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In this paper, we introduce patchwork constructions for multivariate quasi-copulas. 
These results appear to be new since the kind of approach has been limited to either 
copulas or only bivariate quasi-copulas so far. It seems that the multivariate case is 
much more involved, since we are able to prove that some of the known methods of 
bivariate constructions cannot be extended to higher dimensions. Our main result is 
to present the necessary and sufficient conditions both on the patch and the values 
of it for the desired multivariate quasi-copula to exist. We also give all possible 
solutions.
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1. Introduction

Copulas are mathematical objects that capture the dependence structure among random variables. They 
may be viewed either as distributions with uniform margins or as building blocks of general distributions 
with given margins. Since they were introduced by Sklar in 1959 [34], they have gained a lot of popularity 
through applications, say, in finance, insurance, and reliability theory. They are used both in probabilistic 
framework (cf. [21,10]) as well as in an imprecise setting (cf. [19,20,25–27,31,32]). An important concept 
related to copulas are quasi-copulas [1,6,8,13–15,22,23,35] which may be seen as the pointwise infima or 
suprema of copulas [10, Section 7.3]. Precise definitions will be given in Section 2.

The interest in quasi-copula theory and its applications is growing fast as can be seen from a recent review 
by Arias-García et al. [5] (cf. also Arias-García et al. [4] and Nelsen et al. [22]). With the development of 
copula theory in the imprecise probability setting, the need for new construction methods for quasi-copulas 
has also increased. Montes et al., say, published in [20] a possible approach to bivariate imprecise copulas. If 
C is a nonempty set of copulas, then C = infC∈C{C} and C = supC∈C{C} are quasi-copulas and the ordered 
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interval (C, C), i.e., the set of all intermediate quasi-copulas, may be called an imprecise copula. Following 
the ideas of p-boxes, it would be nice if the order ideal defined by these quasi-copulas contained a “true” 
copula. However, Omladič and Stopar construct in [26] an imprecise copula (A, B) in this sense, i.e., an 
appropriate pair of quasi-copulas, such that there is no copula C with A � C � B (cf. also [16,17,28]). Many 
other needs for constructions of quasi-copulas include the search for the Dedekind-MacNeille completion 
of the poset (partially ordered set for pointwise order) of copulas. Nelsen and Úbeda-Flores showed in a 
historical paper [24] that in the bivariate case this completion is just the class of bivariate quasi-copulas. 
In the multivariate setting the two authors together with Fernández-Sánchez demonstrate in [11] that for 
dimension n � 3 a simple extension of this result to n-variate (quasi-)copulas does not work any more. The 
problem was recently solved by Omladič and Stopar in [30], and their surprising solution is raising new 
questions in multivariate quasi-copulas.

So, it is high time to produce patchwork constructions for multivariate quasi-copulas. In copula setting, 
this procedure is as old as the notion of copula itself. We want to obtain a copula from a certain function 
(called sub-copula) defined on a suitable subset of In, where I = [0, 1], by extending it to a copula on the 
whole domain In. We can think of sub-copula as a patch and search for copulas that extend their values 
given there. Indeed, even in the proof of Sklar’s theorem one is faced with a version of this problem. With 
the development of the copula theory, this technique has been used in quite a number of situations. For a 
list of applications and a full answer to it, including a necessary and sufficient conditions on the function 
and its domain as well as all possible solutions of the problem, an interested reader should consult the paper 
[3] by de Amo et al. (cf. also [2]). No need to emphasize that all this is done on the n-variate level.

On the other hand, the analogous problem for quasi-copulas is much newer and the known solutions 
appear to be limited only to the bivariate case, cf. the paper [18] by Kokol Bukovšek et al. and the references 
given there. It seems that the multivariate case is much more involved, since we are able to prove in this 
paper that some of the known methods of bivariate constructions cannot be extended to higher dimensions 
(Section 2). Nevertheless, our main result is to present the necessary and sufficient conditions both on the 
patch and the values of it for the desired multivariate quasi-copula to exist. We also give all the possible 
solutions (Section 3).

2. Some partial results

We denote the unit interval by I := [0, 1] and the unit n-box by In. Also, we denote by R =∏n
i=1[ai, bi] ⊆ In an arbitrary n-dimensional rectangle, i.e., a general n-box. Moreover, we understand 

that [n] = {1, 2, . . . , n}. For a real function the term strictly increasing will be used in the sense increasing, 
and increasing will be used instead of the more usual nondecreasing. Analogously for strictly decreasing and 
decreasing.

Consider subsets δ1, δ2, . . . , δn of I that all contain 0 and 1 and let D =
∏n

k=1 δk. A function Q : D → I

is called a sub-quasi-copula (cf. [33]) if

(i) Q is grounded, i.e., for every j ∈ [n] and for every point (u1, . . . , uj−1, uj+1, . . . , un) ∈
∏n

k=1
k �=j

δk we 

have A(u1, . . . , uj−1, 0, uj+1, . . . , un) = 0;
(ii) 1 is the neutral element of Q, i.e., for every j ∈ [n] and uj ∈ δj we have A(1, . . . , 1, uj , 1, . . . , 1) = uj;
(iii) Q is increasing in each of its arguments on D;
(iv) Q satisfies 1-Lipschitz condition on D in each of its arguments.

Observe that in the case that δk = I for all k = 1, 2, . . . , n, so that D = In, this is the usual definition of 
a quasi-copula. Also, Condition (iv) implies that Q satisfies the Cauchy condition for any Cauchy sequence 
in D. Since we are only interested in continuous extensions of Q, we may and do assume that δk are closed 
subsets of I for all k = 1, 2, . . . , n.
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Assuming that the function is given on the outside of a given rectangle R, we want to extend it to R ⊆ In

using an appropriate function to get a quasi-copula. The kind of procedure, sometimes called patchwork, 
was first introduced in [7] for a class of functions containing copulas (cf. also [9] and [10, p. 115], and the 
references given there). The main tool needed in the sequel, a multivariate extension of [18, Theorem 1], will 
be obtained via an inductive argument. We assume that a function is given on ∂R, i.e., on all 2n (n −1)-faces 
of R; in the beginning of this section we will call them simply faces. They are given in pairs: For each k ∈ [n]
we have the face defined by xk = ak respectively xk = bk, which we call the lower and upper k-th face and 
denote them by Rk and R′

k. We assume (inductively) that the values are given via (n −1)-variate functions: 
Fk(x) respectively F ′

k(x′) for x ∈ Rk respectively x′ ∈ R′
k for all k ∈ [n]. By abuse of notation, we will 

identify Rk with R′
k by viewing an x from the first one as corresponding to an x′ from the latter one if they 

are equal in all coordinates except the k-th one.
Following the bivariate approach [18, Section 2], we now introduce Conditions PB on a certain function 

defined on the (n − 1)-faces of R. We will follow the notation above and denote the function by F on lower 
faces and by F ′ on the upper ones, with additional subscript identifying the actual face.

Conditions PB (Properties of the boundary functions). The functions Fk, F ′
k for k ∈ [n] have to satisfy 

the following conditions.

(i) The values of these functions are uniquely determined at (n − 2)-faces of R at which faces Rk and R′
k

intersect.1
(ii) These functions are increasing and 1-Lipschitz in each variable.
(iii) For all k ∈ [n] and all x ∈ Rk, we have 0 � F ′

k(x) − Fk(x) � bk − ak.
(iv) For any k ∈ [n], the volume of the rectangle Rx ⊆ R defined by the points a and x ∈ R′

k is a monotone 
and non-constant function in each argument of x.2

The multivariate case is substantially more involved than the bivariate one, so that we need to work in 
two steps.

Step I

On the first step we assume that R = In and we are searching for a quasi-copula. So, in Conditions PB we 
assume functions Fk to be zero and functions F ′

k(x1, x2, . . . , xk̂, . . . , xn) to be (n − 1)-variate quasi-copulas. 
Here, notation k̂ means that index k is not present in this particular counting.

Proposition 1. Let Conditions PB be satisfied. Then, there exists a quasi-copula Q matching functions Fk, F ′
k

on the boundary of In. Moreover,

(a) The upper bound of all these solutions equals

Q(x1, x2, . . . , xn) =

min{F ′
1(x2, . . . , xn), F ′

2(x1, x3, . . . , xn), . . . , F ′
n(x1, . . . , xn−1)},

(b) the lower bound equals

Q(x1, x2, . . . , xn) =

1 This means that for every pair j, k ∈ [n], j �= k, we have four equalities of the type, say, function Fj(x) at x ∈ Rj with xk = ak

equals Fk(x) at x ∈ Rk with xj = aj .
2 In case n = 2, this condition reduces exactly to the additional assumption immediately following Conditions PB of [18]. This 

assumption will be needed in the proof of Lemma 2(d) and in Example 3, and is not crucial in the rest of the paper.
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max{W (x1, F
′
1(x2, . . . , xn)),W (x2, F

′
2(x1, x3, . . . , xn)), . . . ,W (xn, F

′
n(x1, . . . , xn−1))},

(c) and every function Q satisfying Condition PB(ii) and Q � Q � Q solves the problem.

Proof. First we show (b). Clearly, each of the terms in this maximum is a quasi-copula, so that also Q
is a quasi-copula. Furthermore, we need to see that the boundary conditions on the faces are satisfied as 
well. The faces containing a zero are easy again. So, assume first x1 = 1. In this case the first term equals 
F ′

1(x2, . . . , xn). The behavior of any other term can be seen from the behavior of the term at k = 2, which is 
equal to W (x2, F ′

2(1, x3, . . . , xn)) = W (x2, F ′
1(1, x3, . . . , xn)) � F ′

1(x2, . . . , xn), because F ′
1(1, x3, . . . , xn) −

F ′
1(x2, . . . , xn) � 1 − x2 by the 1-Lipschitz condition. Assertion (a) goes similarly, perhaps even somewhat 

easier. These two facts imply the third one in a straightforward way. �
Step II

We now start with the general problem. Let the functions Fk, F ′
k satisfy Conditions PB for k ∈ [n]. We 

want to find a patch of a quasi-copula that will satisfy these conditions. By abuse of notation, we first 
introduce formally a function F of n variables from ∂R such that its value at xk = ak equals Fk, and such 
that its value at xk = bk equals Fk′ for k ∈ [n]. Since we will always need this function only at all points that 
belong to the boundary ∂R, there will be no ambiguity in this notation even if such function defined on all 
R does not exist. For an arbitrary x ∈ R and z ∈ {−1, 0, 1}[n] let xz be the n-tuple whose k-th coordinate 
is equal to

(xz)k =

⎧⎪⎨
⎪⎩

bk, if z(k) = 1;
xk, if z(k) = 0;
ak, if z(k) = −1;

for k ∈ [n]. Here for any set A we understand by A[n] as the set of all functions from [n] to A; notations s.a. 
zk will be reserved for particular n-tuples. Because of the requirement above that F be defined on ∂R only, 
the value F (xz) will always be defined as soon as we insist that z �= 0. We first introduce the additive part 
of our patch

A(x1, x2, · · · , xn) =
∑

0�=z∈{−1,0}[n]

(−1)1+
∑

zF (xz) (A)

which matches the initial conditions on the faces containing the “0” point a = (a1, . . . , an) as shown in the 
following lemma. We also need the function matching the initial conditions on the faces containing the “1” 
point b = (b1, . . . , bn)

B(x1, x2, · · · , xn) =
∑

0�=z∈{0,1}[n]

(−1)1+
∑

zF (xz) (B)

and their difference G(x) = B(x) −A(x).

Lemma 2. Denote by V the volume of rectangle R, suppose that V �= 0, and let k ∈ [n] be arbitrary.

(a) Let z′k be an n-tuple of indices with 1 in the k-th position and zeros elsewhere. Then B(xz′
k) =

F ′
k(x1, . . . , xk̂, . . . , xn), B(b) = F (b), and B(a) = F (a) − (−1)nV .

(b) Let zk(= −z′k) be an n-tuple of indices with −1 in the k-th position and zeros elsewhere. Then A(xzk) =
Fk(x1, . . . , xˆ, . . . , xn), A(a) = F (a), and A(b) = F (b) − V .
k
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(c) Let ẑk be an n-tuple of indices with zero in the k-th position and ones elsewhere. Then for Mk(xk) =
G(xẑk) we have Mk(ak) = 0 and Mk(bk) = V .

(d) Functions Mk(xk)
V

are increasing and are sending interval [ak, bk] to [0, 1].

Proof. For every k ∈ [n], denote by Nk the set of all subsets of [n] that do not contain k and by N ′
k the set 

of all subsets of [n] that do contain k. There is a natural bijection Nk −→ N ′
k, M �→ M ′ = M ∪ {k}. The 

two sets are disjoint and their union equals the power set, i.e., 2[n]. (a) Using definition (B), we have

B(xz′
k) =

∑
z∈{0,1}[n]

0�=z,z(k)=0

(−1)1+
∑

zF
(
(xz′

k)z
)

+
∑

z∈{0,1}[n]

z(k) �=0

(−1)1+
∑

zF (xz) .

Observe that the n-tuples z of the left hand sum have supports in Nk and the ones of the right hand sum 
have supports in N ′

k. Consider a term of the left hand sum and the corresponding z, and denote by M its 
support, i.e., the nonempty set of all indices at which it is nonzero. Clearly, M ∈ Nk. Then, (xz′

k)z = xz̃, 
where z̃ is exactly the n-tuple whose value is 1 on M ′ ∈ N ′

k and zero elsewhere. When z runs through all 
n-tuples of the left hand side sum, z̃ runs through all the n-tuples of the right hand side sum except for 
the term corresponding to the empty support. Observe that the term corresponding to z̃ has exactly the 
opposite sign than the term corresponding to z, so that they sum up to zero. Since ∅′ = {k}, we conclude

B(xz′
k) = F (xz′

k) = F ′
k(x1, . . . , xk̂, . . . , xn)

as desired. A simple computation reveals that

V =
∑

z∈{0,1}[n]

(−1)n−
∑

zF (az), and B(b) =
∑

0�=z∈{0,1}[n]

(−1)1+
∑

zF (bz) = F (b),

since F (bz) = F (b) and the sum of the corresponding factors equals 1. Finally,

B(a) = F (a) +
∑

0�=z∈{0,1}[n]

(−1)1+
∑

zF (az) =
∑

z∈{0,1}[n]

(−1)1+
∑

zF (az)

which equals (−1)n−1V by the above. (b) This time we use definition (A) to get

A(xzk) =
∑

z∈{−1,0}[n]

0�=z,z(k)=0

(−1)1+
∑

zF ((xzk)z) +
∑

z∈{−1,0}[n]

z(k) �=0

(−1)1+
∑

zF (xz) .

Following the considerations as in (a), we observe that a given n-tuple z of the left hand sum has its support 
∅ �= M ∈ Nk. So, (xzk)z = xz̃, where z̃ is exactly the n-tuple whose value is −1 on M ′ ∈ N ′

k and zero 
elsewhere. When z runs through n-tuples of the kind, z̃ runs through all the n-tuples of the right hand side 
sum except for the term corresponding to the empty support. Observe that the term of z̃ is exactly the 
opposite to the term of z, so that they sum up to zero. Consequently

A(xzk) = F (xzk) = Fk(x1, . . . , xk̂, . . . , xn)

as desired. Through a simple computation, we learn that

V =
∑

[n]

(−1)n+
∑

zF (bz), and A(a) =
∑

[n]

(−1)1+
∑

zF (az) = F (a),

z∈{−1,0} 0�=z∈{−1,0}
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since F (az) = F (a) and the sum of the corresponding factors equals 1. Finally,

A(b) − F (b) =
∑

z∈{−1,0}[n]

(−1)1+
∑

zF (bz) = −V.

(c) At the upper end we have Mk(bk) = G(bẑk) = G(b) = B(b) −A(b) = F (b) −F (b) + V = V , where we 
used (a) and (b). At the lower end we obtain first that Mk(ak) = G(aẑk) = B(aẑk) −A(aẑk), so that

Mk(ak) =
∑

0�=z∈{0,1}[n]

(−1)1+
∑

zF
((

aẑk
)z)−

∑
0�=z∈{−1,0}[n]

(−1)1+
∑

zF
((

aẑk
)z)

.

Now, recall the methods of the proof of (a). The first one of these two sums can be written in two parts 
depending on whether z(k) = 0 or z(k) = 1. Each term in the second part has a corresponding term in the 
first one of the same value and the opposite sign, except for z = zk, so that the first sum equals F

(
aẑk

)
. In 

an analogous way, we conclude that the second sum equals F
(
aẑk

)
, thus proving the desired.

(d) For xk ∈ (ak, bk) we have Mk(xk) = G(xẑk) = B(xẑk) −A(xẑk), so that

Mk(xk) =
∑

0�=z∈{0,1}[n]

(−1)1+
∑

zF
((

xẑk
)z)−

∑
0�=z∈{−1,0}[n]

(−1)1+
∑

zF
((

xẑk
)z)

=
∑

z∈{0,1}[n]

zk=1

(−1)1+
∑

zF (b) +
∑

0�=z∈{0,1}[n]

zk=0

(−1)1+
∑

zF (xẑk)

−
∑

z∈{−1,0}[n]

zk=−1

(−1)1+
∑

zF
((

xẑk
)z)−

∑
0�=z∈{−1,0}[n]

zk=0

(−1)1+
∑

zF
((

xẑk
)z)

.

The first two sums above add up to F (xẑk) after observing that in the first sum a constant is multiplied by 
the same number of positive and negative signs which add up to zero, and in the second sum the number of 
positive signs is greater by one so that they add up to 1. For each z in the third sum, we have 

(
xẑk

)z = bz, 
so that it adds up to constant

−
∑

z∈{−1,0}[n]

zk=−1

(−1)1+
∑

zF (bz).

Combine these observations into

Mk(xk) =
∑

z∈{−1,0}[n]

zk=−1

(−1)
∑

zF (bz) + F (xẑk)

+
∑

0�=z∈{−1,0}[n]

zk=0

(−1)
∑

zF (
(
xẑk

)z).

Now, on the right hand side of the last expression above we get exactly the volume of the rectangle deter-
mined by points a and xẑk . By Condition PB(iv), this volume is a non-constant monotone function of xk

and the desired conclusion follows by (c). �
Observe that functions Gk(x1, . . . , xk̂, . . . , xn) = G(xz′

k) for k ∈ [n] are exactly the volumes of rectangles 
Rx ⊆ R defined by the points a, x ∈ R. These volumes form, by Condition PB(iv), a non-constant function 
of x monotone in each of its coordinates thus constituting a quasi-distribution in the sense of [29, Section 3]
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(after being divided by V ) with marginal distributions Mj(xj)
V

for j ∈ [n], j �= k. Denote by Qk the quasi-
copulas for k ∈ [n] obtained by the Sklar type theorem of [29, Theorem 8]. Finally, let Q be the quasi-copula 
obtained from quasi-copulas Qk for k ∈ [n] by Proposition 1.

We are studying a patch of quasi-copula type that is equal to A on (n − 1)-faces containing point a and 
is equal to B on (n − 1)-faces containing point b. Let the univariate margins Mk for k ∈ [n] be defined as 
above. Then, under the condition that the volume V of the rectangle R is nonzero (actually this follows 
from Condition PB(iv)), one might conjecture that the desired patch is equal to

P (x1, x2, · · · , xn) = A(x1, x2, . . . , xn) + V Q

(
M1(x1)

V
, · · · , Mn(xn)

V

)
,

for any quasi-copula Q. For n = 2 this is true by [18, Theorem 1]. However, for n � 3 this does not hold 
in general as the following example exhibits. Nevertheless, we will be able to solve the proposed problem in 
higher dimensions as well using independent methods and only Conditions PB(i), (ii) and (iii).

Example 3. We first divide the unit square into 9 equal squares. Denote M = {(x, y); 13 � x, y � 2
3} and let 

C be the union of the corners {(x, y); 0 � x � 1
3 , 

2
3 � y � 1}, {(x, y); 0 � x, y � 1

3}, {(x, y); 
2
3 � x, y � 1}, 

and {(x, y); 23 � x � 1, 0 � y � 1
3}. Furthermore, let D be the union of the four squares not yet taken into 

account so far. Define a bivariate quasi-copula D(x, y) with the density function

d(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
−3, on M,

0, on C,
3, on D,

and a 3-dimensional quasi-copula F (x, y, z) = D(x, y)z. Next, we consider 3-dimensional patch Q on the 

rectangle R =
[
1
3 ,

2
3

]3

. We have on the boundary of R

F

(
1
3 , y, z

)
=

(
y − 1

3

)
z, F

(
2
3 , y, z

)
= 1

3z,

F

(
x,

1
3 , z

)
=

(
x− 1

3

)
z, F

(
x,

2
3 , z

)
= 1

3z,

F

(
x, y,

1
3

)
= 2

3(x + y) −
(

1
3 + xy

)
, F

(
x, y,

2
3

)
= 4

3(x + y) −
(

2
3 + 2xy

)
.

After we insert these values into functions A, B, and G given above we obtain

A(x, y, z) = yz + xz − xy + 1
3(x + y − 2z) − 1

9 ,

B(x, y, z) = −2xy + 1
3(4x + 4y + z) − 8

9 , and

G(x, y, z) = x + y + z − xy − xz − yz − 7
9 .

Then,

M1(x) = −x + 1
, M2(y) = −y + 1

, and M3(z) = −z + 1
,
3 9 3 9 3 9
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so that the patch on R is given by

P (x, y, z) = A(x, y, z) − 1
9Q(3x− 1, 3y − 1, 3z − 1),

where Q is a quasi-copula with appropriate bivariate marginals. Notice that

G1(y, z)
V

=
G(2

3 , y, z)
V

= M2(y)
V

M3(z)
V

,

and similarly

G2(x, z)
V

= M1(x)
V

M3(z)
V

,
G3(x, y)

V
= M1(x)

V

M2(y)
V

.

Hence bivariate quasi-copulas obtained by the (extension of) Sklar theorem are Q1 = Q2 = Q3 = π, the 
independence copula. Apply Proposition 1 with Ci = Qi for i = 1, 2, 3 to get

Q(x, y, z) = max{W (x, yz),W (y, xz),W (z, xy)} = max{0, x + yz − 1, y + xz − 1, z + xy − 1}.

In this case P is not a quasi-copula. For instance,

P

(
x,

1
2 ,

2
5

)
= min

{
7x
30 − 1

90 ,−
x

10 + 1
5

}

is a function of x which is not increasing for x ∈
(

19
30 ,

2
3

)
. Hence P is not a patch of a quasi-copula.

3. Extending a sub-quasi-copula

In this section we extend a sub-quasi-copula to a quasi-copula. On the way to independent solutions of 
this problem, we first recall that an order closed set is meant to be closed under the operation of suprema 
and infima of arbitrary subsets.

Lemma 4. Let S be a bounded set of functions on a rectangle R such that each of them is increasing and 
1-Lipschitz in each argument. Then the local bounds

S = inf{S ∈ S} and S = sup{S ∈ S}

are both increasing and 1-Lipschitz in each argument. The order closure of S is compact in the uniform 
norm.

While the proof of this lemma is a straightforward extension of the proof of [21, Theorem 6.2.5], the 
extension to be given now is more sophisticated. Recall the notation for the formal boundary function F , 
and index functions zk and z′k of Lemma 2.

Proposition 5 (Local patch bounds). Fix a choice of function F satisfying the boundary conditions PB
(i)–(iii). Then the set S of patches having F for its boundary, and being increasing and 1-Lipschitz in 
each argument, is nonempty. The local bounds of S on R are equal to

S = min
k∈[n]

{F (xz′
k), F (xzk) + xk − ak}

S = max{F (xzk), F (xz′
k) + xk − bk}.
k∈[n]
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Proof. Denote by P a hypothetical desired patch and note that for all k ∈ [n]: P (x) � F (xz′
k) and 

P (x) − F (xzk) � xk − ak, first by monotonicity and second by the 1-Lipschitz property of the patch. 
This implies easily that P � S in the pointwise order. The fact that S is clearly monotone increasing and 
1-Lipschitz in each argument will then imply that it is a possible patch, as soon as we show that it satisfies 
the boundary conditions. Actually, we will show that

S(xzj ) = F (xzj ) (1)

for any j ∈ [n]. To prove that, fix j and let us go through all the terms k ∈ [n] of the defining minimum of 
S. When k = j, the two terms bring us to the desired Equation (1), since xj − aj = 0 and F (xzj ) � F (xz′

j )
by Condition PB(iii). Now, if we consider an index k �= j, we are in an (n −1)-dimensional face of R, where 
function F is defined, monotone increasing and 1-Lipschitz by condition PB(ii). The left hand term of the 

minimum becomes in this case F
(
(xzj )z′

k

)
� F (xzj ), so that (1) holds in this case as well. Finally, to get 

the right hand side term, we compute

F (xzj ) − F ((xzj )zk) � xk − ak,

thus concluding the proof of the first half of the “upper” part of the proposition. The second half goes in 
exactly the same way: We need to show that Equation (1) holds when we replace zj by z′j on both sides. 
The fact that S is the lower bound of this set goes in a similar way. �

Suppose that Q∗ : D → I is a sub-quasi-copula. By [33, Theorem 2.3] it has an extension to a quasi-copula 
Q : I2 → I in case of n = 2; in [18] all the solutions were found in this case. However, for the multivariate 
version of an equivalent problem only the copula case was solved (cf. [2,3]). Let us now extend the notation 
of [18]. Let the considered sub-quasi-copula be defined on D = δ1×δ2×· · ·×δn, where the closed sets δi ⊆ I

are given for i ∈ [n]. Also, for i ∈ [n] let us introduce:

(i) Write the sets δi as a union of singletons and closed intervals. Consider only maximal possible inter-
vals contained in δi, and observe that any two of the kind are disjoint. Denote by Ii = {Iij}j∈Ji

the 
(necessarily countable) set of all such nontrivial intervals.

(ii) Write the complement I \ δi as a union of countably many disjoint open intervals. We introduce the 
family Oi = {Oi

j}j∈Ki
of all the closures of these intervals.

(iii) Introduce Ti = Ii ∪ Oi and Li = Ji 	Ki.

Observe that all the index sets Ji, Ki, and Li are countable. Also, any pair of the closed intervals in the 
family Ti is clearly either disjoint or intersects at a common endpoint. By abuse of notation, we will identify 
a family of intervals by the union of these intervals. Observe that Ti is dense in I. Indeed, assume, if 
possible, that I contains an open interval I having an empty intersection with Ti. Therefore, I has an empty 
intersection with Oi, so that it is contained in δi. Consequently, there is a closed interval containing I and 
being a member of Ii, contradicting the above. Note that the complement of Ti in I can be a countable or 
even uncountable Cantor like set with positive Lebesgue measure in [0,1] (cf. [12,3]).

Let us denote by T the set of all rectangles Rs =
n∏

i=1

[asi , bsi ] indexed by n-tuples of indices s =

(s1, s2, . . . , sn) with si ∈ Li for i ∈ [n] and denote the set of these n-tuples by L. Observe that neces-
sarily [asi , bsi ] is either a member of Ii or a member of Oi, and that in either case asi �= bsi , so that a 
rectangle Rs for s ∈ L is always nondegenerate. It follows easily from our definitions that the family of 
rectangles Rs for s ∈ L is countable and dense in In. Following our notation of Section 2, we introduce a 
hypothetical function Fs to be defined on the boundary of the rectangle Rs for every s ∈ L. It is almost 
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clear from the above that F is defined at least at the vertices of Rs, i.e., at points xz where vector z has 
no zero entries. Let us look into some details about where exactly this function is defined. In the defining 

product Rs =
n∏

i=1

[asi , bsi ] some of the segments (say, k of them, 0 � k � n) belong to I· and some to O·. 

Let us rewrite it so that the former ones are counted with starting indices, continuing with counting the 
latter ones, after an appropriate permutation of indices:

R̃k
s =

n∏
i=1

[asi , bsi ], where [asi , bsi ] ∈ Ii, 1 � i � k, and [asi , bsi ] ∈ Oi, k < i � n.

Consequently, the definition set of the hypothetical function F contains exactly the members of R̃k
s of the 

form xz with zi nonzero whenever k < i � n. Clearly, the definition set of F on the original rectangle Rs
can be obtained from this one using the reverse permutation of indices on this result. We will denote it by 
DF . It is our aim to find a possible quasi-copula Q solving our problem using three main ingredients: (1) use 
induction on dimension k for which Q∗ is defined on a given Rs for s ∈ L; (2) extend these solutions on all 
of T using the fact that L is countable, and (3) extend this solution by continuity to all of In.

We observed in Section 2 that it is good to have existence of a patch given the boundary condition, but 
it is even better to have an upper and a lower bound for all the patches of the kind. It is our aim now to 
present an algorithm for the two bounds of all quasi-copulas extending a given sub-quasi-copula. We start 
by finding these bounds on segments and organize the work by going through segments along each of the 
coordinates. Actually, we will give particularities only for the n-th coordinate, since any other goes in exactly 

the same way. Consider all vertices of the (n − 1)-dimensional rectangles of the form 
n−1∏
i=1

[asi , bsi ] – they 

build a mesh to be denoted by V . Observe that all these vertices belong to (the corresponding coordinates 
of) the definition set of Q∗ since they are either in the intervals of type I or at the endpoints of the intervals 
of type O. Rewrite the countable set ∪t∈Ln

{at, bt} as {ct}t∈M in order to simplify the notation to follow 
and denote γv

t = Q∗(v, ct) for all v ∈ V and t ∈ M . In the following proposition we will need these values 
to satisfy

(A) 0 � γv′
t −γv

t � v′i−vi for all t ∈ M and v′, v ∈ V such that they are distinct only in the i-th coordinate 
for any i ∈ [n − 1], namely v′i > vi;

(B) if ct < ct′ for some t, t′ ∈ M , then we have 0 � γv
t′ − γv

t � ct′ − ct.

We want to introduce functions Fv
t (x) (a special notation to be used only within Proposition 6) to become 

the desired values of Q(v, x) on segments emerging from vertices of V , i.e., for all x ∈ [at, bt], all t ∈ M , 
and all v ∈ V . We want these functions to satisfy conditions

(Ci) Function Fv
t is increasing and 1-Lipschitz in its only argument on [at, bt] for every t ∈ Ln and every 

v ∈ V .
(Cii) These functions satisfy the boundary conditions Fv

t (at) = αv
t = Q∗(v, at) and Fv

t (bt) = Q∗(v, bt) for 
t ∈ Ln.

(Ciii) If at < at′ for some t, t′ ∈ Ln, then we have 0 � Fv
t′ (x′) − Fv

t (x) � x′ − x for all v ∈ V and 
x ∈ [at, bt], x′ ∈ [at′ , bt′ ].

(Civ) For every t ∈ Ln, every x ∈ [at, bt], and every v, v′ ∈ V such that they are distinct only in the i-th 
coordinate, we have 0 � Fv′

t (x) − Fv
t (x) � v′i − vi.

We are now in position to extend our quasi-copula on these segments thus fulfilling the starting point of 
our inductive algorithm. Observe that the role of the set M with indices taken from Ln can be replaced by 



D. Kokol Bukovšek et al. / J. Math. Anal. Appl. 540 (2024) 128582 11
an analogous set with indices from Lk, k ∈ [n], while replacing the mesh V with the one having coordinates 
in the directions different from k. This way we can extend Q∗ on the segments, i.e., 1-dimensional faces of 
our grid.

Proposition 6. If the segment given by a t ∈ M and a v ∈ V is a member of In, then the desired function 
is uniquely determined by the sub-quasi-copula Q∗. If it is a member of On, then the functions Fv

t (x) =
max{Fv

t (at), Fv
t (bt) +x − bt} and F

v
t (x) = min{Fv

t (at) +x − at, Fv
t (bt)} satisfy Conditions (Ci)–(Civ) for 

x ∈ [at, bt] with t ∈ M . Furthermore, if Fv
t (x) are any functions satisfying these conditions, then

Fv
t (x) � Fv

t (x) � F
v
t (x), for x ∈ [at, bt] with t ∈ M.

Proof. Fix v ∈ V and assume that the segment corresponding to t ∈ M is a member of On. Write Ft

instead of Fv
t to simplify the notation and similarly with analogous notations with the lower and upper 

bars. (1) Let us show that F t(x) satisfies the conditions. Conditions (Ci) and (Cii) are easy. (Ciii): Assume 
at < at′ , so that at < bt � at′ < bt′ . For x, x′ as in (Ciii) we have clearly (after adding and subtracting 
F t′(at′) and F t(bt))

0 � F t′(x′) − F t(x) � x′ − at′ + at′ − bt + bt − x = x′ − x.

(Civ): Let us introduce Δ(x) = Fv′
t (x) − Fv

t (x). Denote by xv, respectively xv′ , the unique value with 
αv
t = βv

t + xv − bt, respectively αv′
t = βv′

t + xv′ − bt. If x � min{xv, xv′}, then Δ(x) = αv′
t − αv

t and 
we are done. If x � max{xv, xv′}, then Δ(x) = βv′

t − βv
t and we are also done. If xv′ � x � xv then 

Δ(x) = βv′
t + x − bt − αv

t ∈ [αv′
t − αv

t , β
v′
t − βv

t ] ⊆ [0, v′
i − vi]. Finally, if xv � x � xv′ , then a similar 

construction yields the same result. (2) The fact that F t(x) satisfies the same conditions goes in the same 
way. (3) Choose any functions Ft(x) satisfying Conditions (Ci)–(Civ). Since Ft(x) � Ft(bt) = βt and 
Ft(x) −Ft(at) = Ft(x) −αt � x − at, we conclude that Ft(x) � min{βt, αt +x − at} = F t(x), and the proof 
of the other inequality goes in a similar way. �

Having now all the extensions to the segments corresponding to our mesh, it is time for an inductive 
step. (From now on the notation F will be used as in this section before Proposition 6.) Recall that the 
main conditions on a quasi-copula (after taking care of the boundary conditions) are that it be monotone 
and 1-Lipschitz in each argument. So, it is not hard to see that the following conditions are necessary for 
a sub-quasi-copula to be further extendable to a quasi-copula. We will write them in notation adjusted to 
R̃k

s , where k is the number of segments that belong to I. (Observe that our induction is to be performed 
on k.)

(A) In all variables si for all 1 � i � k the function F must satisfy Conditions PB (i)–(iii).
(B) Let for any j ∈ [n] and some s, s′ ∈ L such that si = s′i for i ∈ [n], i �= j, and bsj � as′j . Then we have 

0 � Fs′(xzj ) − Fs(xz′
j ) � as′j − bsj for all x ∈ DF ⊆ Rs,3 where zj , z′j are defined as in Lemma 2.

Condition (B) implies, in particular, that if bsj = as′j , then Fs′(xzj ) = Fs(xz′
j ) for all x ∈ Rs. In other 

words, if two rectangles have all but one indices in common, so that they intersect in an (n − 1)-face, their 
functions F have the same value on this intersection.

Theorem 7. Fix a sub-quasi-copula Q∗ and a rectangle Rs, s ∈ L.

3 Observe that this is the same as requiring x ∈ Rs
′ . Consequently, DF are the same on both rectangles.
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(a) Assume that for the rectangle considered the value of the hypothetical boundary function F has been 
extended to all faces of dimension up to a certain index k and choose a face of dimension k + 1. Then, 
the boundary function F can be extended to this face satisfying Conditions (A) and (B).

(b) The function F can be extended to a patch on the whole rectangle considered satisfying Condition (A) 
and (B). The collection of these patches (when going through all the rectangles in a certain order 
and taking into account the definitions of functions F on previous rectangles) defines a quasi-copula 
extension of the given sub-quasi-copula, after extending it to the closure by continuity.

(c) Every quasi-copula extending the given sub-quasi-copula can be obtained in this way.

Proof. (a) Suppose that for the rectangle considered the value of the hypothetical boundary function F has 
been extended to all faces of dimension up to a certain index k, and choose a face of dimension k+1. Assume 
with no loss that the face belongs to the first k + 1 coordinates; if not, apply an appropriate permutation 
on coordinates. Here is the description of the next inductive step needed. Using Proposition 5, we fill all 
the patches whose first k + 1 coordinates correspond to this face and the rest of the coordinates belong to 
respective Li, k+1 < i � n. (The first k+1 coordinates play the role of parameter t in Proposition 6, while 
the rest of the coordinates represent points of the mesh determining locations of the face, denoted there by 
v.) Observe that in case k + 1 = n this condition is empty; this step presents therefore the last inductive 
step which means that we are done. In any case we need to show that Conditions (A) and (B) extend to the 
next step (if k < n + 1) or conclude the final fit into the boundary values provided by Q∗ and its previous 
extensions. Once we are done with this particular face, we proceed with other faces of this size. Since there 
are only countably many of them we can conclude this stage of the proof using an inner induction within 
this inductive step.

So, to conclude this part of the proof we only need to show that the two conditions are valid. Start by 
(B): Take j ∈ [n] and some s, s′ ∈ L such that si = s′i for i ∈ [n], i �= j, and that bsj � as′j . Then we want 
to show that

0 � Fs′(xzj ) − Fs(xz′
j ) � as′j − bsj (2)

for all x ∈ DF ⊆ Rs. In order to prove that, we need to recall the definition of the function F . We verify 
(2) for F coming from two sources: (1) The upper bound of all possible patches fitting into the (k + 1)-
dimensional face under consideration. We obtain it via the formula for S of Proposition 5, after specifying 
first the upper bounds for values on segments, then on 2-dimensional faces, and so on up to k-dimensional 
faces of the given face. (2) In a similar way, the lower bound of all possible patches fitting into the (k + 1)-
dimensional face under consideration is obtained via the formula for S of Proposition 5. To show Condition 
(2) in case (1), we observe that the two functions F are given each by a minimum of terms made of functions 
F from the previous step for which we know that an analogous condition holds. Any of the terms defining 
the right hand side function F has a counterpart in the left hand side function F , so that the difference 
between these two terms is greater than or equal to 0. By replacing the right hand side term with the 
minimum of these terms, we conclude that 0 � term − Fs(xz′

j ), where notation “term” stands for any of 
the terms defining Fs′(xzj ). So, when we take the minimum over all terms under consideration, we decide 
that the left hand side inequality of Condition (2) is true. To get the right hand side inequality, we reverse 
this procedure: to each defining term of the left hand side function F there is a corresponding term in the 
right hand side function F such that the difference between these two terms is no greater than as′j − bsj . 
This time we first observe that this inequality prevails when we replace the first of the terms by Fs′(xzj )
and than conclude the proof of Condition (2) by taking the minimum over all the so obtained inequalities. 
Case (2) of Condition (B) goes in a similar way. Condition (A) requires that the first three of Conditions
PB hold. While conditions (i) and (ii) are satisfied by construction of functions F , Condition (iii) amounts 
to a verification very similar to the one we just did under (B), so that we will omit it.
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In the proof of assertions (b) and (c), which follow easily from (a), we need to be careful to combine 
first, say, the upper bounds of all patches. Since their union is dense in In, we can extend this function 
by continuity to get the desired extension to a quasi-copula, an upper bound of all possible solutions. The 
lower bound is obtained in an analogous way and all the solutions are lying between the two. �
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