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Abstract

In this article we study the bivariate truncated moment problem (TMP) of degree 2k
on reducible cubic curves. First we show that every such TMP is equivalent after
applying an affine linear transformation to one of 8 canonical forms of the curve. The
case of the union of three parallel lines was solved in Zalar (Linear Algebra Appl
649:186-239, 2022. https://doi.org/10.1016/j.1aa.2022.05.008), while the degree 6
cases in Yoo (Integral Equ Oper Theory 88:45-63, 2017). Second we characterize in
terms of concrete numerical conditions the existence of the solution to the TMP on two
of the remaining cases concretely, i.e., a union of a line and a circle y(ay + x> +y?) =
0,a € R\{0}, and a union of a line and a parabola y(x — y?) = 0. In both cases we
also determine the number of atoms in a minimal representing measure.
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1 Introduction
Given a real 2-dimensional sequence

B =B ={B0.0.B1.0.Bo.1s - Br.0s Bok—1.1+ - - - Br.ak—1. Bo.ok)

of degree 2k and a closed subset K of R2, the truncated moment problem (K-TMP)
supported on K for B®%) asks to characterize the existence of a positive Borel measure
w on R? with support in K, such that

,3,,,-:/ xiyldu for i,jeZy, 0<i+j<?2k. (1.1)
K

If such a measure exists, we say that X has a representing measure supported on
K and p is its K -representing measure (K -rm).
In the degree-lexicographic order

LX, Y, X3 Xy, v2 .. xk x*ly, . rk
of rows and columns, the corresponding moment matrix to § is equal to

MO0, 01(B) MI0, 11(B) --- MI0, k1(B)

ML, 0J(B) M1, 1]1(B) - -- M[1, k](B)

M) = M(k; B) == , (1.2)

Mk, 01(8) Mk, 11(B) --- MIk. K1(8)
where

Bi+j.o Bivj-11 Bi+j—22 - Bij
Bivj—1,1 Bivj—22 Bitj-33 - Bi—1,j+1
Mli, j1B) := | Bi+j-2.2 Bi+j—-33 Bi+j—44 - Bi—2,j+2

Bji Bj-ti+1 Bj—2i+2 -+ Bo.i+j

Let R[x, yl<x := {p € R[x, y]: degp < k} stand for the set of real polynomials
in variables x, y of total degree at most k. For every p(x,y) = Zi’j ai,jxiy«/' €
R[x, yl<x we define its evaluation p(X,Y) on the columns of the matrix M (k)
by replacing each capitalized monomial XY/ in p(X,Y) = 3, ;a; jX'Y/ by the
column of M(k), indexed by this monomial. Then p(X, Y) is a vector from the linear
span of the columns of M (k). If this vector is the zero one, i.e., all coordinates are equal
to 0, then we say p is a column relation of M (k). A column relation p is nontrivial,
if p # 0. We denote by Z(p) = {(x,y) € RZ: p(x,y) = 0}, the zero set of p. We
say that the matrix M (k) is recursively generated (rg) if for p, g, pg € Rlx, yl<k
such that p is a column relation of M (k), it follows that pq is also a column relation
of M(k). The matrix M (k) is p-pure, if the only column relations of M (k) are those
determined recursively by p. We call a sequence 8 p-pure, if M(k) is p-pure.
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A concrete solution to the TMP is a set of necessary and sufficient conditions
for the existence of a K-representing measure u, that can be tested in numerical
examples. Among necessary conditions, M (k) must be positive semidefinite (psd)
and rg [14, 25], and by [12], if the support supp(u) of w is a subset of Z(p) for
a polynomial p € R[x, y]<x, then p is a column relation of M (k). The bivariate
K-TMP is concretely solved in the following cases:

(1) K = Z(p) for a polynomial p with 1 < deg p < 2. Assume that deg p = 2. By
applying an affine linear transformation it suffices to consider one of the canonical
cases: x> +y2 =1,y = x%, xy = 1, xy = 0, y?> = y. The case x> + y*> = 1
is equivalent to the univariate trigonometric moment problem, solved in [13]. The
other four cases were tackled in [13—15, 27] by applying the far-reaching flat
extension theorem (FET) [12, Theorem 7.10] (see also [16, Theorem 2.19] and
[34] for an alternative proof), which states that ﬂ(m admits a (rank M (k))-atomic
rm if and only if M (k) is psd and admits a rank-preserving extension to a moment
matrix M (k + 1). For an alternative approach with shorter proofs compared to
the original ones by reducing the problem to the univariate setting see [4, Section
6] (for xy = 0), [42] (for y*> = y), [43] (for xy = 1) and [44] (for y = x?). For
deg p = 1 the solution is [17, Proposition 3.11] and uses the FET, but can be also
derived in the univariate setting (see [44, Remark 3.3.(4)])

(2) K = R?, k = 2 and M(2) is invertible. This case was first solved nonconstruc-
tively using convex geometry techniques in [29] and later on constructively in [22]
by a novel rank reduction technique.

(3) K isone of Z(y — x3) [26, 41], Z(y> — x3) [41], Z(y(y — a)(y — b)) [38, 42],
a,b e R\{0},a # b, or Z(xy2 — 1) [43]. The main technique in [26] is the FET,
while in [41-43] the reduction to the univariate TMP is applied.

(4) M(k) has a special feature called recursive determinateness [18] or extremality
[19].

(5) M(3) satisfies symmetric cubic column relations which can only cause extremal
moment problems. In order to satisfy the variety condition, another symmetric
column relation must exist, and the solution was obtained by checking consistency
[20].

(6) Non-extremal sextic TMPs withrank M (3) < 8 and with finite or infinite algebraic
varieties [21].

(7) M (3) with reducible cubic column relations [39].

The solutions to the K-TMP, which are not concrete in the sense of definition
from the previous paragraph, are known in the cases K = Z(y — ¢g(x)) and K =
Z(yq(x) — 1), where g € R[x]. [26, Section 6] gives a solution in terms of the bound
on the degree m for which the existence of a positive extension M (k +m) of M (k) is
equivalent to the existence of arm. In [44] the bound onm is improved tom = deg g —1
for curves of the form y = ¢g(x), degqg > 3, and to m = £ + 1 for curves of the form
yxt =1, e N\{1}.

References to some classical work on the TMP are monographs [2, 3, 33], while for
a recent development in the area we refer a reader to [36]. Special cases of the TMP
have also been considered in [6, 7, 24, 28, 31, 32], while [35] considers subspaces of
the polynomial algebra and [8] the TMP for commutative R-algebras.
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The motivation for this paper was to solve the TMP concretely on some reducible
cubic curves, other than the case of three parallel lines solved in [42]. Applying an
affine linear transformation we show that every such TMP is equivalent to the TMP
on one of § canonical cases of reducible cubics of the form yc(x, y) = 0, where
¢ € R[x, y], degc = 2. In this article we solve the TMP for the cases c(x, y) =
ay + x> + y%, a € R\{0}, and c(x, y) = x — y%, which we call the circular and
the parabolic type, respectively. The main idea is to characterize the existence of a
decomposition of B into the sum B + B9 where ¥ = {,Bi(?}i,jezJ” 0<i+j<2k and
,3(") = {ﬂff}}i,je@ 0<i+j<2k admit a R-rm and a Z(c)-rm, respectively. Due to the
form of the cubic ye(x, y) = 0, it turns out that all but two moments of 8¢ and ()
are not already fixed by the original sequence, i.e., ,Béﬁ)), ﬂfﬁ)), ,3&3, ,B(‘) in the circular

type case and ﬂ(g%, ﬁéi)o, ,B(()C()), ,352) o in the parabolic type case. Then, by an involved

analysis, the characterization of the existence of a decomposition § = B 4 g
can be done in both cases. We also characterize the number of atoms in a minimal
representing measure, i.e., a measure with the minimal number of atoms in the support.

1.1 Readers Guide

The paper is organized as follows. In Sect.2 we present some preliminary results
needed to establish the main results of the paper. In Sect.3 we show that to solve the
TMP on every reducible cubic curve it is enough to consider 8 canonical type relations
(see Proposition 3.1). In Sect. 4 we present the general procedure for solving the TMP
on all but one of the canonical types and prove some results that apply to them. Then in
Sects. 5 and 6 we specialize to the circular and the parabolic type relations and solve
them concretely (see Theorems 5.1 and 6.1). In both cases we show, by numerical
examples, that there are pure sequences © with a psd M (3) but without a rm (see
Examples 5.3 and 6.3).

2 Preliminaries

We write R?*™ for the set of n x m real matrices. For a matrix M we call the linear
span of its columns a column space and denote it by C(M). The set of real symmetric
matrices of size n will be denoted by S,. For a matrix A € S, the notation A > 0
(resp. A > 0) means A is positive definite (pd) (resp. positive semidefinite (psd)). We
write 0y, ;, for a f; x f, matrix with only zero entries and 0; = 0; ; for short, where
t1,tp,t € N. The notation E (]) £ € N, stands for the usual £ x ¢ coordinate matrix
with the only nonzero entry at the position (i, j), which is equal to 1.

In the rest of this section let k € Nand 8 = B0 = (B ;}i jez. 0<itj<ox bea
bivariate sequence of degree 2k.
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2.1 Moment Matrix

Let /\/_l(k) be the moment matrix of 8 (see (1.2)). Let Q1, Q> be subsets of the set
{(X'Y/:i,jeZy 0=<i+ j<k}. Wedenote by (M(k))g, 0, the submatrix of
M(k) consisting of the rows indexed by the elements of Q; and the columns indexed

by the elements of Q>. Incase Q 1= Q1 = Q», we write (M(k))p = (M(k))g,0
for short.

2.2 Affine Linear Transformations

The existence of representing measures is invariant under invertible affine linear trans-
formations of the form

P(x,y) = (P1(x,y), p2(x, ) = (a + bx +cy,d +ex + fy), (x,y) € R?,
2.1)

a,b,c,d,e, f e Rwithbf — ce # 0. Namely, let Lg : R[x, y]<ox — R be a Riesz
functional of the sequence 8 defined by

Lg(p) = Z a; jBij,  Wwhere p= Z a; jx'y’l.
i,j€L, i,j€Ly,
0<i+4j<2k 0=<i+j=2k

We define 8 = {B; j}i,jez., . 0<it )< by

Bii=Lp(1(x,y) - po(x,y)).

By [14, Proposition 1.9], 8 admlts a (r-atomic) K-rm if and only if /3 admits a (r-
atomic) ¢ (K)-rm. We write /3 ¢(B) and M (k; ,3) ¢ (M(k; B)).

2.3 Generalized Schur Complements

Let

A B
(n+m)x (n+m)
M = < ~ E> eR

be a real matrix where A € R"™", B ¢ R"*" C € R™" and D € R™ ™ The
generalized Schur complement [45] of A (resp. D) in M is defined by

MJ/A=D—CA'B (tesp. M/D =A— BD'C),

where AT (resp. D) stands for the Moore—Penrose inverse of A (resp. D).
The following lemma will be frequently used in the proofs.
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Lemma2.1 Letn,m € N and

A B
M:(BT C>€Sn+m»

where A € Sy, B € R"™" and C € S,,. Ifrank M = rank A, then the matrix equation

(#)-(2)

where W € R"™ ™ is solvable and the solutions are precisely the solutions of the
matrix equation AW = B. In particular, W = A" B satisfies (2.2).

Proof The assumption rank M = rank A implies that

<1;4T> W= (1;%) = (2) 2.3)

for some W € R™"*™. So the Eq. (2.2) is solvable. In particular, AW = B. It remains
to prove that any solution W to AW = B is also a solution to (2.3). Note that all the
solutions of the equation AW = B are

W=A"B+2Z, (2.4)

where each column of Z € R"*™ is an arbitrary vector from ker A. So W satisfiying
(2.3) is also of the form AT B + Z; for some Zy € R ™ with columns belonging to
ker A. We have that

C=B"W=BT"(A"B+Zy)=B"A"B+B"Zy=BTA'B, (2.5)

where we used the fact that each column of B belongs to C(A) and ker(A)+ = C(A).
Replacing W with any W of the form (2.4) in the calculation (2.5) gives the same
result, which proves the statement of the proposition. O

The following theorem is a characterization of psd 2 x 2 block matrices.

Theorem 2.2 [1] Let

A B
M=<BTC)€Sn+m

be a real symmetric matrix where A € Sy, B € R""™ and C € S,,,. Then:
(1) The following conditions are equivalent:

(a) M = 0.
(b) C=0,C(BT) CC(C)and M/C = 0.
(c) A>0,C(B) CC(A)and M/A > 0.
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(2) If M = 0, then

rank M = rank A + rank M /A = rank C 4 rank M /C.

2.4 Extension Principle

Proposition 2.3 Let A € S, be positive semidefinite, Q a subset of the set {1, ..., n}
and Al g the restriction of A to the rows and columns from the set Q. If Algv = 0 for
a nonzero vector v, then Av = 0, where V is a vector with the only nonzero entries in
the rows from Q and such that the restriction V| g to the rows from Q equals to v.

Proof See [25, Proposition 2.4] or [42, Lemma 2.4] for an alternative proof. O

2.5 Partially Positive Semidefinite Matrices and Their Completions

A partial matrix A = (a; ;)] j=1 is a matrix of real numbers a; ; € R, where some
of the entries are not specified.

A partial symmetric matrix A = (a;,;)} =1 is partially positive semidefinite
(ppsd) (resp. partially positive definite (ppd)) if the following two conditions hold:

(1) a;,j is specified if and only if a; ; is specified and a; ; = a; ;.
(2) All fully specified principal minors of A are psd (resp. pd).

For n € N write [n] := {1,2,...,n}. We denote by Agp, g, the submatrix of
A € R™" consisting of the rows indexed by the elements of Q1 C [n] and the
columns indexed by the elements of Q> C [n]. In case Q := Q1 = Q;, we write
Ag = Ay, for short.

It is well-known that a ppsd matrix A(x) of the form as in Lemma 2.4 below admits
a psd completion (This follows from the fact that the corresponding graph is chordal,
see e.g., [5, 23, 30]). Since we will need an additional information about the rank of
the completion A(xp) and the explicit interval of all possible xo for our results, we
give a proof of Lemma 2.4 based on the use of generalized Schur complements.

Lemma 2.4 Let A(X) be a partially positive semidefinite symmetric matrix of sizen X n
with the missing entries in the positions (i, j) and (j,i), 1 <i < j < n. Let

A = (A, j1> @ = (A NG, )i
b= (A i, 1) @ = (AX)ii, v = (AX))j, ;-

Let
Al a A b
Ay = (AX) ) = (arl a) €Su—1, Az3=(AX)uN\i = (brl y) € Su-1,

and

xi:=bTAla+ /(A2/A1)(A3/A)) € R.
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Then:

(i) A(xo) is positive semidefinite if and only if xg € [x_, x1].
(ii)
max { rank Aj, rank A3}, Jor xo € {x_, x4},

rank A(xg) =
(x0) {max{rankAz,rankAg} + 1, for xo € (x_, x4).

(iii) The following statements are equivalent:
(a) x— = x4.
(b) A2/A1 =0or A3/A1 =0.
(c¢) rank Ay = rank A| orrank A3 = rank A;.

Proof We write

Ayl ann Az aiw Ags
(@)’ a (a3)" x (a5)"
AX) = | (AT a3 Az azs ass
(@)’ x (@)’ v (as)”
(A15)T azs (A35)T ass  Ass

Si R(i—l)xl R(i—l)x(j—i—l) R(i—l)xl R(i—l)x(n—j)
Rlx(ifl) R Rlx(jfifl) R Rlx(nfj)
e | RU-1-0xED RG=mDx g RGOS RS DX 0]
Rlx(i—l) R Rlx(j—i—l) R Rlx(n—j)
RO-DxG=1)  Re—)x1 RO—Hx(i—i-1) Ra—j)x1 Su_j

Let P be a permutation matrix, which changes the order of columns to

L2, i—1i+1,....j—1j+1,....nij

Then
Air Az As appang
(AT Asz  Ass axam
PTAG)P = | (A15)T (A35)T  Ass axs aus
(@)’ (@37 (as)" « x
(a)? (az)? (@s)T x vy
Note that
A1 a b
PTAx)P=|a" o« x and PTAX)P >0 & A(x) > 0.
T x y

(2.6)
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Lemma 2.4 with the missing entries in the positions (n — 1, n) and (n,n — 1) was
proved in [41, Lemma 2.11] using computations with generalized Schur complements
under one additional assumption:

Aj isinvertible or rank A; = rank Aj. 2.7

Here we explain why the assumption (2.7) can be removed from [41, Lemma 2.11]. The
proof of [41, Lemma 2.11] is separated into two cases: Ap/A; > 0 and A>/A; = 0.
The case A>/A1 = 0 does not use (2.7). Assume now that A, /A1 > 0 or equivalently
rank A, > rank Aj. Invertibility of A; (and by A>/A; > 0 also A; is invertible) is
used in the proof of [41, Lemma 2.11] for the application of the quotient formula (
[101)

(A(x)/A2) = (A(0)/A1) [ (A2/ Ar), (2.8)

where
A1 b
Ar/ A (aT x) /A1

AW/ A=/,
<le z) /A1 A3z/A

However, the formula (2.8) has been generalized [9, Theorem 4] to noninvertible A,
Ay, where all Schur complements are the generalized ones, under the conditions:

(bx)" €cC(A) and aeC(A)). 2.9)

So if we show that the conditions (2.9) hold, the same proof asin [41, Lemma 2.11] can
be applied in the case A1 is singular. From Aj (resp. A3) being psd, a € C(A1) (resp.
b € C(A))) follows by Theorem 2.2, used for (M, A) := (Az, Ay) (resp. (M, A) :=
(A3, A)). The assumption Ay/A; > 0 implies that (a a)T ¢ C((A aT)T). Since
a € C(Ay), it follows that (0 1)" € C(A3). Hence, (b x)" € C(A) for every x € R,
which concludes the proof of (2.9). O

2.6 Hamburger TMP

Let k € N. For
V= (vo, ey U2k) € RZk—H
we define the corresponding Hankel matrix as

vo V1 V2 - Uk
v v2 T Uk
: V2k—1

Uk Vg1 - V2k—1 V2%
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We denote by vj := (vj+e)k

1—0 the (j + 1)-th column of A,, 0 < j <k, i.e.,

Ay, = (Vo '~-Vk).
As in [11], the rank of v, denoted by rank v, is defined by

k + 1, if A, is nonsingular,

rank v = {min {i: vi € span{vy, ..., vi_1}}, if A, is singular.

For m < k we denote the upper left-hand corner (v;4 J'):njzo € Spi1 of A, of size
m + 1 by Ay(m). A sequence v is called positively recursively generated (prg) if
for r = rank v the following two conditions hold:

e Ay(r—1) = 0.
e Ifr < k+ 1, denoting
@0 pr) = Ay = D7 v )T (2.11)
the equality

Vj =@oVj—r + -+ @r_1Vj—1 2.12)

holds for j =r, ..., 2k.
The solution to the R-TMP is the following.

Theorem 2.5 [11, Theorems 3.9-3.10] For k € N and v = (vo, ..., vx) € R*T!
with vy > 0, the following statements are equivalent:

(1) There exists a R-representing measure for f.
(2) There exists a (rank Ay)-atomic R-representing measure for B.
(3) A, is positive semidefinite and one of the following holds:

(a) Ay(k — 1) is positive definite.
(b) rank A,(k — 1) = rank A,.

(4) v is positively recursively generated.

2.7 TMP on the Unit Circle

The solution to the Z(x* + y? — 1)-TMP is the following.

Theorem 2.6 [13, Theorem 2.1] Let p(x,y) = x>+ y*> — 1 and B = B =
(Bi,j)i,jez. i+ j<2k» where k > 2. Then the following statements are equivalent:

(1) B has a Z(p)-representing measure.

(2) B has a (rank M (k))-atomic Z(p)-representing measure.

(3) M(k) is positive semidefinite and the relations Br1; j + Bi2+j = Bi.; hold for
everyi,j € Z4 withi + j <2k — 2.
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2.8 Parabolic TMP
We will need the following solution to the parabolic TMP (see [44, Theorem 3.7]).

Theorem 2.7 Let p(x,y) = x — y? and B := B = (Bi,j)i,jez i+ j<2k» Where
k> 2. Let

B={1,Y,X, XY, X% X%,... . X, X'y,..., x*¥" x*y, xk.

Then the following statements are equivalent:

(1) B has a Z(p)-representing measure.

(2) B has a (rank M((k))-atomic Z(p)-representing measure.

(3) M(k) is positive semidefinite, the relations B1y; j = Bi 2+ hold for everyi, j €
Zy withi 4+ j <2k — 2 and one of the following statements holds:

(a) (M (k))B\{Xk} is positive definite.
(b) rank (M(k))B\{Xk} = rank M(k).

(4) The relations B1y; j = Bi.a+; hold for everyi, j € Z4 withi + j < 2k —2 and
+i,J 2+
Y = (0, ..., vak), defined by y; = 'BL%J i mod 2> admits a R-representing measure.

Remark 2.8 The equivalence (3)<>(4) is part of the proof of [44, Theorem 3.7].

3 TMP on Reducible Cubics: Case Reduction

In this section we show that to solve the TMP on reducible cubic curves it suffices,
after applying an affine linear transformation, to solve the TMP on 8 canonical forms
of curves.

Proposition 3.1 Let k € Rand B := Y = (Bi )i jer, i+ <ok Assume M(k; B)
does not satisfy any nontrivial column relation between columns indexed by monomials
of degree at most 2, but it satisfies a column relation p(X,Y) = 0, where p € R[x, y]
is a reducible polynomial with deg p = 3. If B admits a representing measure, then
there exists an invertible affine linear transformation ¢ of the form (2.1) such that the
moment matrix ¢>(M (k; ,6)) satisfies a column relation q(x, y) = 0, where g has one
of the following forms:

Parallel lines type: q(x,y) =y(a+ y)(b+y),a,b e R\ {0}, a #b.
Circular type: q(x,y) = y(ay + x>+ y%), a € R\ {0}
Parabolic type: q(x,y) = y(x — y?).
Hyperbolic type 1: q(x,y) = y(1 — xy).
Hyperbolic type 2: q(x,y) = y(x +y 4+ axy), a € R\ {0}.
Hyperbolic type 3: q(x,y) = y(ay + x> —y*),a e R.
Intersecting lines type: q(x,y) = yx(y + 1),
Mixed type: q(x,y) = y(1 +ay + bx>+cy*),a,b,c € R, b # 0.
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Remark 3.2 The name of the types of the form ¢ in Proposition 3.1 comes from the
type of the conic @ = 0. The conic x + y + axy = 0, a € R\{0}, is a hyperbola,

since the discriminant a? is positive. Similarly, the conic ay + x> — y> = 0,a € R, is
a hyperbola, since its discriminant is equal to 4. Clearly, the conic ay + x* + y*> = 0,
a € R, is a circle with the center (0, —7) and radius 5.

Now we prove Proposition 3.1.

Proof of Proposition 3.1 Since p(x, y) is reducible, it is of the form p = p| p>, where

pi(x,y) =ap +aix +azy witha; € R, (a1, a2) # (0,0),
pa(x, ¥) = b + bix + boy + b3x? + baxy + bsy* withb; € R, (b3, ba, bs)
#(0,0,0).

Without loss of generality we can assume that ay # 0, since otherwise we apply the
alt (x, y) — (y, x) to exchange the roles of x and y. Since ay # 0, the alt

o1(x,y) = (x,a0 + a1x + a2y)
is invertible and hence:

A sequence ¢ () has a moment matrix ¢ (/\/l (k; B )) satisfying the column relation
coY +c1 X + c2Y2 + C3X2Y + C4XY2 + C5Y3 = 0 with¢; € R, (c3, ¢4, c5)
#(0,0,0). (3.1

We separate two cases according to the value of c3.
Case 1: c¢3 = 0. In this case (3.1) is equal to

A sequence ¢1(8) has a moment matrix ¢ (/\/l (k; B )) satisfying the column relation

coY +c1XY + Y + s XY? +¢5Y? =0 withe; € R, (c4, ¢s5) # (0, 0).
(3.2)

If co = c1 = c» =0, then (3.2) is equal to C4XY2 +cs Y3 = 0. Since by assumption
B and hence ¢ (f) admit a rm, supported on

Z(y*(cax +cs5y)) = Z(y(cax + csy)),

itfollows by [12] thatc4 XY +c5 Y2 = 0isanontrivial column relation in b1 (/\/l (k; ﬂ)).
Hence, also M (k; ) satisfies a nontrivial column relation between columns indexed
by monomials of degree at most 2, which is a contradiction with the assumption of
the proposition. Therefore (cq, c1, ¢2) # (0, 0, 0).

Case 1.1: ¢¢ # 0. Dividing the relation in (3.2) by cg, we get:

A sequence ¢1(f) has a moment matrix ¢ (/\/l (k; ,3)) satisfying the column relation

Y + XY +5Y? 4+ 4XY2+35Y3 =0with G € R, (G4, Ts) # (0, 0).
(3.3)
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Case 1.1.1: ¢; = 0. In this case (3.3) is equivalent to:

A sequence ¢1(8) has a moment matrix ¢ (/\/l (k; B )) satisfying the column relation

Y + Y2+ EXY? 4+ 352 =0withT € R, (S4,35) # (0, 0).
(3.4)

Case 1.1.1.1: ¢4 = 0. In this case (3.4) is equivalent to

A sequence ¢ (8) has a moment matrix ¢ (/\/l (k; B )) satisfying the column relation

Y +3Y2+3Y =0withd, € R, & € R\ {0).
(3.5)

The quadratic equation 1 + &y + ¢5y*> = 0 must have two different real nonzero
solutions, otherwise Z(y(1 + ¢2x + Csy)) is a union of two parallel lines. Then it
follows by [12] that there is a nontrivial column relation in M (k; B) between columns
indexed by monomials of degree at most 2, which is a contradiction with the assumption
of the proposition. So we have the parallel lines type relation from the proposition.

Case 1.1.1.2: ¢4 # 0. In this case the alt
¢2(-xa )’) = (_’52 _E4x —’55)% y)
is invertible and applying it to ¢ (8), we obtain:

A sequence (¢ o ¢1)(B) has a moment matrix (¢ o ¢1) (M (k; ,8)) satisfying
the hyperbolic type 1 relation from the proposition.

Case 1.1.2: ¢] # 0. We apply the alt
$3(x,y) = (1 +c1x, y)
to ¢1 (B) and obtain:

A sequence (¢3 o ¢1)(B) has a moment matrix (¢3 o ¢1) (M (k; B)) satisfying

the column relation XY + Y2 + XY +G5Y3 = 0 withG; € R, (G4, T5) # (0, 0).
(3.6)

Case 1.1.2.1: ¢4 # 0. We apply the alt

o~

#ar, ) = (¥ = 2. )
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to (¢3 o ¢1)(B) and obtain:

A sequence (¢4 o ¢3 o ¢1)(B) has a moment matrix (¢4 o ¢3 o ¢1)(M (k; ,3)) satisfying

the column relation XY + ¢2Y? + 4 XY? = 0 with &2, ¢4 € R, ¢ # 0.
(3.7)

Case 1.1.2.1.1: ¢, = 0. In this case the relation in (3.7) is of the form
XY +XY2 =0 withdy € R\ {0}.
Applying the alt
¢s(x, y) = (x,cay)
to (¢4 o ¢3 o ¢1)(B) we obtain:
A sequence (¢s o ¢4 0 @3 o ¢1)(B) has a moment matrix (¢5 o ¢4 o P3 0 @)
(M(k; B)) satisfying
the intersecting lines type relation from the proposition.
Case 1.1.2.1.2: ¢, # 0. We apply the alt
Pe(x, y) = (x, C2y)
to (¢4 o ¢3 0 ¢1)(B) and obtain:
A sequence (¢ o P4 o ¢3 0 ¢1)(B) has a moment matrix (¢g o ¢4 o 3 o P1)
(M(k; B)) satisfying
the hyperbolic type 2 relation in the proposition.

Case 1.1.2.2: ¢4 = 0. In this case (3.6) is equivalent to:

A sequence (¢3 o ¢1)(B) has a moment matrix (¢3 o q)l)(./\/l (k; ,8)) satisfying

the column relation XY + &Y% +3sY> = 0 with &, ¢5 € R,

s #0.
(3.8)
Case 1.1.2.2.1: ¢, = 0. Applying the alt

¢7(x,y) = (x, —C5y),
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to (¢3 o ¢1)(B) we obtain:

A sequence (¢7 o @3 o ¢1)(B) has a moment matrix (¢p7 o ¢3 o ¢p1)
(M(k; B)) satisfying

the parabolic type relation in the proposition.
Case 1.1.2.2.2: ¢, # 0. Applying the alt
pg(x, y) = (x,C2y)
to (¢3 o ¢1)(B) and obtain:

A sequence (¢g o ¢3 o ¢1)(f) has a moment matrix (¢g o ¢3 o @)
(M(k; B)) satisfying
the column relation XY + Y2 + &Y? = 0 with és € R, &5 # 0.
3.9

Further on, the relation in (3.9) is equivalent to
@) ' XY +Y)+Y3 =0 with ¢s€eR, ¢5#0. (3.10)
Finally, applying the alt
go(x,y) = ((=¢5)7 (x + ). y)
to (¢g o ¢3 0 ¢1)(B), we obtain:

A sequence (¢g o ¢g o ¢3 o ¢1)(B) has a moment matrix (¢g o g o ¢3 o ¢1)
(M(k: B))

satisfying the parabolic type relation in the proposition.
Case 1.2: ¢y = 0. In this case (3.2) is equivalent to:

A sequence ¢1(f) has a moment matrix ¢ (./\/l (k; B )) satisfying the column relation

IXY + Y2+ XY +¢csY3 =0withe; € R, (c4, ¢5) # (0, 0).
(3.11)

Assume that ¢; = 0. Since by assumption 8 and hence ¢ (8) admits a rm, supported
on

Z(y(cr + cax + c5y)) = Z(y(ea + cax + ¢5Y)),

it follows by [12] that c2Y + c4 XY + ¢5 Y2 = 0 is a nontrivial column relation in
b1 (M(k; ,B)). Hence, also M (k; B) satisfies a nontrivial column relation between
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columns indexed by monomials of degree at most 2, which is a contradiction with the
assumption of the proposition. Hence, c; 7# 0. Applying the alt (x, y) + (c1x, y) to
¢1(B), we obtain a sequence with the moment matrix satisfying the column relation
of the form (3.6) and we can proceed as in the Case 1.1.2 above.

Case 2: ¢3 # 0. Applying the alt

prox, ) = (Vieslx. v)
to ¢1(B), we obtain:

A sequence (¢10 o ¢1)(B) has a moment matrix (¢ o ¢1)(./\/l(k; ,3)) satisfying

3]

c3
with ¢;, ¢; € R. 3.12)

the column relation coY + 1 XY + c2Y? + —= XY + 4 XY +¢sY> =0

Case 2.1: ¢; = 0. In this case (3.12) is equivalent to:

A sequence (@10 o ¢1)(B) has a moment matrix (¢10 o ¢1)(M(k; B)) satisfying

e 3|X2Y+C4XY2+6‘5Y% =0 with¢;, ¢ € R.

(3.13)

the column relation cpY + ¢3 Y? +

Case 2.1.1: ¢g = 0. Dividing the relation in (3.13) with |C3| , (3.13) is equivalent to:

A sequence (¢19 o ¢1)(B) has a moment matrix (¢19 o ¢1)(M(k; ,3)) satisfying

the column relation & Y2 + X2Y + ey XY? + TsY3 = 0 with ¢, Cu, 05 € R.
(3.14)

Applying the alt

o11(x,y) = <x + %y, y)

to (¢10 o ¢1)(B), we obtain:

A sequence (@11 0 @10 o ¢1)(B) has a moment matrix (¢11 o ¢10 o ¢1)(M(k: B))
satisfying the column relation ¢, Y 24 X%Y + Y3 = 0 with &, &5 € R.
(3.15)

Case 2.1.1.1: ¢5 = 0. Since by assumption of the proposition, (¢110¢190¢1)(B) admits
arm, supported on Z(y(&2y 4+ x2)), ¢2 in (3.15) cannot be equal to 0. Indeed, ¢, = 0
would imply that Z(y(¢2y + x2)) = Z(yx?) = Z(yx) and by [12], XY = 0 would
be a nontrivial column relation in (@11 o ¢19 o qbl)(/\/l (k; ,B)). Hence, also M(k; B)
would satisfy a nontrivial column relation between columns indexed by monomials
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of degree at most 2, which is a contradiction with the assumption of the proposition.
Since ¢, # 0, after applying the alt

¢12(-xs )’) = (.X, _Ezy)
to (¢11 o P10 o ¢1)(B), we obtain:

A sequence (¢12 o @11 0 @19 © ¢1)(B) has a moment matrix (¢12 o ¢11 o P19 0 ¢1)
(./\/l (k; ﬁ))satisfying the parabolic type relation in the proposition.

Case 2.1.1.2: ¢s > 0. Applying the alt

P13(x.y) = (x. Vesy)

to (411 © @10 © ¢d1)(B) we obtain:

A sequence (¢13 o p11 0 @10 o ¢1)(B) has a moment matrix (¢13 o @11 © 10 0 1)
(./\/l (k; B ))satisfying the circular type relation in the proposition.

Case 2.1.1.3: ¢s < 0. Applying the alt
¢l4(-xv y) = (X, _55_)7)

to (¢11 o 10 0 ¢1)(B), we obtain:

A sequence (¢14 0 P11 0 1o 0 ¢1)(B) has a moment matrix (P14 o @11 © 10 0 P1)
(/\/l (k; ﬁ))satisfying the hyperbolic type 3 relation in the proposition.

Case 2.1.2: ¢o # 0. Dividing the relation in (3.13) with ¢, (3.13) is equivalent to:

A sequence (¢10 o ¢1)(B) has a moment matrix (¢1g o ¢1)(M(k; ﬂ)) satisfying

the column relation Y + & Y2 + G XY + 4 XY2 +CsY> = 0 with &, 04 € R, &5 # 0.
(3.16)

Applying the alt

P15(x,y) = <x + Zc—j, )’>
(&)
to (¢10 o ¢1)(B), we obtain:

A sequence (@15 o 10 o ¢1)(B) has a moment matrix (¢15 o ¢10 © ¢1)(M(k: B))
satisfying the mixed type relation in the proposition.
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Case 2.2: ¢} # 0. Dividing the relation in (3.12) with lesl (3.12) is equivalent to:

3’

A sequence (¢10 o ¢1)(B) has a moment matrix (¢1g o ¢1)(M (k; ,B)) satisfying the
column relation QoY + 1 XY + G Y2 + XY +CXY? +35Y3 = 0 with G € R,
c1 #0. (3.17)

Now we apply the alt

@anw=<x+%o>

to (¢10 o ¢1)(B) and obtain:

A sequence (@16 0 10 o ¢1)(B) has a moment matrix (¢16 o ¢p10 © ¢1)(M(k: B))
satisfying the column relation ¢oY + EY? 4+ X2Y + G4 XY?2 4+ &Y = 0 with &; € R.
(3.18)

Case 2.2.1: ¢y = 0. In this case the relation in (3.18) becomes equal to the relation in
(3.14) from the Case 2.1.1, so we can proceed as above.

Case 2.2.2: ¢y # 0. Dividing the relation in (3.18) with ¢, it becomes equal to the
relation in (3.16) from the Case 2.1.2, so we can proceed as above. O

4 Solving the TMP on Canonical Reducible Cubic Curves

Let 8 = {ﬂi}iez%r,mszk be a sequence of degree 2k, k € N, and

C=1{1,X,Y, X2 XY, Y2 .. X5 x5y, ... Y5 4.1)

the set of rows and columns of the moment matrix M (k; B) in the degree-lexicographic
order. Let

p(x,y) =y-clx,y) € Rlx, y]<s (4.2)
be a polynomial of degree 3 in one of the canonical forms from Proposition 3.1.

Hence, c(x, y) a polynomial of degree 2. 8 will have a Z(p)-rm if and only if it can
be decomposed as

g=pY+89, (4.3)
where

@ ._ oM : —
B = {B; }ieZi,li\szk has a representing measure on y = 0,

) .— (g© : : _
:B(C = {B; }ieZi,\ﬂszk has a representing measure on the conic c(x, y) = 0,
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and the sum in (4.3) is a component-wise sum. On the level of moment matrices, (4.3)
is equivalent to

M(k; B) = M(k; BO) + M(k; ). (4.4)

Note that if 8 has a Z(p)-rm, then the matrix M (k; B) satisfies the relation p(X, Y) =
0 and it must be rg, i.e.,

X'Y/p(X,Y)=0 fori,j=0,...,k—3suchthati +j <k —3. (4.5)

We write X 00 .= (1,X,...,X%). Let T C C be a subset, such that the columns
from 7 span the column space C(M (k; 8)) and

P is a permutation matrix such that moment matrix ﬂ(k; B) := PM(k; B) pT
has rows and columns indexed in the order }?(O’k), T\ )}(O’k), C\ (}?(O'k) uT).

4.6)
In this new order of rows and columns, (4.4) becomes equivalent to
M(k; B) = M(k; BO) + Mk; ). (4.7)
We write
X0 T\XOH o\(XODYT)
(XO-0yT Ay Ap Aj3
Mk )= @00 | (AT Axn Az . (4.8)

XU\ (A1) (A3)T Az

By the form of the atoms, we know that /\7 (k; B (e)) and f\;i (k; ,3(")) will be of the
forms

XOH  T\XOH o\(XOHUT)
(X©OnT A A Al3
Mk; )= @xo0 | (AT Ax Ad3 ,
@ &xOhuTHT\ (A13)T (A3)T A

XOH T\ c\(XOOUT)
(X ORNT Al — A 0 0
Mk: Oy = (\800)T 0 0 0
C\XODUT)T 0 0 0 4.9)
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for some Hankel matrix A € Si41. Define matrix functions F : Sy+1 — Swetnkr2
2
and H : Sk41 — Sk+1 by

A Ap A
FA) = (A12)T Ay A and H(A) = A —A. (4.10)
(A13)T (A23)T As3

Using (4.9), (4.7) becomes equivalent to
Mk ) = F(A) + H(A) & Orapn (4.11)

for some Hankel matrix A € Si41.

Lemma 4.1 Assume the notation above. The sequence B = {ﬂi}ieZiJi\szk’ where

k > 3, has a Z(p)-representing measure if and only if there exist a Hankel matrix
A € Siy1, such that:

(1) The sequence with the moment matrix F(A) has a Z(c)-representing measure.
(2) The sequence with the moment matrix H(A) has a R-representing measure.

Proof First we prove the implication (=). If 8 has a Z(p)-rm p, then p is supported
on the union of the line y = 0 and the conic ¢(x, y) = 0. Since the moment matrix,
generated by the measure supported on y = 0, can be nonzero only when restricted to
the columns and rows indexed by X ©.5) it follows that the moment matrix generated
by the restriction ut|(c=0} (resp. u|(y=0y) of the measure u to the conic c(x,y) = 0
(resp. line y = 0), is of the form F(A) (resp. H(A) & 0rx+1) ) for some Hankel matrix
A€ Sgi1. ’

It remains to establish the implication (<). Let M‘©) (k) (resp. M© (k)) be the
moment matrix generated by the measure p (resp. p2) supported on Z(c) (resp.
y = 0) such that

PMOK)PT = F(A), PMOYk)PT =HA) & Ocsn (4.12)

respectively, where P is as in (4.6). The equalities (4.12) imply that M(k; B) =
MO (k) + MO (k; B). Since the measure it + 12 is supported on the curve Z(c) U
{y = 0} = Z(p), the implication (<) holds. O

Lemma 4.2 Assume the notation above and let the sequence f = {ﬂi}iezi,lilgzk’

where k > 3, admit a Z(p)-representing measure. Let A := A( € Sk+1

B0 B0 B50)
be a Hankel matrix such that F(A) admits a Z(c)-representing measure and H(A)
admits a R-representing measure. Let c(x, y) be of the form

c(x,y) =apo + ajox + a20x2 +apry + aozy2 +ayxy witha;j € R @.13)
and exactly one of the coefficients apo, aio, axo is nonzero. '
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If:
(1) agp # O, then

. 1 .
/3,»("0) = —%(001,31',1 +aofi2+aiBivi,1) fori=0,...,2k—2.

(2) ayp # 0, then

. 1 .
/31-(,‘3 = —E(Clmﬂi,l +aefiz2+aiBivi,) fori=1,...,2k—1.

(3) axo # 0, then

: 1 .
ﬁ,-(f(; = —g(amﬁi,l +aezBi2 +aiBiv1,1) fori=2,...,2%.

Proof By Lemma4.1, F(A) has a Z (c)-rm for some Hankel matrix A € Si41. Hence,
F(A) satisfies the rg relations X'Y/c(X,Y) =0fori, j € Z4,i+j <k—2.Letus
assume that agp 7 0 and a9 = azo = 0. In particular, F(A) satisfies the relations

apol + apY +a02Y2 +an XY =0,
ao X 2 + agi XY + ap X 2Y? +an XMy = 0. (4.14)

Observing the rows 7, X, ..., X kK of F(A), the relations (4.14) imply that
1 .
B = —%(amﬁi(i) +anBQ +anpl) ) fori=0,...,2k—2. (415

Using the forms ofﬂ(k; B) and F(A) (see (4.8) and (4.10)), it follows that IBi(f) =Bi1

and ﬂ;‘% = Bj 2 foreachi, j.Usingthisin (4.15) proves the statement (1) of the lemma.
The proofs of the statements (2) and (3) are analogous. O

Lemma 4.2 states that for all canonical relations from Proposition 3.1 except for
the mixed type relation, all but two entries of the Hankel matrix A from Lemma 4.1
are uniquely determined by S. The following lemma gives the smallest candidate for
A in Lemma 4.1 with respect to the usual Loewner order of matrices.

Lemma 4.3 Assume the notation above and let B = {ﬂi}iezﬁr,mgzk’ where k > 3, be

a sequence of degree 2k. Assume that M (k; B) is positive semidefinite and satisfies
the column relations (4.5). Then:

(1) F(A) = 0 for some A € Sxi1 ifand only if A = A12(An) (An)T.

(2) F(A12(A2) (A1)T) = 0 and H(A12(An)"(A12)T) = 0.

(3) .7:(A12(A22)T(A12)T) satisfies the column relations XiYie(X,Y) = Ofori,j e
Zy suchthati + j <k —2.
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(4) We have that

rank M (k; B) = rank Ay, + rank (Aj) — A12(A) (A1)")
= rank F(A12(A22)T(A12)7) + rank H(A12(A22) (A1n)7).

Prfq/of By the equivalence between (1a) and (1b) of Theorem 2.2 used for (M, A) =
(M(k; B), A11) and (M, A) = ((/\/l(k; ﬁ))i(ka>UT’ A1), it follows in particular that

(A)T Ay A
¢ (((AB)T)) €¢ (((Azs)T A33>> ’

C(A],) € C(An). (4.16)
and
H(Amin) = 0, 4.17)
where

+
o Axn Ax (A"
Amin = (A12 A13) ((A23)T A33) <(A13)T> .

Using the equivalence between (la) and (1b) of Theorem 2.2 again for the pairs
(M, A) =(F(A),A)and (M, A) = ((j:(A))f((O«k)uT’ A), it follows that

f(A)ZO d AzAmina

(F(A))zo0ur =0 & Ax Ap(An) (A1) = Anin.
(4.18)

Since F(A) > 0 implies, in particular, that (f (A)) z0our = 0, (4.18) implies that
Amin = AVmin- (4.19)

Claim. Ay = Amin.

Proof of Claim. By (4.18) and (4.19), it suffices to prove that 7 (Kmin) > 0. By defini-
tion of 7 and the relatiﬁgns X'Y/'pX,Y)=X Y]+1C(X, Y)=0,i,j€Z+,i+j <
k — 3, which hold in M (k; B), it follows, in particular, that

() =)
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(4.16) and (4.20) together imply that

T A
() ee(( o)

(4.16) and (4.21) can be equivalently expressed as

A
((A 22)T> W= (223> for some matrix W,
23 33

Az (A" |
((A23)T> X = ((A13)T for some matrix X.

(4.22)

We have that

XT
0| 1 |An(Xx I W)
WT
XTA22X XTA22 XTA22W
= AnX A AnW
WTAnX WTAy WTAnW
Ap(An)T(A1)T A Ags
= (Ai)? Ay Ay | = F(Anin)
(A7 (A)T Az

where [ is the identity matrix of the same size as A, and we used (4.22) in the second
equality. This proves the Claim. O

Using (4.17), (4.18) and Claim, the statements (1) and (2) follow. By Theorem 2.2.(2),
used for (M, A) = (M(k; B), A1), we have that

Ay Az
(A)T Ass

= rank F (Amin) + rank H(Amin).

rank ﬂ(k; B) = rank < ) ~+ rank H (Amin)

(4.23)

By (4.20) and

A A
B 22T 23 .0,
(A23)" Aszs
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it follows by Theorem 2.2, used for (M, A) = (B, Az), that rank B = rank A»».
Using this gl}d the Claim, (4.23) implies the statement (4).

Since M(k; B) satisfies the relations (4.5), it follows that the restriction
(‘F(Avmi“))(j\)?(ovk),c satisfies the column relations X'Y/c(X,Y) = 0 fori, j € Z

such thati + j < k — 2. By Proposition 2.3, these relations extend to F (Xmin), which
proves (3). O

Remark 4.4 By Lemmas 4.1-4.3, solving the Z(p)-TMP for the sequence 8 =
{Bi}; €72 li|<2%k> where k > 3, with p being any but the mixed type relation from

Proposition 3.1, the natural procedure is the following:

(1) First compute Apin = A12(A22)TA12. By Lemma 4.3.(3), there is one entry of
Anmin, which might need to be changed to obtain a Hankel structure. Namely, in
the notation (4.13), if:

(a) ago # 0, then the value of (Amin)k x must be made equal to (Amin)k—1.k+1-
(b) aio # 0, then the value of (Amin)1,k+1 must be made equal to (Amin)2.k.
(c) azo # 0, then the value of (Anpin)2,2 must be made equal to (Amin)3,1-

Let A, min be the matrix obtained from A, after performing the changes described
above.

Study if F (A\min) and H(;\\min) admit a Z(c)-rm and a R-rm, respectively. If
the answer is yes, 8 admits a Z(p)-rm. Otherwise by Lemma 4.2, there are two
antidiagonals of the Hankel matrix A\min, which can by varied so that the matrices
F (Xmin) and H(Xmin) will admit the corresponding measures. Namely, in the
notation (4.13), if:

@

~

(a) ago # 0, then the last two antidiagonals of ;\\mm can be cEanged.
(b) ajo # 0, then the left-upper and the right-lowEr corner of Apin can be changed.
(c) azo # 0, then the first two antidiagonals of A, can be changed.

To solve the Z(p)-TMP for B one needs to characterize, when it is possible to
change tllese antidiagonals in such a way to obtain a matrix Apjp, such that 7 (Amin)
and H(Amin) admit a Z(c)-rm and a R-rm, respectively.

In Sects.5 and 6 we solve concretely the TMP on reducible cubic curves in the
circular and parabolic type form (see the classification from Proposition 3.1). The
parallel lines type form was solved in [42], while the hyperbolic type forms will be
solved in the forthcoming work [40].

5 Circular Type Relation: p(x, y) = y(ay + x2 + y?), a ¢ R\{0}
In this section we solve the Z(p)-TMP for the sequence 8 = {B; j}i, jez, i+ <2k Of
degree 2k, k > 3, where p(x, y) = y(ay + x>+ y?), a € R\{0}. Assume the notation

from Sect. 4. If  admits a Z(p)-TMP, then M (k; 8) must satisfy the relations

aY* x4y x>+ — _y3tix! fori,j € Z, suchthati + j <k — 3.
(5.1)
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In the presence of all column relations (5.1), the column space C(M (k; §)) is spanned
by the columns in the set

T = XO0b yyxOk-Dyy2x0k-2) (5.2)
where
YixUO .= vix/, yix/t .. YIXY withi, j,LeZ,, j<0 i+l<k.
Let M(k; B) be as in (4.9). Let
Amin 1= An(An) (A1) (5.3)

As described in Remark 4.4, Ani, might need to be changed to

o~

k+1
Amin = Amin + UE;QJF )1
where
N = (Amin)1,3 — (Amin)2,2.

Let F(A) and H(A) be as in (4.10). Write

1 X X2h
1 Bo.0 — (Amin)1.1 B1.0 — (Amin)1,2 ()T
~ 2
H(Amin) = x| Bro— (Amin)1.2 f2.0 — (Amin)1,3 (T |,
(X@RNT hglz) h%) Hy
1 )}(2_/()
-~ Ji — (A h(l) T
Hl = (H(Amin)){l}u)}(z,k) = N ﬂo’o ((l)mm)I’l ( 12) )
(XG0T hi, Hy)
X X@h
~ X [ Bro— (Amn)is (BT
Hy = (H(Amin));}(l.k) = ’ ?) ' .
(X@h)T hyy Hy) (5.4

Define also the matrix function
G:R* = Sir1, Gtou) = A +tENY +u(E{SY + EY D). 55

The solution to the cubic circular type relation TMP is the following.

Theorem 5.1 Let p(x, y) = y(ay+x*+y%),a € R\{0}, and B = (Bi j)i,jez, i+j<2%k
where k > 3. Assume also the notation above. Then the following statements are
equivalent:
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(1) B has a Z(p)-representing measure.
(2) M(k; B) is positive semidefinite, the relations

aPioyj + Poyiiyj = —Piz+; holdforeveryi,j e Zy withi+ j <2k —3
(5.6)

and one of the following statements holds:

(a) n = 0 and one of the following holds:
(i) rank(H(Amin)))}(O.k—l) =k.
(ii) rank(H2) 5q.x-1 = rank Hp.
(b) n > 0, Hy is positive semidefinite and defining a real number

o = 1.0 — (Amin)1.2 — (BT (Hw) '), (5.7)

a function

h(t) = v/(Hi/Hy — t)(Ha/ Hp) (5.8)
and a set

7=, VD € Ry x Ry Vit = uo +h(1)],
U[(t,ﬁ)eR+xR,:ﬁ:uo—h(t)},
U{ ) € Ry x Ry — it = wo + h(0)],
Ufe —vim e Re xRt — Vit =uo— k), (5.9)

one of the following holds:

(i) The set L has two elements and H» is positive definite.
(ii) T = {(f, i)} and

rank ((H(G(7, @))) gou-1)) = rank H(G(7, iv)). (5.10)

Moreover, if a Z(p)-representing measure for ( exists, then:

o There exists at most (ggnk ﬂ(k; B) + 1)-atomic Z(p)-representing measure.
o There exists a (rank M (k; B))-atomic Z(p)-representing measure if and only if
any of the following holds:

-n=0.

— n > 0 and H(Anin) is positive definite.
In particular, a p-pure sequence B with a Z(p)-representing measure admits a
(rank M (k; B))-atomic Z(p)-representing measure.



The Truncated Moment Problem on Reducible Cubic... Page27of54 111

Remark 5.2 In this remark we explain the idea of the proof of Theorem 5.1 and the
meaning of the conditions in the statement of the theorem.

By Lemmas 4.1-4.2, the existence of a Z(p)-rm for § is equivalent to the existence
of t, u € R such that F(G (¢, u)) admits a Z(ay + x> + y*)-rm and H(G (¢, u)) admits
a R-rm. Let

Ri={(t,u) e R*: F(G(t,u)) = 0} and Ry ={(t,u) € R*: H(G(t,u)) > 0}.

We denote by dR; and R; the topological boundary and the interior of the set R;,
respectively. By the necessary conditions for the existence of a Z(p)-rm [12, 14, 25],
M(k; B) must be psd and the relations (5.6) must hold. Using also Theorem 2.6,
Theorem 5.1.(1) is equivalent to

./\7(1{; B) = 0, the relations 5.6 hold and

A(tg, ug) € R1 NRy : H(G(ty, ug)) admits a R-rm. (5.11)
In the proof of Theorem 5.1 we show that (5.11) is equivalent to Theorem 5.1.(2):
(1) First we establish (see Claims 1 and 2 below) that the form of:

e R is one of the following:

where the left case occurs if 7 > 0 and the right if » = 0. The case n < 0
cannot occur.
e R, is one of the following:

where the left case occurs if H>/Hyy > 0 and the right if Hy/Hy = 0.
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(2) If n = 0, then we show that (5.11) is equivalent to
ﬂ(k; B) > 0, the relations 5.6 hold and H(G(0, 0)) admits a R-rm.

The latter statement is further equivalent to Theorem 5.1.(2a).
(3) If n > 0, then by the forms of R and R»,Z = dR1 N 3R, is one of the following:
(i) 4, (ii) a one-element set, (iii) a two-element set. In the case:

e (i), a Z(p)-rm for B clearly cannot exist.
e (ii), then denoting Z = {(7, i1)}, (5.11) is equivalent to

/W(k; B) = 0, the relations 5.6 hold and H(G(7, it)) admits a R-rm.

The latter statement is equivalent to Theorem 5.1.(2(b)ii).

e (iii), (5.11) is equivalent to H being positive definite, which is Theorem
5.1.(2(b)i). Moreover, in this case for at least one of the points (,u) € 7, a
Z(ay 4+ x> 4+ y%)-rm and a R-rm exist for F(G (¢, u)) and H(G(z, u)), respec-
tively.

Proof of Theorem 5.1 Let R1, R, be as in Remark 5.2. As explained in Remark 5.2,
Theorem 5.1.(1) is equivalent to (5.11), thus it remains to prove that (5.11) is equivalent
to Theorem 5.1.(2).

First we establish a few claims needed in the proof. Claim 1 (resp. 2) describes R
(resp. R2) concretely. O

Claim 1. Assume that /W(k; B) = 0. Then

3 R2: ¢ >0, —Jmt, Jmi| Y, if n >0,

Ry = {(t.u) e > ue[\/n_\/n_]}?n_ 5.12)
@, if n < 0.

If n > 0, we have

rank F(Amin), if 1t =0,n =0,
rank F(G(t,u)) = { rank F(Amin) + 1, if ¢ > 0O orn > 0) and u € {— /07, /0t},

rank F(Amin) + 2, if t > 0,7 > 0, u € (—/nt, /77)
(5.13)

where Ay is an in (5.3).

Proof of Claim 1. Note that
k+1 k+1 k+1 k+1
G(t,u) = Amin + nEéJ ) —i-tEg’lJr ) +u(E§’2Jr ) 4+ E§1+ ))
tu
= Amin + (u n) @ 0—1. (5.14)
By Lemma 4.3, we have that

F@Gt,u) =0 & G, u) = Amin (5.15)
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Using (5.14), (5.15) and the definition of R, we have that
(u) eR1 & (;Z)zo & 1>0,7>0m>u’, (5.16)

which proves (5.12).
To prove (5.13) first note that by constructi_gn of F(Amin), the columns 1 and X
are in the span of the columns indexed by C \ X (®:¥), Hence, there are vectors

v1, v € ker F(Amin) (5.17)
of the forms

(k1) (k+2) (k+1)(k+2)

vi=010 @T) eRT 2 and v =010, @) eR 2 .

Let r := rank < ! u) Clearly,
umn

rank F(G(t, u)) < rank F(Anin) + 7. (5.18)

We separate three cases according to r.

Casel:r = 0.Inthiscaset = u = n = 0 and G(0,0) = Api,. In this case (5.13)
clearly holds.

Case 2: r = 1. In this case 17 = u?. Together with (5.16), this is equivalent to
(t >0o0rn > 0)andu € {—/nt, /nt}. By (5.18) and F(G(t,u)) = F(Amin) to
prove (5.13), it suffices to find v € ker F(Apiy) and v ¢ ker F(G (¢, u)). Note that at
least one of v, vy from (5.17) is such a vector, since

W) F@G@, u)yvy =1 and (v2)" F(G(t, u))v2 = 1.

Case 3: r = 2. In this case 17 > u?. Together with (5.16), this is equivalent to
t>0,n>0,u € (—/nt, /nt). Note that

2 u?

F(G(t,u)) = ]:(g(%, u)) + (l‘ — %) ® 0(k+1)2(k+2)_1 > ]—'(9(7, u))
(5.19)

By Case 2, we have rank f(g(é, u)) — rank F(Amin) + 1. By (5.18) and (5.19),

to prove (5.13), it suffices to find v € ker]—"(Q(%, u)) and v ¢ ker F(G(t, u)). We
will check below, that v3, defined by

u - T (k+1)(k+2)
v3=v1—;v2=<1 - (vs)T) eR 2,
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is such a vector. This follows by

2 u

u L.
]:<g< ,u))v3 = F(Amin)v3 + (( 7 u) ® 0<k+1)<k+2>—1> v3 = O0prnasa
n u n 2 2

and

[N]

2
W) FGt, u)vs =1 — % > 0.

This concludes the proof of Claim 1. O
Claim 2. Assume that M(k; B) = 0. Let ug, h(t) be as in (5.7),(5.8) and

10 = 0.0 — (Amin)1.1 — (hip)T (Ha)hSy.
Then

R, = { {(t,u) e R?: ¢ <19, u € [ug — h(t), uo + h(t)1}, if Hr = 0, (5.20)

0, if Hp f 0.
If H> > 0, we have that

rank H», for t = tg, u = uy,
rank H(G(t,u)) = { rank Hyy + 1, fort < to, u € {ug — h(t), ug + h(t)}, (5.21)
rank Hyy + 2, fort < ty, u € (ug — h(t), ug + h(t)).

Proof of Claim 2. Write

J i(z,k)
(DT
1 [ Bo.o— (Amin)11 —t (hyy)
H(t) = L W)uges = | |
® = (HGt W), 5o ,}(z,k>< h(112) iz

Note that H(0) = (H(Amin)){j}u;}(z,k)- By Lemma 4.3.(2), H(Amin) > 0 and hence,
H(0) > 0. By Theorem 2.2, used for (M, C) = (H(0), H7), it follows that H> > 0
and hglz) € C(Hy). Again, by Theorem 2.2, used for (M, C) = (H(t), Hx), it
follows that H (¢) > 0 iff t < #y. For a fixed ¢ satisfying ¢t < ty, Lemma 2.4, used for
A(x) = H(G(t,x)), together with H(t)/Hx, = H{/H> — t, implies (5.20)—(5.21)
and proves Claim 2. O

Claim 3. If = 0, then (0, 0) € 9R1 N Ra.

Proof of Claim 3. By Claim 1, n = 0 implies that (0, 0) € dR;. By (5.14) and n = 0,
H(Amin) = H(G(0,0)). By Lemma4.3.(2), H(Amin) > 0. Hence, (0, 0) € R, which
proves Claim 3. O
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Claim 4. If n > 0, then:

The set Z (see (5.9)) has at most 2 elements.

R1NRy # @ if and only if Z # @.

If Z has two elements, then Hy/H>; > 0.

If 7 has one element, which we denote by (7, i), then one of the following holds:

- RiNRy=1.
— Ry =Rr={(t,ug): t <to}andZ C R1NRy = {(t,ug): <t < tp}.

Proof of Claim 4. Note that the set 7 is equal to 3R | NdR, (see (5.12) and (5.20)). Fur-
ther on, 3R is the union of the square root functions 4-/7t, defined for t € [0, 00).
Similarly, 3R is the union of the square root functions ug++/(H,/Hxy — t)(H>/H2),
defined for t € (—oo,1y]. If Hy/Hy, = 0, then the latter could be a half-line
{(t,up): t < to}. If R1 N Ry # @, then geometrically it is clear that Z contains
one or two elements. Assume that 7 contains only one element, denoted by (7, ir).
Clearly, Z € R N 'Ry. Further on, we either have Z = R1 NRr or Z C R N Ras.
By the forms of dR and dR», the latter case occurs if Hy/H>> = 0 or equivalently
0R2 = Ry = {(t,up): t < ty}. But then the whole line segment {(¢, ug: <t < to}
lies in R, which proves Claim 4. O

Claim 5. Let H; (see (5.4)) be positive definite, (¢1, u1) € R, (f2, u2) € dR, and
u1 # us. Then at least one of H(G(t1, u1)) and H(G(t2, u2)) admits a R-rm.

Proof of Claim 5. Note that H(G(¢;, u;)), i = 1, 2, is of the form

] X )?(Z_k—l) Xk
1 B0.0 — (Amin)1,1 — ti P10 — (Amin)1,2 — u; (5(112))7 Br.o
X Br.o— (Amin)12 — 4 B2,0 — (Amin)1,3 (71\(122))T Brs1.0
HG Wi, ui)) = ~1) ~2) = ~
(X @k=1)yT h12 hlz H> h3
x* Br.o Brt1.0 1) Baro

Assume on the contrary that none of H(G(t1, u1)) and H(G(f2, uz)) admits a R-rm.
Theorem 2.5 implies that the column X* of H(G (i, u;)), i = 1,2, is not in the
span of the other columns. Using this fact, the facts that H(G(t;, u;)), i = 1,2,
are not pd (by (tj,u;) € 0Ra, i = 1,2) and H> is pd, it follows that there is
a column relation / = le;i ocy)Xj, oz;l) e R, in H(G(t;,u;)), i = 1,2. Since
H(G(ti,u;)) = 0,i = 1,2, it follows in particular by Theorem 2.2, used for
(M, A) = (H(G(ti, u)), (H(G(ti, ui))) gor-1), 1 = 1,2, that

(Beo Berio ()")" € C((HG, u)goin) i =1.2. (5:22)

Since the first column of H(G(t;, u;)) > 0,i = 1, 2, is in the span of the others, (5.22)
is equivalent to

(Beo B0 )T € C((HG u) gos v gasn)s i=1.2.  (5.23)
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Since
Hy = (HG(t, ui)) gasry, =12,

is invertible as a principal submatrix of H», it follows that

(B0 Brrio G")' = (MG w))gos v goun)v: i=12.  (524)
with
v=H," (Ek+1,0 ﬁa)T =@iv--- vk—l)T

If v; # 0, this contradicts to (5.24) since u; # uy. Hence, vi = 0. By the Hankel
structure of H(G(t;, u;)), i = 1, 2, we have that

(H(g(tis ui)))f(((),k—Z)’)}(z,k) = (H(Q(li, ui))))}(l.k—l)’)}(l,k—l)v i=1, 2.

Then (5.24) and v; = 0 imply that

((H(g(fi, Mi))))}(o,kfz)’)Zz(z,lo)fl7 = ((H(g(ti, Mi)));}(1.k71>’;}(1,k71))fl7 = O0ct1,1,
(5.25)

where v = (v2 S V| —1) . Since (’H(g(ti, ui)))f((l,kfl),)}(l.kfl)s i =1,2,is a prin-
cipal submatrix of Hj, (5.25) contradicts to H; being pd. This proves Claim 5. O

Now we prove the implication (5.11)= Theorem 5.1.(2). Since (fg, ug) € R, it
follows that Ry # @. By (5.12), n > 0. We separate two cases according to the value
of n.

Case 1: n = 0. We separate two cases according to the invertibility of H,.

Case 1.1: H, is not pd. Since H> is not pd, then by Theorem 2.5, the last column of
H(G (19, uo)) is in the span of the previous ones. But then by rg, the last column of H»
is in the span of the previous ones. This is the case Theorem 5.1.(2(a)ii).

Case 1.2: H, is pd. We separate two cases according to the invertibility of
(H(Amin))f((o,k—l) .

Case 1.2.1: rank (H(Amin) 30x-1)) = k. This is the case Theorem 5.1.(2(a)i).

Case 1.2.2: rank (H (Amin) 304-1) < k. We will prove that this case cannot occur. It
follows from the assumption in this case that rank H(Ampin) = rank H, = k. Further
on, the last column of H(Apjy) cannot be in the span of the previous ones (otherwise
rank H(Amin) < k). Hence, by Theorem 2.5, H(Anin) = H(G(0, 0)) does not admit
a R-rm. Using this fact and Claim 3, (0, 0) € dR». Iffo = 0,then R1 NR> = {(0, 0)},
which contradicts to the third condition in (5.11). So 0 < ty must hold. Since n = 0,
Claim 1 implies that Ry = {(¢, 0): t+ > 0} is a horizontal half-line. By the form of
0R2, which is the union of the graphs of two square root functions on the interval
(—o00, tp], intersecting in the point (#y, ug) and such that (#p, ug) € 9R», it follows
that R1 N"Ry = {(0, 0)}. Note that by H, > 0, we have H>/Hy> > 0 and hence
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h(t) # 0 (see (5.8)), which implies that the square root functions are indeed not just a
horizontal half-line. As above this contradicts to the third condition in (5.11). Hence,
Case 1.2.2 cannot occur.
Case 2: n > 0. By assumptions, (fy, ug) € R1 N R2. By Claim 4, 7 # (J and 7 has
one or two elements. We separate two cases according to the number of elements in
7.
Case 2.1: 7 has two elements. By Claim 4, H,/H>; > 0. If H; is not pd, then
the fact that H(G(fo, up)) has a R-rm, implies that H>/H>; = 0, which is a con-
tradiction. Indeed, if Hy/H>; > 0 and Hj is not pd, then there is a nontrivial
column relation among columns X 2 ..., X*in H,. By Proposition 2.3, the same
holds for H(G(ty, uop)). Let Z -0 c,X i+2 — () be the nontrivial column relation in
H(G (1o, uo)). But then Z(x2 Zf gc,x ) = Z(x Zl o cix 7y and it follows by [12]
that Z 0 ¢; X'+ = 0 is also a nontrivial column relation in H (G (f9, uo)). In partic-
ular, H>/H>; = 0. Hence, H> is pd. This is the case Theorem 5.1.(2(b)i).
Case 2.2: 7 has one element. Let us denote this element by (7, ). By Claim 4, Z =
RiNRyordRy =Ro ={(t,up): t <to}andZ C R1NRy = {(t, uo): f<t<t)
We separate two cases according to these two possibilities.
Case 2.2.1: 7 = R| N'R». In this case (¢, ug) = (, it) and hence H(G (7, it) admits a
R-rm. Since (£, it) € R, H(G(, i) is not pd. Hence, by Theorem 2.5, the statement
Theorem 5.1.(2(b)ii) holds.
Case2.2.2: 0Ro =Ry = {(t,ug): t <to}andZ C Ri1NRy = {(t,up): f <t < 1p}.
By (5.20), it follows that H/H>> = 0 (see the definition (5.8) of A(t)). Since H; is
not pd, Theorem 2.5 used for H (G (9, ug)), implies that the last column of Hj is in
the span of the others. Hence, the same holds by Proposition 2.3 for H(G (7, i)) and
‘H(G(f, it)) admits a R-rm by Theorem 2.5. Since H(G (7, i)) is not pd, it in particular
satisfies (5.10). Hence, we are in the case Theorem 5.1.(2(b)ii).
This concludes the proof of the implication (5.11)= Theorem 5.1.(2).

Next we prove the implication Theorem 5.1.(2)= (5.11). We separate four cases
according to the assumptions in Theorem 5.1.(2).
Case 1: Theorem 5.1.(2(a)i) holds. By Claim 3, (0,0) € R{ N R». This and the
assumption rank (M (Amin)) 5041y = k, imply by Theorem 2.5, that H(G (0, 0)) =
H(Amin) admits a R-rm. This proves (5.11) in case of Theorem 5.1.(2(a)i).
Case 2: Theorem 5.1.(2(a)ii) holds. By Claim 3, (0,0) € R; N R». Since the last
column of H, is by assumption in the span of the previous ones, the same holds for
H(G(0, 0)) by Proposition 2.3. By Theorem 2.5, H(G(0, 0)) admits a R-rm. This
proves (5.11) in case of Theorem 5.1.(2(a)ii).
Case 3: Theorem 5.1.(2(b)i) holds. By assumption, Z = 0R; N R, =
{(t1, u1), (f2, u2)}. Since Hj is pd, dR, is not a half-line and hence u; # uj. By
Claim 5, at least one of H(G(t1, u1)) and H(G(t, uz)) admits a R-rm. This proves
(5.11) in case of Theorem 5.1.(2(b)i).
Case 4: Theorem 5.1.(2(b)ii) holds. The assumptions imply by Theorem 2.5, that
H(G(, 1)) admits a R-rm. This proves (5.11) in case of Theorem 5.1.(2(b)ii).
This concludes the proof of the implication Theorem 5.1.(2)=(5.11).

Up to now we established the equivalence (1) < (2) in Theorem 5.1. It remains to
prove the moreover part. We observe again the proof of the implication (2) = (5.11).
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By Lemma 4.3.(4),
rank ./\7(/(; B) = rank F (Amin) + rank H(Amin)- (5.26)

In the proof of the implications Theorem 5.1.(2(a)i)= (5.11) and Theorem
5.1.(2(a)ii))= (5.11) we established that H(G(0, 0)) has a R-rm. By Theorem 2.5,
there also exists a (rank H (G (0, 0)))-atomic one. By Theorem 2.6, the sequence with
the moment matrix F(G(0, 0)) can be represented by a (rank F(G(0, 0)))-atomic
Z(ay + x* + y*)-rm. By (5.26) and G(0, 0) = Apiy if n = 0, in these two cases S
has a (rank M (k; B))-atomic Z(p)-rm.

In the proof of the implication Theorem 5.1.(2(b)i)= (5.11) we established that
H(G(', u")) has a R-rm for some (¢/, u’) € Z. Analogously as for the point (0, 0) in
the previous paragraph, it follows that 8 has a (rank F(G (¢, u")) +rank H(G(t', u')))-
atomic Z(p)-rm. Using (5.13), (5.21) and rank H> = rank H»; + 1 (by H; being pd),
it follows that

rank F(G(¢', u")) + rank H(G(t', u')) = rank F (Amin) + rank H» + 1. (5.27)

We separate two cases:

o If H(Amin) is pd, then rank H(Amin) = rank H> + 1. This, (5.26) and (5.27) imply
that 8 admits a (rank M (k; §8))-atomic Z(p)-rm.

o If H(Amin) is not pd, then we must have rank H(Amin) = rank H,, Otherwise we
have (H(Amin)) g0/ H2 = 0 and hence (H(Amin — nEs5 ) zan/Ha < 0,

which contradicts to H(Amin — nEék; 1)) being psd. Hence, in this case B

has a gank M (k; B) + 1)-atomic Z(p)-rm. Moreover, there cannot exist a
(rank M (k; B))-atomic Z(p)-rm. Indeed, since n > 0, at least rank F(Apin) + 1
(resp. rank H») atoms are needed to represent F(G(¢”, u”")) (resp. H(G (", u")))
forany (t”, u”) € R1NR, (see (5.13) and (5.21)). Hence, at least rank F (A pin) +
rank H, + 1 atoms are needed in a Z(p)-rm for any (t”, u”) € R1 N R;.

In the proof of the implication Theorem 5.1.(2(b)ii)= (5.11) we established that
H(G(Z, i)) has a R-rm. Analogously as for the point (0, 0) in two paragraphs above, it
follows that 8 has a (rank F(G (7, it)) + rank H(G (7, ii)))-atomic Z(p)-rm. By (5.13)
and (5.21), this measure is (rank F (Anin) + rank Hy + 2)-atomic.

o If H(Amin) is pd, Lllen rank H(Amin) = rank H»> + 2. This and (5.26) imply that
B admits a (rank M (k; B))-atomic Z(p)-rm.

e If H(Amin) is not pd, then we have rank H(Amin) = rank Hps + 1, since otherwise
the equality (H(Amin) g0/ Ha2 = 0 implies (H(Amin — nESS ")) g /Haz <

0, which contradicts to H(Amin — nEék;_ 1)) being psd. Hence, in this case

B has a (rank M (k; B) + 1)-atomic Z(p)-rm. Moreover, there cannot exist a
(rank M (k; B))-atomic Z(p)-rm in this case. Indeed,

(R1INR)\Z = (ORI NR2) U (R NIR2) U (R NRy).
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Using (5.13) and (5.21), in every point from (R NR3) \ Z at least rank F (Amin) +
rank Hyy + 2 atoms are needed in a Z(p)-rm.

This concludes the proof of the moreover part.

Since for a p-pure sequence with M (k; B)) > 0, (5.26) implies that H (A min) is pd,
it follows by the moreover part that the existence of a Z(p)-rm implies the existence
of a (rank M (k; B))-atomic Z(p)-rm. O

The following example, generated by [37], demonstrates the use of Theorem 5.1
to show that there exists a bivariate y(—2y + x> 4 y?)-pure sequence S of degree 6
with a positive semidefinite M (3) and without a Z(y(—2y + x? + y?))-rm.

Example 5.3 Let 8 be a bivariate degree 6 sequence given by

oo — 10 B — 38 oy — 39
00 — s 10 — 5 5 01 — 5 )
o — 602 5 3 o — 313
20—25s 11—25» 02—257
5 9152 5 41 5 3
0= 25 2T 125 2= 125
s — 2709 S — 172118 f 27
3= 725 0= 65 3T 6250
2717 3 24373
,322—%, /313—5, Boa = 5
3303368 7789 27
Bso = 125 Bar = 335" B3 = 305"
19381 3 224349
B3 = 31005 Bia = 305" Bos = 125
oo — 4156 g 243 i — 44453
60 = =12 ST 15625 42~ 15625
27 149357 3
F3 = 13625 P = T5625 P15 = 13625°
2094133
%= 15625 °

Assume the notation as in Theorem 5.1. M (3) is psd with the eigenvalues & 4445,
~ 189.2, ~ 16.6, ~ 11.9, = 3.2, ~ 1.22, ~ 0.57, = 0.022, ~ 0.0030, 0 and the
column relation

2Y 4+ X’y +Y3=0.
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We have that
324330 132789 71 27
55873 278915 25 125
132789 4180091 27 1493
A — | 278915 T394575 125 625
min = 71 27 1493 243
25 125 625 3125
27 1493 243 33437
125 625 3125 15625
and so
77 4180091 4608
n= =

25 1394575 55783

The matrix H> is equal to:

21 73 273
H,=| 73 273 1057
64904063

The eigenvalues of H; are & 4441.1, = 6.74, ~ —0.019 and hence H; is not psd. By
Theorem 5.1, B8 does not have a Z(y(—2y + x4 yz))-rm, since by (2b) of Theorem
5.1, H, should be psd.

6 Parabolic Type Relation: p(x, y) = y(x — y?)
In this section we solve the Z(p)-TMP for the sequence B = {B;}i jez, i+ <2k Of

degree 2k, k > 3, where p(x,y) = y(x — y2). Assume the notation from Sect. 4. If
admits a Z(p)-TMP, then M (k; B) must satisfy the relations
Y3Hxt =y X! fori, j € Z, suchthati + j <k — 3. (6.1)

In the presence of all column relations (6.1), the column space C(M (k; B)) is spanned
by the columns in the set

T = xO00 gyx©Ok=byy2x0k-2) (6.2)
where

YiXUD = (vix/, yixit L YiIXY withi, j L eZy, j<O i+0<k.
Let M(k; B) be as in (4.8). Let

Amin = A(An) (A1), (6.3)
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As described in Remark 4.4, A, might need to be changed to

o~

k+1 k+1
Amin = Amin + n (Ei’];:_i + EI(<++1,i> s
where
N := (Amin)2,x — (Amin)1,k+1-

Let F(A) and H(A) be as in (4.10). Define also the matrix function

~ k k
G:R* = Sp1. Gtw) = Ay +tE{Y +uElh (6.4)
Write
] )}(l,k—l) Xk
1 Bo.o — (Amin) 1,1 (h12)T Bro — (Amin)2.k
H(Amin) = XF=))T hi2 H» ha3 )
x* Br.o — (Amin)2.k (h23)7 Bok,o — (Amin)k+1,k+1
I X (Lk=1)
e _ 1 Bo.o — (Amin)1,1 (h12)"
Hl = (H(Amm))x(o.k—l) - (g(l,kl))T( h]2 H22 s
f((l,k—]) Xk
~ (X=yT Hy) h23
Hy := (H(Amin)) a0 = .
X s x* (h23)T Bok,o — (Amin)k+1,k+1

(6.5)

Let us define the matrix

K :=H(Amin)/ Hx
_ (50.0 = (Amin)1,1 Bro — (Amin)2,k > B ((hn)T

Br.o — (Amin)2.k B2k,0 — (Amin)k+1.k+1- (h23)T

) (Hx)' (h12 ha3)

_ Bo.0 — (Amin) 11 — (i) (H)hiy  Bro — (Amin)2k — (h12)T (Ha2)Thos
" \Bro — Amin)ak — (h23)T (H2)Thiz Baro — (Amin)ks1.4+1 — (h12)T (Hx) hia

— (ki ki
T \ki2 k)
Let

T={1,Y,X, XY, X2 X%y, X", X'y,... X xk1y, x*y,
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and

Pbea permutation matrix such that moment matrix M (k; B) := PM (k; ,B)(ﬁ)r

has rows and columns indexed in the order ’T’ C\ T.

(6.6)
Write
F(t,u) = PFGt, w)(P)”
1 T\{1, x5} xk o7
1 (Amin)l,l +t (le)T (Amin)2,k (f14)T (6.7)
_ Dxhy’ fi2 Fy» 23 Fy
x* Amin)2k (LT (Amin)it i1 +u (F3a)7
T fi4 (Foa)T f34 Fu4

The solution to the cubic parabolic type relation TMP is the following.
Theorem 6.1 Let p(x, y) = y(x — y2) and B = ﬂ(Zk) = (Bi,j)i,jeZ, i+j<2k» Where
k > 3. Assume also the notation above. Then the following statements are equivalent:
(1) B_has a Z(p)-representing measure.
(2) M(k; B) is positive semidefinite, the relations
Bi,j+3 = Bit1,j4+1 hold for everyi, j € Zy withi + j <2k -3, (6.8)

H(Xmin) is positive semidefinite, defining real numbers

t1 = Hi/Hy = Bo.0 — (Amin)1.1 — (h12)” (Ha2)"h1a,

uy = Hy/Ha = Boro — (Amin)is1.44+1 — (h23) T (Hap) haa,
(6.9)

and the property
(H(Amin) 3041 > 0 or rank(H(Amin)) 0x-1) = rank H(Amin),  (6.10)

one of the following statements holds:

(a) F» is not positive definite, n = 0 and (6.10) holds.
(b) F»x is positive definite, H> is not positive definite and one of the following
holds:
(i) uy=n=0.
(ii) uy > 0,1y > 0, ruy = n* and Pro — (Amin)2.k = (h12)7 (H2) has.
(c) Fra, Hyy are positive definite and one of the following holds:
(i) n =0and (6.10) holds.
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(ii) n # 0and

2
(Veirkaz = sign(kikiz)” = o, (6.11)

where sign is the sign function and sign(0) = 0.

Moreover, if a Z(p)-representing measure for B exists, then:

e There exists at most (rank M (k; B) + 1)-atomic Z(p)-representing measure.
e There exists a (rank M(k; B))-atomic Z(p)-representing measure if and only if
any of the following holds:
-n=0.
— rank H(Apin) = rank Hp + 2.
— rank H(Amin) = rank H»; + 1 and one of the following holds:
x Hpy is not positive definite and tju; = 172.
x Hpy is positive definite, k12 = 0 and k11kay = 772.

In particular, a p-pure sequence B with a Z(p)-representing measure admits a
(rank M (k; B))-atomic Z(p)-representing measure.

Remark 6.2 In this remark we explain the idea of the proof of Theorem 6.1 and the
meaning of conditions in the statement of the theorem.

By Lemmas 4.1-4.2, the existence of a Z(p)-rm for  is equivalent to the existence
of t, u € Rsuchthat F(G (¢, u)) admits a Z(x — y*)-rm and H(G(z, u)) admits a R-rm.
Let

Ri={(t,u) e R*: F(G(t,u)) = 0} and Ry ={(t,u) € R*: H(G(t,u)) > 0}.

We denote by dR; and R; the topological boundary and the interior of the set R;,
respectively. By the necessary conditions for the existence of a Z(p)-rm [12, 14,
25], M(k; B) must be psd and the relations (6.8) must hold. Then Theorem 6.1.(1) is
equivalent to

M (k; B) = 0, the relations 6.8 hold and
3(t0, uo) € R1 NRy : F(G(t, up)) and H(G(to, uo)) admit
azZ(x— yz)—rm and a R-rm, respectively. (6.12)

In the proof of Theorem 6.1 we show that (6.12) is equivalent to Theorem 6.1.(2):

(1) First we establish (see Claims 1 and 2 below) that the form of:

e R is one of the following:
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where the left case occurs if n # 0 and the right if n = 0.
e R; is one of the following:

where the left case occurs if k12 # 0 and the right if k12 = 0.

(2) If F»; is only positive semidefinite but not definite, then we show that (6.12) is
equivalent to

M(k; B) = 0, the relations 6.8 hold, n = 0 and H(G (0, 0)) admits a R-rm.
(6.13)

The latter statement is further equivalent to Theorem 6.1.(2a).
(3) Assume that F>; is positive definite and H»; is only positive semidefinite but not
definite. If:

e u; = 0, then we show that (6.12) is equivalent to (6.13). The latter statement
is further equivalent to Theorem 6.1.(2(b)i).
e 11 > 0, then we show that (6.12) is equivalent to

/\7(16; B) > 0, the relations 6.8 hold, F(G(¢1, u1)) and
H(G(t1, up)) admit a Z(x — yz)—rm and a R-rm, respectively.

The latter statement is further equivalent to Theorem 6.1.(2(b)ii).
e 1] < 0, then (6.12) cannot hold.

(4) Assume that F>> and H»; are positive definite. If:
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e 1 = 0, then we show that (6.12) is equivalent to (6.13). The latter statement is
further equivalent to Theorem 6.1.(2(c)i).

e 1 # 0, then we show that (6.12) is equivalent to R N Ry # @. The latter
statement is further equivalent to Theorem 6.1.(2(c)ii).

Proof of Theorem 6.1 Let R, R, be as in Remark 6.2. As explained in Remark 6.2,
Theorem 6.1.(1) is equivalent to (6.12), thus it remains to prove that (6.12) is equivalent
to Theorem 6.1.(2).

First we establish a few claims needed in the proof. Claim 1 (resp. 2) describes R
(resp. R2) concretely. _
Claim 1. Assume that M (k; 8) = 0. Then

Ri={(t,u) eR*: 1 >0,u>0,1u>n*} (6.14)
If (t,u) € Ry, we have

rank F(Amin), if n =t =u =0,
rank F(Amin) + 1, if (=t =0, u >0 or(n=u=0,t > 0)
or (n # 0, tu = n?),
rank F(Amin) + 2, if tu > n>.

rank F(G(t, u)) =

(6.15)
where Ay, is as in (6.3). O
Proof of Claim 1. Note that
G(t.w) = Ao +n(E\ ] + ELTY) +EL 4w
t O 1 7
= Amin + | Ok—1,1 Or—1 011
n Ok u (6.16)
By Lemma 4.3, we have that
FGt,u) =0 & Gt ,u)> Anin (6.17)
Using (6.16), (6.17) and the definition of R, we have that
() eR < (;Dzo & t>0u>0 >0 (6.18)

which proves (6.14).
To prove (6.15) first note that by constructign of F(Amin), the columns 1 and Xk
are in the span of the columns indexed by C \ X ©%) . Hence, there are vectors

vy, v2 € ker F(Amin) (6.19)
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of the forms

v = (1 01 (f}l)T)T € R(k+1)2(k+2) and vy = (01,/( 1 (ﬁz)T)T € R(HI)Z(HZ) .
(6.20)
Let r := rank <t 77)_ Clearly,
n u
rank F(G(t, u)) < rank F(Amin) + 7. (6.21)

We separate three cases according to r.

Case 1: r = 0. Inthiscase t = u = n = 0 and G(0, 0) = Ap;n. In this case (6.15)
clearly holds.

Case 2: r = 1. In this case fu = n>. Together with (6.18), this is equivalent to
m=1t=0u>00r(n=u=0,1>0)or(n #0,tu=n?. By (6.21)
and F(G(t,u)) = F(Amin) to prove (6.15), it suffices to find v € ker F(Anin) and
v ¢ ker F(G(t, u)). Note that at least one of vy, vp from (6.20) is such a vector, since

)T F@G@,u)vy =t and ()" F(G(t,u))v2 = u.

Case 3: r = 2. In this case ru > n2. Note that

2 2

FGw) =F(9(u)) + (1 - 2) @ 0uwsnwsn ;= F(G( ).
(6.22)

By Case 2, we have rank J—'(g(”{, u)) = rank F(Amin) + 1. By (6.21) and (6.22),

to prove (6.15), it suffices to find v € ker f(g(’;—z, u)) and v ¢ ker F(G(t,u)). We
will check below, that v3, defined by

n ~ T A1) (k+2)
vy =1 - v = (101 =2 @)7) eR™ 2,

is such a vector. This follows by

2

f(g(%, M))U% = 0(k+1)2(k+2)’1

and

2
W) FG(t,u)v3 =1 — % > 0.

This concludes the proof of Claim 1. O
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Note that
7 X (k=1) Xk
1 B0.0 — (Amin) 1,1 —t  (hi2)T Br,0 — (Amin)2,k
HG(t, w) = (XF=D)T h12 Hy) ho3
x* Bk,0 — (Amin)2,k ()T Bok.o — (Amin)k+14+1 — U

Define the matrix function

K(t,u) = H(G(t, u))/sz = H(Zmin)/HZZ - (8 8)

—K_ to0 . kiin—t kpip
- Ou) k12 k22 —u)’ (6'23)
Claim 2. Assume that M(k; 8) > 0. Then

R = {(t,u) e R*: K(t,u) > 0}
={(t.u) e R*: 1t < ki u < k. (kny — O)(kny —u) > k). (624
If (tr, u) € Ry, we have
rank Hyo, ifk1p =0, = k11, u = koo,

rank H(G(t, u)) = § rank Hpp + 1, if (k11 — #)(kpp —u) = k%z, (t # k11 oru # ko),
rank Hpy + 2, if (ki1 — ) (kng — u) > k3.

(6.25)
where Apnin is as in (6.3). O
Proof of Claim 2. Permuting rows and columns of H(G(t, u)) we define
] Xk f((l.k*l)
N 1 B0,0 — (Amin)1,1 — t Bi,0 — (Amin)2,k (h12)T
HGEtw) = x* Bro— (Amin)2k  Bok0 — Amin)k41k+1 —u  (ho3)T
(XA=DyT hia hy3 Hy)
Note that
HGEu) =0 & HGE, u) =0
and
1 )_()(l,kfl) Xk
1 Boo— Amin 11 (m2)T o — (Amin)1k+1
H(Amin) = (X007 hi2 H» ho3
x* Bro — Amin) 1 i+1 (23)T Boko — (Amin)kt1,k+1

(6.26)
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By Lemma 4.3.(2), H(Amin) > 0. Permuting rows and columns, this implies that

I Xk X(Lk=1)
_ 1 Bo.0 — Amin) 11 Bro— Amin)ia+1 (h12)T
H(Amin) = x* Br.o — (Amin) 1k+1 Bok0 — (Amin)it1.4+1 (h23)T | = 0.
(XLk=DyT hi2 ho3 H»)

By Theorem 2.2, used for (M, C) = (H(Amin), Ha2), it follows that Hy > 0 and
hi2, hps € C(Hp). Let

A ((hlz)T>
L:8 — Sie1, LA) = (ha3)"
(h1i2 h23)  Hx

be a matrix function. Using Theorem 2.2 again for (M, C) = (L(A), Hp2), it follows
that

(hi)T

LA >0 & A= ((h23)T

) (H») (h12 ha3) (6.27)

and

(hi)?

rank £(A) = rank Hyp + rank (A — <(h23)T

)(Huﬂ(hulng) (6.28)

Further, (6.27) implies that

H(G(t, u)) = 0
o (ﬂo,o — (Amin)1,1 — £ Br,0 — (Amin)2,x )

Bk,o — (Amin)2.k  Bok,0 — (Amin)k+1,k+1 — U

T
- (Ezgr) (H»)" (h12 ha3) = 0

& K(t,u) =0,

where_we use the definition (6.23) of K(t,u) in the last equivalence. Moreover,
rank H(G (¢, u)) = rank Ha, + rank KC(¢, u). This proves (6.24) and (6.25). O

Claim 3. If (£, u) € Ro N (R1)?, then

tu < (Vkiika — sign(k12)k12)* =: pmax.

The equality is achieved if:

e kip = 0, in the point (¢, u) = (k11, k22).

o ki > 0, in the point (1, u_) = (kyy — 2200 o, 4 bon)
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o ki < 0,in the point (4, uy) = (kpy + 200 o, — bz

Moreover, if kjp # 0, then for every p € [0, pmax] there exists a point (7, i) €
R> N (Ry)? such that 7ii = p and (kiy — 7) (ko — i) = k3.

Proof of Claim 3. 1f k1 = 0, then (, u) € RoN(R4)? = [0, k11] x [0, k22] and Claim
3 is clear.
Assume that k12 # 0. Then clearly fu is maximized in some point satisfying

2
(k11—1) (koo —u) = k122. Let f(¢) :=1t (k22 - klkllit ) We are searching for the maximum

of f(¢) on the interval [0, k11]. The stationary points of f are r+ = ki1 £ %"j‘

Then uyr = kyp F %ﬁz If k1o > 0, then r_ € [0, kq1] (note that k11kyp > k]22 if

Ra N (R4)? # ¥). Further on, _u_ = (/k11kaz — k12)?. Similarly, if k1o < 0, then
t+ €10, k1] and tyuy = (Vki1kan + klz)z. The moreover part follows by noticing
that f(0) = 0 and hence on the interval [0, z1], f attains all values between 0 and

Pmax- O
In the proof of Theorem 6.1 we will need a few further observations:
e Observe that

(HG(t, w) gosr = Hi — 1E",
(H(G(t, u)) gax-1 = Ha,
(Gt ) g0 = Hy —uEL,. (6.29)

e We have

(H(G(t, M)));}(o.kfl)/(H(g(fv W) jai-y = Hi/Hp —t =1t —t, (6.30)

where in the first equality we used (6.29) and in the second the definition of #; (see
(6.9)).
e We have

(Gt W) s [ (HG(t, W) gaw-ry = Ho/Hp —u=u; —u, (6.31)

where in the first equality we used (6.29) and in the second the definition of u
(see (6.9)).
First we prove the implication (6.12) = Theorem 6.1.(2). By the necessary con-
ditions for the existence of a Z(p)-rm [12, 14, 25], M(k; B) must be psd and the
relations (6.8) must hold. By Lemma 4.3.(2), 7 (Amin) > 0. Hence,

F=PF(Amn)(P)T

1 T\{I.x*) xk o7

1 Amin1 )T Amin) ke (AT
_ @\xhy” f12 F /23 LT I
Xk Amin)1k+1 (AT Amin)kt1h+1 (BT |77

T fla (Fa)T f34 Fu (6.32)
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where P is as in (6.6). In particular, F»; > 0. We separate two cases according to the
invertibility of F».
Case 1: F»; is not pd. Let 8(©) be a sequence corresponding to the moment matrix

F(G(ty, up)).Lety = (yo, - - -, yar) be a sequence defined by y; = ﬂff-)J Fmod 2" Note
345
that

(f(g(t(), ”0)))7\{1 xky = (F)T\{] xky = =Fp= Ay’

where ¥ = (y2, ..., vak—2). Since F; is not pd, it follows that there is a non-trivial
column relation in F32, which is also a column relation in A,, by Proposition 2.3. By
Theorem 2.7, y has a R-rm, which implies by Theorem 2.5, that A, is rg. Hence, the
last column of A, = f(g(to, up)) is in the span of the columns in T \ {1, Xk} It
follows that

(finT (Amin)2,k
Fo |(F2)'fs= f23 . (6.33)
(fo)! (Amin)k+1,k+1 + 1o

On the other hand, by construction of F, the column X* is also in the span of the
columns in T\ {1, X*}. Hence,

(fin? (Amin)1,k+1
Fy | (Fn) f3 = f23 . (6.34)
()T (Amin)k+1,k+1

By (6.33) and (6.34), it follows that (Amin)2.x = (Amin)1.k+1 Or equivalently n = 0,
and ug = 0. Note that

F(G(to, o)) = F(G(t9, 0)) = F(G(0,0)) = F(Amin),
H(G(to, uo)) = H(G(t0, 0)) < H(G(0,0)) = H(Amin)- (6.35)

Further on, 7 (Amin) hasa Z (x— y%)-rm by Theorem 2.7 and H (A nin) by Theorem 2.5.
Indeed, the column X* of F (Amin) is in the span of the others and since H(G(fy, 0))
satisfies the conditions in Theorem 2.5, the same holds for H(Api,). But then the
property (6.10) holds (note that n = 0). This is the case Theorem 6.1.(2a).

Case2: Fpispd. By Lemma4.3.(2), H(Amin) > 0(see(6.26)). In particular, H>; > 0.
We separate two cases according to the invertibility of Ha;.

Case 2.1: H»; is not pd. By (6.31) and Theorem 2.5, it follows that

uip = ugp. (6.36)
By (6.14),

ug > 0. (6.37)
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We separate two cases according to the value of u;.
Case 2.1.1: u; = 0. By (6.36), it follows that ug = 0. Note that

(F(Gto, uo)) 7 (g = (FGlto, ) 3,5y = (F)7 (1) (6.38)

Since in F we have the column relation (6.34) by construction, (6.38) and Proposition
2.3 imply that

(F(Gt0, 00)7 7 (7.x1 (F22) 23 = (F(G 10, 00) 7 i

or equivalently (6.33) with ug = 0. By (6.33) and (6.34), it follows that (Amin)2.k =
(Amin)1,k+1 or equivalently n = 0. This is the case Theorem 6.1.(2(b)i).

Case 2.1.2: u; > 0. Since the column X* of H(G(fo, u1)) is in the span of the columns
in X (k=1 , it first follows by observing the first row of H(G(fy, u1)) that

Br.o — (Amin)ax = (h12)T (Hap) "hos. (6.39)

Further on,

HG (@ u1) [(HG @, un)) zan = (HGE u) gor [ (HGE u)) zax

where we used (6.30) in the second equality. By (6.40) and Theorem 2.2 used for
(M, C) = (H(G(t, u1)), (H(G(t, u1))) 3a.n), it follows that H(G(t1, u1)) > 0. By
Theorem 2.5, H(G(t1, u1)) admits a R-rm. Note that

F(Gto, uo)) = F(G(to, u1)) = F(G(t1, ur)), (6.41)

where we used that o < 1 by (6.40). By Theorem 2.7, (f(g(tl, ul)))?\{x,{} must be
pd. (Here we used that since #1 > Oand F; > 0, it follows that (f(g(tl , Ml)))f—\{l} >

0.) Therefore Claim 1 implies that r; > 0 and #ju; > n2. Together with (6.39), this is
the case Theorem 6.1.(2(b)ii).
Case 2.2: H»; is pd. We separate two cases according to the value of 7.
Case 2.2.1: n = 0. By Lemma 4.3.(2), H(Amin) > 0 (see (6.26)).

If H(Amin) does notadmita R-rm, it follows by Theorem 2.5, that (H (Amin)) g ©.-1)
is not pd and u; > 0. Equivalently,

= (H(Amin)))"((o,k—w/sz =0,

which by (6.30) implies that 7p = 0. By Theorem 2.7, since ]-"(g(to, ug)) =
}"(g(O uo)) admits a Z(x — y2)-rm, F» > 0 and (]—"(Q(O MO)))T\ Xk} is not pd,
it follows that uy = 0. But then H (G (9, ug)) = H(G(0,0)) = H(Amin) does not
admit a R-rm, which is a contradiction.

Hence, H(Amin) admits a R-rm, which is equivalent to (6.10) (using n = 0). This
is the case Theorem 6.1.(2(c)i).
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Case 2.2.2: ) # 0. By (6.15) it follows that fuo > 5>. This fact and Claim 3 imply
the second condition in the case Theorem 6.1.(2(¢)ii).
This concludes the proof of the implication (6.12) = Theorem 6.1.(2).

Next we prove the implication Theorem 6.1.(2) = (6.12). We separate five cases
according to the assumptions in Theorem 6.1.(2).
Case 1: Theorem 6.1.(2a) holds. By Lemma 4.3.(2), F (Apin) > 0and H(Amin) > O.
Since = 0, both matrices have amoment structure. Since by construction, the column
X* of F(Amin) is in the span of the others, it has a Z(x — y2)—rm by Theorem 2.7.
Since H(Amin) satisfies (6.10) (using n = 0), it admits a R-rm by Theorem 2.5. This
proves (6.12) in this case.
Case 2: Theorem 6.1.(2(b)i) holds. By the same reasoning as in the Case 1 above,
f(Amin) hasa Z(x — yz)-rm. Since u; = 0, the column X* of H(Amin) is in the span
of the other columns. By Theorem 2.5, H(Amin) admits a R-rm. This proves (6.12) in
this case.
Case 3: Theorem 6.1.(2(b)ii) holds. By (6.30), (6.31) and the fourth assumption of
(2(b)ii), it follows that H(G(t1, u1)) is psd and the columns 1, Xk are in the span
of the columns in X141, By Theorem 2.5, H(G(t1, 1)) admits a R-rm. Since
(t1,u1) € R1 by (6.14) and the assumptions in (2(b)ii), it follows that F(g(tl, ui))
is psd and by construction, (f(g(n, ul)))?\{xk} is pd. By Theorem 2.7, it has a

Z(x — y?)-rm. This proves (6.12) in this case.

Case 4: Theorem 6.1.(2(c)i) holds. f(Amin) has a Z(x — y?)-rm and H(Amin) has
a R-rm by the same reasoning as in the Case 1 above. This proves (6.12) in this case.
Case 5: Theorem 6.1.(2(c)ii) holds. We separate three cases according to the sign of
k]2.

e If k;p = 0, then by Claim 2, H(G(k11, k22)) is psd and the column X is in the
span of the previous ones. Since H(G(0,0)) = H(;\\min) is psd by assumption,
it follows that k11 > 0 and k2 > 0. Since n # 0 and ky1k2o > n2 by (6.11), it
follows that k11 > 0 and k2> > 0. By Claim 1, f(g(kn, k22)) > 0. By Theorem
2.7,ithas a Z(x — y?)-rm. This proves (6.12) in this case.

e Ifkjp > 0,thenby Claim 3, H(G(¢—,u_))ispsdand r_u_ > nz. By construction,
rank H(G(r—, u_)) = k and since 1 < kyy, it follows that (H(G(t—, u—))) goi-1
is pd. Hence, the column Xk of H(G(r—,u_)) is in the span of the others. By
Theorem 2.5, H(G(t—, u_)) admits a R-rm. By Claim l and f_u_ > n2, it follows
that Z(G(r—, u_)) > 0. Since 7_ > 0, it follows that (F(g(t_, u_ )))T\{X"’} is pd.

By Theorem 2.7, it has a Z(x — yz)-rm. This proves (6.12) in this case.
e If k15 < 0, then the proof of (6.12) is analogous to the case k12 > 0 by replacing
(t—,u—) with (t+, uy).

This concludes the proof of the implication Theorem 6.1.(2)=(6.12).

By now we established the equivalence (1) < (2) in Theorem 6.1. It remains to
prove the moreover part. We observe again the proof of the implication (2) = (6.12).
By Lemma 4.3.(4),

rank M (k; B) = rank F (Amin) + rank H(Amin). (6.42)
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In the proofs of the implications Theorem 6.1.(2a)=> (6.12), Theorem 6.1.(2(b)i)=
(6.12) and Theorem 6.1.(2(c)i)= (6.12), we established that f(Amin) and H(Amin)
admit a Z(x — y%)-rm and a R-rm, respectively. By Theorems 2.5 and 2.7, there also
exist a gank F (Amin))-atomic and a (rank H(Amin))-atomic rms. By (6.42), B has a
(rank M (k; B))-atomic Z(p)-rm.

Assume that Theorem 6.1.(2(b)ii) holds. We separate two cases according to the
value of n:

e 1 = 0. We separate two cases according to the existence of a R-rm of H(Ap;n):

— The last column of H(Amm) is in the span of the previous ones. Then as in
the previous paragraph, F (Amin) and H (Amin) admit a (rank F (Amin))-atomic
Z(x — fl -rm and a (rank H (Amin))-atomic R-rm, respectively. Hence, § has
a (rank M (k; B))-atomic Z(p)-rm.

— The last column of H(Amin) is not in the span of the previous ones. Since
also 11 > 0, it follows that rank H(/{\min) = rank H22j— 2. But then
rank H(G (71, u1)) = rank Hy andrank F(G(t1, u1)) = rank F (Amin)+2 (see
(6.15)). This implies that M (8; k) admits a (rank M (k); B)-atomic Z(p)-rm.

e 1 # 0. We separate two cases according to rank 7 (Ampi,), which can be either
rank Hy + 2 or rank Hy + 1 (since t; > 0).

— rank H(Amin) = rank Hzy + 2. Then as in the second Case of the case n = 0
above, in the point (1, u) there is a (rank M (k; 8))-atomic Z(p)-rm for 8.
(Note that 7ju; is automatically strictly larger than n?, otherwise the measure
was (rank M (k; ) — 1)-atomic, which is not possible.)

— rank H(Amin) = rank Hy + 1. In this case we have

rank H(G(t1, u1)) + rank F(G(t1, u)) = rank Ha + rank F(G (11, uy))

_ rank H»; + rank ]?(Amm) + 1, if yuy = 02,
"~ | rank Hay + rank F(Amin) + 2, if fiu; > n?,

_ rank/ﬁ(k; B), if iuy = n?,
= | rank M(k; B) + 1, if tjug > 02,

where we used (6.15) in the second and (6.42) in the third equality. Hence, B has a
(rank j\/l(k B))-atomic rm if f{u; = n* and (rank/\/l(k B) + 1-atomic rm if tju; >
n . Itremains to show that in the case tju; > n there does not exist a (rank M (k B))-
atomic rm. Since Hp is not pd and u; > 0, if H(G (¢, u’)) has a R-rm, then u’ = u;.
Since i # 0, then Z(G(¢', u1)) with a Z(x — y2)-rm is at least (rank Z (Amin) + 1)-
atomic (see (6.15)). If ¢’ # t1, then rank H(G(¢', u1)) = rank H»; + 1. Hence,

rank H(G(¢', u1)) + rank F(G(¢', u1)) > (rank Hay + 1) + (rank F(Amin) + 1)
= rank M (k; B) + 1,

where we used (6.42) in the last equality.



111 Page 50 of 54 S.Yoo, A. Zalar

e Assume that Theorem 6.1.(2(c)ii) holds. We separate two cases according to the
value of kq».

— k12 = 0. We separate two cases according to rank H (Amin ), 1.e.,rank H(Amin) €
{k, k 4+ 1}. Note that rank H(Amin) cannot be k — 1, since n = 0 and k1 = 0
imply that (H(Amin)/H22),, # 0.

* rank H(Amin) = k + 1. Then as in the second case of the case > = 0 of
Theorem 6.1.(2(b)ii) above, in the point (¢1, u1) thereis a (rank M (k; B))-
atomic Z(p)-rm for B. (Note that #1u ,13 automatically strictly larger than
r;z, otherwise the measure was (rank M (k; 8) — 1)-atomic, which is not
possible.)

* rank H(Amin) = k. In this case we have

rank H(G (k11, k22)) + rank F (G (k11, k22))

_ rank Hyy + rank F(Amin) + 1, if k11kop = 7’]2,

~ | rank H>y + rank F(Anin) + 2, if k11k2p > 7]2,

B rank M (k; B), if kiikay = 12,

" | rank Mk; B) + 1, if kyikao > 12,
where we used (6.15) in the first and (6.42) in the second equal-
ity. Hence, B has a (rank M (k; B))-atomic rm if kjjkyy = n2 and
(rank M (k; B) + 1)-atomic rm if ky k2o > n%. It remains to show that in
the case kj1kypy > 772, there does not exist a (rank M (k; 8))-atomic rm.
Since n # 0, if F(G(t', u)) is psd, it follows that t'u’ > 5> by (6.14).
But then if F(G(¢', u’)) also admits a Z(x — y2)-rm, this rm is at least

(rank f(Amin) + 1)-atomic (see (6.15)). If ' < ky1 or u’ < kpp, then
rank H(G(¢', u')) > rank H»> + 1. Hence,

rank H(G (¢, u')) + rank F(G(t', u')) > (rank Hay + 1) + (rank F(Amin) + 1)
= rank M(k; B) + 1,

where we used (6.42) in the last equality.
— k12 # 0. We separate two cases according torank H(Amin),1.e.rank H(Amin) €
{k,k + 1}. Note that rank H(Amni,) cannot be k — 1, since otherwise

H(me)/sz = (2 g), which cannot be psd by 1 # 0. By Claim 3, there is
apoint (7, i) € Ro N (Ry)2, such that 7t = n? and (k11 — 7)(koa — 1) = k.
By (6.15) and (6.25) we have
rank H(G (7, ii)) + rank F(G(F, it))
= (rank Ha + 1) + (rank F(Amin) + 1)

B rank M (k: B), if rank H(Amin) = k + 1,
" | rank M(k; B) + 1, if rank H(Amin) = k,
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where we used (6.42) in the second equality. It remains to show that in the case
rank H(Amin) = k, there does not exist a (rank M(k B))-atomic rm. Since
n # 0, if FGW ) is psd, it follows that #'u’ > 5> by (6. 14). But then if
f(g(t u’)) also admits a Z(x — y2) -rm, this rm is at least (rank .7-"(Amm) +1)-
atomic (see (6.15)). Since k1 # 0,rank H(G (¢, u’)) > rank Hy+1 by (6.25).
Hence,

rank H(G(t', u')) + rank F(G(¢', u')) > (rank Ha + 1) + (rank F(Amin) + 1)
= rank M (k; B) + 1,

where we used (6.42) in the last equality.

This concludes the proof of the moreover part.

Since for a p-pure sequence with M (k; B)) > 0, (6.42) implies that H (A pin) is pd,
it follows by the moreover part that the existence of a Z(p)-rm implies the existence
of a (rank M (k; B))-atomic Z(p)-rm. O

The following example demonstrates the use of Theorem 6.1 to show that there
exists a bivariate y(x — y*)-pure sequence S of degree 6 with a positive semidefinite
M (3) and without a Z(y(x — y?))-rm.

Example 6.3 Let § be a bivariate degree 6 sequence given by

1228153 97 21
%= 1372615 = 70 Por = 15
2289 441 91
B0 = 0 B = To° Bz = 0
67207 12201 455
B30 = o B21 = T B2 = -
441 2142693 376761
Bz = T e 3=
67171 12201 455
B2 = o Bz = o Bos = -
71340727 12313161 428519
Bso = 0 Ba1 = 0 B3 = 7
376761 67171 12201
B="10 4= "7 05 =
2438236509 415998681 71340451
/360=T, S1="——5 '842=T’
12313161 428519 376761
B=""T0 Boa = 7 Bis = T
67171
Bos = o

Assume the notation as in Theorem 6.1. M (3) is psd with the eigenvalues &~ 2.51-103,
~ 47179, ~ 112.1, ~ 7.4, ~ 1.11,~ 0.1, ~ 0.03, ~ 0.0005, 2 4.9 - 107°, 0, and the
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column relation Y3 = Y X. We have that

5537 91 455 61999553
9230 10 2 9230
91 455 67171 428519
A — 10 2 10 2
mm 455 67171 428519 71340451
2 10 2 10
61999553 428519 71340451 450098209309
9230 2 10 1846

and so

_ 67171 61999553 72
10 9230 923"

n

The matrices F», and H», are equal to:

91 441 455 12201 67171
0 10 2 10 10
441 455 12201 67171 376761
10 2 10 10 10 7 18
_ | 455 12201 67171 376761 428519 _ (373
= 2 10 10 10 2 ,  Hnp= 18 49
12201 67171 376761 428519 12313161 55
0 10 10 2 10
67171 376761 428519 12313161 71340451
0 10 2 10 10

They are both pd with the eigenvalues ~ 7.3- 10°,~ 1987.6,~ 5.6,~ 0.099, ~ 0.0013
and &~ 11.1, & 0.068, respectively. The matrix K is equal to

kit k 6050329 3
K = ( 11 12) — 48143298510 494915414
kiz k2 95 87685
and thus
Vkiikia — k12)? — n> = —0.0033 < 0. (6.43)

By Theorem 6.1, 8 does not have a Z(y(x — y2))-rm, since by (2(c)ii) of Theorem
6.1, (6.43) should be positive.
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