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Abstract
Pro-𝑝 groups of finite powerful class are studied. We prove that these are 𝑝-adic
analytic, and further describe their structure when their powerful class is small.
It is also shown that there are only finitely many finite 𝑝-groups of fixed coclass
and powerful class.
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1 INTRODUCTION

Throughout this paper, we assume that 𝑝 is an odd prime.
Powerful pro-𝑝 groups play a fundamental role in Lazard’s characterization of 𝑝-adic analytic groups [8]. In addition to

that, their finite counterparts were first systematically discussed by Lubotzky and Mann [10], and they turn out to share
several properties with abelian groups.
Mann [11] introduced the notion of powerful class of a finite 𝑝-group 𝐺 by considering ascending series of normal

subgroups with consecutive quotients being powerfully embedded in the corresponding quotient of 𝐺. He demonstrated
that finite 𝑝-groups of small powerful class have a well-behaved power structure, and thus they are not far away from
being powerful.
The purpose of this note is to consider pro-𝑝 groups of finite powerful class. These are common generalizations of

powerful or nilpotent pro-𝑝 groups. Our first main result goes as follows:

Theorem. Let𝐺 be a finitely generated pro-𝑝 group of finite powerful class. Then,𝐺 is 𝑝-adic analytic. The set of all elements
of 𝐺 of finite order forms a finite subgroup of 𝐺.

The second part of the above result follows from obtaining a bound for the exponent ofΩ𝑖(𝐺) in terms of 𝑖 and powerful
class in the case when 𝐺 is a finite 𝑝-group. The argument relies on techniques developed by Fernández-Alcober et al. [3].
We proceed by looking into pro-𝑝 groups of small powerful class. These are closely related to pro-𝑝 groups admitting

potent filtrations, also known as PF-groups:

Theorem. Every finitely generated pro-𝑝 group of small powerful class is a PF-group.

González-Sánchez [4] showed that torsion-free PF-groups are precisely the 𝑝-saturable groups. These groups naturally
admit a Lie algebra structure that turns the group into a 𝑝-saturable Lie algebra. If 𝐺 is a finitely generated pro-𝑝 group of
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small powerful class, the above result shows that 𝐺 is 𝑝-saturable. We show that the corresponding Lie algebra also has
small powerful class. On the other hand, we exhibit an example showing that Kirillov’s orbit method cannot be applied
in general to derive the irreducible representations of a torsion-free pro-𝑝 group of small powerful class.
If 𝐺 is a finite 𝑝-group of order 𝑝𝑛 and 𝑐 is its nilpotency class, then 𝑛 − 𝑐 is called the coclass of 𝐺. The coclass theory

[9] works toward understanding the structure of finite 𝑝-groups according to coclass. We show:

Theorem. Given 𝑝, 𝑟, and 𝑘, there are only finitely many finite 𝑝-groups of coclass 𝑟 and powerful class at most 𝑘.

The proof uses Shalev’s detailed description of the uniserial structure of large finite 𝑝-groups of given coclass, cf. [9]. A
similar method shows that there are only finitely many PF 𝑝-groups of fixed coclass.

2 POWERFUL CLASS

A normal subgroup𝑁 of a finite 𝑝-group𝐺 is powerfully embedded in𝐺 if [𝑁, 𝐺] ≤ 𝑁𝑝. Similarly, if𝐺 is a pro-𝑝 group and
𝑁 a closed normal subgroup of 𝐺, then𝑁 is powerfully embedded in 𝐺 if [𝑁, 𝐺] ≤ 𝑁𝑝. Here,𝑁𝑝 stands for the closure of
the abstract group 𝑁𝑝, we omit the closure operator throughout the text. It is easy to see that, in the pro-𝑝 setting, 𝑁 is
powerfully embedded in 𝐺 if and only 𝑁𝐾∕𝐾 is powerfully embedded in 𝐺∕𝐾 for all open normal subgroups 𝐾 of 𝐺. If
𝐺 is powerfully embedded in itself, we say that 𝐺 is a powerful group. The definition is slightly different when 𝑝 = 2, as
the condition of being powerfully embedded is stated as [𝑁, 𝐺] ≤ 𝑁4. But since we always assume that 𝑝 > 2, we will not
use that.
Let𝐺 be a finite 𝑝-group. Denote by 𝜂(𝐺) the largest powerfully embedded subgroup of𝐺. Note that 𝜂(𝐺) is the product

of all powerfully embedded subgroups of 𝐺. Clearly, we have that 𝑍(𝐺) is contained in 𝜂(𝐺).
We recall the notion of powerful class introduced by Mann [11]. The upper 𝜂-series of 𝐺 is defined by 𝜂0(𝐺) = 1 and

𝜂𝑖+1(𝐺)∕𝜂𝑖(𝐺) = 𝜂(𝐺∕𝜂𝑖(𝐺))

for 𝑖 ≥ 0. The smallest 𝑘 with 𝜂𝑘(𝐺) = 𝐺 is called the powerful class of 𝐺. We use the notation pwc(𝐺) = 𝑘. Occasionally,
we use the shorthand notation 𝜂𝑖 for 𝜂𝑖(𝐺). An ascending series 1 = 𝑁0 ≤ 𝑁1 ≤ 𝑁2 ≤ ⋯ of normal subgroups of 𝐺 is said
to be an 𝜂-series if 𝑁𝑖+1∕𝑁𝑖 is powerfully embedded in 𝐺∕𝑁𝑖 for all 𝑖. The shortest length 𝑘 of an 𝜂-series with 𝑁𝑘 = 𝑁

is called the powerful height of 𝑁. It is denoted by pwh(𝑁). A group 𝐺 is said to have small powerful class if pwc(𝐺) < 𝑝.
Similarly, a normal subgroup 𝑁 of 𝐺 has small powerful height if pwh(𝑁) < 𝑝.
It is easily seen that the upper 𝜂-series is the fastest growing 𝜂-series in a group:

Proposition 2.1. Let 𝐺 be a finite 𝑝-group. Let 1 = 𝑁0 ≤ 𝑁1 ≤ ⋯ ≤ 𝑁𝑘 = 𝐺 be an 𝜂-series in 𝐺. Then,𝑁𝑖 ⊆ 𝜂𝑖(𝐺).

Proof. The claim is true for 𝑖 = 0, 1. Suppose it holds for some 𝑖 ≥ 1. The group𝑁𝑖+1∕𝑁𝑖 is powerfully embedded in 𝐺∕𝑁𝑖 .
By induction assumption, we have 𝑁𝑖 ⊆ 𝜂𝑖 . Therefore, 𝑁𝑖+1𝜂𝑖∕𝜂𝑖 is powerfully embedded in 𝐺∕𝜂𝑖 . It follows from here
that 𝑁𝑖+1𝜂𝑖∕𝜂𝑖 ⊆ 𝜂(𝐺∕𝜂𝑖) = 𝜂𝑖+1∕𝜂𝑖 . Hence, we get 𝑁𝑖+1 ⊆ 𝜂𝑖+1, as required. □

The notion of powerful class can be extended to the pro-𝑝 setting. We say that a pro-𝑝 group 𝐺 has finite powerful class
if it has an 𝜂-series of closed subgroups of finite length that ends in 𝐺. Given a pro-𝑝 group 𝐺, define 𝜂(𝐺) be the product
of all closed normal subgroups of 𝐺 that are powerfully embedded in 𝐺. Then, 𝜂(𝐺) is a closed subgroup of 𝐺 containing
all powerfully embedded subgroups of 𝐺. The upper 𝜂-series of 𝐺 can be defined as in the finite case. Then, 𝐺 has finite
powerful class if and only there exists 𝑘 such that 𝜂𝑘(𝐺) = 𝐺. The smallest such 𝑘 is the powerful class of 𝐺. If a pro-𝑝
group 𝐺 has powerful class ≤ 𝑘, then it is an inverse limit of finite 𝑝-groups of powerful class ≤ 𝑘.
We first collect some properties of the upper 𝜂-series. These will be used throughout the text without further reference.

Lemma 2.2. Let 𝐺 be a finitely generated pro-𝑝 group. Then

𝜂(𝐺)∕𝜂(𝐺)𝑝 = 𝑍(𝐺∕𝜂(𝐺)𝑝).
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Proof. The claim follows from a more general formula

𝜂𝑘+1∕𝜂
𝑝

𝑘+1
𝜂𝑘 = 𝑍(𝐺∕𝜂

𝑝

𝑘+1
𝜂𝑘),

which holds for all 𝑘 ≥ 0. Namely, denote 𝑁∕𝜂
𝑝

𝑘+1
𝜂𝑘 = 𝑍(𝐺∕𝜂

𝑝

𝑘+1
𝜂𝑘). As [𝜂𝑘+1, 𝐺] ≤ 𝜂

𝑝

𝑘+1
𝜂𝑘 holds by definition, we have

𝜂𝑘+1 ⊆ 𝑁. Conversely, [𝑁, 𝐺] ≤ 𝜂
𝑝

𝑘+1
𝜂𝑘 ≤ 𝑁𝑝𝜂𝑘 shows that 𝑁∕𝜂𝑘 is powerfully embedded in 𝐺∕𝜂𝑘. Therefore, 𝑁∕𝜂𝑘 ≤

𝜂(𝐺∕𝜂𝑘) = 𝜂𝑘+1∕𝜂𝑘, which concludes the proof. □

Lemma 2.3. Let 𝐺 be a finitely generated pro-𝑝 group. Then, the following hold:

(1) 𝑍𝑖(𝐺) ≤ 𝜂𝑖(𝐺) for all 𝑖 ≥ 0.
(2) If 𝐺 is a nilpotent group, then pwc(𝐺) ≤ cl(𝐺), where cl(𝐺) is the nilpotency class of 𝐺.
(3) 𝜂𝑖(𝐺∕𝜂𝑗(𝐺)) = 𝜂𝑖+𝑗(𝐺)∕𝜂𝑗(𝐺).
(4) pwh(𝜂𝑖(𝐺)) ≤ 𝑖.
(5) pwc(𝜂𝑖(𝐺)) ≤ 𝑖.
(6) [𝜂𝑖(𝐺), 𝑖𝐺] ≤ 𝜂𝑖(𝐺)

𝑝.
(7) 𝜂𝑖(𝐺∕𝜂(𝐺)

𝑝) = 𝜂𝑖(𝐺)∕𝜂(𝐺)
𝑝 for all 𝑖 ≥ 1.

Proof. Denote 𝑍𝑖 = 𝑍𝑖(𝐺). The property (1) obviously holds for 𝑖 = 0, 1. Suppose the assertion holds for some 𝑖 ≥ 1. As
[𝑍𝑖+1, 𝐺] ≤ 𝑍𝑖 ≤ 𝜂𝑖 , it follows that 𝑍𝑖+1𝜂𝑖∕𝜂𝑖 is powerfully embedded in 𝐺∕𝜂𝑖 . Thus, 𝑍𝑖+1𝜂𝑖∕𝜂𝑖 ≤ 𝜂(𝐺∕𝜂𝑖) = 𝜂𝑖+1∕𝜂𝑖 , and
the assertion is proved for 𝑖 + 1 as well. In particular, (2) follows directly from here.
We prove (3) by induction on 𝑖. We have the required equality for 𝑖 = 0, 1, so wemay assume that it holds for some 𝑖 ≥ 1.

Denote𝑁∕𝜂𝑗 = 𝜂𝑖+1(𝐺∕𝜂𝑗). It follows that [𝑁∕𝜂𝑗, 𝐺∕𝜂𝑗] ≤ (𝑁∕𝜂𝑗)
𝑝𝜂𝑖(𝐺∕𝜂𝑗). By induction assumption, this gives [𝑁, 𝐺] ≤

𝑁𝑝𝜂𝑖+𝑗 . This implies that𝑁𝜂𝑖+𝑗∕𝜂𝑖+𝑗 is powerfully embedded in𝐺∕𝜂𝑖+𝑗 , therefore𝑁𝜂𝑖+𝑗∕𝜂𝑖+𝑗 ≤ 𝜂(𝐺∕𝜂𝑖+𝑗) = 𝜂𝑖+𝑗+1∕𝜂𝑖+𝑗 .
We conclude that 𝑁 ≤ 𝜂𝑖+𝑗+1. Conversely, we have that [𝜂𝑖+𝑗+1, 𝐺] ≤ 𝜂

𝑝

𝑖+𝑗+1
𝜂𝑖+𝑗 by definition. This can be restated as the

fact that the quotient group (𝜂𝑖+𝑗+1∕𝜂𝑗)∕(𝜂𝑖(𝐺∕𝜂𝑗)) is powerfully embedded in (𝐺∕𝜂𝑗)∕𝜂𝑖(𝐺∕𝜂𝑗). Therefore, we have that
𝜂𝑖+𝑗+1∕𝜂𝑗 is contained in 𝜂𝑖+1(𝐺∕𝜂𝑗) = 𝑁∕𝜂𝑗 .
(4) is obvious by definition. To prove (5), we use induction on 𝑖. We may assume that the inequality holds for 𝑖 ≥ 1 and

for all groups 𝐺. Let 𝑃 = 𝜂(𝜂𝑖+1). Then, we obviously have that 𝜂(𝐺) is contained in 𝑃. Therefore

pwc(𝜂𝑖+1) = pwc(𝜂𝑖+1∕𝑃) + 1

≤ pwc(𝜂𝑖+1∕𝜂1) + 1

= pwc(𝜂𝑖(𝐺∕𝜂1)) + 1 ≤ 𝑖 + 1.

Note that (6) holds for 𝑖 = 0, 1. Assume it holds for 𝑖 ≥ 1. Then, [𝜂𝑖+1, 𝑖+1𝐺] ≤ [𝜂
𝑝

𝑖+1
𝜂𝑖, 𝑖𝐺] = [𝜂

𝑝

𝑖+1
, 𝑖𝐺][𝜂𝑖, 𝑖𝐺] ≤ 𝜂

𝑝

𝑖+1
𝜂
𝑝

𝑖
=

𝜂
𝑝

𝑖+1
.

Let us prove (7). Denote 𝑁𝑖∕𝜂
𝑝 = 𝜂𝑖(𝐺∕𝜂

𝑝) for 𝑖 ≥ 1, and 𝑁0 = 𝜂𝑝. We have that [𝑁𝑖, 𝐺] ≤ 𝑁
𝑝

𝑖
𝑁𝑖−1𝜂

𝑝 = 𝑁
𝑝

𝑖
𝑁𝑖−1 for

all 𝑖 ≥ 1. We proceed by induction. In the case when 𝑖 = 1, note that Lemma 2.2 gives 𝜂∕𝜂𝑝 = 𝑍(𝐺∕𝜂𝑝) ≤ 𝜂(𝐺∕𝜂𝑝),
therefore 𝜂 ≤ 𝑁1. Conversely, the fact that [𝑁1, 𝐺] ≤ 𝑁

𝑝

1
shows that 𝑁1 is contained in 𝜂(𝐺). Assume the claim holds

for some 𝑖 ≥ 1. First, we have that [𝑁𝑖+1, 𝐺] ≤ 𝑁
𝑝

𝑖+1
𝑁𝑖 = 𝑁

𝑝

𝑖+1
𝜂𝑖 . Thus, 𝑁𝑖+1𝜂𝑖∕𝜂𝑖 is powerfully embedded in 𝐺∕𝜂𝑖 . This

shows that 𝑁𝑖+1𝜂𝑖∕𝜂𝑖 is contained in 𝜂(𝐺∕𝜂𝑖) = 𝜂𝑖+1∕𝜂𝑖 , therefore 𝑁𝑖+1 ≤ 𝜂𝑖+1. On the other hand, [𝜂𝑖+1∕𝜂𝑝, 𝐺∕𝜂𝑝] =
[𝜂𝑖+1, 𝐺]𝜂

𝑝∕𝜂𝑝 ≤ 𝜂
𝑝

𝑖+1
𝜂𝑖∕𝜂

𝑝 = (𝜂𝑖+1∕𝜂
𝑝)𝑝𝜂𝑖(𝐺∕𝜂

𝑝). This demonstrates that 𝜂𝑖+1∕𝜂𝑝 is contained in 𝜂𝑖+1(𝐺∕𝜂
𝑝), hence

𝜂𝑖+1 ≤ 𝑁𝑖+1. □

The next lemma gives some information on pro-𝑝 groups with powerful class two:

Lemma 2.4. Let 𝐺 be a finitely generated pro-𝑝 group and suppose that 𝐺∕𝜂(𝐺) is powerful. Then, 𝐺∕𝜂(𝐺) is an
elementary abelian.

Proof. Denote 𝑄 = 𝐺∕𝜂(𝐺)𝑝. By Lemma 2.2, we conclude that 𝑄∕𝑍(𝑄) is powerful. From [13, Proposition 3.6] (the pro-
𝑝 version has the same proof) it follows that 𝑄𝑝𝑍(𝑄) is powerfully embedded in 𝑄. We quickly deduce that 𝐺𝑝𝜂(𝐺) is
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1224 MORAVEC

powerfully embedded in 𝐺, therefore 𝐺𝑝 ≤ 𝜂(𝐺). The quotient 𝐺∕𝜂(𝐺) is thus a powerful group of exponent 𝑝, hence it is
abelian. □

Corollary 2.5. Let 𝐺 be a finitely generated pro-𝑝 group of powerful class 𝑘. Then, 𝜂𝑘−1(𝐺) is open in 𝐺.

Proof. Note that 𝐺∕𝜂𝑘−1 is powerful. This implies that (𝐺∕𝜂𝑘−2)∕𝜂(𝐺∕𝜂𝑘−2) is powerful. By Lemma 2.4, we have that
Φ(𝐺∕𝜂𝑘−2) ≤ 𝜂(𝐺∕𝜂𝑘−2). Thus, Φ(𝐺) ≤ 𝜂𝑘−1, and this concludes the proof. □

We are ready to prove the first half of our first main result mentioned in the introduction:

Proposition 2.6. Let 𝐺 be a finitely generated pro-𝑝 group of finite powerful class. Then, 𝐺 is 𝑝-adic analytic.

Proof. Let pwc(𝐺) = 𝑘. We prove the result by induction on 𝑘. Clearly, the result holds true for 𝑘 = 0, 1. Assume it holds
for groups of powerful class ≤ 𝑘 − 1. By Corollary 2.5, we have that 𝜂𝑘−1 is open in 𝐺, therefore it is finitely generated. As
pwc(𝜂𝑘−1) ≤ 𝑘 − 1, we have that 𝜂𝑘−1 is 𝑝-adic analytic. Therefore 𝐺 is 𝑝-adic analytic. □

It is straightforward to see that if 𝐺 is a finitely generated pro-𝑝 group with an open powerfully embedded subgroup,
then 𝐺 has finite powerful class. When 𝐺 is nilpotent, the converse also holds:

Proposition 2.7. Let 𝐺 be a finitely generated nilpotent pro-𝑝 group. Then, 𝜂(𝐺) is open in 𝐺.

Proof. Note that 𝑍(𝐺∕𝜂(𝐺)𝑝) = 𝜂(𝐺)∕𝜂(𝐺)𝑝 is a finite 𝑝-group, since 𝜂(𝐺) is finitely generated. As 𝐺∕𝜂(𝐺)𝑝 is nilpotent,
we get from here that it is finite [12, 5.2.22]. Thus, the result follows. □

Example 2.8. Let 𝑛 > 2 and let 𝑆 be a Sylow pro-𝑝 subgroup of SL𝑛(ℤ𝑝). Then, 𝑆 can be seen as an inverse limit of upper
unitriangular groupsUT𝑛(ℤ∕𝑝

𝑚ℤ) [2, p. 35]. Thus, 𝑆 is nilpotent of class 𝑛 − 1. It follows that pwc(𝑆) ≤ 𝑛 − 1 and 𝜂(𝑆) is
open in 𝑆. One can verify that 𝜂(𝑆) consists precisely of all those upper unitriangularmatrices (𝑎𝑖𝑗)with𝑎𝑖,𝑖+𝓁 ∈ 𝑝𝑛−𝓁−1ℤ𝑝.

We end this section by mentioning the relationship with capability of groups. We say that a group 𝐺 is capable if there
exists a group 𝑄 with 𝑄∕𝑍(𝑄) ≅ 𝐺. It is well known that non-trivial cyclic groups are not capable. Baer [1] classified
finite abelian groups that are capable. We define a finite 𝑝-group 𝐺 to be 𝜂-capable if there exists a finite 𝑝-group 𝑃 with
𝑃∕𝜂(𝑃) ≅ 𝐺. Again, it is easy to see that a non-trivial cyclic group cannot be 𝜂-capable, see, for instance, [2, p. 45]. Note
that if a finite 𝑝-group 𝐺 is 𝜂-capable with 𝑃∕𝜂(𝑃) ≅ 𝐺, then (𝑃∕𝜂(𝑃)𝑝)∕𝑍(𝑃∕𝜂(𝑃)𝑝) ≅ 𝐺 by Lemma 2.2. This shows that
𝜂-capability implies the usual capability. The converse does not hold. The group𝐶𝑝2 × 𝐶𝑝2 is capable by [1], yet Lemma 2.4
shows that it is not 𝜂-capable, as all abelian 𝜂-capable 𝑝-groups are elementary abelian.

3 PRO-𝒑 GROUPS OF SMALL POWERFUL CLASS

Recall that a pro-𝑝 group 𝐺 is said to have small powerful class if pwc(𝐺) < 𝑝. Note that if a stronger condition
pwc(𝐺) < 𝑝 − 1 holds, then 𝐺 satisfies the condition 𝛾𝑝−1(𝐺) ≤ 𝐺𝑝. Groups satisfying this property are called potent and
are thoroughly described by González-Sánchez and Jaikin-Zapirain [6]. We are thus more or less only interested in the
case pwc(𝐺) = 𝑝 − 1.
Mann’s results on finite 𝑝-groups of small powerful class are summarized. One may verify that similar properties hold

for pro-𝑝 groups of small powerful class and corresponding closed normal subgroups of small powerful height:

Proposition 3.1 [11]. Let 𝐺 be a finite 𝑝-group.

(1) If 𝐺 has small powerful class, then 𝐺𝑝 is powerful, and 𝐺𝑝 = {𝑥𝑝 ∣ 𝑥 ∈ 𝐺}.
(2) If 𝐺 = ⟨𝑎, 𝑏⟩ has small powerful class and 𝑎𝑝𝑒 = 𝑏𝑝

𝑒
= 1, then 𝐺𝑝𝑒 = 1.

(3) If𝑁 is a normal subgroup of 𝐺 with small powerful height, then [𝑁𝑝𝑘 , 𝐺] = [𝑁, 𝐺]𝑝
𝑘
≤ [𝑁, 𝐺𝑝𝑘 ].
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Let 𝐺 be a pro-𝑝 group. A closed normal subgroup 𝑁 of 𝐺 is PF-embedded in 𝐺 [3] if there exists a 𝐺-central series
𝑁 = 𝑁1 ≥ 𝑁2 ≥ ⋯with trivial intersection ∩𝑖∈ℕ𝑁𝑖 and [𝑁𝑖, 𝑝−1𝐺] ≤ 𝑁

𝑝

𝑖+1
for all 𝑖. Such a series is called a potent filtration

of𝑁 in 𝐺. We also say that 𝐺 is a PF-group if it is PF-embedded in itself. It is clear that𝑁 is PF-embedded in 𝐺 if and only
if 𝑁𝐾∕𝐾 is PF-embedded in 𝐺∕𝐾 for all open normal subgroups 𝐾 in 𝐺.

Proposition 3.2. Let 𝐺 be a finitely generated pro-𝑝-group and 𝑁 a normal subgroup of 𝐺. If 𝑁 has small powerful height,
it is PF-embedded in 𝐺.

Proof. In the course of the proof, we use Proposition 3.1 (3) without further explicit reference. Let 1 = 𝑁0 ≤ 𝑁1 ≤ ⋯ ≤

𝑁𝑝−1 = 𝑁 be an 𝜂-series of 𝑁 in 𝐺. Denote 𝑁𝑗 = 1 for 𝑗 < 0 and 𝑁𝓁 = 𝑁 for 𝓁 ≥ 𝑝. Define

𝑀1 = 𝑁,

𝑀𝑖+1 = 𝑀
𝑝

𝑖
𝑁𝑝−𝑖−1.

Note that all𝑀𝑖 have small powerful height [11, Lemma 2.5]. Induction shows that we have a descending series𝑁 = 𝑀1 ≥

𝑀2 ≥ ⋯. Let us first prove that this is a central series. Note that [𝑀1, 𝐺] = [𝑁,𝐺] = [𝑁𝑝−1, 𝐺] ≤ 𝑁
𝑝

𝑝−1
𝑁𝑝−2 = 𝑀2. Suppose

that we have [𝑀𝑖, 𝐺] ≤ 𝑀𝑖+1. Then, [𝑀𝑖+1, 𝐺] = [𝑀
𝑝

𝑖
𝑁𝑝−𝑖−1, 𝐺] = [𝑀

𝑝

𝑖
, 𝐺][𝑁𝑝−𝑖−1, 𝐺] ≤ [𝑀𝑖, 𝐺]

𝑝𝑁
𝑝

𝑝−𝑖−1
𝑁𝑝−𝑖−2 = 𝑀𝑖+2,

as 𝑁𝑝

𝑝−𝑖−1
≤ 𝑀

𝑝

𝑖+1
.

Now, we show that [𝑀𝑖, 𝑝−1𝐺] ≤ 𝑀
𝑝

𝑖+1
. This holds for 𝑖 = 1, as the fact that we have a central series implies that

[𝑀1, 𝑝−1𝐺] ≤ 𝑀𝑝 = 𝑀
𝑝

𝑝−1
𝑁−1 = 𝑀

𝑝

𝑝−1
≤ 𝑀

𝑝

2
. For the induction step, we may assume that𝑀𝑝

𝑖+2
= 1. From [𝑁𝑝−𝑖−1, 𝐺] ≤

𝑁
𝑝

𝑝−𝑖−1
𝑁𝑝−𝑖−2, we readily obtain [𝑁𝑝−𝑖−1, 𝐺, 𝐺] ≤ [𝑁𝑝−𝑖−1, 𝐺]

𝑝[𝑁𝑝−𝑖−2, 𝐺] ≤ (𝑁
𝑝

𝑝−𝑖−1
𝑁𝑝−𝑖−2)

𝑝𝑁
𝑝

𝑝−𝑖−2
𝑁𝑝−𝑖−3 = 𝑁𝑝−𝑖−3.

Induction on 𝑘 shows that, under the above assumption, we have [𝑁𝑝−𝑖−1, 𝑘𝐺] ≤ 𝑁𝑝−𝑖−𝑘−1 for all 𝑘 ≥ 2. Finally,
note that the above implies [𝑀𝑖+1, 𝑝−1𝐺] = [𝑀

𝑝

𝑖
𝑁𝑝−𝑖−1, 𝑝−1𝐺] = [𝑀𝑖, 𝑝−1𝐺]

𝑝[𝑁𝑝−𝑖−1, 𝑝−1𝐺] ≤ (𝑀
𝑝

𝑖+1
)𝑝[𝑁𝑝−𝑖−1, 𝑝−1𝐺] =

[𝑁𝑝−𝑖−1, 𝑝−1𝐺] ≤ 𝑁−𝑖 = 1, as required.

Since 𝑀𝑝+𝑘 = 𝑀
𝑝𝑘+1

𝑝−1
for all 𝑘 ≥ 0, we quickly conclude that the intersection of all 𝑀𝑖 is trivial. This finishes the

proof. □

Corollary 3.3. Every finitely generated pro-𝑝 group of small powerful class is a PF-group.

Every torsion-free pro-𝑝 group of small powerful class is therefore 𝑝-saturable in the sense of Lazard [8]. The latter have
a natural ℤ𝑝-lattice structure, first discovered by Lazard (op. cit.) and further developed by González-Sánchez [4]. If 𝐺 is
a 𝑝-saturable group, then the following operations turn it into a 𝑝-saturable Lie algebra  = 𝐺:

𝑥 + 𝑦 = lim
𝑛→∞

(𝑥𝑝
𝑛
𝑦𝑝

𝑛
)𝑝

−𝑛
,

𝜆𝑥 = 𝑥𝜆,

[𝑥, 𝑦]Lie = lim
𝑛→∞

[𝑥𝑝
𝑛
, 𝑦𝑝

𝑛
]
𝑝−2𝑛

.

Conversely, every𝑝-saturable Lie algebra becomes a𝑝-saturable groupwithmultiplication given via the Baker–Campbell–
Hausdorff formula

Φ(𝑥, 𝑦) = log(exp 𝑥 ⋅ exp 𝑦) = 𝑥 + 𝑦 +

∞∑
𝑖=2

𝑢𝑖(𝑥, 𝑦),

where 𝑢𝑖(𝑥, 𝑦) are Lie polynomials in 𝑥 and 𝑦 of degree 𝑖 with coefficients in ℚ, see [2, Theorem 6.28] for further details.
If  is a ℤ𝑝-Lie algebra, then a subalgebra  is powerfully embedded in 𝕃 if [,]Lie ≤ 𝑝. Analogously, one extends

the notion of PF-embedded subgroups to PF-embedded Lie subalgebras [4]. Furthermore, we can define the powerful
class for ℤ𝑝-Lie algebras as follows. A series 0 = 0 ≤ 1 ≤ ⋯ of ideals of a ℤ𝑝-Lie algebra  is an 𝜂-series if 𝑖+1∕𝑖 is
powerfully embedded in ∕𝑖 for all 𝑖. If there is an 𝜂-series of  that reaches  in finitely many steps, we say that  has
finite powerful class. In this case, the length of shortest 𝜂-series of  is called the powerful class pwc() of . Denote by
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1226 MORAVEC

𝜂() the sum of all powerfully embedded ideals in . Then, we can define the upper 𝜂-series of a Lie algebra exactly the
same as in the group case. It is also clear that the upper 𝜂-series is the fastest growing 𝜂-series of the Lie algebra .

Corollary 3.4. A finitely generated torsion-free pro-𝑝 group 𝐺 has small powerful class if and only if the corresponding Lie
algebra  has small powerful class. In this case, pwc(𝐺) = pwc() and 𝜂𝑖(𝐺) = 𝜂𝑖() for all 𝑖 ≥ 0.

Proof. Suppose 𝐺 has small powerful class 𝑘. The group 𝐺 is 𝑝-saturable, therefore the corresponding Lie algebra  is
𝑝-saturable [4, Theorem 4.2]. Let 1 = 𝑁0 ≤ 𝑁1 ≤ ⋯ ≤ 𝑁𝑘 = 𝐺 be an 𝜂-series of 𝐺 with 𝑘 < 𝑝. Then, all subgroups𝑁𝑖 are
PF-embedded in 𝐺 by Proposition 3.2. By [4, Theorem 4.5], we have a corresponding series of PF-embedded ideals of 
given as 0 = 0 ≤ 1 ≤ ⋯ ≤ 𝑘 = , and

[𝑖+1,]Lie = [𝑁𝑖+1, 𝐺] ≤ 𝑁
𝑝

𝑖+1
𝑁𝑖 = 𝑝𝑖+1 +𝑖

for all 𝑖. This shows that (𝑖)𝑖 is an 𝜂-series of , hence pwc() ≤ 𝑘.
The converse follows from the fact that if (𝑖)𝑖 is an 𝜂-series of , then an analogous argument as in the proof of

Proposition 3.2 shows that all 𝑖 are PF-embedded in . Then, the argument proceeds along the similar lines as in the
previous paragraph.
The equality of the upper 𝜂-series of 𝐺 and  now follows from [4, Theorem 4.5]. □

Kazhdan [7] showed that Kirillov’s orbit method provides a correspondence between the irreducible characters of
finite 𝑝-groups of class < 𝑝 and the orbits of the action of that group on the dual space of the corresponding Lie alge-
bra. In [5], González-Sánchez showed that the orbit method also works for some classes of 𝑝-saturable groups, such
as torsion-free potent groups. However, the orbit method no longer works for 𝑝-saturable groups of small powerful
class:

Example 3.5 Example 1 of [5]. Let𝑀 = ⟨𝑥1, 𝑥2 … , 𝑥𝑝⟩ ≅ ℤ
𝑝
𝑝 and form 𝐺 = ⟨𝛼⟩⋉𝑀 ≅ ℤ𝑝 ⋉ ℤ

𝑝
𝑝, where the action of 𝛼 on

𝑀 is given by [𝑥𝑖, 𝛼] = 𝑥𝑖+1 for 𝑖 ≤ 𝑝 − 2, and [𝑥𝑝−1, 𝛼] = 𝑥
𝑝
𝑝 and [𝑥𝑝, 𝛼] = 1. Then, we readily get that

𝜂𝑖(𝐺) = ⟨𝛼𝑝𝑝−𝑖−1 , 𝑥
𝑝𝑘𝑖1

1
, 𝑥

𝑝𝑘𝑖2

2
, … , 𝑥

𝑝
𝑘𝑖,𝑝−2

𝑝−2
, 𝑥𝑝−1, 𝑥𝑝⟩,

where 𝑘𝑖𝑗 = max{𝑝 − 𝑖 − 𝑗, 0}, hence pwc(𝐺) = 𝑝 − 1. The group 𝐺 therefore has small powerful class, yet the orbit
method does not yield all of its irreducible representations [5].

Pro-𝑝 groups whose powerful class is not small may not be PF-groups, as the following example shows:

Example 3.6. We exhibit a finite 𝑝-group of powerful class equal to 𝑝 that is not a PF-group. Let 𝑀 be an elementary
abelian𝑝-groupwith generators 𝑥1, 𝑥2, … , 𝑥𝑝. Form𝐺 = ⟨𝛼⟩⋉𝑀, where𝛼 has order𝑝2 and acts on𝑀 as follows: [𝑥𝑖, 𝛼] =
𝑥𝑖+1 for 𝑖 = 1, 2, … , 𝑝 − 1, and [𝑥𝑝, 𝛼] = 1. The group 𝐺 has order 𝑝𝑝+2 and nilpotency class 𝑝. Note that

(𝛼𝑥1)
𝑝 = 𝛼𝑝𝑥

𝑝

1
𝑥
(𝑝
2
)

2
𝑥
(𝑝
3
)

3
⋯𝑥

(𝑝
𝑝
)

𝑝 = 𝛼𝑝𝑥𝑝,

therefore 𝑥𝑝 ∈ 𝐺𝑝. On the other hand, 𝑥𝑝 is not a 𝑝th power of some element of 𝐺. This shows that 𝐺 is not a PF-group
by [3, Theorem 3.4]. By Corollary 3.3 we must have that pwc(𝐺) = 𝑝.

On the other hand, there are PF-groups, even torsion-free and potent, which do not have finite powerful class:

Example 3.7. In the following we construct a finitely generated torsion-free potent pro-𝑝 group 𝐺, which does not have
finite powerful class. Let𝑝 > 3 and let 𝑛 be a positive integer. Let𝐺𝑛 = ⟨𝛼⟩⋉𝑀, where𝑀 = ⟨𝑥1, 𝑥2, … , 𝑥𝑝−2⟩ is an abelian
group, and |𝑥1| = 𝑝𝑛+1 and |𝑥2| = |𝑥3| = ⋯ = |𝑥𝑝−2| = |𝛼| = 𝑝𝑛. The action of 𝛼 on𝑀 is given by [𝑥𝑖, 𝛼] = 𝑥𝑖+1 for 𝑖 =
1, 2, … , 𝑝 − 3, and [𝑥𝑝−2, 𝛼] = 𝑥

𝑝

1
. We clearly have that 𝛾𝑝−1(𝐺𝑛) ≤ 𝐺

𝑝
𝑛 , hence 𝐺𝑛 is a two-generator potent 𝑝-group. From

the relations, it follows that 𝑍(𝐺𝑛) = ⟨𝑥𝑝𝑛
1
⟩. One can easily verify that this is the largest powerfully embedded subgroup
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MORAVEC 1227

of 𝐺𝑛, therefore 𝜂(𝐺𝑛) = 𝑍(𝐺𝑛). By taking successive quotients, one can see that 𝜂𝑖(𝐺𝑛) = 𝑍𝑖(𝐺𝑛) for all 𝑖 ≥ 1. As the
nilpotency class of 𝐺𝑛 is precisely 𝑛(𝑝 − 2) + 1, we conclude that pwc𝐺𝑛 = 𝑛(𝑝 − 2) + 1.
The groups 𝐺𝑛 clearly form an inverse system. Their inverse limit 𝐺 ≅ ℤ𝑝 ⋉ ℤ

𝑝−2
𝑝 is topologically generated by two

generators, it is torsion-free and potent. As pwc(𝐺𝑛) are not bounded, the group 𝐺 does not have finite powerful class.

4 ELEMENTS OF FINITE ORDER AND POWERFUL CLASS

In this section, we look at the elements of finite order in pro-𝑝 groups of finite powerful class 𝑘. For 𝑖 ≥ 0, denoteΩ𝑖(𝐺) =

⟨𝑥 ∈ 𝐺 ∣ 𝑥𝑝
𝑖
= 1⟩. At first, we bound the exponent of Ω𝑖(𝐺) in terms of 𝑖 and 𝑘:

Theorem 4.1. Let 𝐺 be a finitely generated pro-𝑝 group of powerful class 𝑘. Suppose 𝑘 ≤ 𝓁(𝑝 − 1). Then,Ω𝑖(𝐺)
𝑝𝑖+𝓁 = 1.

Proof. We may assume that 𝐺 is finite. We prove by induction on 𝓁 that 𝛾𝓁(𝑝−1)(𝐺) is contained in some PF-embedded
subgroup of 𝐺. If 𝓁 = 1, then 𝐺 has small powerful class, therefore it is a PF-group by Corollary 3.3. For the induction
step, note that 𝐺∕𝜂𝑝−1 has powerful class ≤ (𝓁 − 1)(𝑝 − 1). Therefore there exists a normal subgroup 𝑁 of 𝐺 such that
𝑁∕𝜂𝑝−1 is PF-embedded in 𝐺∕𝜂𝑝−1 and 𝛾(𝓁−1)(𝑝−1)(𝐺) ≤ 𝑁. Choose a potent filtration 𝑁∕𝜂𝑝−1 = 𝑁1∕𝜂𝑝−1 ≥ 𝑁2∕𝜂𝑝−1 ≥

⋯ ≥ 𝑁𝑟∕𝜂𝑝−1 = 1 of𝑁∕𝜂𝑝−1 in 𝐺∕𝜂𝑝−1. Then, we have [𝑁𝑖, 𝐺] ≤ 𝑁𝑖+1 and [𝑁𝑖, 𝑝−1𝐺] ≤ 𝑁
𝑝

𝑖+1
𝜂𝑝−1 for all 𝑖 ≥ 1. The group

𝜂𝑝−1 is PF-embedded in 𝐺 by Proposition 3.2. Choose a potent filtration 𝜂𝑝−1 = 𝑀1 ≥ 𝑀2 ≥ ⋯ ≥ 𝑀𝑠 = 1 of 𝜂𝑝−1 in 𝐺. We
claim that

𝑁𝑝𝜂𝑝−1 = 𝑁
𝑝

1
𝜂𝑝−1 ≥ 𝑁

𝑝

2
𝜂𝑝−1 ≥ ⋯ ≥ 𝑁

𝑝
𝑟 𝜂𝑝−1 = 𝜂𝑝−1 ≥ 𝑀2 ≥ ⋯ ≥ 𝑀𝑠 = 1

is a potent filtration of 𝑁𝑝𝜂𝑝−1 in 𝐺. The series is central, since [𝑁
𝑝

𝑖
𝜂𝑝−1, 𝐺] ≤ [𝑁𝑖, 𝐺]

𝑝[𝑁𝑖, 𝑝𝐺]𝜂𝑝−1 ≤ 𝑁
𝑝

𝑖+1
𝜂𝑝−1. The

proof will be concluded once we have shown that [𝑁𝑝

𝑖
𝜂𝑝−1, 𝑝−1𝐺] ≤ (𝑁

𝑝

𝑖+1
𝜂𝑝−1)

𝑝. To this end, we may assume that
(𝑁

𝑝

𝑖+1
𝜂𝑝−1)

𝑝 = 1 and [𝑁
𝑝

𝑖
𝜂𝑝−1, 𝑗𝐺] = 1 for all 𝑗 ≥ 𝑝. At first note that [𝜂𝑝−1, 𝑝−1𝐺] ≤ 𝜂

𝑝

𝑝−1
= 1. We thus have that

[𝑁
𝑝

𝑖
𝜂𝑝−1, 𝑝−1𝐺] = [𝑁

𝑝

𝑖
, 𝑝−1𝐺] = [𝑁𝑖, 𝑝−1𝐺]

𝑝 ≤ (𝑁
𝑝

𝑖+1
𝜂𝑝−1)

𝑝 = 1. This proves the claim. We have therefore shown that
𝑁𝑝𝜂𝑝−1 is PF-embedded in 𝐺. Observe that 𝛾𝓁(𝑝−1)(𝐺) ≤ [𝑁, 𝑝−1𝐺] ≤ 𝑁

𝑝

2
𝜂𝑝−1 ≤ 𝑁𝑝𝜂𝑝−1.

Our result now directly follows from [3, Theorem 4.1]. □

We note here that Mann [11] constructed a finite 𝑝-group 𝐺 of small powerful class with expΩ1(𝐺) > 𝑝, therefore the
bound given in Theorem 4.1 is close to being sharp. The bound can also be compared with Eeasterfield’s bound for the
exponent of Ω𝑖(𝐺) in terms of 𝑝, 𝑖 and the nilpotency class of the group 𝐺, cf. [3].
An immediate consequence is the following:

Corollary 4.2. Let 𝐺 be a finitely generated pro-𝑝 group of finite powerful class. Then, the set of all torsion elements of 𝐺
forms a finite subgroup of 𝐺.

5 POWERFUL CLASS AND COCLASS

If 𝐺 is a finite 𝑝-group of class 𝑐 and order 𝑝𝑛, then 𝑐 < 𝑛. The number 𝑟 = 𝑛 − 𝑐 is called the coclass of 𝐺. Determining
the structure of finite 𝑝-groups according to coclass has been very fruitful. We refer to [9].
One of the important features of large 𝑝-groups of given coclass is that they act uniserially on certain parts of their lower

central series by conjugation. Recall that a finite 𝑝-group 𝐺 acts uniserially on a finite 𝑝-group 𝑁 if |𝐻 ∶ [𝐻,𝐺]| = 𝑝 for
every non-trivial 𝐺-invariant subgroup𝐻 of𝑁. The following result due to Shalev is one of the fundamental results of the
coclass theory:

Lemma 5.1 ([9], Theorem 6.3.9). Suppose 𝑝 > 2. Let 𝐺 be a finite 𝑝-group of coclass 𝑟 and |𝐺| = 𝑝𝑛 ≥ 𝑝2𝑝𝑟+𝑟. Let 𝑚 =

𝑝𝑟 − 𝑝𝑟−1. Then, there exists 0 ≤ 𝑠 ≤ 𝑟 − 1 such that 𝐺 acts uniserially on 𝛾𝑚(𝐺), and 𝛾𝑖(𝐺)𝑝 = 𝛾𝑖+𝑑(𝐺) for all 𝑖 ≥ 𝑚, where
𝑑 = (𝑝 − 1)𝑝𝑠 .
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Theorem 5.2. Given 𝑝, 𝑟, and 𝑘, there are only finitely many finite 𝑝-groups of coclass 𝑟 and powerful class at most 𝑘.

Proof. Let 𝐺 be a finite 𝑝-group of coclass 𝑟 and powerful class 𝑘. Denote |𝐺| = 𝑝𝑛 and suppose without loss of generality
that 𝑛 ≥ 2𝑝𝑟 + 𝑟. The nilpotency class of 𝐺 is equal to 𝑐 = 𝑛 − 𝑟 ≥ 2𝑝𝑟. Let 𝑚 and 𝑑 be as in Lemma 5.1. We have that
pwh 𝛾𝑚(𝐺) ≤ 𝑘 by [11, Lemma 2.5]. Consider an 𝜂-series 1 = 𝑁0 ⪇ 𝑁1 ⪇ ⋯ ⪇ 𝑁𝓁 = 𝛾𝑚(𝐺) of 𝛾𝑚(𝐺) in 𝐺, where 𝓁 ≤ 𝑘.
As 𝐺 acts uniserially on 𝛾𝑚(𝐺), we have 𝑁𝑖 = 𝛾𝑚𝑖

(𝐺) for some 𝑚𝑖 ≥ 𝑚 with 𝑐 + 1 = 𝑚0 ⪈ 𝑚1 ⪈ ⋯ ⪈ 𝑚𝓁 = 𝑚, see [9,
Lemma 4.1.3]. We thus have that 𝛾𝑚𝑖+1

(𝐺)∕𝛾𝑚𝑖
(𝐺) is powerfully embedded in 𝐺∕𝛾𝑚𝑖

(𝐺) for all 𝑖. Therefore, we see that
𝛾1+𝑚𝑖+1

(𝐺) ≤ 𝛾𝑚𝑖+1
(𝐺)𝑝𝛾𝑚𝑖

(𝐺) = 𝛾𝑑+𝑚𝑖+1
(𝐺)𝛾𝑚𝑖

(𝐺) holds for all 𝑖. Since 𝑑 > 1 and𝑚𝑖 > 𝑚𝑖+1, this is possible only if𝑚𝑖 =

𝑚𝑖+1 + 1. Then, the above 𝜂-series of 𝛾𝑚(𝐺) is uniserial, and we thus have that |𝛾𝑚(𝐺)| ≤ 𝑝𝑘. On the other hand,𝐺∕𝛾𝑚(𝐺)
has coclass ≤ 𝑟 and class ≤ 𝑚 − 1, thus |𝐺 ∶ 𝛾𝑚(𝐺)| ≤ 𝑝𝑟+𝑚−1. We conclude that |𝐺| ≤ 𝑝𝑘+𝑟+𝑚−1, and this finishes the
proof. □

Corollary 5.3. There is no infinite pro-𝑝 group of finite coclass and finite powerful class.

We mention here an independent result that can be proved along similar lines:

Proposition 5.4. Given 𝑝 and 𝑟, there are only finitely many finite 𝑝-groups of coclass 𝑟 that are PF-groups.

Proof. The proof follows along similar lines like the one of Theorem 5.2. Let 𝐺 be a PF-group of order 𝑝𝑛 and coclass 𝑟.
Again, assume 𝑛 ≥ 2𝑝𝑟 + 𝑟, denote 𝑐 = 𝑛 − 𝑟 ≥ 2𝑝𝑟, and let𝑚 and 𝑑 be as in Lemma 5.1. The group 𝛾𝑚(𝐺) is PF-embedded
in 𝐺, see [3, Proposition 3.2]. As 𝐺 acts uniserially on 𝛾𝑚(𝐺), there is a potent filtration of 𝛾𝑚(𝐺) in 𝐺 that has the form
𝛾𝑚(𝐺) = 𝛾𝑚1

(𝐺) ⪈ 𝛾𝑚2
(𝐺) ⪈ ⋯ ⪈ 𝛾𝑐+1(𝐺) = 1 for𝑚 = 𝑚1 ⪇ 𝑚2 ⪇ ⋯. By definition, 𝛾𝑚+𝑝−1(𝐺) ≤ 𝛾𝑚2

(𝐺)𝑝 = 𝛾𝑚2+𝑑
(𝐺).

This gives that𝑚2 −𝑚 ≤ 𝑝 − 1 − 𝑑 ≤ 0, a contradiction. Thus, 𝐺 is not a PF-group. □

Corollary 5.5. There is no infinite pro-𝑝 group of finite coclass that is also a PF-group.

A finite 𝑝-group of order 𝑝𝑛 and nilpotency class equal to 𝑛 − 1, where 𝑛 ≥ 4, is said to be of maximal class. We find
here the upper 𝜂-series of finite 𝑝-groups of maximal class. At first, we state the following:

Proposition 5.6. Let 𝐺 be a nonabelian group of order 𝑝3.

(1) If exp𝐺 = 𝑝, then 𝜂(𝐺) = 𝑍(𝐺).
(2) If exp𝐺 = 𝑝2, then 𝐺 is powerful and thus 𝜂(𝐺) = 𝐺.

Proposition 5.7. Let 𝐺 be a finite 𝑝-group of maximal class. Then, 𝜂(𝐺) = 𝑍(𝐺).

Proof. Denote |𝐺| = 𝑝𝑛 and |𝐺 ∶ 𝜂(𝐺)| = 𝑝𝑟. Note that 𝑟 ≥ 2. By [9, Proposition 3.1.2], we have that 𝜂(𝐺) = 𝛾𝑟(𝐺). The
subgroups 𝛾𝑘(𝐺) are then powerfully embedded in 𝐺 for all 𝑘 ≥ 𝑟. As 𝑍(𝐺) = 𝛾𝑛−1(𝐺), we also have that 𝑟 ≤ 𝑛 − 1.
Suppose that 𝑟 < 𝑛 − 1. If 𝑛 ≤ 𝑝 + 1, then both 𝐺∕𝛾𝑛−1(𝐺) and 𝛾2(𝐺) have exponent 𝑝 [9, Proposition 3.3.2]. It follows

that 1 ≠ 𝛾𝑟+1(𝐺) = [𝛾𝑟(𝐺), 𝐺] ≤ 𝛾𝑟(𝐺)
𝑝 = 1, a contradiction. Thus, 𝑛 > 𝑝 + 1. Suppose further that 𝑟 > 𝑛 − 𝑝 + 1. Then,

[9, Corollary 3.3.6] yields that 1 ≠ 𝛾𝑟+1(𝐺) ≤ 𝛾𝑟(𝐺)
𝑝 = 𝛾𝑟+𝑝−1(𝐺), which cannot happen. We conclude that 𝑛 − 𝑝 + 1 <

𝑟 < 𝑛 − 1. Then, 𝛾𝑟(𝐺)𝑝 ≤ 𝛾𝑛−𝑝+1(𝐺)
𝑝 = 𝛾𝑛(𝐺) = 1, which implies 𝛾𝑟+1(𝐺) = 1. This is a contradiction. We thus have

𝑟 = 𝑛 − 1, hence the result. □

Corollary 5.8. Let 𝐺 be a finite 𝑝-group of maximal class. Then, 𝜂𝑖(𝐺) = 𝑍𝑖(𝐺) for all 𝑖 ≥ 0.

Proof. Let |𝐺| = 𝑝𝑛. The upper central series

1 = 𝑍0(𝐺) ≤ 𝑍1(𝐺) ≤ ⋯ ≤ 𝑍𝑛−1(𝐺) = 𝐺

has all sections, except for the last one, of order 𝑝. Using Proposition 5.7 and induction, we conclude that 𝜂𝑖(𝐺) = 𝑍𝑖(𝐺)

for 𝑖 ≤ 𝑛 − 3. The group 𝐺∕𝜂𝑛−3(𝐺) has order 𝑝3. Using the notations of [9, p. 56], we have that 𝐺 = ⟨𝑠, 𝑠1⟩. Combina-
tion of Proposition 3.3.2, Proposition 3.3.3, and Lemma 3.3.7 of [9] shows that 𝑠𝑝 and 𝑠

𝑝

1
both belong to 𝛾3(𝐺) = 𝜂𝑛−3(𝐺).
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As 𝐺∕𝛾3(𝐺) has class 2 and 𝑝 > 2, it follows that 𝐺𝑝 ≤ 𝜂𝑛−3(𝐺). Proposition 5.6 now shows that 𝜂𝑛−2(𝐺)∕𝜂𝑛−3(𝐺) =
𝜂(𝐺∕𝜂𝑛−3(𝐺)) = 𝑍(𝐺∕𝑍𝑛−3(𝐺)) = 𝑍𝑛−2(𝐺)∕𝜂𝑛−3(𝐺). Therefore, 𝜂𝑛−2(𝐺) = 𝑍𝑛−2(𝐺) and 𝜂𝑛−1(𝐺) = 𝑍𝑛−1(𝐺) = 𝐺. □

Therefore, if 𝐺 is a finite 𝑝-group of coclass 1, then pwc(𝐺) is equal to the nilpotency class of 𝐺. On the other hand,
there are several 𝑝-groups of coclass two with powerful class strictly smaller than the nilpotency class. For example, there
are four powerful 𝑝-groups of order 𝑝4 and nilpotency class equal to 2.
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