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Abstract
In this article we study the bivariate truncated moment problem (TMP) of degree 2k
on reducible cubic curves. First we show that every such TMP is equivalent after
applying an affine linear transformation to one of 8 canonical forms of the curve. The
case of the union of three parallel lines was solved in Zalar (Linear Algebra Appl
649:186–239, 2022. https://doi.org/10.1016/j.laa.2022.05.008), while the degree 6
cases in Yoo (Integral Equ Oper Theory 88:45–63, 2017). Second we characterize in
terms of concrete numerical conditions the existence of the solution to the TMP on two
of the remaining cases concretely, i.e., a union of a line and a circle y(ay+ x2 + y2) =
0, a ∈ R\{0}, and a union of a line and a parabola y(x − y2) = 0. In both cases we
also determine the number of atoms in a minimal representing measure.

Keywords Truncated moment problems · K -moment problems · K -representing
measure · Minimal measure · Moment matrix extensions

Mathematics Subject Classification Primary 44A60 · 47A57 · 47A20; Secondary
15A04 · 47N40

Communicated by Mihai Putinar.

Supported by the Slovenian Research Agency program P1-0288 and Grants J1-50002, J1-2453, J1-3004.
This work was performed within the project COMPUTE, funded within the QuantERA II Programme that
has received funding from the EU’s H2020 research and innovation programme under the GA No.
101017733.

B Aljaž Zalar
aljaz.zalar@fri.uni-lj.si

Seonguk Yoo
seyoo@gnu.ac.kr

1 Department of Mathematics Education and RINS, Gyeongsang National University, Jinju 52828,
Korea

2 Faculty of Computer and Information Science, University of Ljubljana & Faculty of Mathematics and
Physics, University of Ljubljana & Institute of Mathematics, Physics and Mechanics, Ljubljana,
Slovenia

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s11785-024-01554-w&domain=pdf
https://doi.org/10.1016/j.laa.2022.05.008


  111 Page 2 of 54 S. Yoo, A. Zalar

1 Introduction

Given a real 2-dimensional sequence

β ≡ β(2k) = {β0,0, β1,0, β0,1, . . . , β2k,0, β2k−1,1, . . . , β1,2k−1, β0,2k}

of degree 2k and a closed subset K ofR
2, the truncatedmoment problem (K -TMP)

supported on K for β(2k) asks to characterize the existence of a positive Borel measure
μ on R

2 with support in K , such that

βi, j =
∫
K
xi y j dμ for i, j ∈ Z+, 0 ≤ i + j ≤ 2k. (1.1)

If such a measure exists, we say that β(2k) has a representing measure supported on
K and μ is its K -representing measure (K -rm).

In the degree-lexicographic order

1, X ,Y , X2, XY ,Y 2, . . . , Xk, Xk−1Y , . . . ,Y k

of rows and columns, the corresponding moment matrix to β is equal to

M(k) ≡ M(k; β) :=

⎛
⎜⎜⎝
M[0, 0](β) M[0, 1](β) · · · M[0, k](β)

M[1, 0](β) M[1, 1](β) · · · M[1, k](β)
...

...
. . .

...

M[k, 0](β) M[k, 1](β) · · · M[k, k](β)

⎞
⎟⎟⎠ , (1.2)

where

M[i, j](β) :=

⎛
⎜⎜⎜⎜⎝

βi+ j,0 βi+ j−1,1 βi+ j−2,2 · · · βi, j

βi+ j−1,1 βi+ j−2,2 βi+ j−3,3 · · · βi−1, j+1
βi+ j−2,2 βi+ j−3,3 βi+ j−4,4 · · · βi−2, j+2

...
...

...
. . .

...

β j,i β j−1,i+1 β j−2,i+2 · · · β0,i+ j

⎞
⎟⎟⎟⎟⎠ .

Let R[x, y]≤k := {p ∈ R[x, y] : deg p ≤ k} stand for the set of real polynomials
in variables x, y of total degree at most k. For every p(x, y) = ∑

i, j ai, j x
i y j ∈

R[x, y]≤k we define its evaluation p(X ,Y ) on the columns of the matrix M(k)
by replacing each capitalized monomial XiY j in p(X ,Y ) = ∑

i, j ai, j X
iY j by the

column ofM(k), indexed by this monomial. Then p(X ,Y ) is a vector from the linear
span of the columns ofM(k). If this vector is the zero one, i.e., all coordinates are equal
to 0, then we say p is a column relation ofM(k). A column relation p is nontrivial,
if p �≡ 0. We denote by Z(p) := {(x, y) ∈ R

2 : p(x, y) = 0}, the zero set of p. We
say that the matrix M(k) is recursively generated (rg) if for p, q, pq ∈ R[x, y]≤k

such that p is a column relation ofM(k), it follows that pq is also a column relation
ofM(k). The matrixM(k) is p-pure, if the only column relations ofM(k) are those
determined recursively by p. We call a sequence β p-pure, ifM(k) is p-pure.
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A concrete solution to the TMP is a set of necessary and sufficient conditions
for the existence of a K -representing measure μ, that can be tested in numerical
examples. Among necessary conditions, M(k) must be positive semidefinite (psd)
and rg [14, 25], and by [12], if the support supp(μ) of μ is a subset of Z(p) for
a polynomial p ∈ R[x, y]≤k , then p is a column relation of M(k). The bivariate
K -TMP is concretely solved in the following cases:

(1) K = Z(p) for a polynomial p with 1 ≤ deg p ≤ 2. Assume that deg p = 2. By
applying an affine linear transformation it suffices to consider one of the canonical
cases: x2 + y2 = 1, y = x2, xy = 1, xy = 0, y2 = y. The case x2 + y2 = 1
is equivalent to the univariate trigonometric moment problem, solved in [13]. The
other four cases were tackled in [13–15, 27] by applying the far-reaching flat
extension theorem (FET) [12, Theorem 7.10] (see also [16, Theorem 2.19] and
[34] for an alternative proof), which states that β(2k) admits a (rankM(k))-atomic
rm if and only ifM(k) is psd and admits a rank-preserving extension to a moment
matrix M(k + 1). For an alternative approach with shorter proofs compared to
the original ones by reducing the problem to the univariate setting see [4, Section
6] (for xy = 0), [42] (for y2 = y), [43] (for xy = 1) and [44] (for y = x2). For
deg p = 1 the solution is [17, Proposition 3.11] and uses the FET, but can be also
derived in the univariate setting (see [44, Remark 3.3.(4)])

(2) K = R
2, k = 2 and M(2) is invertible. This case was first solved nonconstruc-

tively using convex geometry techniques in [29] and later on constructively in [22]
by a novel rank reduction technique.

(3) K is one of Z(y − x3) [26, 41], Z(y2 − x3) [41], Z(y(y − a)(y − b)) [38, 42],
a, b ∈ R\{0}, a �= b, or Z(xy2 − 1) [43]. The main technique in [26] is the FET,
while in [41–43] the reduction to the univariate TMP is applied.

(4) M(k) has a special feature called recursive determinateness [18] or extremality
[19].

(5) M(3) satisfies symmetric cubic column relations which can only cause extremal
moment problems. In order to satisfy the variety condition, another symmetric
column relation must exist, and the solution was obtained by checking consistency
[20].

(6) Non-extremal sexticTMPswith rankM(3) ≤ 8 andwithfinite or infinite algebraic
varieties [21].

(7) M(3) with reducible cubic column relations [39].

The solutions to the K -TMP, which are not concrete in the sense of definition
from the previous paragraph, are known in the cases K = Z(y − q(x)) and K =
Z(yq(x) − 1), where q ∈ R[x]. [26, Section 6] gives a solution in terms of the bound
on the degreem for which the existence of a positive extensionM(k +m) ofM(k) is
equivalent to the existence of a rm. In [44] the bound onm is improved tom = deg q−1
for curves of the form y = q(x), deg q ≥ 3, and to m = � + 1 for curves of the form
yx� = 1, � ∈ N\{1}.

References to some classical work on the TMP are monographs [2, 3, 33], while for
a recent development in the area we refer a reader to [36]. Special cases of the TMP
have also been considered in [6, 7, 24, 28, 31, 32], while [35] considers subspaces of
the polynomial algebra and [8] the TMP for commutative R-algebras.
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The motivation for this paper was to solve the TMP concretely on some reducible
cubic curves, other than the case of three parallel lines solved in [42]. Applying an
affine linear transformation we show that every such TMP is equivalent to the TMP
on one of 8 canonical cases of reducible cubics of the form yc(x, y) = 0, where
c ∈ R[x, y], deg c = 2. In this article we solve the TMP for the cases c(x, y) =
ay + x2 + y2, a ∈ R\{0}, and c(x, y) = x − y2, which we call the circular and
the parabolic type, respectively. The main idea is to characterize the existence of a
decomposition of β into the sum β(�) +β(c), where β(�) = {β(�)

i, j }i, j∈Z+, 0≤i+ j≤2k and

β(c) = {β(c)
i, j }i, j∈Z+, 0≤i+ j≤2k admit a R-rm and a Z(c)-rm, respectively. Due to the

form of the cubic yc(x, y) = 0, it turns out that all but two moments of β(�) and β(c)

are not already fixed by the original sequence, i.e., β(�)
0,0, β

(�)
1,0, β

(c)
0,0, β

(c)
1,0 in the circular

type case and β
(�)
0,0, β

(�)
2k,0, β

(c)
0,0, β

(c)
2k,0 in the parabolic type case. Then, by an involved

analysis, the characterization of the existence of a decomposition β = β(�) + β(c)

can be done in both cases. We also characterize the number of atoms in a minimal
representingmeasure, i.e., a measure with theminimal number of atoms in the support.

1.1 Readers Guide

The paper is organized as follows. In Sect. 2 we present some preliminary results
needed to establish the main results of the paper. In Sect. 3 we show that to solve the
TMP on every reducible cubic curve it is enough to consider 8 canonical type relations
(see Proposition 3.1). In Sect. 4 we present the general procedure for solving the TMP
on all but one of the canonical types and prove some results that apply to them. Then in
Sects. 5 and 6 we specialize to the circular and the parabolic type relations and solve
them concretely (see Theorems 5.1 and 6.1). In both cases we show, by numerical
examples, that there are pure sequences β(6) with a psd M(3) but without a rm (see
Examples 5.3 and 6.3).

2 Preliminaries

We write R
n×m for the set of n × m real matrices. For a matrix M we call the linear

span of its columns a column space and denote it by C(M). The set of real symmetric
matrices of size n will be denoted by Sn . For a matrix A ∈ Sn the notation A � 0
(resp. A � 0) means A is positive definite (pd) (resp. positive semidefinite (psd)). We
write 0t1,t2 for a t1 × t2 matrix with only zero entries and 0t = 0t,t for short, where
t1, t2, t ∈ N. The notation E (�)

i, j , � ∈ N, stands for the usual � × � coordinate matrix
with the only nonzero entry at the position (i, j), which is equal to 1.

In the rest of this section let k ∈ N and β ≡ β(2k) = {βi, j }i, j∈Z+, 0≤i+ j≤2k be a
bivariate sequence of degree 2k.
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2.1 Moment Matrix

Let M(k) be the moment matrix of β (see (1.2)). Let Q1, Q2 be subsets of the set
{XiY j : i, j ∈ Z+, 0 ≤ i + j ≤ k}. We denote by (M(k))Q1,Q2 the submatrix of
M(k) consisting of the rows indexed by the elements of Q1 and the columns indexed
by the elements of Q2. In case Q := Q1 = Q2, we write (M(k))Q := (M(k))Q,Q

for short.

2.2 Affine Linear Transformations

The existence of representing measures is invariant under invertible affine linear trans-
formations of the form

φ(x, y) = (φ1(x, y), φ2(x, y)) := (a + bx + cy, d + ex + f y), (x, y) ∈ R
2,

(2.1)

a, b, c, d, e, f ∈ R with b f − ce �= 0. Namely, let Lβ : R[x, y]≤2k → R be a Riesz
functional of the sequence β defined by

Lβ(p) :=
∑

i, j∈Z+,
0≤i+ j≤2k

ai, jβi, j , where p =
∑

i, j∈Z+,
0≤i+ j≤2k

ai, j x
i y j .

We define β̃ = {β̃i, j }i, j∈Z+, 0≤i+ j≤2k by

β̃i, j = Lβ(φ1(x, y)
i · φ2(x, y)

j ).

By [14, Proposition 1.9], β admits a (r -atomic) K -rm if and only if β̃ admits a (r -
atomic) φ(K )-rm. We write β̃ = φ(β) and M(k; β̃) = φ(M(k; β)).

2.3 Generalized Schur Complements

Let

M =
(
A B
C D

)
∈ R

(n+m)×(n+m)

be a real matrix where A ∈ R
n×n , B ∈ R

n×m , C ∈ R
m×n and D ∈ R

m×m . The
generalized Schur complement [45] of A (resp. D) in M is defined by

M/A = D − CA†B (resp. M/D = A − BD†C),

where A† (resp. D†) stands for the Moore–Penrose inverse of A (resp. D).
The following lemma will be frequently used in the proofs.
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Lemma 2.1 Let n,m ∈ N and

M =
(

A B
BT C

)
∈ Sn+m,

where A ∈ Sn, B ∈ R
n×m and C ∈ Sm. If rank M = rank A, then the matrix equation

(
A
BT

)
W =

(
B
C

)
, (2.2)

where W ∈ R
n×m, is solvable and the solutions are precisely the solutions of the

matrix equation AW = B. In particular, W = A†B satisfies (2.2).

Proof The assumption rank M = rank A implies that

(
A
BT

)
W =

(
AW
BTW

)
=
(
B
C

)
(2.3)

for some W ∈ R
n×m . So the Eq. (2.2) is solvable. In particular, AW = B. It remains

to prove that any solution W to AW = B is also a solution to (2.3). Note that all the
solutions of the equation AW̃ = B are

W̃ = A†B + Z , (2.4)

where each column of Z ∈ R
n×m is an arbitrary vector from ker A. So W satisfiying

(2.3) is also of the form A†B + Z0 for some Z0 ∈ R
n×m with columns belonging to

ker A. We have that

C = BTW = BT (A†B + Z0) = BT A†B + BT Z0 = BT A†B, (2.5)

where we used the fact that each column of B belongs to C(A) and ker(A)⊥ = C(A).

Replacing W with any W̃ of the form (2.4) in the calculation (2.5) gives the same
result, which proves the statement of the proposition. ��

The following theorem is a characterization of psd 2 × 2 block matrices.

Theorem 2.2 [1] Let

M =
(

A B
BT C

)
∈ Sn+m

be a real symmetric matrix where A ∈ Sn, B ∈ R
n×m and C ∈ Sm. Then:

(1) The following conditions are equivalent:

(a) M � 0.
(b) C � 0, C(BT ) ⊆ C(C) and M/C � 0.
(c) A � 0, C(B) ⊆ C(A) and M/A � 0.
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(2) If M � 0, then

rank M = rank A + rank M/A = rankC + rank M/C .

2.4 Extension Principle

Proposition 2.3 Let A ∈ Sn be positive semidefinite, Q a subset of the set {1, . . . , n}
andA|Q the restriction ofA to the rows and columns from the set Q. IfA|Qv = 0 for
a nonzero vector v, then Av̂ = 0, where v̂ is a vector with the only nonzero entries in
the rows from Q and such that the restriction v̂|Q to the rows from Q equals to v.

Proof See [25, Proposition 2.4] or [42, Lemma 2.4] for an alternative proof. ��

2.5 Partially Positive Semidefinite Matrices and Their Completions

A partial matrix A = (ai, j )ni, j=1 is a matrix of real numbers ai, j ∈ R, where some
of the entries are not specified.

A partial symmetric matrix A = (ai, j )ni, j=1 is partially positive semidefinite
(ppsd) (resp. partially positive definite (ppd)) if the following two conditions hold:

(1) ai, j is specified if and only if a j,i is specified and ai, j = a j,i .
(2) All fully specified principal minors of A are psd (resp. pd).

For n ∈ N write [n] := {1, 2, . . . , n}. We denote by AQ1,Q2 the submatrix of
A ∈ R

n×n consisting of the rows indexed by the elements of Q1 ⊆ [n] and the
columns indexed by the elements of Q2 ⊆ [n]. In case Q := Q1 = Q2, we write
AQ := AQ,Q for short.

It is well-known that a ppsd matrix A(x) of the form as in Lemma 2.4 below admits
a psd completion (This follows from the fact that the corresponding graph is chordal,
see e.g., [5, 23, 30]). Since we will need an additional information about the rank of
the completion A(x0) and the explicit interval of all possible x0 for our results, we
give a proof of Lemma 2.4 based on the use of generalized Schur complements.

Lemma 2.4 Let A(x) be a partially positive semidefinite symmetric matrix of size n×n
with the missing entries in the positions (i, j) and ( j, i), 1 ≤ i < j ≤ n. Let

A1 = (A(x))[n]\{i, j}, a = (A(x))[n]\{i, j},{i},
b = (A(x))[n]\{i, j},{ j}, α = (A(x))i,i , γ = (A(x)) j, j .

Let

A2 = (A(x))[n]\{ j} =
(
A1 a
aT α

)
∈ Sn−1, A3 = (A(x))[n]\{i} =

(
A1 b
bT γ

)
∈ Sn−1,

and

x± := bT A†
1a ±√(A2/A1)(A3/A1) ∈ R.
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Then:

(i) A(x0) is positive semidefinite if and only if x0 ∈ [x−, x+].
(ii)

rank A(x0) =
{

max
{
rank A2, rank A3

}
, for x0 ∈ {x−, x+},

max
{
rank A2, rank A3

}+ 1, for x0 ∈ (x−, x+).

(iii) The following statements are equivalent:

(a) x− = x+.
(b) A2/A1 = 0 or A3/A1 = 0.
(c) rank A2 = rank A1 or rank A3 = rank A1.

Proof We write

A(x) =

⎛
⎜⎜⎜⎜⎜⎝

A11 a12 A13 a14 A15

(a12)T α (a23)T x (a25)T

(A13)
T a23 A33 a34 a35

(a14)T x (a34)T γ (a45)T

(A15)
T a25 (A35)

T a45 A55

⎞
⎟⎟⎟⎟⎟⎠

∈

⎛
⎜⎜⎜⎜⎝

Si−1 R
(i−1)×1

R
(i−1)×( j−i−1)

R
(i−1)×1

R
(i−1)×(n− j)

R
1×(i−1)

R R
1×( j−i−1)

R R
1×(n− j)

R
( j−1−1)×(i−1)

R
( j−i−1)×1 S j−i−1 R

( j−i−1)×1
R

( j−i−1)×(n− j)

R
1×(i−1)

R R
1×( j−i−1)

R R
1×(n− j)

R
(n− j)×(i−1)

R
(n− j)×1

R
(n− j)×( j−i−1)

R
(n− j)×1 Sn− j

⎞
⎟⎟⎟⎟⎠

Let P be a permutation matrix, which changes the order of columns to

1, 2, . . . , i − 1, i + 1, . . . , j − 1, j + 1, . . . , n, i, j .

Then

PT A(x)P =

⎛
⎜⎜⎜⎜⎜⎝

A11 A13 A15 a12 a14
(A13)

T A33 A35 a23 a34
(A15)

T (A35)
T A55 a25 a45

(a12)T (a23)T (a25)T α x
(a14)T (a34)T (a45)T x γ

⎞
⎟⎟⎟⎟⎟⎠

Note that

PT A(x)P =
⎛
⎝
A1 a b

aT α x
bT x γ

⎞
⎠ and PT A(x)P � 0 ⇔ A(x) � 0. (2.6)
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Lemma 2.4 with the missing entries in the positions (n − 1, n) and (n, n − 1) was
proved in [41, Lemma 2.11] using computations with generalized Schur complements
under one additional assumption:

A1 is invertible or rank A1 = rank A2. (2.7)

Herewe explainwhy the assumption (2.7) can be removed from [41, Lemma2.11]. The
proof of [41, Lemma 2.11] is separated into two cases: A2/A1 > 0 and A2/A1 = 0.
The case A2/A1 = 0 does not use (2.7). Assume now that A2/A1 > 0 or equivalently
rank A2 > rank A1. Invertibility of A1 (and by A2/A1 > 0 also A2 is invertible) is
used in the proof of [41, Lemma 2.11] for the application of the quotient formula (
[10])

(A(x)/A2) = (
A(x)/A1

)/(
A2/A1

)
, (2.8)

where

A(x)/A1 =

⎛
⎜⎜⎝

A2/A1

(
A1 b
aT x

)/
A1(

A1 a
bT x

)/
A1 A3/A1

⎞
⎟⎟⎠

However, the formula (2.8) has been generalized [9, Theorem 4] to noninvertible A1,
A2, where all Schur complements are the generalized ones, under the conditions:

(
b x
)T ∈ C(A2) and a ∈ C(A1). (2.9)

So if we show that the conditions (2.9) hold, the same proof as in [41, Lemma 2.11] can
be applied in the case A1 is singular. From A2 (resp. A3) being psd, a ∈ C(A1) (resp.
b ∈ C(A1)) follows by Theorem 2.2, used for (M, A) := (A2, A1) (resp. (M, A) :=
(A3, A1)). The assumption A2/A1 > 0 implies that

(
a α
)T

/∈ C(
(
A1 aT

)T
). Since

a ∈ C(A1), it follows that
(
0 1
)T ∈ C(A2). Hence,

(
b x
)T ∈ C(A2) for every x ∈ R,

which concludes the proof of (2.9). ��

2.6 Hamburger TMP

Let k ∈ N. For
v = (v0, . . . , v2k) ∈ R

2k+1

we define the corresponding Hankel matrix as

Av := (
vi+ j

)k
i, j=0 =

⎛
⎜⎜⎜⎜⎜⎝

v0 v1 v2 · · · vk

v1 v2 . .
.

. .
.

vk+1

v2 . .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
.

v2k−1
vk vk+1 · · · v2k−1 v2k

⎞
⎟⎟⎟⎟⎟⎠

∈ Sk+1. (2.10)
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We denote by vj := (
v j+�

)k
�=0 the ( j + 1)-th column of Av , 0 ≤ j ≤ k, i.e.,

Av = (
v0 · · · vk

)
.

As in [11], the rank of v, denoted by rank v, is defined by

rank v =
{

k + 1, if Av is nonsingular,
min {i : vi ∈ span{v0, . . . , vi−1}} , if Av is singular.

For m ≤ k we denote the upper left-hand corner
(
vi+ j

)m
i, j=0 ∈ Sm+1 of Av of size

m + 1 by Av(m). A sequence v is called positively recursively generated (prg) if
for r = rank v the following two conditions hold:

• Av(r − 1) � 0.
• If r < k + 1, denoting

(ϕ0, . . . , ϕr−1) := Av(r − 1)−1(vr , . . . , v2r−1)
T , (2.11)

the equality

v j = ϕ0v j−r + · · · + ϕr−1v j−1 (2.12)

holds for j = r , . . . , 2k.

The solution to the R-TMP is the following.

Theorem 2.5 [11, Theorems 3.9–3.10] For k ∈ N and v = (v0, . . . , v2k) ∈ R
2k+1

with v0 > 0, the following statements are equivalent:

(1) There exists a R-representing measure for β.
(2) There exists a (rank Av)-atomic R-representing measure for β.
(3) Av is positive semidefinite and one of the following holds:

(a) Av(k − 1) is positive definite.
(b) rank Av(k − 1) = rank Av .

(4) v is positively recursively generated.

2.7 TMP on the Unit Circle

The solution to the Z(x2 + y2 − 1)-TMP is the following.

Theorem 2.6 [13, Theorem 2.1] Let p(x, y) = x2 + y2 − 1 and β := β(2k) =
(βi, j )i, j∈Z+,i+ j≤2k , where k ≥ 2. Then the following statements are equivalent:

(1) β has a Z(p)-representing measure.
(2) β has a (rankM(k))-atomic Z(p)-representing measure.
(3) M(k) is positive semidefinite and the relations β2+i, j + βi,2+ j = βi, j hold for

every i, j ∈ Z+ with i + j ≤ 2k − 2.
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2.8 Parabolic TMP

We will need the following solution to the parabolic TMP (see [44, Theorem 3.7]).

Theorem 2.7 Let p(x, y) = x − y2 and β := β(2k) = (βi, j )i, j∈Z+,i+ j≤2k , where
k ≥ 2. Let

B = {1,Y , X , XY , X2, X2Y , . . . , Xi , XiY , . . . , Xk−1, Xk−1Y , Xk}.

Then the following statements are equivalent:

(1) β has a Z(p)-representing measure.
(2) β has a (rankM(k))-atomic Z(p)-representing measure.
(3) M(k) is positive semidefinite, the relations β1+i, j = βi,2+ j hold for every i, j ∈

Z+ with i + j ≤ 2k − 2 and one of the following statements holds:

(a)
(
M(k)

)
B\{Xk } is positive definite.

(b) rank
(
M(k)

)
B\{Xk } = rankM(k).

(4) The relations β1+i, j = βi,2+ j hold for every i, j ∈ Z+ with i + j ≤ 2k − 2 and
γ = (γ0, . . . , γ4k), defined by γi = β� i

2 �,i mod 2, admits aR-representingmeasure.

Remark 2.8 The equivalence (3)⇔(4) is part of the proof of [44, Theorem 3.7].

3 TMP on Reducible Cubics: Case Reduction

In this section we show that to solve the TMP on reducible cubic curves it suffices,
after applying an affine linear transformation, to solve the TMP on 8 canonical forms
of curves.

Proposition 3.1 Let k ∈ R and β := β(2k) = (βi, j )i, j∈Z+,i+ j≤2k . Assume M(k; β)

does not satisfy any nontrivial column relation between columns indexed bymonomials
of degree at most 2, but it satisfies a column relation p(X ,Y ) = 0, where p ∈ R[x, y]
is a reducible polynomial with deg p = 3. If β admits a representing measure, then
there exists an invertible affine linear transformation φ of the form (2.1) such that the
moment matrix φ

(
M(k; β)

)
satisfies a column relation q(x, y) = 0, where q has one

of the following forms:

Parallel lines type: q(x, y) = y(a + y)(b + y), a, b ∈ R \ {0}, a �= b.
Circular type: q(x, y) = y(ay + x2 + y2), a ∈ R \ {0}.
Parabolic type: q(x, y) = y(x − y2).

Hyperbolic type 1: q(x, y) = y(1 − xy).
Hyperbolic type 2: q(x, y) = y(x + y + axy), a ∈ R \ {0}.
Hyperbolic type 3: q(x, y) = y(ay + x2 − y2), a ∈ R.

Intersecting lines type: q(x, y) = yx(y + 1),
Mixed type: q(x, y) = y(1 + ay + bx2 + cy2), a, b, c ∈ R, b �= 0.
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Remark 3.2 The name of the types of the form q in Proposition 3.1 comes from the
type of the conic q(x,y)

y = 0. The conic x + y + axy = 0, a ∈ R\{0}, is a hyperbola,
since the discriminant a2 is positive. Similarly, the conic ay + x2 − y2 = 0, a ∈ R, is
a hyperbola, since its discriminant is equal to 4. Clearly, the conic ay + x2 + y2 = 0,
a ∈ R, is a circle with the center (0, − a

2 ) and radius a
2 .

Now we prove Proposition 3.1.

Proof of Proposition 3.1 Since p(x, y) is reducible, it is of the form p = p1 p2, where

p1(x, y) = a0 + a1x + a2y with ai ∈ R, (a1, a2) �= (0, 0),

p2(x, y) = b0 + b1x + b2y + b3x
2 + b4xy + b5y

2 with bi ∈ R, (b3, b4, b5)

�= (0, 0, 0).

Without loss of generality we can assume that a2 �= 0, since otherwise we apply the
alt (x, y) �→ (y, x) to exchange the roles of x and y. Since a2 �= 0, the alt

φ1(x, y) = (x, a0 + a1x + a2y)

is invertible and hence:

A sequence φ1(β) has a moment matrix φ1
(
M(k; β)

)
satisfying the column relation

c0Y + c1X + c2Y
2 + c3X

2Y + c4XY
2 + c5Y

3 = 0 with ci ∈ R, (c3, c4, c5)

�= (0, 0, 0). (3.1)

We separate two cases according to the value of c3.
Case 1: c3 = 0. In this case (3.1) is equal to

A sequence φ1(β) has a moment matrix φ1
(
M(k; β)

)
satisfying the column relation

c0Y + c1XY + c2Y
2 + c4XY

2 + c5Y
3 = 0 with ci ∈ R, (c4, c5) �= (0, 0).

(3.2)

If c0 = c1 = c2 = 0, then (3.2) is equal to c4XY 2 + c5Y 3 = 0. Since by assumption
β and hence φ1(β) admit a rm, supported on

Z(y2(c4x + c5y)) = Z(y(c4x + c5y)),

it followsby [12] that c4XY+c5Y 2 = 0 is a nontrivial column relation inφ1
(
M(k; β)

)
.

Hence, alsoM(k; β) satisfies a nontrivial column relation between columns indexed
by monomials of degree at most 2, which is a contradiction with the assumption of
the proposition. Therefore (c0, c1, c2) �= (0, 0, 0).
Case 1.1: c0 �= 0. Dividing the relation in (3.2) by c0, we get:

A sequence φ1(β) has a moment matrix φ1
(
M(k; β)

)
satisfying the column relation

Y + c̃1XY + c̃2Y
2 + c̃4XY

2 + c̃5Y
3 = 0 with c̃i ∈ R, (̃c4, c̃5) �= (0, 0).

(3.3)
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Case 1.1.1: c̃1 = 0. In this case (3.3) is equivalent to:

A sequence φ1(β) has a moment matrix φ1
(
M(k; β)

)
satisfying the column relation

Y + c̃2Y
2 + c̃4XY

2 + c̃5Y
3 = 0 with c̃i ∈ R, (̃c4, c̃5) �= (0, 0).

(3.4)

Case 1.1.1.1: c̃4 = 0. In this case (3.4) is equivalent to

A sequence φ1(β) has a moment matrix φ1
(
M(k; β)

)
satisfying the column relation

Y + c̃2Y
2 + c̃5Y

3 = 0 with c̃2 ∈ R, c̃5 ∈ R \ {0}.
(3.5)

The quadratic equation 1 + c̃2y + c̃5y2 = 0 must have two different real nonzero
solutions, otherwise Z(y(1 + c̃2x + c̃5y)) is a union of two parallel lines. Then it
follows by [12] that there is a nontrivial column relation inM(k; β) between columns
indexedbymonomials of degree atmost 2,which is a contradictionwith the assumption
of the proposition. So we have the parallel lines type relation from the proposition.

Case 1.1.1.2: c̃4 �= 0. In this case the alt

φ2(x, y) =
(

− c̃2 − c̃4x − c̃5y, y
)

is invertible and applying it to φ1(β), we obtain:

A sequence (φ2 ◦ φ1)(β) has a moment matrix (φ2 ◦ φ1)
(
M(k; β)

)
satisfying

the hyperbolic type 1 relation from the proposition.

Case 1.1.2: c̃1 �= 0. We apply the alt

φ3(x, y) = (1 + c̃1x, y)

to φ1(β) and obtain:

A sequence (φ3 ◦ φ1)(β) has a moment matrix (φ3 ◦ φ1)
(
M(k; β)

)
satisfying

the column relation XY + ĉ2Y
2 + ĉ4XY

2 + ĉ5Y
3 = 0 with ĉi ∈ R, (̂c4, ĉ5) �= (0, 0).

(3.6)

Case 1.1.2.1: ĉ4 �= 0. We apply the alt

φ4(x, y) =
(
x − ĉ5

ĉ4
y, y
)
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to (φ3 ◦ φ1)(β) and obtain:

A sequence (φ4 ◦ φ3 ◦ φ1)(β) has a moment matrix (φ4 ◦ φ3 ◦ φ1)
(
M(k; β)

)
satisfying

the column relation XY + c̆2Y
2 + ĉ4XY

2 = 0 with c̆2, ĉ4 ∈ R, ĉ4 �= 0.
(3.7)

Case 1.1.2.1.1: c̆2 = 0. In this case the relation in (3.7) is of the form

XY + ĉ4XY
2 = 0 with ĉ4 ∈ R \ {0}.

Applying the alt

φ5(x, y) = (x, ĉ4y)

to (φ4 ◦ φ3 ◦ φ1)(β) we obtain:

A sequence (φ5 ◦ φ4 ◦ φ3 ◦ φ1)(β) has a moment matrix (φ5 ◦ φ4 ◦ φ3 ◦ φ1)(
M(k; β)

)
satisfying

the intersecting lines type relation from the proposition.

Case 1.1.2.1.2: c̆2 �= 0. We apply the alt

φ6(x, y) = (x, c̆2y)

to (φ4 ◦ φ3 ◦ φ1)(β) and obtain:

A sequence (φ6 ◦ φ4 ◦ φ3 ◦ φ1)(β) has a moment matrix (φ6 ◦ φ4 ◦ φ3 ◦ φ1)(
M(k; β)

)
satisfying

the hyperbolic type 2 relation in the proposition.

Case 1.1.2.2: ĉ4 = 0. In this case (3.6) is equivalent to:

A sequence (φ3 ◦ φ1)(β) has a moment matrix (φ3 ◦ φ1)
(
M(k; β)

)
satisfying

the column relation XY + ĉ2Y
2 + ĉ5Y

3 = 0 with ĉ2, ĉ5 ∈ R,

ĉ5 �= 0.
(3.8)

Case 1.1.2.2.1: c̃2 = 0. Applying the alt

φ7(x, y) = (x, −ĉ5y),
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to (φ3 ◦ φ1)(β) we obtain:

A sequence (φ7 ◦ φ3 ◦ φ1)(β) has a moment matrix (φ7 ◦ φ3 ◦ φ1)(
M(k; β)

)
satisfying

the parabolic type relation in the proposition.

Case 1.1.2.2.2: c̃2 �= 0. Applying the alt

φ8(x, y) = (x, ĉ2y)

to (φ3 ◦ φ1)(β) and obtain:

A sequence (φ8 ◦ φ3 ◦ φ1)(β) has a moment matrix (φ8 ◦ φ3 ◦ φ1)(
M(k; β)

)
satisfying

the column relation XY + Y 2 + c̆5Y
3 = 0 with c̆5 ∈ R,

(c 5 �= 0.

(3.9)

Further on, the relation in (3.9) is equivalent to

(

(c 5)
−1(XY + Y 2) + Y 3 = 0 with (c 5 ∈ R,

(c 5 �= 0. (3.10)

Finally, applying the alt

φ9(x, y) = (
(− (c 5)

−1(x + y), y
)

to (φ8 ◦ φ3 ◦ φ1)(β), we obtain:

A sequence (φ9 ◦ φ8 ◦ φ3 ◦ φ1)(β) has a moment matrix (φ9 ◦ φ8 ◦ φ3 ◦ φ1)(
M(k; β)

)
satisfying the parabolic type relation in the proposition.

Case 1.2: c0 = 0. In this case (3.2) is equivalent to:

A sequence φ1(β) has a moment matrix φ1
(
M(k; β)

)
satisfying the column relation

c1XY + c2Y
2 + c4XY

2 + c5Y
3 = 0 with ci ∈ R, (c4, c5) �= (0, 0).

(3.11)

Assume that c1 = 0. Since by assumption β and hence φ1(β) admits a rm, supported
on

Z(y2(c2 + c4x + c5y)) = Z(y(c2 + c4x + c5y)),

it follows by [12] that c2Y + c4XY + c5Y 2 = 0 is a nontrivial column relation in
φ1
(
M(k; β)

)
. Hence, also M(k; β) satisfies a nontrivial column relation between
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columns indexed by monomials of degree at most 2, which is a contradiction with the
assumption of the proposition. Hence, c1 �= 0. Applying the alt (x, y) �→ (c1x, y) to
φ1(β), we obtain a sequence with the moment matrix satisfying the column relation
of the form (3.6) and we can proceed as in the Case 1.1.2 above.
Case 2: c3 �= 0. Applying the alt

φ10(x, y) =
(√|c3|x, y

)

to φ1(β), we obtain:

A sequence (φ10 ◦ φ1)(β) has a moment matrix (φ10 ◦ φ1)
(
M(k; β)

)
satisfying

the column relation c0Y + c̃1XY + c2Y
2 + |c3|

c3
X2Y + c̃4XY

2 + c5Y
3 = 0

with ci , c̃i ∈ R. (3.12)

Case 2.1: c̃1 = 0. In this case (3.12) is equivalent to:

A sequence (φ10 ◦ φ1)(β) has a moment matrix (φ10 ◦ φ1)
(
M(k; β)

)
satisfying

the column relation c0Y + c2Y
2 + |c3|

c3
X2Y + c̃4XY

2 + c5Y
3 = 0 with ci , c̃i ∈ R.

(3.13)

Case 2.1.1: c0 = 0. Dividing the relation in (3.13) with |c3|
c3

, (3.13) is equivalent to:

A sequence (φ10 ◦ φ1)(β) has a moment matrix (φ10 ◦ φ1)
(
M(k; β)

)
satisfying

the column relation c̃2Y
2 + X2Y + ĉ4XY

2 + c̃5Y
3 = 0 with c̃2, ĉ4, c̃5 ∈ R.

(3.14)

Applying the alt

φ11(x, y) =
(
x + ĉ4

2
y, y

)

to (φ10 ◦ φ1)(β), we obtain:

A sequence (φ11 ◦ φ10 ◦ φ1)(β) has a moment matrix (φ11 ◦ φ10 ◦ φ1)
(
M(k; β)

)
satisfying the column relation c̆2Y

2 + X2Y + c̆5Y
3 = 0 with c̆2, c̆5 ∈ R.

(3.15)

Case 2.1.1.1: c̆5 = 0. Since by assumption of the proposition, (φ11◦φ10◦φ1)(β) admits
a rm, supported on Z(y(c̆2y + x2)), c̆2 in (3.15) cannot be equal to 0. Indeed, c̆2 = 0
would imply that Z(y(c̆2y + x2)) = Z(yx2) = Z(yx) and by [12], XY = 0 would
be a nontrivial column relation in (φ11 ◦ φ10 ◦ φ1)

(
M(k; β)

)
. Hence, also M(k; β)

would satisfy a nontrivial column relation between columns indexed by monomials
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of degree at most 2, which is a contradiction with the assumption of the proposition.
Since c̆2 �= 0, after applying the alt

φ12(x, y) = (x, −c̆2y)

to (φ11 ◦ φ10 ◦ φ1)(β), we obtain:

A sequence (φ12 ◦ φ11 ◦ φ10 ◦ φ1)(β) has a moment matrix (φ12 ◦ φ11 ◦ φ10 ◦ φ1)(
M(k; β)

)
satisfying the parabolic type relation in the proposition.

Case 2.1.1.2: c̆5 > 0. Applying the alt

φ13(x, y) =
(
x,
√
c̆5y
)

to (φ11 ◦ φ10 ◦ φ1)(β) we obtain:

A sequence (φ13 ◦ φ11 ◦ φ10 ◦ φ1)(β) has a moment matrix (φ13 ◦ φ11 ◦ φ10 ◦ φ1)(
M(k; β)

)
satisfying the circular type relation in the proposition.

Case 2.1.1.3: c̆5 < 0. Applying the alt

φ14(x, y) =
(
x,
√

−c̆5y
)

to (φ11 ◦ φ10 ◦ φ1)(β), we obtain:

A sequence (φ14 ◦ φ11 ◦ φ10 ◦ φ1)(β) has a moment matrix (φ14 ◦ φ11 ◦ φ10 ◦ φ1)(
M(k; β)

)
satisfying the hyperbolic type 3 relation in the proposition.

Case 2.1.2: c0 �= 0. Dividing the relation in (3.13) with c0, (3.13) is equivalent to:

A sequence (φ10 ◦ φ1)(β) has a moment matrix (φ10 ◦ φ1)
(M(k; β)

)
satisfying

the column relation Y + c̃2Y
2 + c̃3X

2Y + ĉ4XY
2 + c̃5Y

3 = 0 with c̃i , ĉ4 ∈ R, c̃3 �= 0.
(3.16)

Applying the alt

φ15(x, y) =
(
x + ĉ4

2̃c3
, y

)

to (φ10 ◦ φ1)(β), we obtain:

A sequence (φ15 ◦ φ10 ◦ φ1)(β) has a moment matrix (φ15 ◦ φ10 ◦ φ1)
(
M(k; β)

)
satisfying the mixed type relation in the proposition.
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Case 2.2: c̃1 �= 0. Dividing the relation in (3.12) with |c3|
c3

, (3.12) is equivalent to:

A sequence (φ10 ◦ φ1)(β) has a moment matrix (φ10 ◦ φ1)
(
M(k; β)

)
satisfying the

column relation ĉ0Y + ĉ1XY + ĉ2Y
2 + X2Y + ĉ4XY

2 + ĉ5Y
3 = 0 with ĉi ∈ R,

ĉ1 �= 0. (3.17)

Now we apply the alt

φ16(x, y) =
(
x + ĉ1

2
, y

)

to (φ10 ◦ φ1)(β) and obtain:

A sequence (φ16 ◦ φ10 ◦ φ1)(β) has a moment matrix (φ16 ◦ φ10 ◦ φ1)
(
M(k; β)

)
satisfying the column relation c̆0Y + c̆2Y

2 + X2Y + c̆4XY
2 + c̆5Y

3 = 0 with c̆i ∈ R.

(3.18)

Case 2.2.1: c̆0 = 0. In this case the relation in (3.18) becomes equal to the relation in
(3.14) from the Case 2.1.1, so we can proceed as above.
Case 2.2.2: c̆0 �= 0. Dividing the relation in (3.18) with c̆0, it becomes equal to the
relation in (3.16) from the Case 2.1.2, so we can proceed as above. ��

4 Solving the TMP on Canonical Reducible Cubic Curves

Let β = {βi }i∈Z2+,|i |≤2k be a sequence of degree 2k, k ∈ N, and

C = {1, X ,Y , X2, XY ,Y 2, . . . , Xk, Xk−1Y , . . . ,Y k} (4.1)

the set of rows and columns of themomentmatrixM(k; β) in the degree-lexicographic
order. Let

p(x, y) = y · c(x, y) ∈ R[x, y]≤3 (4.2)

be a polynomial of degree 3 in one of the canonical forms from Proposition 3.1.
Hence, c(x, y) a polynomial of degree 2. β will have a Z(p)-rm if and only if it can
be decomposed as

β = β(�) + β(c), (4.3)

where

β(�) := {β(�)
i }i∈Z2+,|i |≤2k has a representing measure on y = 0,

β(c) := {β(c)
i }i∈Z2+,|i |≤2k has a representing measure on the conic c(x, y) = 0,
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and the sum in (4.3) is a component-wise sum. On the level of moment matrices, (4.3)
is equivalent to

M(k; β) = M(k; β(�)) + M(k; β(c)). (4.4)

Note that if β has aZ(p)-rm, then thematrixM(k; β) satisfies the relation p(X ,Y ) =
0 and it must be rg, i.e.,

XiY j p(X ,Y ) = 0 for i, j = 0, . . . , k − 3 such that i + j ≤ k − 3. (4.5)

We write �X (0,k) := (1, X , . . . , Xk). Let T ⊆ C be a subset, such that the columns
from T span the column space C(M(k; β)) and

P is a permutation matrix such that moment matrix M̃(k; β) := PM(k; β)PT

has rows and columns indexed in the order �X (0,k), T \ �X (0,k), C \ ( �X (0,k) ∪ T ).

(4.6)

In this new order of rows and columns, (4.4) becomes equivalent to

M̃(k; β) = M̃(k; β(�)) + M̃(k; β(c)). (4.7)

We write

M̃(k; β) =
⎛
⎜⎝

�X (0,k) T \ �X (0,k) C\( �X (0,k)∪T )

( �X (0,k))T A11 A12 A13

(T \ �X (0,k))T (A12)
T A22 A23

(C\( �X (0,k)∪T ))T (A13)
T (A23)

T A33

⎞
⎟⎠. (4.8)

By the form of the atoms, we know that M̃(k; β(�)) and M̃(k; β(c)) will be of the
forms

M̃(k; β(c)) =
⎛
⎜⎝

�X (0,k) T \ �X (0,k) C\( �X (0,k)∪T )

( �X (0,k))T A A12 A13

(T \ �X (0,k))T (A12)
T A22 A23

(C\( �X (0,k)∪T ))T (A13)
T (A23)

T A33

⎞
⎟⎠,

M̃(k; β(�)) =
⎛
⎜⎝

�X (0,k) T \ �X (0,k) C\( �X (0,k)∪T )

( �X (0,k))T A11 − A 0 0
(T \ �X (0,k))T 0 0 0

(C\( �X (0,k)∪T ))T 0 0 0

⎞
⎟⎠

(4.9)
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for some Hankel matrix A ∈ Sk+1. Define matrix functions F : Sk+1 → S (k+1)(k+2)
2

and H : Sk+1 → Sk+1 by

F(A) =
⎛
⎜⎝

A A12 A13

(A12)
T A22 A23

(A13)
T (A23)

T A33

⎞
⎟⎠ and H(A) = A11 − A. (4.10)

Using (4.9), (4.7) becomes equivalent to

M̃(k; β) = F(A) + H(A) ⊕ 0 k(k+1)
2

(4.11)

for some Hankel matrix A ∈ Sk+1.

Lemma 4.1 Assume the notation above. The sequence β = {βi }i∈Z2+,|i |≤2k , where
k ≥ 3, has a Z(p)-representing measure if and only if there exist a Hankel matrix
A ∈ Sk+1, such that:

(1) The sequence with the moment matrix F(A) has a Z(c)-representing measure.
(2) The sequence with the moment matrix H(A) has a R-representing measure.

Proof First we prove the implication (⇒). If β has a Z(p)-rm μ, then μ is supported
on the union of the line y = 0 and the conic c(x, y) = 0. Since the moment matrix,
generated by the measure supported on y = 0, can be nonzero only when restricted to
the columns and rows indexed by �X (0,k), it follows that the moment matrix generated
by the restriction μ|{c=0} (resp. μ|{y=0}) of the measure μ to the conic c(x, y) = 0
(resp. line y = 0), is of the formF(A) (resp.H(A)⊕0 k(k+1)

2
) for some Hankel matrix

A ∈ Sk+1.
It remains to establish the implication (⇐). Let M(c)(k) (resp. M(�)(k)) be the

moment matrix generated by the measure μ1 (resp. μ2) supported on Z(c) (resp.
y = 0) such that

PM(c)(k)PT = F(A), PM(�)(k)PT = H(A) ⊕ 0 k(k+1)
2

, (4.12)

respectively, where P is as in (4.6). The equalities (4.12) imply that M(k; β) =
M(c)(k) +M(�)(k; β). Since the measure μ1 + μ2 is supported on the curve Z(c) ∪
{y = 0} = Z(p), the implication (⇐) holds. ��
Lemma 4.2 Assume the notation above and let the sequence β = {βi }i∈Z2+,|i |≤2k ,
where k ≥ 3, admit aZ(p)-representingmeasure. Let A := A(

β
(c)
0,0,β

(c)
1,0,...,β

(c)
2k,0

) ∈ Sk+1

be a Hankel matrix such that F(A) admits a Z(c)-representing measure and H(A)

admits a R-representing measure. Let c(x, y) be of the form

c(x, y) = a00 + a10x + a20x
2 + a01y + a02y

2 + a11xy with ai j ∈ R

and exactly one of the coefficients a00, a10, a20 is nonzero.
(4.13)
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If:

(1) a00 �= 0, then

β
(c)
i,0 = − 1

a00
(a01βi,1 + a02βi,2 + a11βi+1,1) for i = 0, . . . , 2k − 2.

(2) a10 �= 0, then

β
(c)
i,0 = − 1

a10
(a01βi,1 + a02βi,2 + a11βi+1,1) for i = 1, . . . , 2k − 1.

(3) a20 �= 0, then

β
(c)
i,0 = − 1

a20
(a01βi,1 + a02βi,2 + a11βi+1,1) for i = 2, . . . , 2k.

Proof By Lemma 4.1,F(A) has aZ(c)-rm for some Hankel matrix A ∈ Sk+1. Hence,
F(A) satisfies the rg relations XiY j c(X ,Y ) = 0 for i, j ∈ Z+, i + j ≤ k − 2. Let us
assume that a00 �= 0 and a10 = a20 = 0. In particular, F(A) satisfies the relations

a001 + a01Y + a02Y
2 + a11XY = 0,

a00X
k−2 + a01X

k−2Y + a02X
k−2Y 2 + a11X

k−1Y = 0. (4.14)

Observing the rows 1, X , . . . , Xk of F(A), the relations (4.14) imply that

β
(c)
i,0 = − 1

a00

(
a01β

(c)
i,1 + a02β

(c)
i,2 + a11β

(c)
i+1,1

)
for i = 0, . . . , 2k − 2. (4.15)

Using the forms ofM̃(k; β) andF(A) (see (4.8) and (4.10)), it follows thatβ(c)
i,1 = βi,1

andβ
(c)
j,2 = β j,2 for each i, j . Using this in (4.15) proves the statement (1) of the lemma.

The proofs of the statements (2) and (3) are analogous. ��
Lemma 4.2 states that for all canonical relations from Proposition 3.1 except for

the mixed type relation, all but two entries of the Hankel matrix A from Lemma 4.1
are uniquely determined by β. The following lemma gives the smallest candidate for
A in Lemma 4.1 with respect to the usual Loewner order of matrices.

Lemma 4.3 Assume the notation above and let β = {βi }i∈Z2+,|i |≤2k , where k ≥ 3, be

a sequence of degree 2k. Assume that M̃(k; β) is positive semidefinite and satisfies
the column relations (4.5). Then:

(1) F(A) � 0 for some A ∈ Sk+1 if and only if A � A12(A22)
†(A12)

T .
(2) F

(
A12(A22)

†(A12)
T
) � 0 and H

(
A12(A22)

†(A12)
T
) � 0.

(3) F
(
A12(A22)

†(A12)
T
)
satisfies the column relations XiY j c(X ,Y ) = 0 for i, j ∈

Z+ such that i + j ≤ k − 2.
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(4) We have that

rank M̃(k; β) = rank A22 + rank
(
A11 − A12(A22)

†(A12)
T )

= rankF
(
A12(A22)

†(A12)
T )+ rankH

(
A12(A22)

†(A12)
T ).

Proof By the equivalence between (1a) and (1b) of Theorem 2.2 used for (M, A) =
(M̃(k; β), A11) and (M, A) = (

(
M̃(k; β)

)
�X (0,k)∪T , A11), it follows in particular that

C
((

(A12)
T

(A13)
T

))
⊆ C

((
A22 A23

(A23)
T A33

))
,

C(AT
12) ⊆ C(A22). (4.16)

and

H(Amin) � 0, (4.17)

where

Amin := (
A12 A13

) ( A22 A23

(A23)
T A33

)† (
(A12)

T

(A13)
T

)
.

Using the equivalence between (1a) and (1b) of Theorem 2.2 again for the pairs
(M, A) = (F(A), A) and (M, A) = (

(
F(A)

)
�X (0,k)∪T , A), it follows that

F(A) � 0 ⇔ A � Amin,

(
F(A)

)
�X (0,k)∪T � 0 ⇔ A � A12(A22)

†(A12)
T =: Ãmin.

(4.18)

Since F(A) � 0 implies, in particular, that
(
F(A)

)
�X (0,k)∪T � 0, (4.18) implies that

Amin � Ãmin. (4.19)

Claim. Amin = Ãmin.

Proof of Claim. By (4.18) and (4.19), it suffices to prove that F( Ãmin) � 0. By defini-
tion of T and the relations XiY j p(X ,Y ) = XiY j+1c(X ,Y ) = 0, i, j ∈ Z+, i + j ≤
k − 3, which hold in M̃(k; β), it follows, in particular, that

C
((

A23
A33

))
⊆ C

((
A22

(A23)
T

))
(4.20)
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(4.16) and (4.20) together imply that

C
((

(A12)
T

(A13)
T

))
⊆ C

((
A22

(A23)
T

))
. (4.21)

(4.16) and (4.21) can be equivalently expressed as

(
A22

(A23)
T

)
W =

(
A23
A33

)
for some matrix W ,

(
A22

(A23)
T

)
X =

(
(A12)

T

(A13)
T

)
for some matrix X .

(4.22)

We have that

0 �
⎛
⎝XT

I
WT

⎞
⎠ A22

(
X I W

)

=
⎛
⎜⎝
XT A22X XT A22 XT A22W

A22X A22 A22W

WT A22X WT A22 WT A22W

⎞
⎟⎠

=
⎛
⎜⎝
A12(A22)

†(A12)
T A12 A13

(A12)
T A22 A23

(A13)
T (A23)

T A33

⎞
⎟⎠ = F( Ãmin)

where I is the identity matrix of the same size as A22 and we used (4.22) in the second
equality. This proves the Claim. ��

Using (4.17), (4.18) and Claim, the statements (1) and (2) follow. By Theorem 2.2.(2),
used for (M, A) = (M̃(k; β), A11), we have that

rank M̃(k; β) = rank

(
A22 A23

(A23)
T A33

)
+ rankH(Amin)

= rankF(Amin) + rankH(Amin).

(4.23)

By (4.20) and

B :=
(

A22 A23

(A23)
T A33

)
� 0,
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it follows by Theorem 2.2, used for (M, A) = (B, A22), that rank B = rank A22.
Using this and the Claim, (4.23) implies the statement (4).

Since M̃(k; β) satisfies the relations (4.5), it follows that the restriction(
F( Ãmin)

)
C\ �X (0,k),C satisfies the column relations XiY j c(X ,Y ) = 0 for i, j ∈ Z+

such that i + j ≤ k − 2. By Proposition 2.3, these relations extend to F( Ãmin), which
proves (3). ��
Remark 4.4 By Lemmas 4.1–4.3, solving the Z(p)-TMP for the sequence β =
{βi }i∈Z2+,|i |≤2k , where k ≥ 3, with p being any but the mixed type relation from
Proposition 3.1, the natural procedure is the following:

(1) First compute Amin := A12(A22)
†A12. By Lemma 4.3.(3), there is one entry of

Amin, which might need to be changed to obtain a Hankel structure. Namely, in
the notation (4.13), if:

(a) a00 �= 0, then the value of (Amin)k,k must be made equal to (Amin)k−1,k+1.
(b) a10 �= 0, then the value of (Amin)1,k+1 must be made equal to (Amin)2,k .
(c) a20 �= 0, then the value of (Amin)2,2 must be made equal to (Amin)3,1.

Let Âmin be the matrix obtained from Amin after performing the changes described
above.

(2) Study if F( Âmin) and H( Âmin) admit a Z(c)-rm and a R-rm, respectively. If
the answer is yes, β admits a Z(p)-rm. Otherwise by Lemma 4.2, there are two
antidiagonals of the Hankel matrix Âmin, which can by varied so that the matrices
F( Âmin) and H( Âmin) will admit the corresponding measures. Namely, in the
notation (4.13), if:

(a) a00 �= 0, then the last two antidiagonals of Âmin can be changed.
(b) a10 �= 0, then the left-upper and the right-lower corner of Âmin can be changed.
(c) a20 �= 0, then the first two antidiagonals of Âmin can be changed.

To solve the Z(p)-TMP for β one needs to characterize, when it is possible to
change these antidiagonals in such away to obtain amatrix Ămin, such thatF( Ămin)

and H( Ămin) admit a Z(c)-rm and a R-rm, respectively.

In Sects. 5 and 6 we solve concretely the TMP on reducible cubic curves in the
circular and parabolic type form (see the classification from Proposition 3.1). The
parallel lines type form was solved in [42], while the hyperbolic type forms will be
solved in the forthcoming work [40].

5 Circular Type Relation: p(x, y) = y(ay + x2 + y2), a /∈ R\{0}
In this section we solve the Z(p)-TMP for the sequence β = {βi, j }i, j∈Z+,i+ j≤2k of
degree 2k, k ≥ 3, where p(x, y) = y(ay + x2 + y2), a ∈ R\{0}. Assume the notation
from Sect. 4. If β admits a Z(p)-TMP, then M(k; β) must satisfy the relations

aY 2+ j X i + Y 1+ j X2+i = −Y 3+ j X i for i, j ∈ Z+ such that i + j ≤ k − 3.

(5.1)
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In the presence of all column relations (5.1), the column space C(M(k; β)) is spanned
by the columns in the set

T = �X (0,k) ∪ Y �X (0,k−1) ∪ Y 2 �X (0,k−2), (5.2)

where

Y i �X ( j,�) := (Y i X j ,Y i X j+1, . . . ,Y i X�) with i, j, � ∈ Z+, j ≤ �, i + � ≤ k.

Let M̃(k; β) be as in (4.9). Let

Amin := A12(A22)
†(A12)

T . (5.3)

As described in Remark 4.4, Amin might need to be changed to

Âmin = Amin + ηE (k+1)
2,2 ,

where

η := (Amin)1,3 − (Amin)2,2.

Let F(A) and H(A) be as in (4.10). Write

H( Âmin) :=
⎛
⎜⎝

1 X �X (2,k)

1 β0,0 − (Amin)1,1 β1,0 − (Amin)1,2 (h(1)
12 )T

X β1,0 − (Amin)1,2 β2,0 − (Amin)1,3 (h(2)
12 )T

( �X (2,k))T h(1)
12 h(2)

12 H22

⎞
⎟⎠,

H1 := (H( Âmin)){1}∪ �X (2,k) =
( 1 �X (2,k)

1 β0,0 − (Amin)1,1 (h(1)
12 )T

( �X (2,k))T h(1)
12 H22

)
,

H2 := (H( Âmin)) �X (1,k) =
( X �X (2,k)

X β2,0 − (Amin)1,3 (h(2)
12 )T

( �X (2,k))T h(2)
12 H22

)
.

(5.4)

Define also the matrix function

G : R
2 → Sk+1, G(t,u) = Âmin + tE (k+1)

1,1 + u
(
E (k+1)
1,2 + E (k+1)

2,1

)
. (5.5)

The solution to the cubic circular type relation TMP is the following.

Theorem 5.1 Let p(x, y) = y(ay+x2+y2), a ∈ R\{0}, andβ = (βi, j )i, j∈Z+,i+ j≤2k ,
where k ≥ 3. Assume also the notation above. Then the following statements are
equivalent:
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(1) β has a Z(p)-representing measure.
(2) M̃(k; β) is positive semidefinite, the relations

aβi,2+ j + β2+i,1+ j = −βi,3+ j hold for every i, j ∈ Z+ with i + j ≤ 2k − 3

(5.6)

and one of the following statements holds:

(a) η = 0 and one of the following holds:
(i) rank(H(Amin)) �X (0,k−1) = k.
(ii) rank(H2) �X (1,k−1) = rank H2.

(b) η > 0, H2 is positive semidefinite and defining a real number

u0 = β1,0 − (Amin)1,2 − (h(1)
12 )T (H22)

†h(2)
12 , (5.7)

a function

h(t) = √
(H1/H22 − t)(H2/H22) (5.8)

and a set

I =
{
(t,

√
ηt) ∈ R+ × R+ : √

ηt = u0 + h(t)
}
,

∪
{
(t,

√
ηt) ∈ R+ × R− : √

ηt = u0 − h(t)
}
,

∪
{
(t, −√

ηt) ∈ R+ × R+ : − √
ηt = u0 + h(t)

}
,

∪
{
(t, −√

ηt) ∈ R+ × R− : − √
ηt = u0 − h(t)

}
, (5.9)

one of the following holds:

(i) The set I has two elements and H2 is positive definite.
(ii) I = {(t̃, ũ)} and

rank
((
H(G(t̃, ũ))

)
�X (0,k−1)

) = rankH(G(t̃, ũ)). (5.10)

Moreover, if a Z(p)-representing measure for β exists, then:

• There exists at most (rank M̃(k; β) + 1)-atomic Z(p)-representing measure.
• There exists a (rank M̃(k; β))-atomic Z(p)-representing measure if and only if
any of the following holds:

– η = 0.
– η > 0 and H(Amin) is positive definite.

In particular, a p-pure sequence β with a Z(p)-representing measure admits a
(rank M̃(k; β))-atomic Z(p)-representing measure.
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Remark 5.2 In this remark we explain the idea of the proof of Theorem 5.1 and the
meaning of the conditions in the statement of the theorem.

By Lemmas 4.1–4.2, the existence of aZ(p)-rm for β is equivalent to the existence
of t, u ∈ R such that F(G(t, u)) admits aZ(ay + x2 + y2)-rm andH(G(t, u)) admits
a R-rm. Let

R1 = {
(t, u) ∈ R

2 : F(G(t, u)) � 0
}

and R2 = {
(t, u) ∈ R

2 : H(G(t, u)) � 0
}
.

We denote by ∂Ri and R̊i the topological boundary and the interior of the set Ri ,
respectively. By the necessary conditions for the existence of a Z(p)-rm [12, 14, 25],
M̃(k; β) must be psd and the relations (5.6) must hold. Using also Theorem 2.6,
Theorem 5.1.(1) is equivalent to

M̃(k; β) � 0, the relations 5.6 hold and

∃(t0, u0) ∈ R1 ∩ R2 : H(G(t0, u0)) admits a R-rm. (5.11)

In the proof of Theorem 5.1 we show that (5.11) is equivalent to Theorem 5.1.(2):

(1) First we establish (see Claims 1 and 2 below) that the form of:

• R1 is one of the following:

where the left case occurs if η > 0 and the right if η = 0. The case η < 0
cannot occur.

• R2 is one of the following:

where the left case occurs if H2/H22 > 0 and the right if H2/H22 = 0.
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(2) If η = 0, then we show that (5.11) is equivalent to

M̃(k; β) � 0, the relations 5.6 hold and H(G(0, 0)) admits a R-rm.

The latter statement is further equivalent to Theorem 5.1.(2a).
(3) If η > 0, then by the forms ofR1 andR2, I = ∂R1∩∂R2 is one of the following:

(i) ∅, (ii) a one-element set, (iii) a two-element set. In the case:

• (i), a Z(p)-rm for β clearly cannot exist.
• (ii), then denoting I = {(t̃, ũ)}, (5.11) is equivalent to

M̃(k; β) � 0, the relations 5.6 hold and H(G(t̃, ũ)) admits a R-rm.

The latter statement is equivalent to Theorem 5.1.(2(b)ii).
• (iii), (5.11) is equivalent to H2 being positive definite, which is Theorem
5.1.(2(b)i). Moreover, in this case for at least one of the points (t, u) ∈ I, a
Z(ay + x2 + y2)-rm and a R-rm exist for F(G(t, u)) andH(G(t, u)), respec-
tively.

Proof of Theorem 5.1 Let R1,R2 be as in Remark 5.2. As explained in Remark 5.2,
Theorem5.1.(1) is equivalent to (5.11), thus it remains to prove that (5.11) is equivalent
to Theorem 5.1.(2).

First we establish a few claims needed in the proof. Claim 1 (resp. 2) describesR1
(resp.R2) concretely. ��
Claim 1. Assume that M̃(k; β) � 0. Then

R1 =
{{

(t, u) ∈ R
2 : t ≥ 0, u ∈ [−√

ηt,
√

ηt
] }

, if η ≥ 0,

∅, if η < 0.
(5.12)

If η ≥ 0, we have

rankF(G(t, u)) =

⎧⎪⎨
⎪⎩

rankF(Amin), if t = 0, η = 0,

rankF(Amin) + 1, if (t > 0 or η > 0) and u ∈ {−√
ηt,

√
ηt},

rankF(Amin) + 2, if t > 0, η > 0, u ∈ (−√
ηt,

√
ηt
)
,

(5.13)

where Amin is an in (5.3).

Proof of Claim 1. Note that

G(t,u) = Amin + ηE (k+1)
2,2 + tE (k+1)

1,1 + u
(
E (k+1)
1,2 + E (k+1)

2,1

)

= Amin +
(
t u
u η

)
⊕ 0k−1. (5.14)

By Lemma 4.3, we have that

F(G(t, u)) � 0 ⇔ G(t, u) � Amin (5.15)
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Using (5.14), (5.15) and the definition ofR1, we have that

(t, u) ∈ R1 ⇔
(
t u
u η

)
� 0 ⇔ t ≥ 0, η ≥ 0, tη ≥ u2, (5.16)

which proves (5.12).
To prove (5.13) first note that by construction of F(Amin), the columns 1 and X

are in the span of the columns indexed by C \ �X (0,k). Hence, there are vectors

v1, v2 ∈ kerF(Amin) (5.17)

of the forms

v1 = (
1 01,k (ṽ1)

T
)T ∈ R

(k+1)(k+2)
2 and v2 = (0 1 01,k−2 (ṽ2)

T
)T ∈ R

(k+1)(k+2)
2 .

Let r := rank

(
t u
u η

)
. Clearly,

rankF(G(t, u)) ≤ rankF(Amin) + r . (5.18)

We separate three cases according to r .
Case 1: r = 0. In this case t = u = η = 0 and G(0, 0) = Amin. In this case (5.13)
clearly holds.
Case 2: r = 1. In this case tη = u2. Together with (5.16), this is equivalent to
(t > 0 or η > 0) and u ∈ {−√

ηt,
√

ηt}. By (5.18) and F(G(t, u)) � F(Amin) to
prove (5.13), it suffices to find v ∈ kerF(Amin) and v /∈ kerF(G(t, u)). Note that at
least one of v1, v2 from (5.17) is such a vector, since

(v1)
TF(G(t, u))v1 = t and (v2)

TF(G(t, u))v2 = η.

Case 3: r = 2. In this case tη > u2. Together with (5.16), this is equivalent to
t > 0, η > 0, u ∈ (−√

ηt,
√

ηt). Note that

F(G(t, u)) = F
(
G
(u2

η
, u
))

+
(
t − u2

η

)
⊕ 0 (k+1)(k+2)

2 −1 � F
(
G
(u2

η
, u
))

.

(5.19)

By Case 2, we have rankF
(
G
(
u2
η

, u
))

= rankF(Amin) + 1. By (5.18) and (5.19),

to prove (5.13), it suffices to find v ∈ kerF
(
G
(
u2
η

, u
))

and v /∈ kerF(G(t, u)). We

will check below, that v3, defined by

v3 = v1 − u

η
v2 =

(
1 − u

η
(ṽ3)

T
)T ∈ R

(k+1)(k+2)
2 ,
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is such a vector. This follows by

F
(
G
(u2

η
, u
))

v3 = F(Amin)v3 +
((

u2
η

u
u η

)
⊕ 0 (k+1)(k+2)−1

2

)
v3 = 0 (k+1)(k+2)

2 ,1

and

(v3)
TF(G(t, u))v3 = t − u2

η
> 0.

This concludes the proof of Claim 1. ��
Claim 2. Assume that M̃(k; β) � 0. Let u0, h(t) be as in (5.7),(5.8) and

t0 = β0,0 − (Amin)1,1 − (h(1)
12 )T (H22)

†h(1)
12 .

Then

R2 =
{{

(t, u) ∈ R
2 : t ≤ t0, u ∈ [u0 − h(t), u0 + h(t)]}, if H2 � 0,

∅, if H2 � 0.
(5.20)

If H2 � 0, we have that

rankH(G(t, u)) =
⎧⎨
⎩

rank H2, for t = t0, u = u0,
rank H22 + 1, for t < t0, u ∈ {u0 − h(t), u0 + h(t)},
rank H22 + 2, for t < t0, u ∈ (u0 − h(t), u0 + h(t)).

(5.21)

Proof of Claim 2. Write

H(t) := (
H(G(t,u)

)
1∪ �X (2,k) =

( 1 �X (2,k)

1 β0,0 − (Amin)1,1 − t (h(1)
12 )T

�X (2,k) h(1)
12 H22

)

Note that H(0) = (H(Amin)){1}∪ �X (2,k) . By Lemma 4.3.(2), H(Amin) � 0 and hence,
H(0) � 0. By Theorem 2.2, used for (M,C) = (H(0), H22), it follows that H2 � 0
and h(1)

12 ∈ C(H22). Again, by Theorem 2.2, used for (M,C) = (H(t), H22), it
follows that H(t) � 0 iff t ≤ t0. For a fixed t satisfying t ≤ t0, Lemma 2.4, used for
A(x) = H(G(t, x)), together with H(t)/H22 = H1/H22 − t , implies (5.20)–(5.21)
and proves Claim 2. ��
Claim 3. If η = 0, then (0, 0) ∈ ∂R1 ∩ R2.

Proof of Claim 3. By Claim 1, η = 0 implies that (0, 0) ∈ ∂R1. By (5.14) and η = 0,
H(Amin) = H(G(0, 0)). By Lemma 4.3.(2),H(Amin) � 0. Hence, (0, 0) ∈ R2, which
proves Claim 3. ��
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Claim 4. If η > 0, then:

• The set I (see (5.9)) has at most 2 elements.
• R1 ∩ R2 �= ∅ if and only if I �= ∅.

• If I has two elements, then H2/H22 > 0.
• If I has one element, which we denote by (t̃, ũ), then one of the following holds:

– R1 ∩ R2 = I.
– ∂R2 = R2 = {(t, u0) : t ≤ t0} and I � R1 ∩ R2 = {(t, u0) : t̃ ≤ t ≤ t0}.

Proof of Claim 4. Note that the set I is equal to ∂R1∩∂R2 (see (5.12) and (5.20)). Fur-
ther on, ∂R1 is the union of the square root functions ±√

ηt, defined for t ∈ [0, ∞).
Similarly, ∂R2 is the union of the square root functionsu0±√

(H1/H22 − t)(H2/H22),
defined for t ∈ (−∞, t0]. If H2/H22 = 0, then the latter could be a half-line
{(t, u0) : t ≤ t0}. If R1 ∩ R2 �= ∅, then geometrically it is clear that I contains
one or two elements. Assume that I contains only one element, denoted by (t̃, ũ).
Clearly, I ⊆ R1 ∩ R2. Further on, we either have I = R1 ∩ R2 or I � R1 ∩ R2.
By the forms of ∂R1 and ∂R2, the latter case occurs if H2/H22 = 0 or equivalently
∂R2 = R2 = {(t, u0) : t ≤ t0}. But then the whole line segment {(t, u0 : t̃ ≤ t ≤ t0}
lies inR1, which proves Claim 4. ��
Claim 5. Let H2 (see (5.4)) be positive definite, (t1, u1) ∈ ∂R2, (t2, u2) ∈ ∂R2 and
u1 �= u2. Then at least one of H(G(t1, u1)) and H(G(t2, u2)) admits a R-rm.

Proof of Claim 5. Note that H(G(ti , ui )), i = 1, 2, is of the form

H(G(ti , ui )) =

⎛
⎜⎜⎜⎜⎝

1 X �X (2,k−1) Xk

1 β0,0 − (Amin)1,1 − ti β1,0 − (Amin)1,2 − ui (̂h(1)
12 )T β̃k,0

X β1,0 − (Amin)1,2 − ui β2,0 − (Amin)1,3 (̂h(2)
12 )T β̃k+1,0

( �X (2,k−1))T ĥ(1)
12 ĥ(2)

12 Ĥ2 ĥ3
Xk β̃k,0 β̃k+1,0 (̂h3)T β̃2k,0

⎞
⎟⎟⎟⎟⎠.

Assume on the contrary that none of H(G(t1, u1)) and H(G(t2, u2)) admits a R-rm.
Theorem 2.5 implies that the column Xk of H(G(ti , ui )), i = 1, 2, is not in the
span of the other columns. Using this fact, the facts that H(G(ti , ui )), i = 1, 2,
are not pd (by (ti , ui ) ∈ ∂R2, i = 1, 2) and H2 is pd, it follows that there is
a column relation 1 = ∑k−1

j=1 α
(i)
j X j , α

(i)
j ∈ R, in H(G(ti , ui )), i = 1, 2. Since

H(G(ti , ui )) � 0, i = 1, 2, it follows in particular by Theorem 2.2, used for
(M, A) = (H(G(ti , ui )), (H(G(ti , ui ))) �X (0,k−1) ), i = 1, 2, that

(
β̃k,0 β̃k+1,0 (̂h3)T

)T ∈ C
((
H(G(ti , ui ))

)
�X (0,k−1)

)
, i = 1, 2. (5.22)

Since the first column ofH(G(ti , ui )) � 0, i = 1, 2, is in the span of the others, (5.22)
is equivalent to

(
β̃k,0 β̃k+1,0 (̂h3)T

)T ∈ C
((
H(G(ti , ui ))

)
�X (0,k−1), �X (1,k−1)

)
, i = 1, 2. (5.23)
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Since

H̃2 := (
H(G(ti , ui ))

)
�X (1,k−1) , i = 1, 2,

is invertible as a principal submatrix of H2, it follows that

(
β̃k,0 β̃k+1,0 (̂h3)T

)T =
((
H(G(ti , ui ))

)
�X (0,k−1), �X (1,k−1)

)
v, i = 1, 2. (5.24)

with

v = H̃−1
2

(
β̃k+1,0 ĥ3

)T = (v1 v2 · · · vk−1
)T

.

If v1 �= 0, this contradicts to (5.24) since u1 �= u2. Hence, v1 = 0. By the Hankel
structure of H(G(ti , ui )), i = 1, 2, we have that

(
H(G(ti , ui ))

)
�X (0,k−2), �X (2,k) = (

H(G(ti , ui ))
)

�X (1,k−1), �X (1,k−1) , i = 1, 2.

Then (5.24) and v1 = 0 imply that

((
H(G(ti , ui ))

)
�X (0,k−2), �X (2,k)

)
ṽ =

((
H(G(ti , ui ))

)
�X (1,k−1), �X (1,k−1)

)
ṽ = 0k+1,1,

(5.25)

where ṽ = (
v2 · · · vk−1 −1

)
. Since

(
H(G(ti , ui ))

)
�X (1,k−1), �X (1,k−1) , i = 1, 2, is a prin-

cipal submatrix of H2, (5.25) contradicts to H2 being pd. This proves Claim 5. ��
Now we prove the implication (5.11)⇒ Theorem 5.1.(2). Since (t0, u0) ∈ R1, it

follows thatR1 �= ∅. By (5.12), η ≥ 0. We separate two cases according to the value
of η.
Case 1: η = 0. We separate two cases according to the invertibility of H2.
Case 1.1: H2 is not pd. Since H2 is not pd, then by Theorem 2.5, the last column of
H(G(t0, u0)) is in the span of the previous ones. But then by rg, the last column of H2
is in the span of the previous ones. This is the case Theorem 5.1.(2(a)ii).
Case 1.2: H2 is pd. We separate two cases according to the invertibility of
(H(Amin)) �X (0,k−1) .
Case 1.2.1: rank(H(Amin) �X (0,k−1) ) = k. This is the case Theorem 5.1.(2(a)i).
Case 1.2.2: rank(H(Amin) �X (0,k−1) ) < k. We will prove that this case cannot occur. It
follows from the assumption in this case that rankH(Amin) = rank H2 = k. Further
on, the last column ofH(Amin) cannot be in the span of the previous ones (otherwise
rankH(Amin) < k). Hence, by Theorem 2.5, H(Amin) = H(G(0, 0)) does not admit
aR-rm. Using this fact and Claim 3, (0, 0) ∈ ∂R2. If t0 = 0, thenR1∩R2 = {(0, 0)},
which contradicts to the third condition in (5.11). So 0 < t0 must hold. Since η = 0,
Claim 1 implies that R1 = {(t, 0) : t ≥ 0} is a horizontal half-line. By the form of
∂R2, which is the union of the graphs of two square root functions on the interval
(−∞, t0], intersecting in the point (t0, u0) and such that (t0, u0) ∈ ∂R2, it follows
that R1 ∩ R2 = {(0, 0)}. Note that by H2 � 0, we have H2/H22 > 0 and hence
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h(t) �≡ 0 (see (5.8)), which implies that the square root functions are indeed not just a
horizontal half-line. As above this contradicts to the third condition in (5.11). Hence,
Case 1.2.2 cannot occur.
Case 2: η > 0. By assumptions, (t0, u0) ∈ R1 ∩ R2. By Claim 4, I �= ∅ and I has
one or two elements. We separate two cases according to the number of elements in
I.
Case 2.1: I has two elements. By Claim 4, H2/H22 > 0. If H2 is not pd, then
the fact that H(G(t0, u0)) has a R-rm, implies that H2/H22 = 0, which is a con-
tradiction. Indeed, if H2/H22 > 0 and H2 is not pd, then there is a nontrivial
column relation among columns X2, . . . , Xk in H2. By Proposition 2.3, the same
holds for H(G(t0, u0)). Let

∑k−2
i=0 ci X

i+2 = 0 be the nontrivial column relation in
H(G(t0, u0)). But then Z(x2

∑k−2
i=0 ci x

i ) = Z(x
∑k−2

i=0 ci x
i ) and it follows by [12]

that
∑k−2

i=0 ci X
i+1 = 0 is also a nontrivial column relation inH(G(t0, u0)). In partic-

ular, H2/H22 = 0. Hence, H2 is pd. This is the case Theorem 5.1.(2(b)i).
Case 2.2: I has one element. Let us denote this element by (t̃, ũ). By Claim 4, I =
R1 ∩R2 or ∂R2 = R2 = {(t, u0) : t ≤ t0} and I � R1 ∩R2 = {(t, u0) : t̃ ≤ t ≤ t0}.
We separate two cases according to these two possibilities.
Case 2.2.1: I = R1 ∩R2. In this case (t0, u0) = (t̃, ũ) and henceH(G(t̃, ũ) admits a
R-rm. Since (t̃, ũ) ∈ ∂R1,H(G(t̃, ũ)) is not pd. Hence, by Theorem 2.5, the statement
Theorem 5.1.(2(b)ii) holds.
Case 2.2.2: ∂R2 = R2 = {(t, u0) : t ≤ t0} and I � R1∩R2 = {(t, u0) : t̃ ≤ t ≤ t0}.
By (5.20), it follows that H2/H22 = 0 (see the definition (5.8) of h(t)). Since H2 is
not pd, Theorem 2.5 used for H(G(t0, u0)), implies that the last column of H2 is in
the span of the others. Hence, the same holds by Proposition 2.3 for H(G(t̃, ũ)) and
H(G(t̃, ũ)) admits a R-rm by Theorem 2.5. SinceH(G(t̃, ũ)) is not pd, it in particular
satisfies (5.10). Hence, we are in the case Theorem 5.1.(2(b)ii).
This concludes the proof of the implication (5.11)⇒ Theorem 5.1.(2).

Next we prove the implication Theorem 5.1.(2)⇒ (5.11). We separate four cases
according to the assumptions in Theorem 5.1.(2).
Case 1: Theorem 5.1.(2(a)i) holds. By Claim 3, (0, 0) ∈ R1 ∩ R2. This and the
assumption rank(H(Amin)) �X (0,k−1) = k, imply by Theorem 2.5, that H(G(0, 0)) =
H(Amin) admits a R-rm. This proves (5.11) in case of Theorem 5.1.(2(a)i).
Case 2: Theorem 5.1.(2(a)ii) holds. By Claim 3, (0, 0) ∈ R1 ∩ R2. Since the last
column of H2 is by assumption in the span of the previous ones, the same holds for
H(G(0, 0)) by Proposition 2.3. By Theorem 2.5, H(G(0, 0)) admits a R-rm. This
proves (5.11) in case of Theorem 5.1.(2(a)ii).
Case 3: Theorem 5.1.(2(b)i) holds. By assumption, I = ∂R1 ∩ ∂R2 =
{(t1, u1), (t2, u2)}. Since H2 is pd, ∂R2 is not a half-line and hence u1 �= u2. By
Claim 5, at least one of H(G(t1, u1)) and H(G(t2, u2)) admits a R-rm. This proves
(5.11) in case of Theorem 5.1.(2(b)i).
Case 4: Theorem 5.1.(2(b)ii) holds. The assumptions imply by Theorem 2.5, that
H(G(t̃, ũ)) admits a R-rm. This proves (5.11) in case of Theorem 5.1.(2(b)ii).
This concludes the proof of the implication Theorem 5.1.(2)⇒(5.11).

Up to now we established the equivalence (1) ⇔ (2) in Theorem 5.1. It remains to
prove the moreover part. We observe again the proof of the implication (2) ⇒ (5.11).
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By Lemma 4.3.(4),

rank M̃(k; β) = rankF(Amin) + rankH(Amin). (5.26)

In the proof of the implications Theorem 5.1.(2(a)i)⇒ (5.11) and Theorem
5.1.(2(a)ii)⇒ (5.11) we established that H(G(0, 0)) has a R-rm. By Theorem 2.5,
there also exists a (rankH(G(0, 0)))-atomic one. By Theorem 2.6, the sequence with
the moment matrix F(G(0, 0)) can be represented by a (rankF(G(0, 0)))-atomic
Z(ay + x2 + y2)-rm. By (5.26) and G(0, 0) = Amin if η = 0, in these two cases β

has a (rank M̃(k; β))-atomic Z(p)-rm.
In the proof of the implication Theorem 5.1.(2(b)i)⇒ (5.11) we established that

H(G(t ′, u′)) has a R-rm for some (t ′, u′) ∈ I. Analogously as for the point (0, 0) in
the previous paragraph, it follows that β has a (rankF(G(t ′, u′))+rankH(G(t ′, u′)))-
atomic Z(p)-rm. Using (5.13), (5.21) and rank H2 = rank H22 + 1 (by H2 being pd),
it follows that

rankF(G(t ′, u′)) + rankH(G(t ′, u′)) = rankF(Amin) + rank H2 + 1. (5.27)

We separate two cases:

• IfH(Amin) is pd, then rankH(Amin) = rank H2 +1. This, (5.26) and (5.27) imply
that β admits a (rank M̃(k; β))-atomic Z(p)-rm.

• IfH(Amin) is not pd, then we must have rankH(Amin) = rank H2, Otherwise we
have (H(Amin)) �X (1,k)/H22 = 0 and hence (H(Amin − ηE (k+1)

2,2 )) �X (1,k)/H22 < 0,

which contradicts to H(Amin − ηE (k+1)
2,2 ) being psd. Hence, in this case β

has a (rank M̃(k; β) + 1)-atomic Z(p)-rm. Moreover, there cannot exist a
(rank M̃(k; β))-atomic Z(p)-rm. Indeed, since η > 0, at least rankF(Amin) + 1
(resp. rank H2) atoms are needed to represent F(G(t ′′, u′′)) (resp. H(G(t ′′, u′′)))
for any (t ′′, u′′) ∈ R1∩R2 (see (5.13) and (5.21)). Hence, at least rankF(Amin)+
rank H2 + 1 atoms are needed in a Z(p)-rm for any (t ′′, u′′) ∈ R1 ∩ R2.

In the proof of the implication Theorem 5.1.(2(b)ii)⇒ (5.11) we established that
H(G(t̃, ũ)) has aR-rm. Analogously as for the point (0, 0) in two paragraphs above, it
follows that β has a (rankF(G(t̃, ũ)) + rankH(G(t̃, ũ)))-atomic Z(p)-rm. By (5.13)
and (5.21), this measure is (rankF(Amin) + rank H22 + 2)-atomic.

• If H(Amin) is pd, then rankH(Amin) = rank H22 + 2. This and (5.26) imply that
β admits a (rank M̃(k; β))-atomic Z(p)-rm.

• IfH(Amin) is not pd, then we have rankH(Amin) = rank H22 +1, since otherwise
the equality (H(Amin)) �X (1,k)/H22 = 0 implies (H(Amin − ηE (k+1)

2,2 )) �X (1,k)/H22 <

0, which contradicts to H(Amin − ηE (k+1)
2,2 ) being psd. Hence, in this case

β has a (rank M̃(k; β) + 1)-atomic Z(p)-rm. Moreover, there cannot exist a
(rank M̃(k; β))-atomic Z(p)-rm in this case. Indeed,

(R1 ∩ R2) \ I = (∂R1 ∩ R̊2) ∪ (R̊1 ∩ ∂R2) ∪ (R̊1 ∩ R̊2).
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Using (5.13) and (5.21), in every point from (R1∩R2)\I at least rankF(Amin)+
rank H22 + 2 atoms are needed in a Z(p)-rm.

This concludes the proof of the moreover part.
Since for a p-pure sequence with M̃(k; β)) � 0, (5.26) implies thatH(Amin) is pd,

it follows by the moreover part that the existence of a Z(p)-rm implies the existence
of a (rank M̃(k; β))-atomic Z(p)-rm. ��

The following example, generated by [37], demonstrates the use of Theorem 5.1
to show that there exists a bivariate y(−2y + x2 + y2)-pure sequence β of degree 6
with a positive semidefinite M(3) and without a Z(y(−2y + x2 + y2))-rm.

Example 5.3 Let β be a bivariate degree 6 sequence given by

β00 = 10, β10 = 38

5
, β01 = 39

5
,

β20 = 602

25
, β11 = 3

25
, β02 = 313

25
,

β30 = 9152

125
, β21 = 421

125
, β12 = 3

125
,

β03 = 2709

125
, β40 = 172118

625
, β31 = 27

625
,

β22 = 2717

625
, β13 = 3

625
, β04 = 24373

625
,

β50 = 3303368

3125
, β41 = 7789

3125
, β32 = 27

3125
,

β23 = 19381

3125
, β14 = 3

3125
, β05 = 224349

3125
,

β60 = 4156, β51 = 243

15625
, β42 = 44453

15625
,

β33 = 27

15625
, β24 = 149357

15625
, β15 = 3

15625
,

β06 = 2094133

15625
.

Assume the notation as in Theorem 5.1. M̃(3) is psd with the eigenvalues ≈ 4445,
≈ 189.2, ≈ 16.6, ≈ 11.9, ≈ 3.2, ≈ 1.22, ≈ 0.57, ≈ 0.022, ≈ 0.0030, 0 and the
column relation

−2Y 2 + X2Y + Y 3 = 0.
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We have that

Amin =

⎛
⎜⎜⎜⎜⎝

324330
55873

132789
278915

77
25

27
125

132789
278915

4180091
1394575

27
125

1493
625

77
25

27
125

1493
625

243
3125

27
125

1493
625

243
3125

33437
15625

⎞
⎟⎟⎟⎟⎠

and so

η = 77

25
− 4180091

1394575
= 4608

55783
.

The matrix H2 is equal to:

H2 =
⎛
⎝ 21 73 273

73 273 1057
273 1057 64904063

15625

⎞
⎠ .

The eigenvalues of H2 are ≈ 4441.1, ≈ 6.74, ≈ −0.019 and hence H2 is not psd. By
Theorem 5.1, β does not have a Z(y(−2y + x2 + y2))-rm, since by (2b) of Theorem
5.1, H2 should be psd.

6 Parabolic Type Relation: p(x, y) = y(x − y2)

In this section we solve the Z(p)-TMP for the sequence β = {βi }i, j∈Z+,i+ j≤2k of
degree 2k, k ≥ 3, where p(x, y) = y(x − y2). Assume the notation from Sect. 4. If β

admits a Z(p)-TMP, then M(k; β) must satisfy the relations

Y 3+ j X i = Y 1+ j X i+1 for i, j ∈ Z+ such that i + j ≤ k − 3. (6.1)

In the presence of all column relations (6.1), the column space C(M(k; β)) is spanned
by the columns in the set

T = �X (0,k) ∪ Y �X (0,k−1) ∪ Y 2 �X (0,k−2), (6.2)

where

Y i �X ( j,�) := (Y i X j ,Y i X j+1, . . . ,Y i X�) with i, j, � ∈ Z+, j ≤ �, i + � ≤ k.

Let M̃(k; β) be as in (4.8). Let

Amin := A12(A22)
†(A12)

T . (6.3)
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As described in Remark 4.4, Amin might need to be changed to

Âmin = Amin + η
(
E (k+1)
1,k+1 + E (k+1)

k+1,1

)
,

where

η := (Amin)2,k − (Amin)1,k+1.

Let F(A) and H(A) be as in (4.10). Define also the matrix function

G : R
2 → Sk+1, G(t,u) = Âmin + tE (k+1)

1,1 + uE (k+1)
k+1,k+1. (6.4)

Write

H( Âmin) =
⎛
⎝

1 �X (1,k−1) Xk

1 β0,0 − (Amin)1,1 (h12)T βk,0 − (Amin)2,k

( �X (1,k−1))T h12 H22 h23
Xk βk,0 − (Amin)2,k (h23)T β2k,0 − (Amin)k+1,k+1

⎞
⎠,

H1 := (H( Âmin)) �X (0,k−1) =
( 1 �X (1,k−1)

1 β0,0 − (Amin)1,1 (h12)T

( �X (1,k−1))T h12 H22

)
,

H2 := (H( Âmin)) �X (1,k) =
( �X (1,k−1) Xk

( �X (1,k−1))T H22 h23
Xk (h23)T β2k,0 − (Amin)k+1,k+1

)
.

(6.5)

Let us define the matrix

K := H( Âmin)/H22

=
(

β0,0 − (Amin)1,1 βk,0 − (Amin)2,k

βk,0 − (Amin)2,k β2k,0 − (Amin)k+1,k+1.

)
−
(

(h12)T

(h23)T

)
(H22)

† (h12 h23
)

:=
(

β0,0 − (Amin)1,1 − (h12)T (H22)
†h12 βk,0 − (Amin)2,k − (h12)T (H22)

†h23
βk,0 − (Amin)2,k − (h23)T (H22)

†h12 β2k,0 − (Amin)k+1,k+1 − (h12)T (H22)
†h12

)

:=
(
k11 k12
k12 k22

)
.

Let

T̂ = {1,Y , X , XY , X2, X2Y , . . . , Xi , XiY , . . . , Xk−1, Xk−1Y , Xk},
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and

P̂ be a permutation matrix such that moment matrix M̂(k; β) := P̂M(k; β)(P̂)T

has rows and columns indexed in the order T̂ , C \ T̂ .

(6.6)

Write

F̂(t,u) = P̂F(G(t,u))(P̂)T

=

⎛
⎜⎜⎜⎝

1 T̂ \{1,Xk } Xk C\T̂
1 (Amin)1,1 + t ( f12)T (Amin)2,k ( f14)T

(T̂ \{1,Xk })T f12 F22 f23 F24
Xk (Amin)2,k ( f23)T (Amin)k+1,k+1 + u ( f34)T

C\T̂ f14 (F24)T f34 F44

⎞
⎟⎟⎟⎠.

(6.7)

The solution to the cubic parabolic type relation TMP is the following.

Theorem 6.1 Let p(x, y) = y(x − y2) and β := β(2k) = (βi, j )i, j∈Z+,i+ j≤2k , where
k ≥ 3. Assume also the notation above. Then the following statements are equivalent:

(1) β has a Z(p)-representing measure.
(2) M̃(k; β) is positive semidefinite, the relations

βi, j+3 = βi+1, j+1 hold for every i, j ∈ Z+ with i + j ≤ 2k − 3, (6.8)

H( Âmin) is positive semidefinite, defining real numbers

t1 = H1/H22 = β0,0 − (Amin)1,1 − (h12)
T (H22)

†h12,

u1 = H2/H22 = β2k,0 − (Amin)k+1,k+1 − (h23)
T (H22)

†h23,

(6.9)

and the property

(H( Âmin)) �X (0,k−1) � 0 or rank(H( Âmin)) �X (0,k−1) = rankH( Âmin), (6.10)

one of the following statements holds:

(a) F22 is not positive definite, η = 0 and (6.10) holds.
(b) F22 is positive definite, H22 is not positive definite and one of the following

holds:
(i) u1 = η = 0.
(ii) u1 > 0, t1 > 0, t1u1 ≥ η2 and βk,0 − (Amin)2,k = (h12)T (H22)

†h23.
(c) F22, H22 are positive definite and one of the following holds:

(i) η = 0 and (6.10) holds.
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(ii) η �= 0 and

(√
k11k22 − sign(k12)k12

)2 ≥ η2, (6.11)

where sign is the sign function and sign(0) = 0.

Moreover, if a Z(p)-representing measure for β exists, then:

• There exists at most (rank M̃(k; β) + 1)-atomic Z(p)-representing measure.
• There exists a (rank M̃(k; β))-atomic Z(p)-representing measure if and only if
any of the following holds:

– η = 0.
– rankH(Amin) = rank H22 + 2.
– rankH(Amin) = rank H22 + 1 and one of the following holds:

∗ H22 is not positive definite and t1u1 = η2.
∗ H22 is positive definite, k12 = 0 and k11k22 = η2.

In particular, a p-pure sequence β with a Z(p)-representing measure admits a
(rank M̃(k; β))-atomic Z(p)-representing measure.

Remark 6.2 In this remark we explain the idea of the proof of Theorem 6.1 and the
meaning of conditions in the statement of the theorem.

By Lemmas 4.1–4.2, the existence of aZ(p)-rm for β is equivalent to the existence
of t, u ∈ R such thatF(G(t, u)) admits aZ(x−y2)-rm andH(G(t, u)) admits aR-rm.
Let

R1 = {
(t, u) ∈ R

2 : F(G(t, u)) � 0
}

and R2 = {
(t, u) ∈ R

2 : H(G(t, u)) � 0
}
.

We denote by ∂Ri and R̊i the topological boundary and the interior of the set Ri ,
respectively. By the necessary conditions for the existence of a Z(p)-rm [12, 14,
25], M̃(k; β) must be psd and the relations (6.8) must hold. Then Theorem 6.1.(1) is
equivalent to

M̃(k; β) � 0, the relations 6.8 hold and

∃(t0, u0) ∈ R1 ∩ R2 : F(G(t0, u0)) and H(G(t0, u0)) admit

a Z(x − y2)-rm and a R-rm, respectively. (6.12)

In the proof of Theorem 6.1 we show that (6.12) is equivalent to Theorem 6.1.(2):

(1) First we establish (see Claims 1 and 2 below) that the form of:

• R1 is one of the following:
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where the left case occurs if η �= 0 and the right if η = 0.
• R2 is one of the following:

where the left case occurs if k12 �= 0 and the right if k12 = 0.

(2) If F22 is only positive semidefinite but not definite, then we show that (6.12) is
equivalent to

M̃(k; β) � 0, the relations 6.8 hold, η = 0 and H(G(0, 0)) admits a R-rm.

(6.13)

The latter statement is further equivalent to Theorem 6.1.(2a).
(3) Assume that F22 is positive definite and H22 is only positive semidefinite but not

definite. If:

• u1 = 0, then we show that (6.12) is equivalent to (6.13). The latter statement
is further equivalent to Theorem 6.1.(2(b)i).

• u1 > 0, then we show that (6.12) is equivalent to

M̃(k; β) � 0, the relations 6.8 hold, F(G(t1, u1)) and

H(G(t1, u1)) admit a Z(x − y2)-rm and a R-rm, respectively.

The latter statement is further equivalent to Theorem 6.1.(2(b)ii).
• u1 < 0, then (6.12) cannot hold.

(4) Assume that F22 and H22 are positive definite. If:
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• η = 0, then we show that (6.12) is equivalent to (6.13). The latter statement is
further equivalent to Theorem 6.1.(2(c)i).

• η �= 0, then we show that (6.12) is equivalent to R1 ∩ R2 �= ∅. The latter
statement is further equivalent to Theorem 6.1.(2(c)ii).

Proof of Theorem 6.1 Let R1,R2 be as in Remark 6.2. As explained in Remark 6.2,
Theorem6.1.(1) is equivalent to (6.12), thus it remains to prove that (6.12) is equivalent
to Theorem 6.1.(2).

First we establish a few claims needed in the proof. Claim 1 (resp. 2) describesR1
(resp.R2) concretely.
Claim 1. Assume that M̃(k; β) � 0. Then

R1 = {
(t, u) ∈ R

2 : t ≥ 0, u ≥ 0, tu ≥ η2
}
. (6.14)

If (t, u) ∈ R1, we have

rankF(G(t, u)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rankF(Amin), if η = t = u = 0,

rankF(Amin) + 1, if (η = t = 0, u > 0) or (η = u = 0, t > 0)
or (η �= 0, tu = η2),

rankF(Amin) + 2, if tu > η2.

(6.15)

where Amin is as in (6.3). ��
Proof of Claim 1. Note that

G(t,u) = Amin + η
(
E (k+1)
1,k+1 + E (k+1)

k+1,1

)+ tE (k+1)
1,1 + uE (k+1)

k+1,k+1

= Amin +
⎛
⎝ t 01,k−1 η

0k−1,1 0k−1 0k−1,1
η 01,k−1 u

⎞
⎠ .

(6.16)

By Lemma 4.3, we have that

F(G(t, u)) � 0 ⇔ G(t, u) � Amin (6.17)

Using (6.16), (6.17) and the definition ofR1, we have that

(t, u) ∈ R1 ⇔
(
t η

η u

)
� 0 ⇔ t ≥ 0, u ≥ 0, tu ≥ η2, (6.18)

which proves (6.14).
To prove (6.15) first note that by construction of F(Amin), the columns 1 and Xk

are in the span of the columns indexed by C \ �X (0,k). Hence, there are vectors

v1, v2 ∈ kerF(Amin) (6.19)
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of the forms

v1 = (
1 01,k (ṽ1)

T
)T ∈ R

(k+1)(k+2)
2 and v2 = (

01,k 1 (ṽ2)
T
)T ∈ R

(k+1)(k+2)
2 .

(6.20)

Let r := rank

(
t η

η u

)
. Clearly,

rankF(G(t, u)) ≤ rankF(Amin) + r . (6.21)

We separate three cases according to r .
Case 1: r = 0. In this case t = u = η = 0 and G(0, 0) = Amin. In this case (6.15)
clearly holds.
Case 2: r = 1. In this case tu = η2. Together with (6.18), this is equivalent to
(η = t = 0, u > 0) or (η = u = 0, t > 0) or (η �= 0, tu = η2). By (6.21)
and F(G(t, u)) � F(Amin) to prove (6.15), it suffices to find v ∈ kerF(Amin) and
v /∈ kerF(G(t, u)). Note that at least one of v1, v2 from (6.20) is such a vector, since

(v1)
TF(G(t, u))v1 = t and (v2)

TF(G(t, u))v2 = u.

Case 3: r = 2. In this case tu > η2. Note that

F(G(t, u)) = F
(
G
(η2

u
, u
))

+
(
t − η2

u

)
⊕ 0 (k+1)(k+2)

2 −1 � F
(
G
(η2

u
, u
))

.

(6.22)

By Case 2, we have rankF
(
G
(

η2

u , u
))

= rankF(Amin) + 1. By (6.21) and (6.22),

to prove (6.15), it suffices to find v ∈ kerF
(
G
(

η2

u , u
))

and v /∈ kerF(G(t, u)). We

will check below, that v3, defined by

v3 = v1 − η

u
v2 = (

1 01,k−1 − η
u (ṽ3)

T
)T ∈ R

(k+1)(k+2)
2 ,

is such a vector. This follows by

F
(
G
(η2

u
, u
))

v3 = 0 (k+1)(k+2)
2 ,1

and

(v3)
TF(G(t, u))v3 = t − η2

u
> 0.

This concludes the proof of Claim 1. ��
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Note that

H(G(t,u)) =
⎛
⎜⎝

1 �X (1,k−1) Xk

1 β0,0 − (Amin)1,1 − t (h12)
T βk,0 − (Amin)2,k

( �X (1,k−1))T h12 H22 h23
Xk βk,0 − (Amin)2,k (h23)

T β2k,0 − (Amin)k+1,k+1 − u

⎞
⎟⎠.

Define the matrix function

K(t,u) = H(G(t,u))
/
H22 = H( Âmin)

/
H22 −

(
t 0
0 u

)

= K −
(
t 0
0 u

)
=
(
k11 − t k12
k12 k22 − u

)
. (6.23)

Claim 2. Assume that M̃(k; β) � 0. Then

R2 = {
(t, u) ∈ R

2 : K(t, u) � 0
}

= {
(t, u) ∈ R

2 : t ≤ k11, u ≤ k22, (k11 − t)(k22 − u) ≥ k212
}
. (6.24)

If (t, u) ∈ R2, we have

rankH(G(t, u)) =

⎧⎪⎨
⎪⎩

rank H22, if k12 = 0, t = k11, u = k22,

rank H22 + 1, if (k11 − t)(k22 − u) = k212, (t �= k11 or u �= k22),

rank H22 + 2, if (k11 − t)(k22 − u) > k212.
(6.25)

where Amin is as in (6.3). ��
Proof of Claim 2. Permuting rows and columns of H(G(t,u)) we define

H̃(G(t,u)) =
⎛
⎜⎝

1 Xk �X (1,k−1)

1 β0,0 − (Amin)1,1 − t βk,0 − (Amin)2,k (h12)
T

Xk βk,0 − (Amin)2,k β2k,0 − (Amin)k+1,k+1 − u (h23)
T

( �X (1,k−1))T h12 h23 H22

⎞
⎟⎠.

Note that

H(G(t, u)) � 0 ⇔ H̃(G(t, u)) � 0

and

H(Amin) =
⎛
⎝

1 �X (1,k−1) Xk

1 β0,0 − (Amin)1,1 (h12)T βk,0 − (Amin)1,k+1

( �X (1,k−1))T h12 H22 h23
Xk βk,0 − (Amin)1,k+1 (h23)T β2k,0 − (Amin)k+1,k+1

⎞
⎠.

(6.26)
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By Lemma 4.3.(2),H(Amin) � 0. Permuting rows and columns, this implies that

H̃(Amin) =
⎛
⎝

1 Xk �X (1,k−1)

1 β0,0 − (Amin)1,1 βk,0 − (Amin)1,k+1 (h12)T

Xk βk,0 − (Amin)1,k+1 β2k,0 − (Amin)k+1,k+1 (h23)T

( �X (1,k−1))T h12 h23 H22

⎞
⎠ � 0.

By Theorem 2.2, used for (M,C) = (H̃(Amin), H22), it follows that H22 � 0 and
h12, h23 ∈ C(H22). Let

L : S2 → Sk+1, L(A) =
⎛
⎝ A

(
(h12)T

(h23)T

)
(
h12 h23

)
H22

⎞
⎠ .

be a matrix function. Using Theorem 2.2 again for (M,C) = (L(A), H22), it follows
that

L(A) � 0 ⇔ A �
(

(h12)T

(h23)T

)
(H22)

† (h12 h23
)

(6.27)

and

rankL(A) = rank H22 + rank

(
A −

(
(h12)T

(h23)T

)
(H22)

† (h12 h23
))

(6.28)

Further, (6.27) implies that

H̃(G(t, u)) � 0

⇔
(

β0,0 − (Amin)1,1 − t βk,0 − (Amin)2,k
βk,0 − (Amin)2,k β2k,0 − (Amin)k+1,k+1 − u

)

−
(

(h12)T

(h23)T

)
(H22)

† (h12 h23
) � 0

⇔ K(t, u) � 0,

where we use the definition (6.23) of K(t, u) in the last equivalence. Moreover,
rank H̃(G(t, u)) = rank H22 + rankK(t, u). This proves (6.24) and (6.25). ��
Claim 3. If (t, u) ∈ R2 ∩ (R+)2, then

tu ≤ (
√
k11k22 − sign(k12)k12)

2 =: pmax.

The equality is achieved if:

• k12 = 0, in the point (t, u) = (k11, k22).

• k12 > 0, in the point (t−, u−) = (k11 − k12
√
k11√

k22
, k22 + k12

√
k22√

k11
).
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• k12 < 0, in the point (t+, u+) = (k11 + k12
√
k11√

k22
, k22 − k12

√
k22√

k11
).

Moreover, if k12 �= 0, then for every p ∈ [0, pmax] there exists a point (t̃, ũ) ∈
R2 ∩ (R+)2 such that t̃ ũ = p and (k11 − t̃)(k22 − ũ) = k212.

Proof of Claim 3. If k12 = 0, then (t, u) ∈ R2 ∩ (R+)2 = [0, k11]×[0, k22] and Claim
3 is clear.

Assume that k12 �= 0. Then clearly tu is maximized in some point satisfying

(k11−t)(k22−u) = k212. Let f (t) := t
(
k22− k212

k11−t

)
.Weare searching for themaximum

of f (t) on the interval [0, k11]. The stationary points of f are t± = k11 ± k12
√
k11√

k22
.

Then u± = k22 ∓ k12
√
k22√

k11
. If k12 > 0, then t− ∈ [0, k11] (note that k11k22 ≥ k212 if

R2 ∩ (R+)2 �= ∅). Further on, t−u− = (
√
k11k22 − k12)2. Similarly, if k12 < 0, then

t+ ∈ [0, k11] and t+u+ = (
√
k11k22 + k12)2. The moreover part follows by noticing

that f (0) = 0 and hence on the interval [0, t±], f attains all values between 0 and
pmax. ��

In the proof of Theorem 6.1 we will need a few further observations:

• Observe that

(H(G(t, u))) �X (0,k−1) = H1 − t E (k)
1,1,

(H(G(t, u))) �X (1,k−1) = H22,

(H(G(t, u))) �X (1,k) = H2 − uE (k)
k,k .

(6.29)

• We have

(H(G(t, u))) �X (0,k−1)

/
(H(G(t, u))) �X (1,k−1) = H1/H22 − t = t1 − t, (6.30)

where in the first equality we used (6.29) and in the second the definition of t1 (see
(6.9)).

• We have

(H(G(t, u))) �X (1,k)

/
(H(G(t, u))) �X (1,k−1) = H2/H22 − u = u1 − u, (6.31)

where in the first equality we used (6.29) and in the second the definition of u1
(see (6.9)).

First we prove the implication (6.12) ⇒ Theorem 6.1.(2). By the necessary con-
ditions for the existence of a Z(p)-rm [12, 14, 25], M̃(k; β) must be psd and the
relations (6.8) must hold. By Lemma 4.3.(2), F(Amin) � 0. Hence,

F̂ = P̂F(Amin)(P̂)T

=

⎛
⎜⎜⎜⎝

1 T̂ \{1,Xk } Xk C\T̂
1 (Amin)1,1 ( f12)T (Amin)1,k+1 ( f14)T

(T̂ \{1,Xk })T f12 F22 f23 F24
Xk (Amin)1,k+1 ( f23)T (Amin)k+1,k+1 ( f34)T

C\T̂ f14 (F24)T f34 F44

⎞
⎟⎟⎟⎠ � 0.,

(6.32)
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where P̂ is as in (6.6). In particular, F22 � 0. We separate two cases according to the
invertibility of F22.
Case 1: F22 is not pd. Let β(c) be a sequence corresponding to the moment matrix
F(G(t0, u0)). Let γ = (γ0, . . . , γ4k) be a sequence defined by γi = β

(c)
� i
2 �,i mod 2

. Note

that

(
F̂(G(t0, u0))

)
T̂ \{1,Xk } = (F̂)T̂ \{1,Xk } = F22 = Aγ̂ ,

where γ̂ = (γ2, . . . , γ4k−2). Since F22 is not pd, it follows that there is a non-trivial
column relation in F22, which is also a column relation in Aγ by Proposition 2.3. By
Theorem 2.7, γ has a R-rm, which implies by Theorem 2.5, that Aγ is rg. Hence, the
last column of Aγ = F̂(G(t0, u0)) is in the span of the columns in T̂ \ {1, Xk}. It
follows that

⎛
⎝( f12)T

F22
( f23)T

⎞
⎠ (F22)

† f23 =
⎛
⎝

(Amin)2,k

f23
(Amin)k+1,k+1 + u0

⎞
⎠ . (6.33)

On the other hand, by construction of F̂ , the column Xk is also in the span of the
columns in T̂ \ {1, Xk}. Hence,

⎛
⎝( f12)T

F22
( f23)T

⎞
⎠ (F22)

† f23 =
⎛
⎝

(Amin)1,k+1

f23
(Amin)k+1,k+1

⎞
⎠ . (6.34)

By (6.33) and (6.34), it follows that (Amin)2,k = (Amin)1,k+1 or equivalently η = 0,
and u0 = 0. Note that

F̂(G(t0, u0)) = F̂(G(t0, 0)) � F̂(G(0, 0)) = F(Amin),

H(G(t0, u0)) = H(G(t0, 0)) � H(G(0, 0)) = H(Amin). (6.35)

Further on, F̂(Amin) has aZ(x−y2)-rmbyTheorem2.7 andH(Amin) byTheorem2.5.
Indeed, the column Xk of F̂(Amin) is in the span of the others and since H(G(t0, 0))
satisfies the conditions in Theorem 2.5, the same holds for H(Amin). But then the
property (6.10) holds (note that η = 0). This is the case Theorem 6.1.(2a).
Case2: F22 is pd.ByLemma4.3.(2),H(Amin) � 0 (see (6.26)). In particular, H22 � 0.
We separate two cases according to the invertibility of H22.
Case 2.1: H22 is not pd. By (6.31) and Theorem 2.5, it follows that

u1 = u0. (6.36)

By (6.14),

u0 ≥ 0. (6.37)
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We separate two cases according to the value of u1.
Case 2.1.1: u1 = 0. By (6.36), it follows that u0 = 0. Note that

(
F̂(G(t0, u0))

)
T̂ \{1} = (

F̂(G(t0, 0))
)
T̂ \{1} = (

F̂
)
T̂ \{1}. (6.38)

Since in F̂ we have the column relation (6.34) by construction, (6.38) and Proposition
2.3 imply that

(
F̂(G(t0, 0))

)
T̂ ,T̂ \{1,Xk }(F22)

† f23 = (
F̂(G(t0, 0))

)
T̂ ,{Xk },

or equivalently (6.33) with u0 = 0. By (6.33) and (6.34), it follows that (Amin)2,k =
(Amin)1,k+1 or equivalently η = 0. This is the case Theorem 6.1.(2(b)i).
Case 2.1.2: u1 > 0. Since the column Xk ofH(G(t0, u1)) is in the span of the columns
in �X (1,k−1), it first follows by observing the first row of H(G(t0, u1)) that

βk,0 − (Amin)2,k = (h12)
T (H22)

†h23. (6.39)

Further on,

H(G(t, u1))
/
(H(G(t, u1))) �X (1,k) = (H(G(t, u1))) �X (0,k−1)

/
(H(G(t, u1))) �X (1,k−1)

= t1 − t, (6.40)

where we used (6.30) in the second equality. By (6.40) and Theorem 2.2 used for
(M,C) = (H(G(t, u1)), (H(G(t, u1))) �X (1,k) ), it follows that H(G(t1, u1)) � 0. By
Theorem 2.5, H(G(t1, u1)) admits a R-rm. Note that

F̂(G(t0, u0)) = F̂(G(t0, u1)) � F̂(G(t1, u1)), (6.41)

where we used that t0 ≤ t1 by (6.40). By Theorem 2.7, (F̂(G(t1, u1)))T̂ \{Xk } must be

pd. (Herewe used that since u1 > 0 and F22 � 0, it follows that (F̂(G(t1, u1)))T̂ \{1} �
0.) Therefore Claim 1 implies that t1 > 0 and t1u1 ≥ η2. Together with (6.39), this is
the case Theorem 6.1.(2(b)ii).
Case 2.2: H22 is pd. We separate two cases according to the value of η.

Case 2.2.1: η = 0. By Lemma 4.3.(2), H(Amin) � 0 (see (6.26)).
IfH(Amin) does not admit aR-rm, it follows byTheorem2.5, that (H(Amin)) �X (0,k−1)

is not pd and u1 > 0. Equivalently,

t1 = (H(Amin)) �X (0,k−1)

/
H22 = 0,

which by (6.30) implies that t0 = 0. By Theorem 2.7, since F̂(G(t0, u0)) =
F̂(G(0, u0)) admits a Z(x − y2)-rm, F22 � 0 and (F̂(G(0, u0)))T̂ \{Xk } is not pd,
it follows that u0 = 0. But then H(G(t0, u0)) = H(G(0, 0)) = H(Amin) does not
admit a R-rm, which is a contradiction.

Hence, H(Amin) admits a R-rm, which is equivalent to (6.10) (using η = 0). This
is the case Theorem 6.1.(2(c)i).
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Case 2.2.2: η �= 0. By (6.15) it follows that t0u0 ≥ η2. This fact and Claim 3 imply
the second condition in the case Theorem 6.1.(2(c)ii).
This concludes the proof of the implication (6.12) ⇒ Theorem 6.1.(2).

Next we prove the implication Theorem 6.1.(2) ⇒ (6.12). We separate five cases
according to the assumptions in Theorem 6.1.(2).
Case 1: Theorem 6.1.(2a) holds.By Lemma 4.3.(2),F(Amin) � 0 andH(Amin) � 0.
Sinceη = 0, bothmatrices have amoment structure. Since by construction, the column
Xk of F̂(Amin) is in the span of the others, it has a Z(x − y2)-rm by Theorem 2.7.
Since H(Amin) satisfies (6.10) (using η = 0), it admits a R-rm by Theorem 2.5. This
proves (6.12) in this case.
Case 2: Theorem 6.1.(2(b)i) holds. By the same reasoning as in the Case 1 above,
F̂(Amin) has aZ(x − y2)-rm. Since u1 = 0, the column Xk ofH(Amin) is in the span
of the other columns. By Theorem 2.5,H(Amin) admits a R-rm. This proves (6.12) in
this case.
Case 3: Theorem 6.1.(2(b)ii) holds. By (6.30), (6.31) and the fourth assumption of
(2(b)ii), it follows that H(G(t1, u1)) is psd and the columns 1, Xk are in the span
of the columns in �X (1,k−1). By Theorem 2.5, H(G(t1, u1)) admits a R-rm. Since
(t1, u1) ∈ R1 by (6.14) and the assumptions in (2(b)ii), it follows that F̂(G(t1, u1))
is psd and by construction,

(
F̂(G(t1, u1))

)
T̂ \{Xk } is pd. By Theorem 2.7, it has a

Z(x − y2)-rm. This proves (6.12) in this case.
Case 4: Theorem 6.1.(2(c)i) holds. F̂(Amin) has a Z(x − y2)-rm and H(Amin) has
a R-rm by the same reasoning as in the Case 1 above. This proves (6.12) in this case.
Case 5: Theorem 6.1.(2(c)ii) holds.We separate three cases according to the sign of
k12.

• If k12 = 0, then by Claim 2, H(G(k11, k22)) is psd and the column Xk is in the
span of the previous ones. Since H(G(0, 0)) = H( Âmin) is psd by assumption,
it follows that k11 ≥ 0 and k22 ≥ 0. Since η �= 0 and k11k22 ≥ η2 by (6.11), it
follows that k11 > 0 and k22 > 0. By Claim 1, F̂(G(k11, k22)) � 0. By Theorem
2.7, it has a Z(x − y2)-rm. This proves (6.12) in this case.

• If k12 > 0, then by Claim 3,H(G(t−, u−)) is psd and t−u− ≥ η2. By construction,
rankH(G(t−, u−)) = k and since t− < k11, it follows that (H(G(t−, u−))) �X (0,k−1)

is pd. Hence, the column Xk of H(G(t−, u−)) is in the span of the others. By
Theorem 2.5,H(G(t−, u−)) admits aR-rm. By Claim 1 and t−u− ≥ η2, it follows
that F̂(G(t−, u−)) � 0. Since t− > 0, it follows that

(
F̂(G(t−, u−))

)
T̂ \{Xk } is pd.

By Theorem 2.7, it has a Z(x − y2)-rm. This proves (6.12) in this case.
• If k12 < 0, then the proof of (6.12) is analogous to the case k12 > 0 by replacing

(t−, u−) with (t+, u+).

This concludes the proof of the implication Theorem 6.1.(2)⇒(6.12).
By now we established the equivalence (1) ⇔ (2) in Theorem 6.1. It remains to

prove the moreover part. We observe again the proof of the implication (2) ⇒ (6.12).
By Lemma 4.3.(4),

rank M̃(k; β) = rank F̂(Amin) + rankH(Amin). (6.42)
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In the proofs of the implications Theorem 6.1.(2a)⇒ (6.12), Theorem 6.1.(2(b)i)⇒
(6.12) and Theorem 6.1.(2(c)i)⇒ (6.12), we established that F̂(Amin) and H(Amin)

admit a Z(x − y2)-rm and a R-rm, respectively. By Theorems 2.5 and 2.7, there also
exist a (rank F̂(Amin))-atomic and a (rankH(Amin))-atomic rms. By (6.42), β has a
(rank M̃(k; β))-atomic Z(p)-rm.

Assume that Theorem 6.1.(2(b)ii) holds. We separate two cases according to the
value of η:

• η = 0. We separate two cases according to the existence of a R-rm of H(Amin):

– The last column of H(Amin) is in the span of the previous ones. Then as in
the previous paragraph, F̂(Amin) andH(Amin) admit a (rank F̂(Amin))-atomic
Z(x − y2)-rm and a (rankH(Amin))-atomic R-rm, respectively. Hence, β has
a (rank M̃(k; β))-atomic Z(p)-rm.

– The last column of H(Amin) is not in the span of the previous ones. Since
also t1 > 0, it follows that rankH(Amin) = rank H22 + 2. But then
rankH(G(t1, u1)) = rank H22 and rank F̂(G(t1, u1)) = rank F̂(Amin)+2 (see
(6.15)). This implies that M̃(β; k) admits a (rank M̃(k); β)-atomicZ(p)-rm.

• η �= 0. We separate two cases according to rankH(Amin), which can be either
rank H22 + 2 or rank H22 + 1 (since t1 > 0).

– rankH(Amin) = rank H22 + 2. Then as in the second Case of the case η = 0
above, in the point (t1, u1) there is a (rank M̃(k; β))-atomic Z(p)-rm for β.
(Note that t1u1 is automatically strictly larger than η2, otherwise the measure
was (rank M̃(k; β) − 1)-atomic, which is not possible.)

– rankH(Amin) = rank H22 + 1. In this case we have

rankH(G(t1, u1)) + rank F̂(G(t1, u1)) = rank H22 + rank F̂(G(t1, u1))

=
{
rank H22 + rank F̂(Amin) + 1, if t1u1 = η2,

rank H22 + rank F̂(Amin) + 2, if t1u1 > η2,

=
{

rank M̃(k; β), if t1u1 = η2,

rank M̃(k; β) + 1, if t1u1 > η2,

where we used (6.15) in the second and (6.42) in the third equality. Hence, β has a
(rank M̃(k; β))-atomic rm if t1u1 = η2 and (rank M̃(k; β) + 1)-atomic rm if t1u1 >

η2. It remains to show that in the case t1u1 > η2, there does not exist a (rank M̃(k; β))-
atomic rm. Since H22 is not pd and u1 > 0, ifH(G(t ′, u′)) has a R-rm, then u′ = u1.
Since η �= 0, then F̂(G(t ′, u1)) with a Z(x − y2)-rm is at least (rank F̂(Amin) + 1)-
atomic (see (6.15)). If t ′ �= t1, then rankH(G(t ′, u1)) = rank H22 + 1. Hence,

rankH(G(t ′, u1)) + rank F̂(G(t ′, u1)) ≥ (rank H22 + 1) + (rank F̂(Amin) + 1)

= rank M̃(k; β) + 1,

where we used (6.42) in the last equality.
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• Assume that Theorem 6.1.(2(c)ii) holds. We separate two cases according to the
value of k12.

– k12 = 0.Weseparate twocases according to rankH(Amin), i.e., rankH(Amin) ∈
{k, k + 1}. Note that rankH(Amin) cannot be k − 1, since η �= 0 and k12 = 0
imply that

(
H(Amin)/H22

)
12 �= 0.

∗ rankH(Amin) = k + 1. Then as in the second case of the case η = 0 of
Theorem 6.1.(2(b)ii) above, in the point (t1, u1) there is a (rank M̃(k; β))-
atomicZ(p)-rm for β. (Note that t1u1 is automatically strictly larger than
η2, otherwise the measure was (rank M̃(k; β) − 1)-atomic, which is not
possible.)

∗ rankH(Amin) = k. In this case we have

rankH(G(k11, k22)) + rankF(G(k11, k22))

=
{
rank H22 + rankF(Amin) + 1, if k11k22 = η2,

rank H22 + rankF(Amin) + 2, if k11k22 > η2,

=
{

rank M̃(k; β), if k11k22 = η2,

rank M̃(k; β) + 1, if k11k22 > η2,

where we used (6.15) in the first and (6.42) in the second equal-
ity. Hence, β has a (rank M̃(k; β))-atomic rm if k11k22 = η2 and
(rank M̃(k; β) + 1)-atomic rm if k11k22 > η2. It remains to show that in
the case k11k22 > η2, there does not exist a (rank M̃(k; β))-atomic rm.
Since η �= 0, if F(G(t ′, u′)) is psd, it follows that t ′u′ ≥ η2 by (6.14).
But then if F̂(G(t ′, u′)) also admits a Z(x − y2)-rm, this rm is at least
(rank F̂(Amin) + 1)-atomic (see (6.15)). If t ′ < k11 or u′ < k22, then
rankH(G(t ′, u′)) ≥ rank H22 + 1. Hence,

rankH(G(t ′, u′)) + rank F̂(G(t ′, u′)) ≥ (rank H22 + 1) + (rank F̂(Amin) + 1)

= rank M̃(k; β) + 1,

where we used (6.42) in the last equality.
– k12 �= 0.Weseparate twocases according to rankH(Amin), i.e. rankH(Amin) ∈

{k, k + 1}. Note that rankH(Amin) cannot be k − 1, since otherwise

H( Âmin)/H22 =
(
0 η

η 0

)
, which cannot be psd by η �= 0. By Claim 3, there is

a point (t̃, ũ) ∈ R2 ∩ (R+)2, such that t̃ ũ = η2 and (k11 − t̃)(k22 − ũ) = k212.
By (6.15) and (6.25) we have

rankH(G(t̃, ũ)) + rank F̂(G(t̃, ũ))

= (rank H22 + 1) + (rank F̂(Amin) + 1)

=
{

rank M̃(k; β), if rankH(Amin) = k + 1,

rank M̃(k; β) + 1, if rankH(Amin) = k,
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where we used (6.42) in the second equality. It remains to show that in the case
rankH(Amin) = k, there does not exist a (rank M̃(k; β))-atomic rm. Since
η �= 0, if F̂(G(t ′, u′)) is psd, it follows that t ′u′ ≥ η2 by (6.14). But then if
F̂(G(t ′, u′)) also admits aZ(x−y2)-rm, this rm is at least (rank F̂(Amin)+1)-
atomic (see (6.15)). Since k12 �= 0, rankH(G(t ′, u′)) ≥ rank H22+1 by (6.25).
Hence,

rankH(G(t ′, u′)) + rank F̂(G(t ′, u′)) ≥ (rank H22 + 1) + (rank F̂(Amin) + 1)

= rank M̃(k; β) + 1,

where we used (6.42) in the last equality.

This concludes the proof of the moreover part.
Since for a p-pure sequence with M̃(k; β)) � 0, (6.42) implies thatH(Amin) is pd,

it follows by the moreover part that the existence of a Z(p)-rm implies the existence
of a (rank M̃(k; β))-atomic Z(p)-rm. ��

The following example demonstrates the use of Theorem 6.1 to show that there
exists a bivariate y(x − y2)-pure sequence β of degree 6 with a positive semidefinite
M(3) and without a Z(y(x − y2))-rm.

Example 6.3 Let β be a bivariate degree 6 sequence given by

β00 = 1228153

1372615
, β10 = 97

10
, β01 = 21

10
,

β20 = 2289

10
, β11 = 441

10
, β02 = 91

10
,

β30 = 67207

10
, β21 = 12201

10
, β12 = 455

2
,

β03 = 441

10
, β40 = 2142693

10
, β31 = 376761

10
,

β22 = 67171

10
, β13 = 12201

10
, β04 = 455

2
,

β50 = 71340727

10
, β41 = 12313161

10
, β32 = 428519

2
,

β23 = 376761

10
, β14 = 67171

10
, β05 = 12201

10
,

β60 = 2438236509

10
, β51 = 415998681

10
, β42 = 71340451

10
,

β33 = 12313161

10
, β24 = 428519

2
, β15 = 376761

10
,

β06 = 67171

10
.

Assume the notation as in Theorem 6.1.M̃(3) is psd with the eigenvalues≈ 2.51·108,
≈ 47179, ≈ 112.1, ≈ 7.4, ≈ 1.11, ≈ 0.1, ≈ 0.03, ≈ 0.0005, ≈ 4.9 · 10−6, 0, and the
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column relation Y 3 = Y X . We have that

Amin =

⎛
⎜⎜⎜⎜⎝

5537
9230

91
10

455
2

61999553
9230

91
10

455
2

67171
10

428519
2

455
2

67171
10

428519
2

71340451
10

61999553
9230

428519
2

71340451
10

450098209309
1846

⎞
⎟⎟⎟⎟⎠

and so

η = 67171

10
− 61999553

9230
= − 72

923
.

The matrices F22 and H22 are equal to:

F22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

91
10

441
10

455
2

12201
10

67171
10

441
10

455
2

12201
10

67171
10

376761
10

455
2

12201
10

67171
10

376761
10

428519
2

12201
10

67171
10

376761
10

428519
2

12313161
10

67171
10

376761
10

428519
2

12313161
10

71340451
10

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, H22 =
(

7
5

18
5

18
5

49
5

)
.

They are both pdwith the eigenvalues≈ 7.3·106,≈ 1987.6,≈ 5.6,≈ 0.099,≈ 0.0013
and ≈ 11.1, ≈ 0.068, respectively. The matrix K is equal to

K =
(
k11 k12
k12 k22

)
=
(

6050329
48143098510

3
95

3
95

4941414
87685

)

and thus

(
√
k11k12 − k12)

2 − η2 = −0.0033 < 0. (6.43)

By Theorem 6.1, β does not have a Z(y(x − y2))-rm, since by (2(c)ii) of Theorem
6.1, (6.43) should be positive.
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