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Abstract. The aim of this paper is to study existence results for a singular problem involving
the p-biharmonic operator and the Hardy potential. More precisely, by combining monotonicity
arguments with the variational method, the existence of solutions is established. By using the Nehari
manifold method, the multiplicity of solutions is proved. An example is also given to illustrate the
importance of these results.
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1 Introduction

The aim of this work is to study the following p-biharmonic problem with singular non-
linearity and Hardy potential:

∆2
pϕ− λ

|ϕ|p−2ϕ
|z|2p

+ ∆pϕ =
a(z)

ϕθ
+ µg(z, ϕ) for all ϕ ∈W 2,p

(
RN
)
, (1)

where 1 < p < N/2, 0 < θ < 1, and λ, µ are positive constants. The operators ∆p and
∆2
p are the p-Laplacian operator and the p-biharmonic operator, respectively, defined by

∆pϕ = div
(
|∇ϕ|p−2∇ϕ

)
and ∆2

pϕ = ∆
(
|∆ϕ|p−2∆ϕ

)
.
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Singular p-biharmonic problem with the Hardy potential 763

Nonlinear elliptic equations with singularities can model several phenomena like non-
Newtonian fluids and chemical heterogeneity; for more details and other applications, see,
for example, Alsaedi et al. [1], Callegari and Nachman [4], Candito et al. [5, 6], Molica
Bisci and Rǎdulescu [14], Nachman and Callegari [16] Papageorgiou [17], Papageorgiou
et al. [19], and Pimenta and Servadei [20]. In recent years, problems involving p-bihar-
monic operator have been extensively studied; see, for instance, Bhakta [2], Dhifli and
Alsaedi [8], Huang and Liu [12], Molica Bisci and Repovš [15], Sun et al. [23], Wang
and Zhao [26], and Yang et al. [27]. In particular, Dhifli and Alsaedi [8] considered the
analysis of the fibering map on the Nehari manifold sets to prove the existence of multiple
solutions for the following system:

∆2
pϕ−∆pϕ+ V (z)|ϕ|p−2ϕ
= λf(z)|ϕ|q−2ϕ+ a(z)|ϕ|m−2ϕ for all ϕ ∈W 2,p

(
RN
)
.

Very recently, several researchers have concentrated on the study of singular p-bihar-
monic equations; see Sun et al. [23] and Sun and Wu [24, 25], whereas singular problem
involving p-biharmonic operator and Hardy potential has not received that much attention
– we refer the reader to Drissi et al. [10] and Huang and Liu [12] for related work.

Ferrara and Molica Bisci [11] used the variational principle of Ricceri [22] to prove
the multiplicity of solutions for the following problem:

−∆pϕ = µ
|ϕ|p−2ϕ
|z|2p

+ λf(z, ϕ) in Ω,

ϕ = ∆ϕ = 0 on ∂Ω.

Motivated by [11], Huang and Liu [12] considered the following p-biharmonic prob-
lem:

−∆2
pϕ− µ

|ϕ|p−2ϕ
|z|2p

= µh(z, ϕ) in Ω,

ϕ = ∆ϕ = 0 on ∂Ω.

More precisely, they used the invariant sets of descending flows method and proved that
under suitable conditions on the parameter µ and the nonlinearity h, such a problem
admits a nontrivial solution that changes sign.

In the present paper, we shall combine variational methods with monotonicity argu-
ments to prove the existence of a nontrivial solution for problem (1). Next, we shall use the
Nehari manifold method to prove the multiplicity of solutions. We note that this problem
is very important since it involves the p-biharmonic operator, the p-Laplacian operator,
a singular nonlinearity, and the Hardy potential.

In the first main result of this paper, we shall assume that

g(z, ϕ) = f(z)h(ϕ) for all (z, ϕ) ∈ RN × R

and that the functions f , h are measurable and satisfy the following hypotheses.
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764 A. Drissi et al.

(H1) There exist c1 > 0, 1 < r < p < N/2, and s ∈ (p∗/(p∗ − r), p/(p− r)) such
that

f ∈ Lp
∗/(p∗−r)(RN) ∩ Lsloc(RN) and h(ϕ) 6 c1|ϕ|r−1 for all ϕ ∈ R.

(H2) There exists M > 0 such that for all (z, ϕ) ∈ RN × R, we have

0 < rf(z)H(ϕ) 6 f(z)h(ϕ)ϕ for all |ϕ| >M,

where

H(t) =

t∫
0

h(s) ds.

(H3) a ∈ Lp
∗
(p∗ + θ − 1)(RN ) ∩ Lβloc(RN ) for some β ∈ (p∗/(p∗ + θ − 1),

p/(θ + p− 1)).

The first main result of this paper is the following theorem.

Theorem 1. Suppose that hypotheses (H1)–(H3) hold. Then for all δ, µ > 0, problem (1)
admits at least one nontrivial weak solution ϕµ, provided that λ > 0 is small enough.

In the second main result of this paper, we shall assume the following hypotheses.

(H4) G : RN × R → R, defined by G(z, ϕ) =
∫ ϕ
0
g(z, s) ds, is a C1-function such

that
G(z, tϕ) = trG(z, ϕ) for all (z, ϕ) ∈ RN × R, t > 0.

Moreover, if ϕ 6= 0, then G(z, ϕ) > 0, where 0 < 1− θ < 1 < p < r.
(H5) a : RN → (0,∞) satisfies

a ∈ Lp/(θ+p−1)
(
RN
)
.

We note that by hypothesis (H4), we can find M > 0 such that

ϕg(z, ϕ) = rG(z, ϕ) and
∣∣G(z, ϕ)

∣∣ 6M |ϕ|r for all (z, ϕ) ∈ RN × R. (2)

The second main result of this paper is the following theorem.

Theorem 2. Assume that hypotheses (H4) and (H5) hold. Then there exists µ∗ > 0 such
that for all µ ∈ (0, µ∗), problem (1) admits two nontrivial solutions.

The paper is organized as follows: In Section 2, we shall present some preliminary
material needed in the paper. In Section 3, we shall prove the first main result of this
paper, i.e., the existence of solutions (Theorem 1). In Section 4, we shall study fibering
maps on Nehari manifold sets. In Section 5, we shall prove the second main result of
this paper, i.e., the multiplicity of solutions (Theorem 2). In Section 6, we shall give an
illustrative example.
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Singular p-biharmonic problem with the Hardy potential 765

2 Preliminaries

In this section, we shall present some preliminary material needed in the paper. For other
necessary background facts, we recommend the comprehensive monograph Papageorgiou
et al. [18].

The Hardy potential is related to the following Rellich inequality:∫
RN

|ϕ(z)|p

|z|2p
dz 6

(
p2

N(p− 1)(N − 2p)

)p ∫
RN

∣∣∆ϕ(z)
∣∣p dz for all ϕ ∈ E, (3)

where E := W 2,p(RN ) is the Sobolev space, which is defined as follows:

W 2,p
(
RN
)

=
{
ϕ ∈ Lp

(
RN
)
: ∆ϕ, |∇ϕ| ∈ Lp

(
RN
)}
.

For the interested reader, properties of these spaces can be found in Davies and Hinz [7],
Mitidieri [13], and Rellich [21]. According to the Rellich inequality (3), if λ satisfies

0 < λ <

(
N(p− 1)(N − 2p)

p2

)p
, (4)

then ‖·‖ : E → R, defined by

‖ϕ‖ =

( ∫
RN

∣∣∆ϕ(z)
∣∣p − λ |ϕ(z)|p

|z|2p
+
∣∣∇ϕ(z)

∣∣p dz

)1/p
,

is a norm in E.
For every r ∈ [p, p∗], there exists a continuous embedding from E into Lr(RN ).

On the other hand, if r ∈ (p, p∗), then there exists a compact embedding from E into
Lrloc(RN ). Moreover, we have

Sr|ϕ|pr 6 ‖ϕ‖p for all ϕ ∈ E and r ∈ [p, p∗], (5)

where p∗ = Np/(N − 2p), |ϕ|r denotes the usual Lr(RN )-norm, and Sr is the best
Sobolev constant given by

Sr = inf
ϕ∈W 2,p

(
RN
)
\{0}

∫
RN |∆ϕ(z)|p − λ |ϕ(z)|

p

|z|2p + |∇ϕ(z)|p dz

(
∫
RN |ϕ(z)|r dz)p/r

.

If ψ is a positive function on RN and 1 6 σ < ∞, then we can define the weighted
Lebesgue space Lσ(RN, ψ) by

Lσ
(
RN, ψ

)
=

{
ϕ : RN → R measurable:

∫
RN

ψ(z)
∣∣ϕ(z)

∣∣σ dz <∞
}
,
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endowed with the norm

‖ϕ‖σ,ψ =

( ∫
RN

ψ(z)
∣∣ϕ(z)

∣∣σ dz

)1/σ

.

Then Lσ(RN, ψ) is a uniformly convex Banach space. Dhifli and Alsaedi [8] have proved
that if ψ ∈ Lp∗/(p∗−r)(RN )∩Lsloc(RN ) for some s ∈ (p∗/(p∗ − r), p/(p− r)), then the
embedding W 2,p(RN ) ↪→ Lr(RN , ψ) is continuous and compact. Moreover, we have
the following estimate:

‖ϕ‖rr,ψ 6 S
−r/p
p∗ |f |p∗/(p∗−r)‖ϕ‖r for all ϕ ∈ E. (6)

Remark 1. We get an inequality similar to (6) if we replace r by 1− θ and f by a. More
precisely, we have∫

RN

a(z)
∣∣ϕ(z)

∣∣1−θ dz 6 S
−(1−θ)/p
p∗ |f |p∗/(p∗+θ−1)‖ϕ‖1−θ.

Indeed, from Eq. (5) and the Hölder inequality we obtain∫
RN

a(z)
∣∣ϕ(z)

∣∣1−θdz 6 ( ∫
RN

∣∣a(z)
∣∣p∗/(p∗+θ−1)dz)(p∗+θ−1)/p∗( ∫

RN

∣∣u(z)
∣∣p∗dz

)(1−θ)/p∗
6 S

−(1−θ)/p
p∗ |f |p∗/(p∗+θ−1)‖ϕ‖1−θ.

3 The proof of Theorem 1

We recall that a function ϕ ∈ E is called a weak solution for problem (1) if, for all v ∈ E,
one has ∫

RN

(
|∆ϕ|p−2∆ϕ∆v − λ |ϕ|

p−2ϕv

|z|2p
+ |∇ϕ|p−2∇ϕ∇v

)
dz

=

∫
RN

a(z)ϕ−θv dz + µ

∫
RN

g(z, ϕ)v dz.

Associated to problem (1), we define the energy functional Jµ : E → R by

Jµ(ϕ) =
1

p
‖ϕ‖p − 1

1− θ

∫
RN

a(z)ϕ1−θ dz − µ
∫
RN

G
(
z, ϕ(z)

)
dz. (7)

Several lemmas will be needed for the proof of Theorem 1.

Lemma 1. Under hypotheses (H1)–(H3), the functional Jµ is coercive and bounded from
below on E.

https://www.journals.vu.lt/nonlinear-analysis
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Singular p-biharmonic problem with the Hardy potential 767

Proof. Let ϕ ∈ E. Assume that hypotheses (H1)–(H3) hold. Then it follows by (6) and
Remark 1 that

Jµ(ϕ) =
1

p
‖ϕ‖p − 1

1− θ

∫
RN

a(z)ϕ1−θ dz − µ
∫
RN

f(z)H(ϕ) dz

>
1

p
‖ϕ‖p −

S
−(1−θ)/p
p∗

1− θ
|a|p∗/(p∗+θ−1)‖ϕ‖1−θ −

µ

r
‖ϕ‖rr,h

>
1

p
‖ϕ‖p −

S
−(1−θ)/p
p∗

1− θ
|a|p∗/(p∗+θ−1)‖ϕ‖1−θ −

µS
−r/p
p∗

r
|f |p∗/(p∗−r)‖ϕ‖r.

Since 0 < 1− θ < r < p, we can infer that

lim
‖ϕ‖→∞

Jµ(ϕ) =∞.

In other words, Jµ is indeed coercive and bounded from below on E. This completes the
proof of Lemma 1.

Lemma 2. Assume that hypotheses (H1)–(H3) hold. Then there exists a nonnegative
nontrivial function φ ∈ E such that Jµ(tφ) < 0, provided that t > 0 is small enough.

Proof. Let t > 0 and φ ∈ C∞(RN ). Assume that for some bounded subsets Ω0 and Ω1,
we have Ω0 ⊂ supp(φ) ⊂ Ω1 ⊂ RN , 0 6 φ 6 1, on Ω1 and φ = 1 on Ω0. Then by
(H2), we can find K > 0 such that for all (z, t) ∈ RN × R, we have

f(z)H(t) > Kf(z)|t|r.

Invoking (H1)–(H3) and Eq. (6), we get

Jµ(tφ) =
tp

p
‖φ‖p − t1−θ

1− θ

∫
RN

a(z)φ1−θ dz − µ
∫
RN

f(z)H(tφ) dz

6
tp

p
‖φ‖p − t1−θ

1− θ

∫
RN

a(z)φ1−θ dz − µKtr‖φ‖rr,f

6 tr
(

1

p
‖φ‖p + µK‖φ‖rr,f

)
− t1−θ

1− θ

∫
RN

a(z)φ1−θ dz

6 t1−θ
[
tr+θ−1

(
1

p
‖φ‖p + µK‖φ‖rr,f

)
− 1

1− θ

∫
RN

a(z)φ1−θ dz

]
< 0 for all t ∈

(
0, ξ1/(r+θ−1)

)
,

where

ξ = min

(
1,

t1−θ

1−θ
∫
RN a(z)φ1−θ dz

1
p‖φ‖p + µK‖φ‖rr,f

)
.

This completes the proof of Lemma 2.

Nonlinear Anal. Model. Control, 29(4):762–782, 2024
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We note that according to Lemma 1, we can define the following:

mµ = inf
ϕ∈E

Jµ(ϕ),

and by Lemma 2, we have mµ < 0.

Lemma 3. The functional Jµ attains its global minimizer on E. That is, there exists
ϕµ ∈ E such that

Jµ(ϕµ) = mµ < 0.

Proof. Let {ϕn} be a minimizing sequence for Jµ, which means that Jµ(ϕn) → mµ as
n→∞. Since Jµ is coercive, it follows that {ϕn} is bounded on E. Indeed, if not, then
up to a subsequence, we can assume that ‖ϕn‖ → ∞. Therefore, the coercivity of Jµ
implies that Jµ(ϕn)→∞, which is a contradiction. Hence, {ϕn} is bounded. Therefore,
there exist ϕµ ∈ E and a subsequence still denoted by {ϕn} such that, as n tends to
infinity, we have

ϕn ↪→ ϕµ weakly in E,

ϕn → ϕµ strongly in Lr
(
RN , f

)
,

ϕn → ϕµ a.e. in RN .
(8)

Since {ϕn} is bounded on E, it follows by the Sobolev embedding theorem that {ϕn} is
bounded on Lp

∗
(RN ). On the other hand, by Remark 1, we have∫

RN

a(z)|ϕn|1−θ dz 6 S
−(1−θ)/p
p∗ |a|p∗/(p∗+θ−1)‖ϕn‖1−θ.

So, by absolute continuity of |a|p∗/(p∗+θ−1), we can deduce that{ ∫
RN

a(z)|ϕn|1−θ dz, n ∈ N
}

is equi-absolutely continuous. Therefore, by the Vitali theorem (see Brooks [3]), one has

lim
n→∞

∫
RN

a(z)|ϕn|1−θ dz =

∫
RN

a(z)|ϕµ|1−θ dz. (9)

Finally, by (8) and weak lower semi-continuity of the norm, we obtain

mµ 6 Jµ(ϕµ) 6 lim
n→∞

Jµ(ϕn) = mµ,

hence,

Jµ(ϕµ) = mµ < 0. (10)

This completes the proof of Lemma 3.

https://www.journals.vu.lt/nonlinear-analysis
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Now we are ready to present the proof of Theorem 1.

Proof of Theorem 1. From Lemma 3 we see that ϕµ is a global minimizer for Jµ, hence,
ϕµ satisfies

0 6 Jµ(ϕµ + tϕ)− Jµ(ϕµ) for all (t, ϕ) ∈ (0,∞)× E.

Dividing the above inequality by t > 0 and letting t tend to zero, we obtain

0 6
∫
RN

(
|∆ϕµ|p−2∆ϕµ∆ϕ− λ |ϕµ|

p−2ϕµϕ

|z|2p
+ |∇ϕµ|p−2∇ϕµ∇ϕ

)
dz

−
∫
RN

a(z)ϕ−θµ ϕdz − µ
∫
RN

f(z)h(ϕµ)ϕdz.

The fact that ϕ is arbitrary in E implies that in the last inequality, we can replace ϕ by
−ϕ, so, for any ϕ ∈ E, we get

0 =

∫
RN

(
|∆ϕµ|p−2∆ϕµ∆ϕ− λ |ϕµ|

p−2ϕµϕ

|z|2p
+ |∇ϕµ|p−2∇ϕµ∇ϕ

)
dz

−
∫
RN

a(z)ϕ−θµ ϕdz − µ
∫
RN

f(z)h(ϕµ)ϕdz.

That is, ϕµ is a weak solution for problem (1). Moreover, from Eq. (10) we see that ϕµ is
nontrivial. This completes the proof of Theorem 1.

4 Fibering maps on Nehari manifold sets

In order to prove Theorem 2, we first need to study the fibering maps on Nehari manifold
sets. First, let us mention that the functional Jµ defined in Eq. (7) is Fréchet differentiable.
Moreover, for all (ϕ,ψ) ∈ E × E, we have

J ′µ(ϕ)ψ =

∫
RN

(
|∆ϕ|p−2∆ϕ∆ψ − λ |ϕ|

p−2ϕψ

|z|2p
+ |∇ϕ|p−2∇ϕ∇ψ

)
dz

−
∫
RN

a(z)ϕ−θψ dz − µ

r

∫
RN

g(z, ϕ)ψ dz.

It is obvious that Jµ is not bounded from below on E. We introduce the following set:

Nµ =
{
ϕ ∈ E: J ′µ(ϕ)ϕ = 0

}
.

Note that a function ϕ ∈ E is a weak solution for problem (1) if it satisfies J ′µ(ϕ) = 0,
that is, ϕ is a critical value for Jµ. Clearly, ϕ ∈ Nµ if and only if

‖ϕ‖p −
∫
RN

a(z)ϕ1−θ dz − µ
∫
RN

G
(
z, ϕ(z)

)
dz = 0. (11)

Nonlinear Anal. Model. Control, 29(4):762–782, 2024
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Lemma 4. The functional Jµ is coercive and bounded from below on Nµ.

Proof. Let ϕ ∈ Nµ. Then, by Eqs. (5), (11) and the Hölder inequality, we obtain

Jµ(ϕ) =
1

p
‖ϕ‖p − 1

1− θ

∫
RN

a(z)ϕ1−θ dz − µ

r

∫
RN

G
(
z, ϕ(z)

)
dz

>
r − p
pr
‖ϕ‖p − θ + r − 1

r(1− θ)

∫
RN

a(z)|ϕ|1−θ dz

>
r − p
pr
‖ϕ‖p − θ + r − 1

r(1− θ)
S(θ−1)/p
p ‖a‖p/(θ+p−1)‖ϕ‖1−θ. (12)

Since 0 < 1− θ < 1 < p < r, it follows that Jµ is coercive and bounded from below on
Nµ. This completes the proof of Lemma 4.

Next, we define a function φµ,ϕ on [0,+∞), introduced in Drǎbek and Pohožaev [9],
as follows:

φµ,ϕ(t) := Jµ(tϕ) =
tp

p
‖ϕ‖p − t1−θ

1− θ

∫
RN

a(z)ϕ1−θ dz − µtr

r

∫
RN

G
(
z, ϕ(z)

)
dz.

A simple calculation shows that

φ′µ,ϕ(t) = tp−1‖ϕ‖p − t−θ
∫
RN

a(z)ϕ1−θ dz − µtr−1
∫
RN

G
(
z, ϕ(z)

)
dz

and
φ′′µ,ϕ(t) = (p− 1)tp−2‖ϕ‖p

+ θt−θ−1
∫
RN

a(z)ϕ1−θ dz − µ(r − 1)tr−2
∫
RN

G
(
z, ϕ(z)

)
dz.

Since tφ′µ,ϕ(t) = 〈J ′µ(tϕ), tϕ〉, it follows that for t > 0 and ϕ ∈ E \ {0}, we have

φ′µ,ϕ(t) = 0 if and only if tϕ ∈ Nµ.

In particular, ϕ ∈ Nµ if and only if φ′µ,ϕ(1) = 0. On the other hand, it follows by Eq.
(11) that for all ϕ ∈ Nµ, one has

φ′′µ,ϕ(1) = (p− r)‖ϕ‖p + (θ + r − 1)

∫
RN

a(z)ϕ1−θ dz (13)

= (θ + p− 1)‖ϕ‖p − µ(θ + r − 1)

∫
RN

G
(
z, ϕ(z)

)
dz. (14)

https://www.journals.vu.lt/nonlinear-analysis
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Now, in order to obtain the multiplicity of solutions, we split Nµ into three parts:

N+
µ =

{
ϕ ∈ Nµ \ {0}: φ′′µ,ϕ(1) > 0

}
,

N−µ =
{
ϕ ∈ Nµ \ {0}: φ′′µ,ϕ(1) < 0

}
,

and

N0
µ =

{
ϕ ∈ Nµ \ {0}: φ′′µ,ϕ(1) = 0

}
.

In the following lemmas, we shall present some important properties related to the subsets
introduced above.

Lemma 5. If u /∈ N0
µ is a local mimimizer for Jµ on Nµ, then J ′µ(ϕ) = 0.

Proof. Since ϕ is a minimizer for Jµ under the following constraint

Iµ(ϕ) := J ′µ(ϕ)ϕ = 0,

the Lagrange multipliers theory implies the existence of ξ ∈ R such that J ′µ(ϕ) = I ′µ(ϕ)ξ.
Thus

J ′µ(ϕ)ϕ =
(
I ′µ(ϕ)ϕ

)
ξ = φ′′µ,ϕ(1)ξ = 0.

The fact that ϕ /∈ N0
µ implies that φ′′µ,ϕ(1) 6= 0. So, ξ = 0, which completes the proof of

Lemma 5.

Lemma 6. There exists µ0 such that if µ ∈ (0, µ0), then the set N0
µ is empty.

Proof. Put

µ0 =
(θ + p− 1)S

r/p
r

(θ + r − 1)M

(
r − p

(θ + r − 1)‖a‖p/(θ+p−1)S
(1−θ)/p
p

)(r−p)/(θ+p−1)
,

where M is defined as in Eq. (2), and let µ ∈ (0, µ0). We shall prove that N0
µ = ∅.

Suppose to the contrary and let ϕ ∈ N0
µ. Then we have

0 = φ′′µ,ϕ(1)

= (p− 1)‖ϕ‖p + θ

∫
RN

a(z)ϕ1−θ(z) dz − µ(r − 1)

∫
RN

G
(
z, ϕ(z)

)
dz.

So, it follows from (13) and (14) that

(θ + p− 1)‖ϕ‖p = µ(θ + r − 1)

∫
RN

G
(
z, ϕ(z)

)
dz (15)

and

(r − p)‖ϕ‖p = (θ + r − 1)

∫
RN

a(z)ϕ1−θ(z) dz. (16)
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On the other hand, from (5) and the Hölder inequality we get∫
RN

a(z)ϕ1−θ(z) dz 6

( ∫
RN

∣∣ϕ(z)
∣∣p dz

)(1−θ)/p( ∫
RN

∣∣a(z)
∣∣p/(θ+p−1) dz

)(θ+p−1)/p

6 |ϕ|1−θp ‖a‖p/(θ+p−1) 6 S(1−θ)/p
p ‖a‖p/(θ+p−1)‖ϕ‖1−θ.

So, it follows from (16) that

‖ϕ‖p =
θ + r − 1

r − p

∫
RN

a(z)u1−θ(z) dz 6
θ + r − 1

r − p
S(1−θ)/p
p ‖a‖p/(θ+p−1)‖ϕ‖1−θ,

that is,

‖ϕ‖ 6
(
θ + r − 1

r − p
S(θ−1)/p
p ‖a‖p/(θ+p−1)

)1/(θ+p−1)

. (17)

From (5), (2), and (15) we have

‖ϕ‖p = µ
(θ + r − 1)

θ + p− 1

∫
RN

G
(
z, ϕ(z)

)
dz 6 µM

(θ + r − 1)

θ + p− 1

∫
RN

∣∣ϕ(z)
∣∣r dz

6 µM
(θ + r − 1)

θ + p− 1
S−r/pr ‖ϕ‖r,

hence,

‖ϕ‖ >
(

(θ + p− 1)S
r/p
p

(θ + r − 1)Mµ

)1/(r−p)

. (18)

By combining (17) with (18), we obtain µ > µ0, which gives us the desired contradiction.
This completes the proof of Lemma 6.

Lemma 7. Let ϕ ∈ E \ {0}. Then there exists µ1 > 0 such that for all 0 < µ < µ1,
φϕ has exactly a local minimum at t1 and a local maximum at t2. That is, t1u ∈ N+

µ and
t2u ∈ N−µ .

Proof. Let ϕ ∈ E be such that∫
RN

g(z, ϕ) dz > 0 and
∫
RN

a(z)ϕ1−θ dz > 0.

It is easy to see that for all t > 0, we have

φ′µ,ϕ(t) = t−θ
(
mϕ(t)−

∫
RN

a(z)ϕ1−θ dz

)
, (19)
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where mϕ : [0,∞)→ R is defined by

mϕ(t) = tθ+p−1‖ϕ‖p − tθ+r−1
∫
RN

g(z, ϕ) dz.

It is not difficult to show that m′ϕ(t) = 0 if and only if t = 0 or t = t0, where

t0 =

(
(θ + p− 1)‖ϕ‖p

(θ + r − 1)µ
∫
RN g(z, ϕ) dz

)1/(r−p)

. (20)

Moreover,

mϕ(t0) =

(
µ

∫
RN

g(z, ϕ) dz

)−(θ+p−1)/(r−p)

×
((

θ + p− 1

θ + r − 1

)(θ+p−1)/(r−p)
−
(
θ + p− 1

θ + r − 1

)(θ+r−1)/(r−p))
> 0. (21)

On the other hand, the table of variation of the function mϕ is given by

t 0 t0 ∞
m′

ϕ(t) + 0 −
mϕ(t0)

mϕ(t) ↗ ↘
0 −∞

Now, since

0 <

∫
RN

a(z)ϕ1−θ dz 6
θ + r − 1

r − p
S(θ−1)/p
p ‖a‖p/(θ+p−1)‖ϕ‖1−θ,

it follows by (21) that we can choose µ1 > 0 small enough so that for all µ ∈ (0, µ1), we
have

θ + r − 1

r − p
S(θ−1)/p
p ‖a‖p/(θ+p−1)‖ϕ‖1−θ < mϕ(t0).

Therefore, for µ ∈ (0, µ1), we have

0 <

∫
RN

a(z)ϕ1−θ dz < mϕ(t0).

Hence, from the table of variation of mϕ we can deduce the existence of unique t1 and t2
such that 0 < t1 < t0 < t2 and

mϕ(t1) = mϕ(t2) =

∫
RN

a(z)ϕ1−θ dz.
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Finally, from (19) and the table of variation of function mϕ we can see that t1 and t2 are
the unique critical points of function φµ,u. More precisely, t1 is a local minimum point,
and t2 is a local maximum point. Thus t1u ∈ N+

µ and t2u ∈ N−µ . This completes the
proof of Lemma 7.

Remark 2. It follows from Lemma 7 that N+
µ 6=∅ and N−µ 6=∅, provided that 0<µ<µ1.

Moreover, by Lemma 6, for every 0 < µ < µ0, we have

Nµ = N+
µ ∪N−µ .

For the rest of the paper, we shall set

µ∗ = min(µ0, µ1, µ2)

and define

θµ = inf
ϕ∈Nµ

Jµ(ϕ), θ+µ = inf
ϕ∈N+

µ

Jµ(ϕ) and θ−µ = inf
ϕ∈N−

µ

Jµ(ϕ),

where

µ2 =
(θ + p− 1)S

r/p
r

(θ + r − 1)M

(
(θ + r − 1)p

(1− θ)(r − p)
S(θ−1)/p
p ‖a‖p/(θ+p−1)

)(r−p)/(θ+p−1)
.

Lemma 8. If 0 < µ < µ∗, then the following statements hold:

(i) θµ 6 θ+µ < 0.

(ii) There exists C > 0 such that

θ−µ > C > 0.

Proof. (i) Let ϕ ∈ N+
µ . Then from (13) we get

r − p
θ + r − 1

‖ϕ‖p <
∫
RN

a(z)ϕ1−θ dz.

So, combining the last inequality with (11), we obtain

Jµ(ϕ) =
r − p
pr
‖ϕ‖p − θ + r − 1

r(1− θ)

∫
RN

a(z)ϕ1−θ dz

6 − (r − p)(θ + p− 1)

pr(1− θ)
‖ϕ‖p < 0,

so, we conclude that θµ 6 θ+µ < 0.
(ii) Let ϕ ∈ N−µ . Then by (5) and (14), we get

‖ϕ‖ >
(

(θ + p− 1)S
r
p
r

(θ + r − 1)µM

)1/(r−p)

,

where M is the positive constant given by Eq. (2).
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Now, using the last inequality and (12), we get

Jµ(ϕ) >
r − p
pr
‖ϕ‖p − θ + r − 1

r(1− θ)
S(1−θ)/p
p ‖a‖p/(θ+p−1)‖ϕ‖1−θ

> ‖ϕ‖1−θ
(
r − p
pr
‖ϕ‖θ+p−1 − θ + r − 1

r(1− θ)
S(1−θ)/p
p ‖a‖p/(θ+p−1)

)
>

(
(θ + p− 1)S

r/p
r

(θ + r − 1)µM

)(1−θ)/(r−p)(
r − p
pr

(
(θ + p− 1)S

r/p
r

(θ + r − 1)µM

)(θ+p−1)/(r−p)
− θ + r − 1

r(1− θ)
S(θ−1)/p
p ‖a‖p/(θ+p−1)

)
.

Since 0 < µ < µ∗ 6 µ2 and 0 < 1− θ 6 p < r, it follows that Jµ > C for some C > 0.
This completes the proof of Lemma 8.

Next, we have the following results on the existence of minimizers inN+
µ andN−µ for

µ ∈ (0, µ∗).

Lemma 9. If 0 < µ < µ∗, then there exists ϕµ ∈ N+
µ such that

θ+µ = Jµ(ϕµ).

That is, Jµ attains its minimum on N+
µ .

Proof. Since Jµ is bounded from below on Nµ and hence also on N+
µ , there exists

{ϕk} ⊂ N+
µ such that

lim
k→∞

Jµ(ϕk) = inf
ϕ∈N+

µ

Jµ(ϕ).

Since Jµ is coercive on Nµ, it follows that {ϕk} is bounded on E. So, there exist ϕµ and
a subsequence, again denoted by {ϕk}, such that as k tends to infinity, we have

ϕk ⇀ ϕµ weakly in E,

ϕk → ϕµ strongly in Lq
(
RN
)

for all p < q < p∗,

ϕk → ϕµ a.e. RN .

From Lemma 8 we know that infu∈N+
µ
Jµ(ϕ) < 0. On the other hand, since {ϕk} ⊂

Nµ, we have

Jµ(ϕk) =
r − p
pr
‖ϕk‖p −

θ + r − 1

r(1− θ)

∫
RN

a(z)ϕ1−θ
k (z) dz,

so, we get

θ + r − 1

r(1− θ)

∫
RN

a(z)ϕ1−θ
k (z) dz =

r − p
pr
‖ϕk‖p − Jµ(ϕk).
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From (9), by letting k →∞ in the last equation, we obtain∫
RN

a(z)ϕ1−θ
µ (z) dz > 0.

We now claim that ϕk converges strongly to ϕµ in E. If this were not true, then we
would have

‖ϕµ‖p < lim inf
k→∞

‖ϕk‖p.

Since φ′ϕµ(t1) = 0, it would follow that φ′ϕk(t1) > 0 for sufficiently large k. So, we must
have t1 > 1. However, t1ϕµ ∈ N+

µ , and therefore,

Jµ(t1ϕµ) < Jµ(ϕµ) 6 lim
k→∞

Jµ(ϕk) = inf
u∈N+

µ

Jµ(ϕ),

which is a contradiction, that is, ϕk →
k→∞

ϕµ.

Since N0
µ = ∅, it follows that ϕµ ∈ N+

µ . Finally, ϕµ is a minimizer for Jµ on N+
µ .

This completes the proof of Lemma 9.

Lemma 10. If 0 < µ < µ∗, then there exists ψµ ∈ N−µ such that

θ−µ = Jµ(ψµ).

That is, Jµ achieves its minimum on N−µ .

Proof. By Lemma 8, there exists C > 0 such that for all ϕ ∈ N−µ , we have Jµ(ϕ) > C.
So, there exists a minimizing sequence {ϕk} ⊂ N−µ such that

lim
k→∞

Jµ(ϕk) = inf
ϕ∈N−

µ

Jµ(ϕ) > 0.

Since Jµ is coercive, we can deduce that {ϕk} is bounded. So, for all p 6 r < p∗,
there is a subsequence, still denoted by {ϕk}, and ψµ ∈ E such that if k tends to infinity,
we get

ϕk ⇀ ψµ weakly in E,

ϕk → ψµ strongly in Lr
(
RN
)
,

ϕk → ψµ a.e. RN .

On the other hand, since {ϕk} ⊂ Nµ, we have

Jµ(ϕk) = µ
r + θ − 1

r(1− θ)

∫
RN

G
(
z, ϕk(z)

)
dz − θ + p− 1

p(1− θ)
‖ϕk‖p,

which implies

µ
r + θ − 1

r(1− θ)

∫
RN

G(z, ϕk) dz = Jµ(ϕk) +
θ + p− 1

p(1− θ)
‖ϕk‖p.
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By letting k →∞ in last equation, we obtain∫
RN

G(z, ψµ) dz > 0.

Hence, by Lemma 7 φµ,ϕ has a maximum at some point t2 and t2ψµ ∈ N−µ . On the other
hand, ψk ∈ N−µ implies that 1 is a global maximum point for φµ,ϕk , so, we get

Jµ(tϕk) = φµ,ϕk(t) 6 φµ,ϕk(1) = Jµ(ϕk) for all t > 0. (22)

Now, we claim that ϕk → ψµ as k →∞. Suppose that this is were not true, then we
would get

‖ψµ‖p < lim inf
k→∞

‖ϕk‖p.

So, from Eq. (22) and the Fatou lemma we would obtain

Jµ(t2ψµ) =
tp2
p
‖ψµ‖p −

t1−θ2

1− θ

∫
RN

a(z)ψ1−θ
µ dz − µtr2

r

∫
RN

G
(
z, ψµ(z)

)
dz

< lim inf
k→∞

(
tp2
p
‖ϕk‖p −

t1−θ2

1− θ

∫
RN

a(z)ϕ1−θ
k dz − µtr2

r

∫
RN

G
(
z, ϕk(z)

)
dz

)
6 lim
k→∞

Jµ(t2ϕk) 6 lim
k→∞

Jµ(ϕk) = inf
ϕ∈N−

µ

Jµ(ϕ),

which is a contradiction. Hence, ϕk → ψµ as k →∞.
Since N0

µ = ∅, it follows that ψµ ∈ N−µ . Finally, ψµ is a minimizer for Jµ on N−µ .
This completes the proof of Lemma 10.

5 The proof of Theorem 2

We shall need the following two auxiliary lemmas to prove that the local minimum of the
functional energy is a weak solution for problem (1).

Lemma 11. Assume that hypotheses of Theorem 2 are satisfied and µ ∈ (0, µ∗). Then
the following statements hold:

(i) There exist r1 > 0 and a continuous function ρ1 : B(0, r1)→ (0,∞) such that

ρ1(0) = 1 and ρ1(ϕ)(ϕµ + ϕ) ∈ N+
µ for all ϕ ∈ B(0, r1).

(ii) There exist r2 > 0 and a continuous function ρ2 : B(0, r2)→ (0,∞) such that

ρ2(0) = 1 and ρ2(ϕ)(ψµ + ϕ) ∈ N−µ for all ϕ ∈ B(0, r2).
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Proof. We give the proof only for assertion (i) since the proof for assertion (ii) is similar.
So, let Φ : E × (0,∞) be a function defined by

Φ(ϕ, t) = tθ+p−1‖ϕµ + ϕ‖p − tθ+r−1
∫
RN

G(z, ϕµ + ϕ) dz

−
∫
RN

a(z)|ϕµ + ϕ|1−θ dz.

Since ϕµ ∈ N+
µ ⊂ Nµ, we have Φ(0, 1) = 0. On the other hand, ϕµ ∈ N+

µ implies that

∂Φ

∂t
(0, 1) = (θ + p− 1)‖ϕµ‖p − (θ + r − 1)

∫
RN

G(z, ϕµ) dz > 0.

So, by the Implicit function theorem, there exist r1 > 0 and a continuous function ρ1 :
B(0, r1)→ (0,∞) such that

ρ1(0) = 1 and ρ1(ϕ)(ϕµ + ϕ) ∈ N+
µ for all ϕ ∈ B(0, r1).

This completes the proof of Lemma 11.

Lemma 12. Assume that hypotheses of Theorem 2 are satisfied and µ ∈ (0, µ∗). Then
for every ϕ ∈ E, the following statements hold:

(i) There exists T1 > 0 such that

Jµ(ϕµ) 6 Jµ(ϕµ + tϕ) for all t ∈ (0, T1).

(ii) There exists T2 > 0 such that

Jµ(ψµ) 6 Jµ(ψµ + tϕ) for all t ∈ (0, T2).

Proof. We shall give the proof only for assertion (i) since the proof for assertion (ii) is
similar. So, let ϕ ∈ E and δϕ : [0,∞)→ R be a function defined by

δϕ(t) = (p− 1)‖ϕµ + tϕ‖p

+ θ

∫
RN

a(z)|ϕµ + tϕ|1−θ dz − (r − 1)

∫
RN

G(z, ϕµ + tϕ) dz.

Since ϕµ ∈ N+
µ ⊂ Nµ, we obtain

θ

∫
RN

a(z)|ϕµ|1−θ dz = θ‖ϕµ‖p + (r − 1)

∫
RN

G(z, ϕµ) dz (23)

and

(θ + p− 1)‖ϕµ‖p − (θ + r − 1)

∫
RN

G(z, ϕµ + tϕ) dz > 0. (24)
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By combining Eqs. (23) and (24) with the definition of the function δϕ, we get δϕ(0) >
0. So, the continuity of the function δϕ implies the existence of T0 > 0 such that

δϕ(t) > 0 for all t ∈ [0, T0].

On the other hand, by Lemma 11, for every t ∈ [0, r1], there exists ρ1(t) such that

ρ1(t)(ϕµ + tϕ) ∈ N+
µ and lim

t→0+
ρ1(t) = 1. (25)

Moreover, by Lemma 9, we have

θ+µ = Jµ(ϕµ) 6 Jµ
(
ρ1(t)(ϕµ + tϕ)

)
for all t ∈ (0, T0).

Now, from that fact that Φ′′µ,ϕµ(1) > 0 and the continuity in t we get

Φ′′µ,ϕµ+tϕ(1) > 0 for all t ∈ [0, T1] and for some small enough T1 ∈ (0, T0).

So, using Eq. (25), we can get small enough T1 ∈ (0, T0) such that

θ+µ = Jµ(ϕµ) 6 Jµ(ϕµ + tϕ) for all t ∈ [0, T1).

This completes the proof of Lemma 12.

Now we are ready to present the proof of Theorem 2.

Proof of Theorem 2. As a direct consequence of Lemmas 9 and 10, we can deduce that
Jµ has minimizers ϕµ ∈ N+

µ and ψµ ∈ N−µ . Moreover, N+
µ ∩N−µ = ∅ implies that ϕµ

and ψµ are distinct.
Next, we shall prove that ϕµ and ψµ are weak solutions for problem (1). To this end,

let ϕ ∈ E. Then by the assertion (i) of Lemmas 11, 12, we obtain

0 6 Jµ(ϕµ + tϕ)− Jµ(ϕµ) for all t ∈ (0, T1).

Dividing the last inequality by t and letting t tend to zero, we get∫
RN

(
|∆ϕµ|p−2∆ϕµ∆ϕ− λ |ϕµ|

p−2ϕµϕ

|z|2p
+ |∇ϕµ|p−2∇ϕµ∇ϕ

)
dz

−
∫
RN

a(z)ϕ−θµ ϕdz − µ
∫
RN

f(z)h(ϕµ)ϕdz > 0.

Since ϕ is arbitrary in E, it follows that in the last inequality we can replace ϕ by −ϕ.
So, for all ϕ ∈ E, we get

0 =

∫
RN

(
|∆ϕµ|p−2∆ϕµ∆ϕ− λ |ϕµ|

p−2ϕµϕ

|z|2p
+ |∇ϕµ|p−2∇ϕµ∇ϕ

)
dz

−
∫
RN

a(z)ϕ−θµ ϕdz − µ
∫
RN

f(z)h(ϕµ)ϕdz.
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That is, ϕµ is a weak solution of problem (1). Moreover, from Eq. (10) we see that ϕµ is
nontrivial.

Finally, if we proceed as above using assertion (ii) of Lemmas 11 and 12, we can
prove that ψµ is also a nontrivial weak solution of problem (1). This completes the proof
of Theorem 2.

6 An application

As an application of our main results, we shall consider the following problem:

∆2
pϕ− λ

|ϕ|p−2ϕ
|z|2p

+ ∆pϕ =
a(z)

ϕθ
+ µf(z)|ϕ|r−2ϕ in RN , (26)

where µ > 0, 1 < p < N/2, 0 < θ < 1, and λ satisfies Eq. (4).
We note that problems of type (26) describe, e.g., the deformations of an elastic beam.

Also, they give a model for studying traveling waves in suspension bridges.
First, let us assume that 1 < r < p, f is a positive function in

Lp
∗/(p∗−r)(RN) ∩ Lsloc(RN) for some s ∈

(
p∗

p∗ − r
,

p

p∗ − r

)
,

which implies that the first part of hypothesis (H1) is satisfied.
On the other hand, it is easy that the function h(z) = |ϕ|r−2ϕ satisfies the second part

of hypothesis (H1). Moreover, a simple calculation shows that

0 < rf(z)H(ϕ) = f(z)h(ϕ)ϕ,

so, hypothesis (H2) is also satisfied.
Finally, if

a ∈ Lp
∗/(p∗+θ−1)(RN) ∩ Lβloc(RN) for some β ∈

(
p∗

p∗ + θ − 1
,

p

θ + p− 1

)
,

then Theorem 1 ensures the existence of nontrivial solution for problem (26).
Next, we assume that p < r < p∗ and a is a positive function in Lp/(θ+p−1)(RN ),

that is, hypothesis (H5) is satisfied. It is not difficult to see that if

g(z, ϕ) = f(z)|ϕ|r−2ϕ,
then

G(z, ϕ) = f(z)|ϕ|r,

so, hypothesis (H4) is also satisfied. Hence, Theorem 2 now ensures the existence of two
nontrivial solutions for problem (26).
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