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Background. Accurate local staging is critical for treatment planning and prognosis in patients with prostate cancer 
(PCa). The primary aim is to differentiate between organ-confined and locally advanced disease with the latter car-
rying a worse clinical prognosis. Multiparametric MRI (mpMRI) is the imaging modality of choice for the local staging 
of PCa and has an incremental value in assessing pelvic nodal disease and bone involvement. It has shown superior 
performance compared to traditional staging based on clinical nomograms, and provides additional information on 
the site and extent of disease. MRI has a high specificity for diagnosing extracapsular extension (ECE), seminal vesicle 
invasion (SVI) and lymph node (LN) metastases, however, sensitivity remains poor. As a result, extended pelvic LN 
dissection remains the gold standard for assessing pelvic nodal involvement, and there has been recent progress in 
developing advanced imaging techniques for more distal staging. 
Conclusions. T2W-weighted imaging is the cornerstone for local staging of PCa. Imaging at 3T and incorporating 
both diffusion weighted and dynamic contrast enhanced imaging can further increase accuracy. “Next generation” 
imaging including whole body MRI and PET-MRI imaging using prostate specific membrane antigen (68Ga-PSMA), 
has shown promising for assessment of LN and bone involvement as compared to the traditional work-up using bone 
scintigraphy and body CT.  
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Introduction

Accurate staging of prostate cancer is essential to 
inform prognosis and to stratify patients for ap-
propriate management. MRI affords excellent soft 
tissue differentiation making it the most accurate 
modality for preoperative local T-staging of pros-
tate cancer.1 According to European Association of 
Urology (EAU) guidelines, local staging investiga-
tions are only indicated for intermediate and high-
risk patient groups.1 The high accuracy of multipar-
ametric MRI (mpMRI) for detection of index lesions 
can aid T-staging, and can also identify tumours 

that may be missed by systematic biopsies, enabling 
early re-biopsy and accurate risk stratification.2

For the purposes of prognosis and manage-
ment the primary aim is to differentiate organ-
confined disease from locally advanced disease. 
Extracapsular disease and seminal vesicle invasion 
carry a worse prognosis due to a greater risk of 
positive surgical margins leading to biochemical 
recurrence3,4 and an increased risk of lymph node 
(LN) metastases, respectively.5 Nodal disease on its 
own is associated with a higher risk of progression 
to metastatic disease and thus a higher rate of can-
cer specific mortality.6-8
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Traditionally, staging of prostate cancer has 
been performed using nomograms such as Partin 
tables which are based on digital rectal examina-
tion (DRE), prostate-specific antigen (PSA) levels, 
Gleason score and percentage core involvement 
as a surrogate of lesion volume.9-11 This approach 
often underestimates the true stage of the disease 
and has been shown to be inferior to MRI12, with 
the combination of MRI findings and nomograms 
showing significant added value for predicting ad-
verse pathology in prostate cancer.13 In addition to 
improving accuracy, MRI also provides informa-
tion on the site and extent of disease, which helps 
surgical planning, informing decision making on 
taking wider surgical margins to decrease the rate 
of positive margins, or performing nerve-sparing 
surgery to decrease morbidity. In case of a gross 
extracapsular extension or seminal vesicle invasion 
on MRI, external beam radiotherapy is a recom-

mended approach over brachytherapy or surgery, 
to avoid under dosing or positive surgical margins, 
respectively.14 As MR imaging currently does not 
offer sufficient diagnostic performance, extended 
pelvic lymph node dissection (ePLND) remains the 
gold standard for N-staging.1 However, ePLND 
has its own disadvantages including higher mor-
bidity, with worse intraoperative and periopera-
tive outcomes, and may result in under-sampling, 
thus its direct therapeutic effect is equivocal.15

This review aims to summarize the role of MRI 
in staging prostate cancer and focuses mainly on 
exploring the current evidence and providing a 
practical approach to assessment of extracapsular 
extension, seminal vesicle invasion and nodal dis-
ease.

Staging of prostate cancer

The most widely used system for staging of pros-
tate cancer is the tumour, nodes, and metastases 
(TNM) staging system developed by the American 
Joint Committee on Cancer (AJCC). The current 
version of the TNM staging of prostate cancer (8th 
edition) was implemented in January 2018 intro-
ducing grade groups and simplifying organ-con-
fined disease to pathological stage pT2 and omit-
ting pT2a–pT2c, however, this sub-classification is 
retained for clinical staging (Table 1).16 In addition, 
Cancer-group staging of prostate cancer (stage I–
IV) is determined by TNM, PSA levels at diagnosis, 
and histologic Grade Groups.17 

Locally confined disease (T1–T2) is further di-
vided into stage T1a and T1b tumours which are 
not apparent clinically and are found incidentally, 
typically at transurethral resection. From the radio-
logical standpoint, the more relevant categories are 
stage T1c and T2 (a–c) as histologically they both 
represent a biopsy proven carcinoma albeit with 
an important difference: T1c cancer is by defini-
tion not visualised at MRI. This is relevant to active 
surveillance studies (AS) cohorts, with the term 
“non-visible lesion” (T1c) being introduced, based 
on the predictive nature of this feature, with a sig-
nificantly increased progression free survival for 
non-visible lesions when compared with the MRI-
visible lesions (T2).18

Locally advanced prostate cancer carries a worse 
prognosis that organ-confined disease. T3a disease 
describes extraprostatic extension, T3b seminal 
vesicle invasion, and T4 disease direct invasion 
of adjacent organs/structures (Table 1). In clinical 
practice those undergoing prostate mpMRI will 

TABLE 1. Summary of TNM guidelines for the staging of  prostate cancer

Category Definition

Tumour

Tx Primary tumour cannot be assessed (e.g. CT study, severe 
artefacts on MRI)

T1a–T1b Tumour incidental histologic finding

T1c Tumour identified by needle biopsy but not visible by imaging

T2 Organ confined disease

T2a The tumour involves up to one half of 1 side of the prostate

T2b The tumour involves more than one half of 1 side of the prostate

T2c The tumour involves both sides of the prostate

T3 Extraprostatic extension

T3a Extraprostatic extension (unilateral or bilateral) or microscopic 
invasion of the bladder neck

T3b Tumour invades seminal vesicle(s)

T4
Tumour invades adjacent structures other than seminal vesicles, 
such as external sphincter, rectum, bladder, levator muscles, 
and/or pelvic wall

Node

Nx Regional lymph nodes were not assessed

N0 No positive regional lymph nodes

N1 Metastases in regional lymph node(s)

Metastasis

Mx M staging not assessed (e.g. MRI with pelvic only coverage)

M0 No distant metastasis

M1 Distant metastasis

M1a Nonregional lymph node(s)

M1b Bones

M1c Other site(s) with or without bone disease
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have at least one sequence where the field of view 
covers the pelvis to the level of aortic bifurcation19 
in order to evaluate the common iliac and bifurca-
tion nodes (M1a) and from which partial M staging 
of the bony pelvis (M1b) can be performed.

MR imaging
MRI scanners

The Prostate Imaging-Reporting and Data System 
(PI-RADS) guidelines19 are aimed at standardiz-
ing MRI acquisition and interpretation and rec-
ommend MRI to be performed at 3T in order to 
increase signal-to-noise ratio (SNR) and spatial 
resolution, and decrease acquisition times.20,21 If 
acquisition protocols are optimized and contem-
porary technology is employed, then 1.5T scanners 
are also able to provide sufficient diagnostic per-
formance. 1.5T scanning may also be preferential 
when a patient has an implant non-compatible at 
higher field strengths, or with bilateral hip replace-
ments in order to minimise artefact.22,23 The routine 
use of an endorectal coil (ERC) is no longer recom-
mended.19 3T scanners or contemporary 1.5T scan-
ners can provide sufficient imaging quality and 
although ERC increases SNR bring disadvantages, 
including deformation of the gland contour, near 
field coil flare, increased cost and time of examina-
tion as well as higher patient discomfort.19,21 

MRI protocol

Standard prostate MRI protocols should incorpo-
rate anatomical T1W and T2W imaging in combi-
nation with the two functional sequences of diffu-
sion weighted imaging (DWI) and dynamic con-
trast enhanced imaging (DCE).24 A set of minimal 
technical parameters for each of these sequences 
is outlined in Table 225, although institutions are 
encouraged to optimize imaging protocols based 
on their own equipment, capacity and expertise. It 
is mandatory for axial T2W, DWI and DCE to be 
acquired in the same location, angle, slice thick-
ness and gap to allow for synchronous scrolling 
through the images and direct evaluation of suspi-
cious findings between the sequences. Axial T1WI 
is essential to assess post-biopsy haemorrhage, and 
is typically employed as the sequence to cover the 
pelvis to the aortic bifurcation to enable bone and 
nodal assessment. 

T2W imaging is the key sequence for local 
T-staging of the prostate. The high in-plane spatial 
resolution allows for accurate evaluation of extra-

capsular extension, neurovascular bundle assess-
ment and seminal vesicle invasion. Fast-spin-echo 
(FSE) or turbo-spin-echo (TSE) imaging should be 
obtained in the axial plane and in least one addi-
tional orthogonal plane (sagittal or coronal) with 
the highest quality possible and thin slices at 3 mm 
with no gap.25 3D T2 weighted imaging with iso-
tropic voxels and slice thickness at 1 mm may be 
obtained, with evidence suggesting utility for as-
sessment of extraprostatic extension26 and for nod-
al and bone staging when combined with DWI of 
the entire pelvis (b-values 0–1000 s/mm2).27

Limitations

Motion artefact. Bowel peristalsis is a well-known 
cause of motion artefact in abdominal imaging, 

TABLE 2. PI-RADS v2.1 recommended MR imaging protocols 

Imaging sequence Technical parameters

T2 imaging
Axial plane and a minimum of one additional 
orthogonal plane (either sagittal or coronal)
Straight axial plane to the patient or to the long axis of 
the prostate
FOV: 12-20 cm to image the entire prostate gland and 
seminal vesicles  

Section thickens/gap: 3 mm/0 mm

In-plane resolution: ≤0.7 mm (phase) x ≤0.4 mm 
(frequency)

DW imaging Axial plane (same locations as for T2WI)

Free-breathing spin echo EPI sequence combined with 
spectral fat  saturation is recommended

Section thickness/gap: 3 mm/0 mm

TE: ≤90 ms; TR: >3000 ms  

FOV: 16-22 cm  

In plane dimension: ≤2.5 mm phase and frequency  

ADC map calculation: low b-value should be set at 0 – 
100 s/mm2, high b-value should be <1000 s/mm2 

“High b-value”: b-value of ≥ 1400 sec/mm2; it can be 
acquired by scanning or calculated

DCE Axial plane (same locations as for T2WI)

Fat suppression and/or subtraction is recommended  

2D or 3D T1 GRE sequence (preferred)

Section thickness/gap: 3 mm/0 mm

Injection rate: 2-3 ml/s

TR/TE: <100 ms/ <5 ms  

In-plane dimension: ≤2mm X ≤2mm 

Temporal resolution: ≤15 s  

Total observation: >2min

2D = two-dimensional; 3D = three-dimensional; ADC = apparent diffusion coefficient; EPI = echo 
planar imaging; DW = diffusion weighted; FOV = field of view; GRE = gradient echo T2W = T2 
weighted; TE = echo time; TR = repetition time
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but the relatively low position of the prostate, re-
mote from small bowel combined with limited 
evidence prior to PIRADS version 2 means that 
anti–spasmodic agents are not recommended in 
current guidelines. However, recent studies have 
shown use of anti-peristaltic agents significantly 
improves image quality of T2W imaging28, 29 with 
better depiction of anatomical details (e.g. prostatic 
capsule and neurovascular bundles) as well as re-
ducing non-diagnostic MRI to < 1%.29 Routine use 
of antiperistaltic agents (recommended dose 20 mg 
HBB i.v. or 1 mg glucagon) prior to prostate mp-

MRI may therefore be beneficial for optimisation of 
T2W image quality, a key sequence of mpMRI for 
local staging.30 The risk of side-effects with these 
agents is low and these are usually minor and self-
limiting.31 

T-staging 
T3a disease

Extension of the tumour into the periprostatic fat 
is defined as T3a disease, termed extracapsular ex-
tension (ECE). Of note, however, in a strict sense 
the prostate lacks a true capsule as an anatomic 
structure that encloses the gland but has rather 
an outer fibromuscular layer which is inseparable 
component of the prostatic stroma.32,33 T3a disease 
also incorporates invasion into the neurovascu-
lar bundle, internal sphincter and bladder neck.1 
Histopathologically, extracapsular extension (ECE) 
is sub-classified into focal and established with the 
latter carrying a worse prognosis.34 However, there 
is currently no clear consensus on the exact defini-
tions of these, which can vary from a few glands 
beyond the capsule to cancer extending up to 0.5 
mm radially from the capsule.1 In addition,  focal 
ECE cannot be detected by MRI due to inherent 
resolution limits.35 

Extracapsular extension has traditionally been 
evaluated by clinical criteria and nomograms such 
as Partin tables, which are based on PSA, DRE and 
Gleason score at biopsy.36 However, nomograms 
represent a patient level risk score alone, have been 
shown to be inferior to MRI11,37, and unlike MRI of-
fer no information on location and extent of ECE. A 
meta-analysis by de Rooij et al. in 2016 showed MRI 
to have a high specificity of 91% but only moderate 
sensitivity at 57% in diagnosing ECE. Of note, this 
analysis included studies with both uni- and multi-
parametric protocols at both 1.5T and 3T, and sub-
analysis of 3T studies improved overall perfor-
mance with specificity 86% and sensitivity 68%.38 
The main reasons for improvement being higher 
spatial resolution at 3T and improved lesion iden-
tification with a multiparametric approach, allow-
ing interrogation of the capsule and neurovascular 
bundle in the adjacent region (Figure 2).39

Several approaches have been proposed and ex-
plored in order to increase diagnostic accuracy for 
the evaluation of ECE. Prostate imaging-reporting 
and data system (PI-RADS) guidelines recom-
mends various morphologic criteria (Table 3).19 
These have been evaluated and demonstrated 
sensitivity and specificity between 60%–81% and 

FIGURE 1. 65-yr-old man with PSA 19.5 ng/ml. Invasion of the periprostatic fat 
and neurovascular bundle (NVB) infiltration at the left midgland consistent with 
T3a disease. Biopsy showed Gleason score (GS) 4 + 4 = 8. Radical retropubic 
prostatectomy (RRP) confirmed GS 4 + 4 = 8 and showed established T3a disease 
with a clear surgical margin (at least 1 mm).

A

A

B

B

C

C

FIGURE 2. 77-yr-old man with PSA 38.2 ng/ml. (A) T2 weighted (T2W) imaging; 
(B) diffusion weighted (DW) imaging: (C) apparent diffusion coefficient (ADC) map. 
T3a at the right mid gland with bulging and asymmetrical thickening of the right 
neurovascular bundle (arrow). Gleason score (GS) = 9 with extracapsular extension 
and clear surgical margins was confirmed at radical prostatectomy.

TABLE 3. PI-RADS v2 criteria for predicting extraprostatic 
extension 

Capsular abutment

Capsular irregularity, spiculation or retraction 

Neurovascular bundle asymmetry or thickening 

Obliteration of the rectoprostatic angle

Tumour-capsular contact > 10 mm

Bulge or loss of capsule 

Measurable extracapsular disease 
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75%–78%, respectively, and showed moderate in-
ter-reader agreement (K = 0.45) for the prediction 
of T3a disease.40,41

In addition, the length of tumour contact with 
the capsule at MRI (Figure 3) has also been shown 
to be a strong predictor of ECE35,42,43 with good to 
excellent inter-reader agreement26,35 (Figure 3).26,35 
However, a reliable threshold is yet to be estab-
lished, with reported rates varying from 6–20 mm, 
the PI-RADS v2 guidelines recommend an arbi-
trary threshold of 10 mm19, which pre-dates many 
of these studies. The reason for variability is likely 
multifactorial with different methodology em-
ployed and variations in scanner strength, vendor 
and protocols. For instance, Rosenkrantz et al. meas-
ured the length in a linear rather than curvilinear 
fashion which likely explains their lower reported 
threshold of 6 mm.35 In addition, a more recent 
study suggests that thresholds differ between low- 
(Grade Group 1–2) and high-grade (Grade Group 
3–5) cancers, with the former having a positive pre-
dictive values (PPV) of 90.4% for ECE at 12.5 mm 
and the optimal cut-off for the latter being 5 mm.26 
This finding was further confirmed by Matsuoka 
et al. who reported significantly increased upstag-
ing in low- versus high-grade cancers when the 
same threshold (10 mm) was applied.44 Given that 
lower apparent diffusion coefficient (ADC) values 
in prostate cancer correlate with higher Gleason 
score45,46, this could potentially be exploited as an 
adjunct for more accurate diagnosis of T3a disease 
prior to biopsy results. To date however, there have 
been mixed results when applying ADC values for 
stage assessment, which may relate to difficulties 
in applying uniform quantitative values.39,47-50

Another potential approach to improve sensitiv-
ity is utilisation of an isovolumetric 3D T2 imaging 
sequence to acquire thinner slices with less partial 
voluming and reformatting of isotropic images 
in multiple planes. Studies using 3D-T2 sequence 
have reported encouraging results with sensitiv-
ity and specificity ranging from 58.3%–84% and 
73.1%–89%, respectively.44,51-53 In addition, Caglic 
et al. proposed a new criterion of 3D Contact which 
significantly improved detection of ECE (sensitiv-
ity, specificity: 73.7% and 87.8%) when compared 
to the length of capsular contact measured on 
conventional T2 imaging in axial plane (sensitiv-
ity, specificity: 59.6%, 87.8%).26 This approach ex-
ploited the reduced partial voluming due to thin-
ner slices (Figure 4) and reconstruction of images 
in multiple planes in order to measure the more 
representative a truer length of capsular contact. 
Although not supported by work of Jäderling et 

al. using 3D-T2 reconstructions, it should be noted 
that their analysis was based on morphological cri-
teria and not on quantifying capsular contact.54 

Although diagnostic accuracy for early ECE is 
improving, sensitivity remains relatively poor, and 
it should be noted that these results come from 
experienced centres, utilizing modern equipment 
and optimised protocols. As a result, equivocal 
MRI findings should not change the planned treat-
ment course, but rather ensure discussion between 
radiologists and urologists at multidisciplinary 
meetings on a case-by-case basis. Practical advice 
would be to flag indeterminate features of ECE, 
to allow wider surgical margins to be taken in 
the corresponding region.10 Furthermore, report-
ing the exact location of T3a disease is important, 
as clear margins are harder to obtain at the apex 
whereas tumours remote from the neurovascular 
bundle (NVB) such as in the anterior location will 
allow nerve sparing surgery and reduce resultant 
morbidity from urinary incontinence or erectile 
dysfunction.
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FIGURE 3. 74-yr-old man with PSA 35.2 ng/ml. (A) T2 weighted (T2W) imaging, (B) 
diffusion weighted (DW) imaging, (C) apparent diffusion coefficient (ADC) map. T3a 
at the right mid gland as suggested by a broad capsular contact at 19.4 mm. Biopsy 
showed Gleason score (GS) 4  + 4 = 8 disease. Patient underwent radiotherapy.

FIGURE 4. 57-yr-old man with PSA 26 ng/ml. (A) Axial T2 weighted 
imaging (T2WI) shows mid gland right peripheral zones (PZ) 
lesion (arrow) with capsular contact but no tumour extension 
beyond it. (B) axial thin-sliced cube reformat suggests capsular 
breach and right neurovascular bundle involvement (arrow). 
Prostatectomy showed tumour in the right mid gland, Gleason 
score 4 + 5 = 9, with established extracapsular extension (ECE) 
(pT3a).
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T3b disease

T3b disease is defined as involvement of one or 
both seminal vesicles (SV) by prostate cancer, with 
the prevalence of SV invasion in surgical series be-
ing reported at 4–23%.55,56 Patients with T3b disease 
carry an increased risk of lymph node involvement, 
local recurrence and distant metastases57, making 
preoperative identification of SV involvement an 
important factor for prognosis and treatment plan-
ning. Patients with T3b disease are typically not 
offered radical prostatectomy or brachytherapy 
unless as part of a multimodal approach, and are 
usually offered external beam radiotherapy (EBRT) 
and androgen deprivation therapy (ADT). 

MRI has been shown to outperform clinical risk 
assessment tools such as Kattan nomogram and 
Partin tables in predicting SV involvement13,58, 
with meta-analyses showing moderate sensitivity 
of 73%  and specificity of 95% for multiparametric 
MRI studies at 3T.38 Recent work by Grivas et al. in-
cluding 527 patients at 3T mpMRI achieved similar 
results with sensitivity, specificity, PPV and nega-
tive predictive values (NPV) at 75.9%, 94.7%, 62% 
and 97%, respectively.59

Histopathologically, SV invasion is defined as 
prostate cancer penetrating the SV muscular wall, 
with tumour involving the extraprostatic portion 
of the vesicles rather than the intraprostatic ejacu-
latory ducts.57 Three routes of invasion have been 
described, Type I: direct spread via the ejaculatory 
duct complex (Figure 5), Type II: extracapsular 
spread of disease with invasion via the outer semi-
nal vesicle wall and type III: metastatic involve-
ment from a remote intraprostatic lesion (Figure 6). 
The first two types individually or in combination 
account for more than 95% of cases, with type III 
spread being extremely rare.60,61

Seminal vesicles are best evaluated on T2W 
imaging in combination with functional imaging. 
Coronal or sagittal reformats are especially useful 
in demonstrating the type of spread. In Type I in-
vasion, invasion via the erectile dysfunction (ED) 
causes SV expansion with a low signal intralumi-
nal mass and may cause diffuse or focal wall thick-
ening. In Type II involvement, there is oblitera-
tion of the angle between the base of the prostate 
and SV.60 In addition, in 2009 Jung et al. proposed 
a novel six-tier classification system for SV inva-
sion based on morphological appearance of SV on 
T2W imaging (Class 0 = normal SV appearance, 
Class 5 = apparent mass lesion with destructive 
architecture) showing sensitivity and specificity of 
71.4 and 96.6%, respectively.62 More recent work 
incorporating functional sequences has further in-
creased accuracy, with DWI proving to be of more 
incremental value than DCE.56,63

There are known pitfalls to be aware of when 
assessing for SV involvement, such as diffuse wall 
thickening due to SV atrophy or asymmetry. In 
addition, there can be large variation with a mean 
right - left asymmetry of 20% and surgical series 
suggesting SV length between sides can vary up 
to 9-fold.64 Post-biopsy haemorrhage can mimic 
the low T2 signal of prostate cancer and review 

A B C

FIGURE 5. 65-yr-old-man with PSA = 15.3 ng/ml and Gleason score 4 + 4 = 8 at 
biopsy. Axial (A) and coronal (C) T2 weighted imaging (T2WI) and diffusion weighted 
imaging (DWI) (B). T3b involving both seminal vesicles via ejaculatory ducts, shown 
in the coronal plane (arrow).

FIGURE 6. 67-yr-old man with raising PSA = 12.7 ng/ml. (A) (coronal) and (B) (axial) T2 weighted (T2W) imaging shows index lesion in the left apex (*) 
and a low signal focus in the left seminal vesicle (arrow) with corresponding restricted diffusion on diffusion weighted imaging (DWI) ((C); arrow) and 
apparent diffusion coefficient (ADC) map ((D); arrow).

A B C D
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of T1W imaging for high signal within the SV is 
therefore essential. Another important mimic of 
prostate cancer is amyloidosis which exhibits low 
T2 signal but does not show diffusion restriction 
(Figure 7). In cases with equivocal SV findings on 
prebiopsy MRI, patients can undergo subsequent 
targeted biopsy in order to correctly stage the dis-
ease (Figure 7).65 

Although PI-RADS v2 does not recommend ab-
stinence from ejaculation prior to prostate mpM-
RI19, some centres require patients to refrain from 
ejaculation prior to imaging in order to achieve 
maximal distension. Recent studies suggest 72 
hours abstinence as the recommended interval to 
achieve maximal seminal vesicle distension.66-69 
This may be beneficial in evaluation of seminal 
vesicle invasion but further prospective studies in-
cluding patients with prostate cancer are required 
to determine the effect on local staging accuracy.

N-Staging

EAU guidelines recommend N-staging should 
be performed on prebiopsy MRI in patients from 
all risk groups.1 This is in line with PI-RADS v2 
guidelines which recommend that the prostate 
MRI protocol, which is primarily aimed at evaluat-
ing gland-confined and locally advanced disease, 
should also incorporate an additional sequence 
for the purpose of pelvic nodal staging from the 
level of aortic bifurcation.24 PCa spreads primarily 
to four pelvic nodal stations, considered regional 
nodes: the obturator, internal and external iliac and 
presacral LNs. Involvement of any regional node is 
classified as N1 stage, whilst involvement of non-
regional stations (paraaortic or paracaval LNs) 
represents M1a disease.17,70 Nodal mapping stud-
ies have shown that approximately 75% of pelvic 
nodal metastases are distributed between the ob-

turator fossa, internal and external iliac chain and 
the remaining 25% between the presacral, common 
iliac or aortic bifurcation group.71,72

MRI has traditionally relied on size and mor-
phological criteria in LN assessment including an 
enlarged size (> 8 mm), loss of fatty hilum, rounded 
shape, low T2W signal similar to primary tumour, 
or an irregular border. This is of limited diagnos-
tic accuracy mainly due to low sensitivity, with a 
meta-analysis from 2008 incorporating anatomical 
imaging studies alone (T2W and T1W) reporting a 
sensitivity of only 39% (specificity 82%).73 Size cri-
teria in isolation is unhelpful, with a recent study 
showing the majority (68%) of metastatic nodes to 
have a short axis diameter < 5 mm.27 More recent 
studies have tried to establish whether an ADC 
threshold can be applied for discrimination of be-
nign from malignant LNs.27,74-78 Although malig-
nant LNs typically exhibit lower ADC values, there 
is significant overlap between normal and patho-
logical LNs as well as large variation in the reported 
thresholds, limiting the value of quantitative ADC 
measures at an individual patient level.79 Reasons 
for poor discrimination include micro metastasis 
being unlikely to lower the overall ADC value of a 
node, whilst some benign conditions (lipomatosis, 
sinus histiocytosis, and follicular hyperplasia)27 as 
well as inflammation (sarcoidosis and catch scratch 
disease) can also result in restricted diffusion with-
in LNs.80,81 In addition, reproducibility of ADC 
measurements in small structures such as LNs may 
be insufficient and differences in acquisition proto-
cols between centres further inhibits establishment 
of an absolute threshold.82-85 Consequently, some 
studies have focused on qualitative assessment of 
DWI using high b-value imaging in combination 
with anatomical T2W and reported improved per-
formance with sensitivities of 55–73% and specifi-
cities of 86–90%.27,86 Normal LNs have an inherent 
relatively long T2 relaxation time and will there-

A B C D

FIGURE 7. 55-yr-old-man with PSA 32 ng/ml. (A) T2 weighted (T2W) imaging, (B) T1 weighted (T1W) imaging, (C) diffusion weighted (DW) imaging, (D) 
apparent diffusion coefficient (ADC) map. Low T2 signal in the right seminal vesicle is mimicking prostate cancer (D), however, there is no restricted 
diffusion. Biopsy of the right seminal vesicle showed amyloidosis which was confirmed at radical prostatectomy. Index tumour with Gleason score 4 + 
3 = 7 was in the left peripheral zone.
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fore appear as high signal intensity structures on 
high b-value imaging (Figure 8), which is espe-
cially useful in depicting LNs as a ‘’nodal map’’ 
when these do not meet size criteria. Detected 
nodes should then be carefully evaluated on T2W 
imaging in order to avoid false positive results due 
to structures which also appear bright on high b-
value DWI (bowel mucosa, vessels, nerves)87 and to 
assess morphological features of malignancy.

Current diagnostic performance of MRI in nod-
al staging is sub-optimal, thus ePLND remains 
the gold standard. Due to the limited sensitivity 
(high false negative rate) of MRI, negative findings 
should not deter surgeons from performing lym-
phadenectomy in patients with a high clinical risk 
for LN involvement. Conversely, the specificity of 
MRI is high (low false positive rate) and LNs con-
sidered to be suspicious at MRI warrant resection.

Further work and development of imaging 
techniques with a high diagnostic performance is 
needed in order to more efficiently and less inva-
sively identify patients with metastatic LNs. Initial 
clinical trials with prostate specific membrane anti-
gen (68Ga-PSMA) PET-MRI have shown promising 
results for detection of LN metastases88,89, resulting 
in change of treatment (either to systemic treat-

ment or active surveillance) in approximately one 
third of patients.90 MR lymphangiography (MRL) 
with ultra-small superparamagnetic iron oxide 
(USPIO) has also demonstrated encouraging re-
sults with studies reporting sensitivity of 65–100% 
and specificity of 93–100% on a per patient ba-
sis.91-93 However, USPIO is currently not licenced 
for general clinical use, with only the Netherlands 
producing it (commercially known as Combidex) 
and licensing it mainly for the research purposes in 
patients with PCa.94

M-Staging

EAU guidelines recommend staging for metastatic 
disease (M1a–M1c) in patients with unfavourable 
intermediate (International Society of Urological 
Pathology [ISUP] grade group 3) or high-risk 
(ISUP grade group 4–5) disease.1 Current guide-
lines recommend evaluation of non-regional LNs 
and visceral metastases (M1a and M1c disease, re-
spectively) by CT abdomen/pelvis imaging, com-
bined with bone scintigraphy (BS) for evaluation of 
bone metastases (M1b disease) (Figure 9).95

Several studies have shown MRI (either whole-
body MRI or axial skeleton only MRI) to signifi-
cantly outperform BS for assessment of M1b dis-
ease, with a thorough meta-analysis from 2014 
reporting MRI sensitivity and specificity to be 
97% and 95% compared to BS at 79% and 82%, re-
spectively.96 MRI is not incorporated into current 
guidelines mainly due to its limited availability 
and lower cost effectiveness.96 However, over the 
last decade whole body MRI (WB-MRI) has been 
gradually gaining attention due to its ability to de-
tect bone marrow infiltration by malignant cells 
before bone remodelling occurs and therefore be-
comes visible on BS.97 The METastasis Reporting 
and Data System for Prostate (MET-RADS-P) is 
aimed at practical guidance for acquisition, inter-
pretation, and reporting of WB-MRI in advanced 
prostate cancer.98 The recommended protocol con-
sists of a combination of anatomical and function-
al sequences (T1W, short tau inversion recovery 
[STIR] or fat suppressed T2W and DW imaging). 
Bone metastases appear as low signal on T1W im-
aging, bright on STIR or fat suppressed T2W and 
with restricted diffusion. Beside bone assessment, 
WB-MRI can also provide N-staging and assess 
for involvement of visceral organs.99,100 Whilst the 
diagnostic potential of WBMRI is promising, there 
are barriers to widespread adoption, including ad-
ditional coils required, increased scanning time, the 

FIGURE 8. 77-yr-old man with PSA = 38.2 ng/ml. Enlarged 
nodes bilaterally consistent with metastatic involvement on T2 
weighted imaging (T2WI) (A), more conspicuous on diffusion 
weighted imaging (DWI) (B).

A B

FIGURE 9. 61-yr-old man with PSA = 12.7 ng/ml. Bone metastasis 
(arrow) in the right sacrum shown as low signal on T1 weighted 
(T1W) imaging (A); more conspicuous as high signal on diffusion 
weighted imaging (DWI) (B).

A B
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need for sub-specialised knowledge, and increased 
reporting time. A recent study from 2018 by Larbi 
et al. has shown a possible means of overcoming 
some of these disadvantages by demonstrating 
that the combination of either T1-DWI or T1-STIR 
is non-inferior to a full protocol (Figure 9), whilst at 
the same time showing good interobserver agree-
ment.101 

Conclusions

MpMRI is the recommended modality for the local 
staging of prostate cancer. It has shown superior 
performance compared to traditional staging based 
on clinical nomograms, and provides additional 
information on the site and extent of disease. T2W-
weighted imaging remains the cornerstone for ECE 
and SV invasion assessment, however, improved 
accuracy can be achieved by scanning on 3T de-
vices with the incorporation of diffusion weighted 
and dynamic contrast enhanced imaging. Whilst 
its role in nodal and bone staging outside academic 
centres is currently limited, there are emerging 
“next generation” imaging modalities including 
68Ga-PSMA-PET/MRI and whole-body MRI offer 
potential to become the future standard of care for 
evaluation, having shown superior results for dis-
tal staging in comparison to the traditional work-
up with bone scintigraphy and body CT. Despite 
the advantages of mpMRI there remain limitations 
which should be known to radiologists and other 
members of the multidisciplinary team in order 
to jointly decide on the best treatment options for 
prostate cancer patients on an individual basis. 
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