to
data from Italy, the Adriatic Sea, and higher than Hg concentrations reported in Croatia, the
Adriatic Sea, and Italy, Libya, and Spain, the Mediterranean Sea, for the same fish species
(Table 5). The mean Hg concentration in M. merluccius (0.153 ± 0.06 mg/kg ww) was similar
to or lower than the Hg concentrations reported in the Adriatic and Mediterranean Seas for
the same fish species (Table 5). M. barbatus accumulated more Hg than M. merluccius, which
is consistent with the idea that bottom-feeding fish (benthic species) tend to accumulate high
levels of this TE compared with pelagic fish species [49]. The mean Hg levels in the studied
fish in both observed areas and sampling periods, according to the EU legislation [30],
are below the maximum permissible value levels for MeHg, which is similar to the level
established for the total Hg for fish products and muscle tissues (0.5 mg/kg ww and
1.00 mg/kg ww for certain pelagic and benthopelagic fish species, such as M. barbatus) [30].

Compared to previous studies, the mean Pb concentration in this study was generally
lower than or similar to that in muscle tissues of M. barbatus and M. merluccius from
the Adriatic and Mediterranean Seas (Table 5). The maximum permissible levels for lead
(0.3 mg/kg ww) established by EU legislation [30] are lower than the recorded mean values
of Pb in the studied fish, which means that the level of Pb in all studied fish species is
within the limits acceptable for human consumption.

The measured mean Cd concentration in the muscle tissues of all studied fish species
was below 0.02 mg/kg ww and below the maximum permissible value for fish samples,
which is given as 0.05 mg/kg ww by EU legislation [30]. The mean Cd concentration in the
present study was low (below the detection limit) and comparable to values reported in the
literature: 0.001–0.6 mg/kg ww for M. barbatus and 0.01–0.3 mg/kg ww for M. merluccius
from the Adriatic and Mediterranean Sea (Table 5).

To assess human health risk associated with As, Hg, Pb, and Cd through the consump-
tion of two studied fish species, the EDI, THQ, and HI were calculated. The THQ and EDI
values showed that the intake rate of Pb and Cd were within the safe level for both studied
fish species. The THQ values for Hg were only above 1 in M. barbatus from Boka Kotorska
Bay, while the EDI values showed that the intake rate of Hg in M. barbatus was not within
the safe level. In contrast, the THQ and EDI values for M. merluccius showed that the intake
rate of Hg was within the safe level. The THQ and EDI values for As were high for both
studied fish species, indicating that the intake rate of As was not within the safe level. HI
values based on four TEs were high in both studied fish species, implying that human
health may be at risk.

Although the results for Pb and Cd in this study were below the limits of permissible
concentrations, Pb and Cd are non-essential, toxic elements that can be present in high
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concentrations in fish and could pose serious threats to both the health of the species
themselves and to human health through consumption of seafood [57], so continuous
monitoring is required.

It was concluded that As and Hg could pose a potential health risk to the population
through the consumption of fish from the study region. Toxic inorganic As can accumulate
in marine organisms and convert to less toxic organic As such as arsenobetaine [42]. The
major As compound found in the majority of marine organisms, especially in fish, is non-
toxic [4,58,59]. Many authors have noted that marine organisms have high concentrations
of As [2,23,60,61], but most of this element is present in its organic fraction (arsenobetaine),
which is nontoxic to human health [62]. Arsenobetaine is metabolically inert and nontoxic
and is rapidly excreted in urine in humans [23]. Concentrations of organic As in marine
organisms are directly proportional to total As concentrations [63]. Zhang et al. (2012)
and Moxness Reksten et al. (2021) reported that the concentrations of inorganic As in fish
account for 1–3% of the total As concentrations [16,64]. Based on the above, it is difficult to
make a correct human health risk assessment of As from the consumption of the studied
fish, since the percentage of inorganic As in fish is quite low or even negligible [4]. Higher
values of Hg have been found in the sediment of the Adriatic Sea [65–67], so its increased
value in samples of M. barbatus from Montenegrin coast is not surprising.

Hg is a non-essential and one of the most toxic TEs, and exposure to high concen-
trations of this element could have various consequences for biodiversity and human
health, so it is important to monitor its concentration in the environment [41]. Additionally,
Al-Busaidi et al. (2011) reported that the most significant source of Hg in humans’ diet is
fish [68].

5. Conclusions

The results of this study provide important data on: marine environment pollution;
the abundance of TEs in studied fish on the Montenegrin coast and differences in the
concentration of examined TEs in relation to the different species of fish examined, dif-
ferent areas, season, and year of sampling. Additionally, the results of this study provide
important data on the health risk to humans associated with exposure to TEs through the
consumption of the studied fish species from the Montenegrin coast. The potential health
risk assessments based on EDI and THQ values calculated for As and Hg recommend the
moderate consumption of the studied fish species, while there are no consumption limits
based on the amount of Pb and Cd in fish muscles. Considering our findings regarding TEs
in fish, as well as the fact that fish is increasingly consumed in Montenegro, further investi-
gation and monitoring are necessary to maximize consumer health protection. The present
study provided a baseline and important contributions to future risk/benefit assessments
for fish consumers in Montenegro. Similar studies need to be conducted on a regular basis
to monitor the evolution of TE levels in all food products and to assess whether there is a
potential health risk to consumers.
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