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1 | INTRODUCTION

A dominating set of a graph G is a set S of vertices of G such that every vertex not in S has a
neighbor in S, where two vertices are neighbors in G if they are adjacent. The domination
number of G, denoted by y (G), is the minimum cardinality of a dominating set of G. A set S
dominates a vertex visv € S or if v has a neighbor in S. A restrained dominating set (RD-set), of
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G is a dominating set S of G with the additional property that every vertex not in S has a
neighbor not in S, that is, the subgraph of G induced by the set V' (G)\S is isolate-free. The
restrained domination number of G, denoted by y,.(G), is the minimum cardinality of an RD-set
of G. A y,-set of G is an RD-set of G of minimum cardinality y.(G). Restrained domination in
graphs is well studied in the literature with over 100 publications, according to MathSciNet. We
refer the reader to the excellent book chapter by Hattingh and Joubert in 2020 on restrained
domination in graphs that gives the state of the art on the topic. For recent books on
domination in graphs, we refer the reader to [13-15, 19].

A cubic graph, also called a 3-regular graph, is a graph in which every vertex has degree 3.
A subcubic graph is a graph with maximum degree at most 3. Domination in cubic and subcubic
graphs is very well studied in the literature (see, e.g., [1, 2, 4-6, 9-12, 18, 20, 21, 23-27]). We
define a special subcubic graph as a subcubic graph G with minimum degree at least 2. In this
paper, we continue the study of restrained domination in cubic graphs. We consider the following
problem.

Problem 1. Determine the best possible constant cygom such that ¥,.(G) < crgom - n(G)
for all cubic graphs G.

The best known upper bound to date, before this paper, on cqom is due to Hattingh and
Joubert [11], who proved that c;qom < % Their proof is nontrivial and uses intricate and

ingenious counting arguments. We observe that the Petersen graph G, illustrated in Figure 1,
has order n(G) =10 and ¥.(G) =4 = %n(G), where the set consisting of the four shaded

vertices is an example of a y,.-set of G. This yields the trivial lower bound c;gom > %

Theorem 1 (Hattingh and Joubert [11]).

< Crdom £ —

11°

w |

It is conjectured in [17] that the lower bound in Theorem 1 is the correct value of ¢ gom. In
this paper, we prove that this is indeed the case.

2
Theorem 2. cCigom = <

To prove Theorem 2, it suffices to show that if G is a cubic graph of order n, then
%.(G) < %n. However to prove this result, we relax the 3-regularity condition to allow vertices of
degree 2 in the mix to make the inductive hypothesis easier to handle. If n,(G) and n;(G)
denote the number of vertices of degree 2 and 3, respectively, in such a graph G, then we would
like to prove that 10y.(G) < 5n,(G) + 4n3(G) since if G is 3-regular this yields y,(G) < %n.

FIGURE 1 The Petersen graph G.
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However, relaxing the 3-regularity condition results in a family B4, of “troublesome graphs” for
which the desired inequality 10y,(G) < 51n,(G) + 4n3(G) does not hold. Therefore we add a
function Q(G) such that the statement becomes true even for these troublesome graphs. However,
we try to keep Q(G) as small as possible to establish a bound on y,(G) that remains as strong as
possible. The resulting bound will be the key result that will enable us to prove Theorem 2.

We proceed as follows. In Section 2, we formally state our key result, namely Theorem 3. In
Section 2.1, we present the necessary graph theory notation. In Section 2.2, we introduce the
concept of near-restrained dominating sets, which we will need when proving our key result.
Known results are discussed in Section 2.3. In Section 3, we discuss properties of troublesome
graphs that belong to the family B;gom. A preliminary result is proven in Section 4. Proof of our
key result is given in Section 5, and thereafter in Section 6, we deduce our main result.

2 | KEY RESULT

To prove our main result, namely Theorem 2, we identify a family Bygom = {R1, Ry, ..., Ryo} of 10
troublesome graphs G shown in Figure 2 that satisfy 10y,(G) > 5n,(G) + 4m3(G). Let
Brdom,1 = {R¢, R7, Rs, R}, Brdom,2 = {R, R3}, Brdom,s = {Ro}, Brdom,a = {R4, Rs} and Brdom,s ={R.}.
Let f;(G) denote the number of components of a special subcubic graph G that belong to Bygom i
for i € [5]. We define

5
Q(G) = Y i (G).

i=1

We note that if G is a connected graph and G € B;4om, then Q(G) = 0, while if G € Bigom,
then G € Bigom,; for some i € [5] in which case Q(G) =i < 5. We define a weight function
w(G) associated with G by

w(G) = 5m,(G) + 4m3(G) + Q(G).

We define the weight ws(v) of a vertex v in G as its contribution to the weight
5n,(G) + 4n5(G). Thus, if deg;(v) = 2, then wg(v) = 5, and if deg;(v) = 3, then wg(v) = 4. We

SRR ORR R
 xn ® 2

FIGURE 2 The family Bjom-
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define the weight w;(S) of a set S of vertices in G as the sum of the weights of vertices in S, that
is, wg(S) = X,csWe(v). We are now in a position to state our key result, a proof of which will be
given in Section 5.

Theorem 3. If G is a special subcubic graph, then 10y,(G) < w(G).

2.1 | Notation

For notation and graph theory terminology, we in general follow [15]. Specifically, let G be
a graph with vertex set V(G) and edge set E(G), and of order n(G) = IV(G)| and size
m(G) = IE(G)I. For a set of vertices S C V(G), the subgraph induced by S is denoted by
G [S]. Two vertices in G are neighbors if they are adjacent. The open neighborhood N (v) of a
vertex v in G is the set of neighbors of v, while the closed neighborhood of v is the set
Ng[v] = {v} U N (v). Two vertices are open twins if they have the same open neighborhood.
We denote the degree of v in G by deg(v) = INg(v)|. The minimum and maximum degree in
G is denoted by §(G) and A(G), respectively. An isolated vertex is a vertex of degree 0. A
graph is isolate-free if it contains no isolated vertex.

We denote a path, a cycle, and a complete graph on n vertices by B, C,, and K,
respectively. A diamond is the graph K, — e, where e is an arbitrary edge of the K,. A
domino is a graph that can be obtained from a 6-cycle by adding an edge between two
antipodal vertices of the 6-cycle. An F-component of a graph G is a component of G that is
isomorphic to F. An edge-cut of a connected graph is a set of edges whose removal
disconnected the graph. A k-edge-cut is an edge-cut of cardinality k. The girth of G is the
length of the shortest cycle in G.

If G is a special subcubic graph, then we denote by n,(G) and n;(G) the number of vertices
of degree 2 and 3, respectively, in G. For a special subcubic graph G, let S and £ be the set of all
vertices of degree 2 and 3 in G, respectively, that is, £ ={v € V(G) : deg;(v) = 3} and
S={v e V(G):deg,(v) = 2}. We call a vertex in £ a large vertex, and a vertex in S a small
vertex. For k > 3, we define a k-handle to be a k-cycle that contains exactly one large vertex. For
k > 1, a k-linkage is a path on k + 2 vertices that starts and ends at distinct large vertices and
with k internal vertices of degree 2 in G. A handle is a k-handle for some k > 3, and a linkage is
a k-linkage for some k > 1. We use the standard notation [k] = {1, ..., k}.

2.2 | Near restrained dominating sets

To prove our main result, we introduce the concept of a near-restrained dominating set. Given
a graph G and a set S of vertices in G, we let S denote the complement of S, that is,
S = V(G)\S. We define a near restrained dominating set, abbreviated NeRD-set, of G with
respect to a subset X of vertices of G as a relaxed variant of an RD-set S of G such that either the
vertices in X need not be dominated by S but every vertex in S is still required to have a
neighbor in S or the vertices in X are dominated by S but need not have a neighbor in S.
Formally, a NeRD-set of G with respect to a specified subset X is a set S C V (G) such that
exactly one of the following two conditions hold:

(C1) The set S dominates the set V (G)\X, and every vertex in S has a neighbor in S.
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(C2) The set S dominates the set V (G), the set X C S, and every vertex in S \ X has a neighbor
inS.

If condition (C1) holds, then we refer to the NeRD-set as a type-1 such set, while if
condition (C2) holds, then we refer to the NeRD-set as a type-2 such set. We denote by
¥-ndom (G5 X) the minimum cardinality of a type-1 NeRD-set with respect to the set X (where
“ndom” stands for “not dominated” since the vertices in X are not required to be dominated),
and we denote by ¥, 4., (G; X) the minimum cardinality of a type-2 NeRD-set with respect to
the set X (where “dom” stands for “dominated” since the vertices in X are dominated but not
required to have a neighbor that is not dominated). If X = {v}, we simply write y; 4., (G; v) and
¥.dom (G5 V) rather than y, 4. (G; {v}) and 3, 4,1, (G; {v}), respectively. Since every RD-set is also
a NeRD-set, we note that 3, ., (G; X) £¥(G) and ¥ dom (G; X) £ 9(G).

2.3 | Known bounds on restrained domination

Closed formulas for the restrained domination number of paths and cycles are given in [7], where it
(C)=n- 2L |. The following
theorem summarizes classical results on bounds on the restralned domination number of a graph.

is shown that for n > 1, 5,

Theorem 4. If G is a connected graph of order n, then the following hold.

(@) [71If6(G) > 1, then ,.(G) < n — 2, unless G is a star Ky ,_1, in which case ¥,(G) = n.
(b) [8] If6(G) = 2 and G # Cs, then %,(G) < 2n

(c) [7,16] If6(G) 22 and n 2 9, then y,(G) <12(n —1).

(d) [11] If G is a cubic graph, then y.(G) < 2.

- 11

3 | PROPERTIES OF GRAPH IN THE FAMILY 3B.4om

In this section, we present properties of graphs that belong to the family Bigom = {Ry, ..., Rio}-
We note that there are no open twins in the graphs in the family B;4om With the exception of R,
which contains two vertices of degree 2 that have two common neighbors (of degree 3). We
shall need the following properties of graphs in the family B,4om. These properties are
straightforward to check (or can be checked by computer).

Observation 1. If G € Bygom and v is a vertex of degree 2 in G, then the following
properties hold.

(@ %R) =3 for ie€{l1,2,10},y(R)=4 for ie€{3,4,5, and yR)=5 for
ief6,7,8,9).

(b) There exists a y,-set of G that contains v.

(c) There exists a y,-set of G that does not contains v.

(D % .naom(G; V) £ %(G) — 1.

(©) %.4om(G; V) £ %(G) — 1, unless v is an open twin of R,.
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(f) If X consists of two vertices of degree 2, then y, 4,,,(G; X) < %.(G) — 1.

Observation 2. Let G € B.gom and let e = xy be an arbitrary edge of G. If G* is obtained
from G by subdividing the edge e resulting in a new vertex v* of degree 2 (with neighbors
x and y), then y.(G*) < ¥.(G). Furthermore, there exists a y,-set of G* that contains v*
and contains neither x nor y.

Observation 3. Let G € Bigom and let e = xy be an arbitrary edge of G. If G* is obtained
from G by subdividing the edge e twice, resulting in a path xx y, y, then y.(G*) < %,(G).
Furthermore, there exists a y,-set of G* that contains x; but not y,.

Observation 4. Let G € Brgom and let e = xy be an arbitrary edge of G. If G* is obtained
from G by subdividing the edge e three times resulting in a path xv;v,v3y, then the
following properties hold.

(@ ¥ 4om(G* V1) £ %(G) and %, 4o (G V1) < 7,(G).
(b) If G € {Ry, Rs, Ro}, then ¥, 4, (G*; v;) < 7,(G).

Observation 5. Let G € Brgom and let e = xy be an arbitrary edge of G. If G* is obtained
from G by subdividing the edge e four times resulting in a path xv,v,v31,y, then there
exists a RD-set S* of G* such that S* N {vy, v, v3, W} = {v1, i} and the following properties
hold.

(@) If G & {R4, Rs}, then IS* < %,(G) + 1.
(b) If G € {R4, Rs}, then IS* < y.(G).

Observation 6. Let G € Bygom and let e = xy be an arbitrary edge of G. If G* is obtained
from G by subdividing the edge e four times resulting in a path xv;v,v31 y, then there
exists a RD-set S* of G* such that v, € S* and the following properties hold.

(a) If G # R, or if G = R, and neither X nor y is an open twin in G, then IS* < y.(G).
(b) If G = R, and x or y is an open twin in G, then IS* < y.(G) + 1.

4 | PRELIMINARY RESULT

In this section, we present a preliminary result that we will need when proving our main
result.

Lemma 1. If G is a bipartite special subcubic graph with partite sets S and L, then
%.(G) < ILI.

Proof. Let G be a bipartite subcubic graph with partite sets S and £. Thus S and £ are
independent sets, and every vertex in S has degree 2 with two neighbors in £ and every
vertex in £ has degree 3 with three neighbors in S. Let s = ISl and € = ILI.

Let F be the graph with V (F) = £, where two vertices are adjacent in F if and only if
they have a common neighbor (that belongs to S) in the graph G. Let £; be a maximal
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independent set in F, and let £, = £\ £;. Let & = I£,l and let &, = I£,l. Let S; be the set
of vertices dominated by £, in the graph G, and let S, = S\ S;. Possibly, S, = @.

If a vertex in &) has both its neighbors in £;, then the set £; would contain two
adjacent vertices in F, contradicting the fact that £, is an independent set in F. Hence
every vertex in S; is adjacent to exactly one vertex of £, and to exactly one vertex in £,. In
particular, this implies that the subgraph G[£; U &;] of G induced by the set £, U S;
consists of & vertex disjoint copies of Kj ; where the central vertex of each star belongs
to El.

By the maximality of the independent set £;, the set £, is a dominating set in F,
implying that every vertex in £, must have at least one neighbor in G that belongs to the
set S, that is, the set S; dominates the set £, in G. Let £, ; be the set of vertices in £, that
have exactly i neighbors in S; for i € [3]. Further, let &,; = 1£,;l for i € [3], and so
6 =t + bo + O3

Since each vertex in S; has exactly one neighbor in £;, no two vertices in £, have a
common neighbor in S;. For each vertex v in £, 3, we select an arbitrary neighbor v’ in S;
and let S;; be the resulting subset of vertices in S, that is,

Sii= U P

veEL)3

By our earlier observations, IS 1| = &, 3. Let S, = 51\ S1.1. Each vertex in £, 3 has one
neighbor in S; ; and two neighbors in S, ,, while each vertex in £, ; has i neighbors in S »
and 3 — i neighbors in S, for i € {1, 2}. Each vertex in £, therefore has at least one
neighbor in S;,, and each vertex in S, has exactly one neighbor in £,. Therefore, the
subgraph of G induced by the set S;, U £, is isolate-free.

We now consider the set D = £; U §;; U S,. By construction, V(G)\D = 81, U £,.
As observed earlier, the subgraph of G induced by the set S1, U £, is isolate-free.
Moreover, every vertex in S;, is dominated by the set £; C D and every vertex of £, is
dominated by the set S;; U S, C D. Hence, D is indeed an RD-set. It remains for us to
show that DI < €. Each vertex in S, has no neighbor in £, U £, 3, and therefore has both
its neighbors in £,; U £,,. Counting edges between the set S, and the sets £, U L5,
we, therefore, have 2IS,| = 26,1 + €55 < 26,1 + 2655, and s0 1Syl < €51 + &5,. Recall that
IS11l = €55. Hence, IDI = ILy] + 1S5l + 1S4l < 6 + (6o + b32) + o3 =6, + 6, = €, as
required. Therefore, y.(G) < IDI < €. O

| PROOF OF KEY RESULT

this section, we present proof of our key result, namely Theorem 3. Recall its statement.
Theorem 3. If G is a special subcubic graph, then 10y,(G) < w(G).

Proof. Suppose, to the contrary, that there exists a counterexample to the theorem.
Among all counterexamples, let G be chosen to have a minimum order. Thus if G’ is a
special subcubic graph of order less than n(G), then G’ is not a counterexample,
that is, 10y,.(G) > w(G) and 10y%.(G") < w(G") for all special subcubic graphs G’ with
n(G’) < n(G). The restrained domination number of a graph is the sum of the restrained

WILEY-—®
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domination numbers of its components. Hence by the minimality of G, the
counterexample G is connected. For notational simplicity, we adopt the following
notation throughout the proof. Let n = n(G), n, = n,(G), and n; = n3(G). If G’ is a
special subcubic graph, then we let n’ = n(G’), n = n,(G"), and n} = n3(G’). Further, let
k' be the number of components of G’ that belong Bygom, and let ' be the remaining
components of G'. If G’ is a connected graph, then we note that k' + r' = 1. Since
8(G) > 2, we note that n > 3. If G € Bygom, then 10y, (G) = w(G), contradicting the fact
that G is a counterexample. Hence, G & Brgom- If n € {3, 4, 5}, then it is straightforward to
check that 10y,(G) < w(G), a contradiction. Hence, n > 6. In what follows, we present a
series of claims describing some structural properties of G, which culminate in the
implication of its nonexistence.

Claim 1. A(G) = 3.

Proof. Suppose, to the contrary, that A(G) = 2, and so G is a cycle C, (and n > 6). In this
case, w(G) = 5n and 3,(C,) = n — 2[%]. Thus if n = 0 (mod 3), then 10y,(C,,) = 10n/3. If
n =1 (mod 3), then n > 7 and 10y,(C,) = 10(n + 2)/3.If n = 2 (mod 3), then n > 8 and
10y,.(C,) = 10(n + 4)/3. In all cases, 10y,.(G) < w(G), a contradiction. O

Claim 2. The graph G does not contain a path on five vertices with the internal vertices
all of degree 2 in G and such that either the two ends of the path are not adjacent or the
two ends are adjacent and both have degree 3 in G.

Proof. Suppose, to the contrary, that P : uv;v,v;w is a path in G, where deg;(v;) = 2 for
i € [3] and if uw is an edge, then deg;(u) = deg,(w) = 3. Since §(G) = 2 and A(G) = 3,
we can choose the path P so that deg,(u) = 3. Let G’ be the graph of order n’ = n — 3
obtained from G by deleting the set of vertices {vy, v, v3}. Further, if u and w are not
adjacent, then we add the edge uw to G’. Let S’ be a y,-set of G'. If {u,w} C §’, let
S=Sufv} If ueS and wegs’, let S=SuU{v}. If ugs and we S, let
S=SuUvlIfugsS andweg S, let S=S5"U {v,}. In all cases, S is an RD-set of G,
and so %.(G) < %.(G') + 1.

Suppose that u and w are not adjacent in G. In this case, the edge uw was added to G,
implying that the degree of the vertices u and w remain unchanged. In particular,
deg,(u) = 3. The graph G’ is a connected special subcubic and is not a counterexample,
and so 10y.(G") < w(G"). Suppose that G’ & Brgom. In this case, w(G) = w(G’) + 15, and
so 10y.(G) < 10(3,(G') + 1) < w(G’) + 10 < w(G), a contradiction. Hence, G’ € Brgom-
Thus, G is obtained from one of the graphs in B.4om, by subdividing the (added) edge uw
in G’ three times, where as observed earlier deg (1) = 3 (and deg,(w) € {2, 3}). Since R,
has no vertex of degree 3, we note that G # Ry. If G’ = Ry, then 7,(G) < 4 and w(G) = 43.
If G’ € {Rs, R4, Rs}, then y.(G) < 5 and w(G) > 51. If G’ € {Rg, Ry, R, Ro}, then .(G) < 6
and w(G) > 64. If G’ = Ry, then ,(G) < 4 and w(G) = 44. In all cases, 10y,(G) < w(G),
a contradiction.

Hence, u and w are adjacent in G. As before, the graph G’ is a connected special subcubic
graph and 10y.(G") < w(G"). By supposition, both u and w have degree 3 in G, and therefore
have degree 2 in G’. Hence the weight of each of u and w decreases by 1 from weight 5 in G’
to weight 4 in G. If G’ & Bigom, then w(G) = w(G") + 15 — 2 = w(G’) + 13, and so
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10%,.(G) £ 10((G") + 1) < w(G") + 10 < w(G), a contradiction. Hence, G € Bygom. Thus,
G is obtained from one of the graphs in B4, by adding an extra edge between two vertices
of degree 2 in G’, and then subdividing this added edge three times. Since none of R4, Ry, and
Ry has two adjacent vertices of degree 2, we note that G’ # {Ry4, Ro, Rjo}.
If G =R, then G = R;, while if G' = Rs, then G = Rg. In both cases, G € Brgom, a
contradiction. If G’ = R, then %,(G) = 4 and w(G) = 41. If G’ = R, then y.(G) = 5 and
w(G)=51. If G'€{R¢,R;,Rg}, then y(G)=6 and w(G)=62. In all Ccases,
10y,(G) < w(G), a contradiction. O

As a consequence of Claim 2, we have the following structure of handles and linkages.
Claim 3. The following properties hold in the graph G.

(a) If G contains a k-handle, then k € {3, 4, 5}.
(b) If G contains a k-linkage, then k € {1, 2}.

Claim 4. Let G be obtained from the disjoint union of a special subcubic graph G’ of
order less than n and a graph H by adding at least one edge between H and G'. If
%.(G) < %.(G") + p for some integer p > 0, then w(G) < w(G’) + 10p.

Proof. Suppose that y.(G) <.(G") + p for some integer p > 0. Since G’ is not a
counterexample, no component of G' is a counterexample, implying by linearity that
103.(G") < w(G'). If w(G) > w(G') + 10p, then 10y.(G) < 10(3(G") + p) < w(G) +
10p < w(G), a contradiction. |

Claim 5. Let G be obtained from the disjoint union of a special subcubic graph G’ of
order less than n and a graph H by adding at least one edge between H and G'. If there
exists a y,-set Sy of H such that every component of G in B,gom has at least one neighbor
that belongs to Sy in the graph G, then w(G) < w(G’) + 10p where p = y.(H) — k'

Proof. If k' > 1, let Gy, ..., G’ denote the component of G’ that belong to Byqom. By
supposition, there exists a y,-set Sy of H such that the component G; contains a vertex v
that is adjacent to a vertex in Sy for all i€ [k’]. By Observation 1(d),
Yrndom (Gis Vi) £%,(G) — 1 for all i € [k']. If G’ has r' > 1 components that do not
belong to Bidom, let Gyry1, ..., Gr'4r denote these components of G'. Hence,

i=1 i=k'+1

K K'+r
%(G) ISyl + [Z ¥ ndom (Gi3 vz)] +( > n(Gi)]

i=1

k'+r'
<y%H) + [ > yr(Gi)] -k

=y (H) + 7(G) - k'
=.(G") + p,

where p = ¥, (H) — k'. By Claim 4, w(G) < w(G’) + 10p. O
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Claim 6. There is no 3-handle in G.

Proof. Suppose that C:vv;v,v is a 3-handle, where deg;(v) = 3. Let v; be the third
neighbor of v. Suppose that deg(v;) = 3. Let G’ = G — V (C). We note that G’ is a connected
special subcubic graph and k" + r’ = 1. Applying Claim 5 with H = C and Sy = {v}, we have
w(G) < w(G") + 10p, where p = y,(H) — k' =1 — k’. The weights of the vertices in G’
remain unchanged in G, except for v; whose weight increases by 1 from weight 4 in G to
weight 5 in G'. Moreover, if k' =1 (ie, if G' € Bigom), then there is an additional
weight increase of at most 5 for creating the component G’ that belongs to
Braom. Hence, w(G) > wg(V (C)) + W(G") — 6k’ — r') = 14 + (W(G') — 6k’ + (k' — 1))
=14+ WwW(G)—-5k"-1)=14 + W(G") — 51 — p) — 1) = w(G') + 5p + 8. Therefore,
w(G") + 5p + 8 < w(G) < w(G") + 10p, and so 8 < 5p, implying that p > 2. However,
p =1 — k' <1, a contradiction.

Hence, deg;(v;) = 2. Let 1, be the neighbor of v; different from v. Suppose that
deg;(w) =3. Let G'=G — {v,v1,V,,v3}. Suppose that G’ & Bgom, implying that
w(G) =19+ (W(G') —1)=w(G") +18. Let S’ be a y-set of G. If e S, let
S=S8uUf{v}, and if v, & S’, let S = S" U {v}. In both cases, S is an RD-set of G, and
so ¥.(G) < ¥.(G") + 1. Hence, 10y,(G) < 10(3.(G") + 1) < w(G") + 10 = (Ww(G) — 18) +
10 < w(G), a contradiction. Hence, G’ € Bigom, and so the graph G is determined. If v,
is an open twin of G’, then y.(G) =4 and w(G) =46, and so 10y.(G) < w(G),
a contradiction. Hence, 1, is not an open twin of G’. By Observation 1(e),
%(G) W + ¥ 4om (G5 W) £ 14+ (5(G) = 1) = %(G), and so 10y(G) < 10x(G') <
w(G"). However, w(G) > 19 + (W(G") — 6) = w(G") + 13, a contradiction.

Hence, deg.(w) = 2. Let vs be the neighbor of v, different from v;. By Claim 3, we have
deg,(vs) = 3. Let Q = {v, v1, V3, V3, u} and let G' = G — Q. We note that G’ is a connected
special subcubic graph and k' + r' = 1. Applying Claim 5 with H = G[Q] and Sy = {v1, W},
we have w(G) < w(G’) + 10p, where p =y, (H) — k' = 2 — k’. Hence, w(G) > ws(Q)+
W(G) —6k'—1r')=24 + (W(G") -6k’ + (k' —1))=24 + (W(G") — 5k’ — 1) =24+
wW(G") =52 —p)—1)=w(G") + 5p + 13.  Therefore, w(G") + 5p + 13 < w(G) <
w(G") + 10p, and so 13 < 5p, implying that p > 3. However, p=2—k'<2, a
contradiction. O

By Claim 6, there is no 3-handle.
Claim 7. There is no 4-handle in G.

Proof. Suppose that C:vwvv3v is a 4-handle, where deg.(v) = 3. Let 1 be the
neighbor of v not on C.

Claim 7.1. degg(vy) = 2.

Proof. Suppose, to contrary, that deg;(14) = 3. Let x and y be the two neighbors of 1,
different from v;. Suppose that x and y are both large vertices. Let Q = {v, vy, V5, V3, 1y}
and let G’ = G — Q. We note that G’ has at most two components, and so k' + r’ < 2.
Applying Claim 5 with H = G[Q] and Sy = {v,, w}, we have w(G) < w(G’) + 10p, where
p=¥(H)—k'=2-k' On the other hand, w(G) > 23 + (w(G') — 6k’ — r') > 23 +
w(G)—6k"+ (k' —=2) =23+W(G)—-5k"-2) =23+W(G)-52-p)—-2)
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=w(G') + 5p + 11. Therefore, w(G') + 5p + 11 < w(G) < w(G’) + 10p, and so
11 < 5p, implying that p > 3. However, p = 2 — k' < 2, a contradiction.

Hence, at least one of x and y is a small vertex. Renaming vertices if necessary, we may
assume that deg;(x) = 2. Note that deg;(y) € {2, 3}. Suppose xy € E(G). Since there is no
3-handle, the vertex y is large. Let z be the neighbor of y, different from x and ;. Let G’ be
obtained from G by deleting x, y, and vy, and adding the edge vz. The graph G’ is a connected
special subcubic graph of order less than n. Since no graph in B,gon contains a 4-handle, we
note that G’ & Brgom, implying that w(G) = w(G’) + 13. Let S’ be ay,-set of G'. If v € S, let
S=Suf{yL.Ifveg Sandze S’ letS=S" U{ulIfveg S'andz & S',letS =S U {x}. In
all cases, S is an RD-set of G, and so %.(G) <ISI=1S"1+1=%/(G") + 1. Hence,
10%,.(G) < 10(3.(G") + 1) < w(G") + 10 = (W(G) — 13) + 10 < w(G), a contradiction.

Hence, xy € E(G). Let Q = {v, v, V5, v3, i} and let G’ be obtained from G — Q by
adding the edge xy. The resulting graph G’ is a connected special subcubic graph of order
less than n. Suppose G’ & Brqom. In this case, w(G) = 23 + w(G’). Let S’ be a y,-set of G'.
IfxeSoryeS,letS=S"Uf{v,ul.Ifx¢g S andy ¢S, letS=S"U{v, v} In both
cases, S is an RD-set of G, and so y.(G) <ISI =18l + 2 = %.(G") + 2. Therefore,
10y,.(G) < 10(%.(G") + 2) < w(G") + 20 < w(G), a contradiction.

Hence, G’ € Bigom. Let G¥ = G — V (C). We note that in this case, G* is obtained from
G’ by subdividing the edge xy of G’, where vy is the resulting vertex of degree 2 in G*. By
Observation 2, 3.(G*) < y.(G’), and there exists a y,-set S* of G* that contains the vertex
W. The set S* U {v,} is a RD-set of G, and s0 %.(G) < 1 + IS*1 =1 + %.(G*) < 1 + y.(G").
Hence, w(G) < 10y,(G) < 10(%.(G") + 1) < w(G’) + 10. Moreover, noting that the
degrees of the vertices in G’ are the same as their degrees in G, we have
w(G) > 23 + (W(G") — 5) = w(G’) + 18, a contradiction. O

By Claim 7.1, we have deg;(v4) = 2. Let vs5 be the neighbor of v, different from v. Suppose
that deg;(vs) = 3. Let Q = {v, vy, v, v3, W} and let G’ = G — Q. The resulting graph G’ is a
connected special subcubic graph of order less than n. We note that k' + r' = 1. Applying
Claim 5 with H = G[Q] and Sy = {v,, 1}, we have w(G) < w(G') + 10p where
p =% (H) — k=2 -k, implying p < 2. On the other hand, using the same calculations
as in the earlier proofs, we have w(G) > 24 + (W(G') — 6k’ — r') > w(G’) + 5p + 13.
Therefore, w(G") + 5p + 13 < w(G) < w(G’) + 10p, and so 13 < 5p, that is, p > 3.
However, p = 2 — k' < 2, a contradiction.

Hence, deg,(vs) = 2. Let vs be the neighbor of vs different from . By Claim 3,
deg;(ve) = 3. Let Q ={v,v1, v, V3,1, Vs} and let G'= G — Q. The resulting graph
G’ is a connected special subcubic graph of order less than n. Let S’ be a y,-set of G. If
v € S, letS=S"U{v, v} Ifvg & S, letS =S U {v,, u}. In both cases, S is an RD-set of G,
and so y.(G) < ISI = ISl + 2 = y.(G") + 2. We note that k' + r' = 1. Applying Claim 4
with H = G[Q] and p =2, we have w(G) < w(G') + 10p = w(G") + 20. However,
w(G)>29 + (W(G) —6k' —r)>29+w(G) -6k +1r')=29+w(G) -6 =w(G)
+23, a contradiction. This completes the proof of Claim 7. O

By Claim 7, there is no 4-handle.

Claim 8. There is no handle in G.
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Proof. Suppose, to the contrary, that G contains a handle. By our earlier observations, it
must be a 5-handle. Let C : vv;v,v314v be a 5-handle, where deg;(v) = 3. Let vs be the
third neighbor of v not on C.

Claim 8.1. degg(vs) = 2.

Proof. Suppose, to the contrary, that deg;(vs) = 3. Let G' = G — V (C). The resulting
graph G’ is a connected special subcubic graph of order less than n. Suppose that
G' €{R,R4,Rs}. If G'=Ry, then y(G) =4 and w(G) =48. If G’ € {R4, Rs}, then
%.(G) =5 and w(G) =59. If G' =Ry, then %.(G) =4 and w(G) = 52. In all cases,
10y,(G) < w(G), a contradiction. Hence, G’ € {R;, R4, Rs, Ro}. Let S’ be a y,-set of G". If
vse S, letS =8 U vy, vk Ifvs & S, let S = S’ U {vy, vy}. In both cases, S is an RD-set of
G, and s0 ¥,(G) < ISI = ISl + 2 = y,(G’) + 2. We note that k" + r’ = 1. Applying Claim 4
with H=C and p =2, we have w(G) < w(G') + 10p = w(G’) + 20. Since G'¢
{R1, R4, Rs, Ro}, when reconstructing the graph G the contribution of the weight of G’ to
the weight of G decreases by at most 3k’ + r’. Thus, w(G) > 24 + W(G') — 3k’ — r')>
24 + w(G") — 3(k' + ') = 24 + w(G") — 3 = w(G") + 21, a contradiction. O

By Claim 8.1, we have deg(vs) = 2. Let v be the neighbor of vs different from v.
Claim 8.2. degg(vs) = 2.

Proof.  Suppose, to the contrary, that deg;(vs) = 3. Let x and y be the two neighbors of vg
different from vs. Suppose that x and y are both large vertices. Let Q = {v, vy, vy, 3, Wy, Vs, Vg}
and let G’ = G — Q. We note that G’ has at most two components, and so k' + r’ < 2.
Applying Claim 5 with H = G[Q] and Sy = {v1, W, s}, we have w(G) < w(G") + 10p where
p=yH)—k'=3—-k. On the other hand, w(G) >33+ (wW(G)—6k'—1")>
3B+ W(G)—6k"+ (k' —2)=33+W(G)—-5k"—2)=33+ (W(G)—-53—-p)—2)
= w(G’) + 5p + 16. Therefore, w(G") + 5p + 16 < w(G) < w(G’) + 10p, and so 16 < 5p,
that is, p > 4. However, p = 3 — k' < 3, a contradiction.

Hence at least one of x and y is a small vertex. Renaming vertices if necessary, we may
assume that deg;(x) = 2. Note that deg;(y) € {2, 3}. Suppose xy € E (G). Since there is no
3-handle, the vertex y is large. Let z be the neighbor of y different from x and vs. Let G’ be
obtained from G by deleting x, y and vs, and adding the edge vsz. The graph G’ is a connected
special subcubic graph of order less than x. Since no graph in B4om contains a 5-handle, we
note that G’ & Bigom, implying that w(G) = w(G’) + 13. Let S’ be ay,-set of G'. If vs € S, let
S=SufyL.Ifvsg S'andze S, letS=S"U{v}. fvs& S"andz & S, letS =S’ U {x}.
In all cases, S is an RD-set of G, and so %.(G) < ISI =181+ 1 =%(G’) + 1. Hence,
10y,(G) < 10(%.(G) + 1) < w(G") + 10 = (W(G) — 13) + 10 < w(G), a contradiction.

Hence, xy &€ E(G). Let Q = {v, v1, v, V3, W, Vs, v} and let G’ be obtained from G — Q by
adding the edge xy. The resulting graph G’ is a connected special subcubic graph of order
less than n. Suppose G’ & Brqom-. In this case, w(G) = 33 + w(G’). Let S’ be a y,-set of G'.
IfxeSoryeS, letS=S U{v,uv.Ifxg Sandy & S’,1let S = S’ U {v,, v3, v5}. In
both cases, S is an RD-set of G, and so %.(G) < ISI = 1Sl + 3 = %,(G’) + 3. Therefore,
10y,(G) < 10(%.(G") + 3) < w(G') + 30 < w(G), a contradiction. Hence, G’ € Bygom- Let
G* = G — {v, v, V5, V3, 1y, Vs}. We note that in this case, G* is obtained from G’ by
subdividing the edge xy of G’ where vs is the resulting vertex of degree 2 in G*. By
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Observation 2, y,.(G*) < 7,(G") and there exists a y,-set S* of G* that contains the vertex vg.
The set S* U {v1, w} is a RD-set of G, and s0 ¥,(G) < 2 + IS* = 2 + ¥,.(G*) < %.(G') + 2.
Hence, w(G) < 10y.(G) < 10(3,(G") + 2) < w(G') + 20. However noting that the
degrees of the vertices in G’ are the same as their degrees in G, we have
w(G) > 33 + (W(G") — 5) = w(G’) + 28, a contradiction. O

By Claim 8.2, we have deg;(vs) = 2. Let v; be the neighbor of v, different from vs. By
Claim 3, deg;(v7) = 3. Let Q = {v, V1, v, V3, 4, Vs, g} and let G' = G — Q. The resulting
graph G’ is a connected special subcubic graph of order less than n. We note that
k'+r' =1. Applying Claim 5 with H = G[Q] and Sy = {v;,, s}, we have
w(G) < w(G") + 10p where p = y.(H) — k' = 3 — k’. On the other hand, w(G) > 33 +
W(G)—6k'—r)=33+W(G)—-6k"+ (k' —1) =33+ W(G)—-5k"—-1) =33+
WwW(G) —-5B—-p)—1) =w(G") + 15p + 17. Therefore, w(G") + 15p + 17 < w(G) <
w(G") + 10p, and so 17 < 5p, that is, p > 4. However, k' >0 and p=3 -k’ <3, a
contradiction. This completes the proof of Claim 8. O

By Claim 8, there is no handle in G. In particular, the removal of a bridge cannot create a
Cs-component. Recall that there is no k-linkage for any k > 3. Hence if §(G) = 2, then every
vertex of degree 2 in G belongs to a k-linkage for some k € {1, 2}.

Claim 9. If G contains a 2-linkage, then the two large vertices on the linkage are not
adjacent.

Proof. Suppose, to the contrary, that G contains a 2-linkage P : vv,v,u where u and v are
adjacent. We note that u,v € £ and vy, v, € S.

Claim 9.1. The vertices u and v have no common neighbor.

Proof. Suppose that u and v have a common neighbor, v;. Since n > 6, the vertex v; is large.
Let vy be the neighbor of v; not on P. Suppose that deg(vs) = 3. Let Q = {v, v1, V5, v3, u} and
let G’ = G — Q. The graph G’ is a connected special subcubic graph of order less than n. We
note that k' + ' = 1. Applying Claim 5 with H = G[Q] and Sy = {v1, v3}, we have
w(G) < w(G") + 10p where p = y.(H) — k' = 2 — k’. Since G has no handle, we note that
G' # R, implying that w(G) > 22 + (W(G") — 5k’ — r') =22 + (Ww(G') — 5k’ + k' — 1)
=22+ wW(G) —4k' —1)=22 + (W(G") — 42 — p) — 1) > w(G") + 4p + 13. Therefore,
w(G") + 4p + 13 < w(G) < w(G") + 10p, and so 13 < 6p, that is, p > 3. However,
p =2 — k' <2, a contradiction.

Hence, deg;(w) = 2. Let vs be the neighbor of v, different from v;. Suppose that
deg;(vs) = 3. Let G'=G — {v,v1, 5, V3,0, u}. Let S be a y-set of G'. If vs€ S,
let S=S" Ufu,vl. fvsg S, let S=S"U{v,vs}. In both cases, S is an RD-set of G,
and so y.(G) <I1SI =181+ 2 =y(G") + 2. Applying Claim 4 with p =2, we have
w(G) < w(G') + 10p = w(G") + 20. Recall that G has no handle, and so G’ # R.
Therefore, w(G) > 27 + (W(G") — 1 — 4) = w(G’) + 22, a contradiction.

Hence, deg;(vs) = 2. Let vs be the neighbor of vs different from 1. By Claim 3,
deg;(vs) = 3. Let Q = {v, 1, V5, V3, 1y, Vs, u} and let G’ = G — Q. The resulting graph G’ is a
connected special subcubic graph of order less than n. We note that k' + r' = 1. Applying
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Claim 5 with H = G[Q] and Sy = {u,v,vs}, we have w(G) < w(G') + 10p where
p =¥.(H)— k"=3 —k’. On the other hand, noting that G’ # R, we have w(G) > 32+
W(G) =5k —r)>32+W(G)—-5k"+k'—1) =32+ W(G)—-4k'—1) =32+
W(G)—-4B3—-p)—1) =w(G)+ 4p + 19. Therefore, wW(G") + 4p + 19 < w(G) <
w(G') + 10p, and so 19 < 6p, that is, p > 4. However, k' >0 and p=3—-k'<3, a
contradiction. O

By Claim 9.1, the vertices u and v have no common neighbor. Let v; be the third
neighbor of v not on P. Since u and v have no common neighbor, u and v; are not
adjacent. Let G’ be obtained from G — {v, vy, v} by adding the edge uv;. The resulting
graph G’ is a connected special subcubic graph of order less than n. Suppose that
G’ & Brdom- In this case, w(G) = 14 + (w(G') — 1) = w(G’) + 13. Let S’ be a y,-set of G'.
IfueS,letS=S U} Ifug S andvse S, letS=S" U{v,}.Ifu g S andv; & S, let
S =5"U {v}. In all cases S is an RD-set of G, and so ,(G) < ISI = ISl + 1 = ,.(G") + 1.
Therefore, w(G) < 10%.(G) < 10(y.(G") + 1) < w(G") + 10 < w(G), a contradiction.

Hence, G’ € Brgom- If G’ = Ry, then G would contain a 4-linkage, a contradiction. If
G € {R4, Rs}, then %.(G) = 4 and w(G) = 49, and so 10y,(G) < w(G), a contradiction.
Hence, G’ & {Ry, R4, Rs}. Let G* = G — {vy, v,}. Thus, G* is obtained from G’ by subdividing
the edge uv; of G’ where v is the resulting vertex of degree 2 in G*. By Observation 2,
%.(G*) < y.(G") and there exists a y-set S* of G* that contains the vertex v and
does not contain u or v;. The set S*U{r} is a RD-set of G, and so
%(G)<1+1S%1=1+y(G*) <1+ y(G). Hence, w(G)<10y.(G) <10(y(G") + 1)
<w(G’) + 10. We note that the degrees of the vertices in G’ are the same as their
degrees in G, except for the vertex u which has degree 3 in G and degree 2 in G’. As observed
earlier, G’ & {Ry, R4, Rs}, implying that w(G) > 14 + (w(G') — 1 - 3) = w(G') + 10, a
contradiction. This completes the proof of Claim 9. O

Claim 10. If G contains a 1-linkage, then the two large vertices on the linkage are not
adjacent.

Proof. Suppose, to the contrary, that G contains a 1-linkage P : vv;u where u and v are
adjacent. We note that u,v € £ and v; € S.

Claim 10.1. The vertices u and v have no common neighbor.

Proof. Suppose that u and v have a common neighbor, v,, and so G[{v, vy, v,, u}] is a
diamond. Since n > 6, the vertex v, is large. Let v; be the third neighbor of v, not on P.
Suppose that deg;(v;) = 3. Let Q = {v, v;, V2, u} and let G' = G — Q. The graph G’ is a
connected special subcubic graph of order less than n. We note that k' + r' = 1. Every
y,-set of G’ can be extended to an RD-set of G by adding to it the vertex v, and
so ¥%.(G) <y(G)+ 1. Thus, w(G) < 10y,(G) < 10(%(G") + 1) < w(G’) + 10. Since
there is no handle in G, we note that G'# R, implying that w(G) > 17+
wW(G") —1—4) =w(G") + 12, a contradiction.

Hence, deg;(v3) = 2. Let v, be the neighbor of v; different from v,. Suppose that
deg;(w) = 3. Let Q = {v,v1, V5, v3,u} and let G' = G — Q. The graph G’ is a connected
special subcubic graph of order less than n different from R;. We note that k' + r' = 1.
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Applying Claim 5 with H = G[Q] and Sy = {v1, v3}, we have w(G) < w(G") + 10p where
p=yH)—k'=2-k'. On the other hand, w(G)>22+ W(G") - 5k'—7r")=
w(G") + 4p + 13. Therefore, w(G") + 5p + 13 < w(G) < w(G') + 10p, and so 13 < 5p,
that is, p > 3. However, p = 2 — k' < 2, a contradiction. Hence, deg;(v3) = 2. Let vs be the
neighbor of v, different from v;. By Claim 3, deg;(vs) = 3. Let Q = {v, vy, V5, V3, s, u} and let
G’ = G — Q. The resulting graph G’ is a connected special subcubic graph of order less than n.
We note that k' + r' = 1. Applying Claim 5 with H = G[Q] and Sy = {v, »}, we have
w(G) < w(G') + 10p where p =y (H) —k'=2 —k'. On the other hand noting that
G'#R, we have w(G)>27+ (w(G')—5k'—r")>w(G") + 4p + 18. Therefore,
w(G") + 4p + 18 < w(G) < w(G") + 10p, and so 18 < 6p, that is, p > 4. However,
k' >0 and p = 2 — k' < 2, a contradiction. O

By Claim 10.1, the vertices u and v have no common neighbor. Let v, and u, be the
third neighbors of v and u, respectively, not on P. Since u and v have no common
neighbor, u; # v,.

Claim 10.2. The vertices u, and v, are not adjacent.

Proof. Suppose that u, and v, are adjacent. Since n > 6, at least one of u, and v, is large.
Renaming vertices if necessary, assume that u, € £. Suppose that v, € S and
N (v) = {v, u,}. Let u3 be the neighbor of u, different from u and v,. Suppose that u; € L.
Let Q = {v, v, V5, U, ,} and let G' = G — Q. The graph G’ is a connected special subcubic
graph of order less than n. We note that k' + ' = 1. Applying Claim 5 with H = G[Q]
and Sy = {v;, ), we have w(G) <w(G)+ 10p where p=y(H)-k'=2-k'
On the other hand, w(G) > 22 + (W(G") — 5k’ — r') = w(G’) + 4p + 13. Therefore,
w(G") + 4p + 13 < w(G) < w(G") + 10p, and so 13 < 6p, that is, p > 3. However,
p =2 — k' <2, a contradiction. Hence, u3 € S. Let u, be the neighbor of u; different
from u,.

Suppose that uy € L. Let Q = {v, v1, vy, U, Up, U3} and let G’ = G — Q. The graph G’ is a
connected special subcubic graph of order less than n. We note that k' + r' = 1. Applying
Claim 5 with H = G[Q] and Sy = {v, us}, we have w(G) < w(G') + 10p where
p=yH)—k'=2-k. On the other hand, w(G) > 27 + W(G") —5k'—r') =
w(G') + 4p + 18. Therefore, w(G’) + 4p + 18 < w(G) < w(G’) + 10p, and so 18 < 6p,
that is, p > 4. However, p = 2 — k' < 2, a contradiction.

Hence, us € S. Let us be the neighbor of u, different from u;. By Claim 3, deg(u3) = 3.
Let Q = {v, vy, vy, U, Uy, U3, Ug} and let G’ = G — Q. The resulting graph G’ is a connected
special subcubic graph of order less than n. We note thatk’ + r' = 1. Let S’ be a y,-set of G'.
Ifuse s, let S=8 Ufu,v}. If usg S’, let S=S5"U{v, us}. In both cases, S is an
RD-set of G, and s0 %,(G) < IS| = IS'l + 2 = %,(G’) + 2. Applying Claim 4 with p = 2, we
have w(G) < w(G’) + 10p = w(G') + 20. However, w(G) > 32+ (w(G)—-1—-4) =
w(G’) + 27, a contradiction.

Hence, v, € L. Recall that u, € £. Let Q = {v, v, u} and let G’ = G — Q. We note that
k' + r' = 1. Applying Claim 5 with H = G[Q] and Sy = {v}, we have w(G) < w(G’) + 10p
where p=y(H)—-k'=1—-k'. Since there is no 3-linkage in G, we note
that G # R, implying that w(G)> 13 + (wW(G') — 5k’ —r")=w(G') +4p + 7.
Therefore, w(G') + 4p + 7 < w(G) < w(G') + 10p, and so 7 < 6p, that is, p > 2.
However, p = 1 — k' < 1, a contradiction. O
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By Claim 10.2, the vertices u, and v, are not adjacent. Let G' be obtained from
G — {v, vy, u} by adding the edge u,v,. The resulting graph G’ is a connected special subcubic
graph of order less than n. Suppose that G’ & Bigom, implying that w(G) = 13 + w(G’).
Let S’ beay-setof G.Ifv,e S, letS=SU{ul. fv,& S andu, € ', let S=5"U {v}.
Ifu, €S and v, € S, let S=S"U{v}. In all cases, S is an RD-set of G, and so
7 (G)<ISI=1S1+1=y(G)+ 1.  Therefore, w(G) < 10y,(G) <103 (G)+ 1)<
w(G’) + 10 = w(G) — 3 < w(G), a contradiction. Hence, G’ € Bgom. Let G* = G — v;.
We note that in this case, G* is obtained from G’ by subdividing the edge u,v; of G’ twice
where v,vuu, is the resulting path in G*. By Observation 3, y.(G*) < y.(G’) and there exists a
y,-set S* of G* that contains the vertex v and does not contain u. The set S* is an RD-set of G,
and so %(G) <IS* =¥.(G*) <¥(G). Hence, w(G) < 10y.(G) < 10y.(G") < w(G).
However, w(G) > 13 + (W(G’") — 5) = w(G’) + 9, a contradiction. This completes the
proof of Claim 10. l

Recall that G has no handle. By Claim 10, no small vertex belongs to a triangle. We state this
formally.

Claim 11. No small vertex belongs to a triangle.
Claim 12. Two large vertices cannot be the ends of two common 2-linkages.

Proof. Suppose, to the contrary, that there are two large vertices u and v that belong to
two common 2-linkages uv,v,v and vwzwu in G. Thus, C : uv,v,vswu is a 6-cycle in G,
where u,v € £ and vy, vy, V3,13 € S.

Claim 12.1. The vertices u and v have no common neighbor.

Proof. Suppose that u and v have a common neighbor, vs. If v5 € S, then the graph G is
determined and %,(G) = 3 and w(G) = 33, a contradiction. Hence, vs € L. Let v be the
neighbor of vs different from u and v. Suppose that vg € L. Let Q = {u, v, vy, vy, V3, vy, vs} and
let G’ = G — Q. The graph G’ is a connected special subcubic graph of order less than n. We
note that k' + r' = 1. Applying Claim 5 with H = G[Q] and Sy = {v;, v3, vs}, we have
w(G) < w(G') +10p where p=y(H)—-k'=3—-k’. On the other hand,
w(G) > 32 + (W(G") — 5k' — r') = w(G’) + 4p + 19.  Therefore, Ww(G’) + 4p + 19<
w(G) < w(G’) + 10p, and so 19 < 6p, that is, p > 4. However, p=3 —k' <3, a
contradiction.

Hence, v € S. Let v; be the neighbor of vs different from vs. Suppose that v; € L. Let
Q = {u, v, vy, vy, 3,1, V5, v} and let G’ = G — Q. The graph G’ is a connected special
subcubic graph of order less than n. We note that k' + r' = 1. Applying Claim 5 with
H = G[Q] and Sy = {v1, v3, 6}, we have w(G) < w(G’) + 10p where p =y, (H) — k' =
3—k'. On the other hand, w(G) > 37 + (W(G') — 5k’ — ") = w(G’) + 4p + 24.
Therefore, w(G') + 4p + 24 < w(G) < w(G’) + 10p, and so 24 < 6p, that is, p > 5.
However, p = 3 — k' < 3, a contradiction.

Hence, v; € S. Let vg be the neighbor of v, different from vs. By Claim 3, deg;(vs) = 3.
Let Q = {u, v, vy, v, V3, Uy, Vs, Vg, V7} and let G’ = G — Q. The graph G’ is a connected special
subcubic graph of order less than n. Let S’ be a y,-set of G'. If vg € S', let S = S" U {vy, v3, vs}.
If vs& S, let S=S U{v,vs, V). In both cases, S is an RD-set of G, and so
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%.(G) < IS =181 + 3 = .(G") + 3. Applying Claim 4 with H = G[Q] and p = 3, we
have w(G) < w(G') + 10p = w(G’) + 30. However, w(G) > 42+ (wW(G')—1—-4) =
w(G") + 37, a contradiction. O

By Claim 12.1, the vertices u and v have no common neighbor. Let x be the neighbor of
u different from v; and v, and let y be the neighbor of v different from v, and v;. Suppose
that x and y are adjacent. If both x and y have degree 2, then the graph G is determined
and ¥,(G) = 2 and w(G) = 38, a contradiction. Hence at least one of x and y are large.
Renaming vertices if necessary, assume that y is large. An analogous proof as before shows
that x € L. Let Q = {u, v, vy, v, v3, i3} and consider the graph G’ = G — {u, v, vy, v, V3, W}
Every y.-set of G’ can be extended to an RD-set of G by adding to it the set {u, v},
and so ¥%.(G) <y%(G)+ 2. Applying Claim 4 with H=G[Q] and p =2, we
have w(G) < w(G’) + 10p = w(G’) + 20. However, w(G) > 28 + (W(G) —1—4) =
w(G’) + 23, a contradiction.

Hence, the vertices x and y are not adjacent. Let Q = {u, v, v1, v, v3, 4}, and let G’ be
obtained from G’ = G — Q by adding the edge xy. The resulting graph G’ is a connected
special subcubic graph of order less than n. Suppose that G’ & Bigom, implying
that w(G) = 28 + w(G’). Every y,-set of G’ can be extended to an RD-set of G by
adding to it u and v or v; and v;, implying that y.(G) < y.(G’) + 2. Therefore,
w(G) < 10y%.(G) < 10(y,.(G") + 2) < w(G") + 20 = w(G) — 8 < w(G), a contradiction.
Hence, G’ € Bygom- Let G* = G — {v3, 1y}. Thus, G* is obtained from G’ by subdividing
the edge xy of G’ four times where xuv,v,vy is the resulting path in G*. By Observation 5,
there exists a RD-set S* of G* such that IS*l < y,.(G") + 1 and S* N {u, vy, v, v} = {u, v}.
The set S* is an RD-set of G, and so ¥%(G)<IS* =y(G)+ 1. Hence,
w(G) < 10y,(G) < 10(3.(G") + 1) < w(G’) + 10. Since G has no 3-linkage, we note that
G' # Ry, implying that w(G) > 28 + (W(G') — 4) = w(G’) + 24, a contradiction. This
completes the proof of Claim 12. O

Claim 13. Two large vertices cannot be the ends of a common 1-linkage and a common
2-linkage.

Proof. Suppose, to the contrary, that there are two large vertices u and v such that
uv v is a 2-linkage and uv3v is a 1-linkage in G. Thus, C : uv;v,vvsu is a 5-cycle in G,
where u,v € £ and vy, v, 13 € S.

Claim 13.1. The vertex v; is the only common neighbor of u and v.

Proof. Suppose that u and v have two common neighbors. Let v, be the common
neighbor of u and v different from v;. If v, € S, then G = R,, a contradiction. Hence,
vy € L. Let vs be the neighbor of v, different from u and v.

Suppose that vs € S. Let v be the neighbor of vs different from vy. If v4 € £, then let
Q = {u,v,v1, v, 3,1, 5} and let G' = G — Q. Applying Claim 5 with H = G[Q] and
Sy = {v1, v3, vs} we obtain a contradiction. Hence, vs € S. Let v; be the neighbor of vg
different from vs. By Claim 3, we have deg;(v;) = 3. Let Q = {u, v, vy, V2, V3, W, Vs, Ve} and
let G' = G — Q. In this case, ¥.(G) < y.(G") + 3, and applying Claim 4 with H = G[Q]
and p = 3 we obtain a contradiction.

851801 SUOWILIOD 8AIIER1D) 3|edt [dde au) Aq peuenob 812 s9pile YO '8sN JO S9IN 104 ARG 17 8UIUO AB]IA UO (SUORIPUCD-PL-SWSY W00 A8 | 1M Ale.q U1 UO//:SHNL) SUORIPUOD pUe SWie | U1 88S *[202/90/8T] U0 AkeiqiT auljuo A8 |IM "BIUSAOIS 8URI490D Ad S60€Z 161/200T 0T/10p/W00" AB| 1M Ae1d 1 Buljuo//Siy WOl papeojumoq * ‘v20g ‘8TT0L60T



780 BRESAR and HENNING
WILEY

Hence, vs € L. Let x and y be the two neighbors of vs different from v,. Suppose that x
and y are not adjacent. Let Q = {u, v, vy, v, V3, 14, V5} and let G’ be obtained from G — Q
by adding the edge xy. If G’ & Bidom, then ¥,(G) < %,(G’) + 3, and applying Claim 4 with
H = G[Q] and p = 3 we obtain a contradiction. Hence, G’ € B;gom. In this case, we let
Q* = {u, v, v, vy, v3, 1} and let G* = G — Q*. Thus, G* is obtained from G’ by subdividing
the edge xy of G', where xvsy is the resulting path in G*. Applying Observation 2,
%.(G) < %.(G") + 2, implying that w(G) < w(G") + 20. However since G contains no
6-handle, G’ # R;, and so w(G) > 31 + (w(G’) — 4) = w(G’) + 27, a contradiction.

Hence, xy € E(G). Since there is no 3-handle in G, at least one of x and y is a large
vertex. Hence by Claim 11, x € L and y € L. Let w = vs, and so G [{w, X, y}] is a triangle.
Let x; and y, be the neighbors of x and y, respectively, different from w.

We show next that x; # y,. Suppose that x; = y,. Since no vertex of degree 2 belongs to a
triangle, X3 € L. Let X%, be the neighbor of x; different from x and y. If x; € £, then we let
Q = {u,v, v, v, v3, W, W, x,y,x} and G' = G — Q, and applying Claim 5 with H = G[Q]
and Sy = {v, v,, vy, X1} we obtain a contradiction. Hence, %, € S. Let x;3 be the neighbor of x,
different from x. If x3 € £, then we let Q = {u, v, vy, vy, V3,04, W, X, ¥, X, %} and
G' = G — Q. In this case, %.(G) < ,.(G") + 4, and applying Claim 4 with H = G[Q] and
p = 4, we obtain a contradiction. Hence, x; € S. Let x4 be the neighbor of x; different
from x,. By Claim 3, deg(xs) = 3. Thus, G contains the subgraph illustrated in Figure 3.
We now let Q = {u,v, vy, vy, V3, Uy, W, X, Y, X1, X%, X3} and G'= G — Q. In this case,
%.(G) < y(G") + 4, and applying Claim 4 with H = G[Q] and p =4, we obtain a
contradiction.

Hence, X3 # y;, and so G contains the subgraph illustrated in Figure 4. Suppose that
x € Landy € L.LetQ = {u, v, vy, v, 3, %, w, X, y} and let G’ = G — Q. Let G, and G, be
the components of G'. Possibly, G, = "y, in which case G’ is connected. By our earlier
observations, neither G, nor G, is an R;-component. Applying Claim 4 with H = G[Q] and
p = 3 we have w(G) < w(G") + 30. If at most one component of G’ belongs to By4om, then
w(G) > w(G") + 33, a contradiction. Hence, G, # G, and both G, and G, belong to Bgom. If
Gy € {Ry, Rs}, then w(G) > w(G’) + 30, a contradiction. Hence, G, € {R4, Rs}. Analogously,
G, € {R4, Rs}. Let G,, be the component of G — ww that contains v, and so G,, = R,. We now
take a NeRD-set of type-2 in Gy, and a NeRD-set of type-1 in each of G, and G,,, and extend

FIGURE 3 A subgraph in the proof of Claim 13.1.

V2 V4 w,
U1

u x x1

FIGURE 4 A subgraph in the proof of Claim 13.1.
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these sets to an RD-set of G by adding to them the vertices w and y. By Observation 1,
%#(G) £ 2+ ¥ ndom (Gws W) + % 4om (G X) + ¥ ndom (G ¥) <2 + (5(Gw) — 1) + (5(Gx) — D+
.(G) = 1) =7%.(Gw) + %(Gy) + 7.(G)) — 1. Thus, w(G) < 10y%.(G) < W(Gy) + W(G)+
w(Gy) —10.  However, Ww(G) > 12+ (W(Gy) —3) + (W(Gy) — 5) + (W(G)) — 5) =
w(Gy) + w(Gy) + w(G,) — 1, a contradiction.

Hence, x; € S or y; € S. Renaming vertices if necessary, we may assume that ; € S.
Suppose that x; y; € E(G). By Claim 9, y; € L. Let y, be the neighbor of y, different from
x; and y. Thus, G contains the subgraph illustrated in Figure 5. If y, € £, then we let
Q={u,v, v, v, 3,0, W, x,x,y,y} and G'=G — Q, and applying Claim 5 with
H = G[Q] and Sy = {v;,v3, w,y;} we obtain a contradiction. Hence, y, € S. Let y,
be the neighbor of y, different from y,. If y, € £, then we let Q = {u,v, vy, vy,
V3, Vg, W, X, X, Y, ), Y,) and G'= G — Q, and applying Claim 5 with H = G[Q] and
Sy = {v1, v3, W, X3, y,} we obtain a contradiction. Hence, y, € S. Let ), be the neighbor
of y, different from y,. By Claim 3, y € £. We now let Q= {u,v,v,v,,
V3, Vg, W, X, X0, Y, V), Y, Y5} and let G = G — Q. Applying Claim 5 with H = G[Q] and
Su = {v1, 3, W, X1, y3}, we obtain a contradiction.

Hence, x; ¥, € E(G). Let z be the neighbor of x different from x. Suppose that
»z € E(G). In this case, let Q = {u, v, vy, vp, V3, Uy, W, X, X3, y} and let G’ be obtained from
G — Q by adding the edge y,z. If G’ € Bigom, then wW(G) = 44 + w(G’). However,
%.(G) £ %.(G") + 4, and so w(G) < w(G") + 40, a contradiction. Hence, G’ € B;gom. Let
G* = G — {u, v, vy, vy, V3, iy, w}, and so G* is obtained from G’ by subdividing the edge y,z
of G’ three times where zxxyy, is the resulting path in G*. A NeRD-set of type-1 in G*
with respect to the vertex y can be extended to a RD-set by adding to it the set {vy, v3, w},
implying by Observation 4 that ¥.(G) <% 14om(G*¥) +3 <%(G) + 3, and so
w(G) < w(G") + 30. Since G’ # R;, we have w(G) > 44 + W(G") — 4) = w(G) + 40, a
contradiction.

Hence, ¥,z € E(G). Thus G contains the subgraph illustrated in Figure 6, where
X € S. Since there is no 3-linkage, yy € Lorze€ L. If y, € £ and z € £, then we let
Q = {u, v, vy, v, V3, W, W, X, %, ¥} and G' = G — Q, and applying Claim 5 with H = G[Q]
and Sy = {v1, v3, w,x;} we obtain a contradiction. Hence, either y; € S and z € £ or
yw€e€Llandz€eS.

FIGURE 6 A subgraph in the proof of Claim 13.1.
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Suppose that y; € S and z € L. Let z; be the neighbor of z different from x and y,. If
G' is obtained from G —{w,x,x,y,¥,z2} by adding the edge wz, then
%.(G) < %.(G") + 2, and so w(G) < w(G’) + 20. Since the graph G’ contains a bridge,
we note that G’ € Biqom, implying that w(G) = w(G’) + 26, a contradiction. Hence,
¥y, € L and z € S. Let y, be the neighbor of y, different from y and z. If G’ is obtained
from G — {w,x,x,y,¥,z} by adding the edge v y,, then y.(G) < y.(G') + 2, and so
w(G) < w(G") + 20. Since G’ & Brgom, We have w(G) = w(G’) + 26, a contradiction.
This completes the proof of Claim 13.1. O

By Claim 13.1, the vertex v; is the only common neighbor of u and v. Let x be the
neighbor of u different from v; and vs, and let y be the neighbor of v different from v, and vs.

Claim 13.2. The vertices x and y are not adjacent.

Proof. Suppose that x and y are adjacent. By Claim 12, at least one of x and y is large.
Renaming vertices if necessary, we assume that y € L. Let y, be neighbor of y different
from x and v.

Suppose that x € S.If y; € £, then we letQ = {u, v, v1, v, v3, X, y} and G’ = G — Q. The
graph G’ is a connected subcubic graph. We note that k" + r’ = 1. Applying Claim 5 with
H = G[Q] and Sy = {v1,v3,y}, we have w(G) < w(G’) + 10p where p =y, (H) — k' =
3—k'. On the other hand, w(G) > 32 + (W(G") — 5k’ — r') = w(G’) + 4p + 19.
Therefore, w(G") + 4p + 19 < w(G) < w(G') + 10p, and so 19 < 6p, that is, p > 4.
However, p =3 — k'’ <3, a contradiction. Hence, y, € S. Let y, be the neighbor
of y, different from y. If y, € £, then let G' =G — {u, v, v, V5, v3,X,y,¥}. In this
case, 7(G) <y (G)+ 3, implying that w(G) < 10y (G) < w(G') + 30. However,
w(G) > 37 — (Ww(G') — 1 — 4) > w(G') + 32, a contradiction. Hence, y, € S. Let y, be
the neighbor of y, different from y,. By Claim 3, y, € £. In this case, let
Q ={u,v,v,v,v3,x,5,¥,y} and let G’ = G — Q. Applying Claim 5 with H = G[Q]
and Sy = {v,, v3, X, y,}, we obtain a contradiction.

Hence, x € £. We now consider the graph G’ = G — {u, v, v1, v, v3}. Let S’ be a y,-set
of G'. In this case, y.(G) < ¥.(G") + 2, implying that w(G) < 10y,.(G) < w(G") + 20. If
G & Braom, then w(G) > 23 + (wW(G') — 2) = w(G') + 21, a contradiction. Hence,
G € Bigom- We note that x and y are adjacent vertices of degree 2 in G'. Applying
Observation 1(f) to the graph G’ with X = {x, y}, we have , 4., (G"; X) < %,(G') — 1. Let
S” be a minimum type-2 NeRD-set of G’ with respect to the set X. The set S” U {vy, v3}is a
RD-set of G, implying that %.(G) <I1S"+2<y(G) +1 and w(G) < w(G') + 10.
However, w(G) > 23 + (W(G') — 2 — 4) = w(G") + 15, a contradiction. O

By Claim 13.2, the vertices x and y are not adjacent. Let G’ be obtained from
G — {u, v, vy, v, v3} by adding the edge xy. Suppose that G’ € Bigom, implying that
w(G) > 23 + w(G'). Let S’ beay-setof G. If x € S", let S={v,1p}. Ifx & S'and y € S,
let S={u,v}. fx¢&S and y & S, let S = {v;, v3}. In all cases, S is an RD-set of G,
and so y.(G) < ISl + 2 =y.(G") + 2, implying that w(G) < 10y,(G) < w(G) + 20, a
contradiction. Hence, G’ € Bygom. Let G* = G — v3, and so G* is obtained from G’ by
subdividing the added edge xy four times resulting in the path xuv,v,vy.

Suppose that G’ # R, or G’ = R, and neither x nor y is an open twin in G'. In this case, by
Observation 6(a) there exists an RD-set S* of G* such that v, € S* and IS*| < y,.(G). The set
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S*U{vs} is a RD-set of G, and so ¥%(G) <IS* +1<y(G) +1, implying that
w(G) < 10%.(G) < w(G') + 10. However, w(G) >23+ (W(G)—4)=w(G)+19, a
contradiction. Hence, G' =R, and x or y is an open twin in G. In this case, by
Observation 6(b) there exists an RD-set S* of G* such that v, € S* and IS*l < ¥.(G) + 1. The
set S*U {v;} is a RD-set of G, and so %.(G) <IS* + 1 <y.(G') + 2, implying that
w(G) < w(G") + 20. However since G' = R,, in this case w(G) > 23 + (W(G') — 2) =
w(G") + 21, a contradiction. This completes the proof of Claim 13. O

Claim 14. The removal of a bridge joining two large vertices cannot create a component
that belongs to Brgom.

Proof. Lete = xy be a bridge in G joining two adjacent large vertices x and y. Let G, and
G, be the components of G — e containing x and y, respectively. We note that both G, and
G, are connected special subcubic graphs. Suppose, to the contrary, that at least one of G,
and G, belongs to Bgom. Renaming components if necessary, we may assume that
Gy € Brdom-

Suppose that Gy € Bygom. Since there is no handle in G, we note that G, # R, and
G, # Ry. Therefore, w(G) > (W(Gy) — 1 — 4) + (W(Gy) — 1 — 4) = w(Gy) + w(G) — 10.
By Observation 1(b) there exists a y,-set S, of G, that contains x. A type-1 NeRD-set of G,
with respect to the vertex y can be extended to a RD-set of G by adding to it the set S,.
Hence by Observation 1(d), %.(G) < %(Gx) + % n4om (G5 ¥) < %(Gy) + 7,(Gy) — 1. Hence,
10y,(G) £ 10(%.(Gy) + 7.(G)) — 1) £ w(Gy) + W(Gy) — 10 < w(G), a contradiction.

Hence, Gy & Brgom. By Claim 13 if G, = R;, then the vertex y cannot be one of the two
open twins in R,. Let Sy be a y;,-set of Gy. If x € Sy, then let S, be a minimum type-1 NeRD-set
of G, with respect to the vertex y. In this case, the set S, U S, is an RD-set of G, implying by
Observation 1(d) that .(G) < ISy + 1Syl < %.(Gy) + ¥04om (G5 ¥) £ %(Go) + %.(G)) — 1.
If x & S, then let Sy is a minimum type-2 NeRD-set of G, with respect to the vertex
y. In this case, the set S, U S, is an RD-set of G, implying by Observation 1(e)
that %(G) < IS + 1Sl £ %.(Gx) + %.4om (G; ¥) £ %.(Go) + %(G)) — 1. In both cases,
7,(G) < %.(Gy) + %(Gy) — 1, implying that w(G) < w(Gy) + w(G,) — 10. However,
w(G) > (W(Gy) — 1) + (W(G)) — 1 — 4) = w(Gy) + w(G,) — 6, a contradiction. O

Claim 15. The removal of the two small vertices on a 2-linkage cannot create a
component that belongs to Byqom-

Proof. Let P:vviv,u be a 2-linkage, and so u,v € £ and v,v, € S. By Claim 9,
uv € E(G). Suppose, to the contrary, that G' = G — {v;, v,} creates a component that
belongs to Bgom. Let G, and G, be the components of G — e containing u and v,
respectively, where we may assume renaming vertices, if necessary, that G, € Brgom.
Suppose that G, = G,, and so the graph G’ is connected. In this case, let S, be a minimum
type-1 NeRD-set of G, with respect to the vertex v. The set S, U {v;} is an RD-set
of G, implying by Observation 1 that %(G) <1+ ¥ 14om(G; V) < 7.(G,). Hence,
w(G) < 10,.(G) < w(G,). However, w(G)=10+ W(G,) —2—-4)=w(G,) +4, a
contradiction. Hence, G, # G,, and so G’ is disconnected with two components G, and G,.

Let S, be a y,-set of G,.. Suppose thatu € S,,. In this case, the set S, can be extended to an
RD-set of G by adding to it a y.-set of G, that contains v, which exists by Observation 1(d),
implying that y.(G) <¥,(G,) + ¥%,(Gy). Suppose that u ¢ S,. By Observation 1(d),
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¥-ndom (Gv; V) £ %.(G,) — 1. In this case, the set S, can be extended to an RD-set of G by
adding to it the vertex v, and a minimum type-1 NeRD-set of G, with respect to the vertex v,
implying that ¥%.(G) < ISyl + 1 + % 14om (Gv; V) £ %.(Gy) + %(Gy). Thus in both cases,
%.(G) £ %.(Gy) + 7.(Gy), implying that w(G) < w(G,) + w(G,). However, w(G) > 10
+w(G) —1-4)+ w(G,) —1 -4 =w(G,) + w(G,), a contradiction. O

Claim 16. The removal of the small vertex on a 1-linkage cannot create a component
that belongs to Brgom.

Proof. Let P :vviu be a 1-linkage, and sou,v € £ and v; € §. By Claim 9, uv ¢ E (G).
Suppose, to the contrary, that G’ = G — v; creates a component that belongs to Bigom. Let
G, and G, be the components of G — v; containing u and v, respectively, where we may
assume renaming vertices if necessary, that G, € Bygom- Let w3 and u, be the two
neighbors of u different from v;. Let S} be a minimum type-1 NeRD-set of G, with respect
to the vertex v. By Observation 1(d), IS}l = % ngom (Gvs V) < 7,(G,) — 1. Let S} be a
minimum type-2 NeRD-set of G, with respect to the vertex v. By Claim 13, if G, = R,
then the vertex v is not one of the open twins in G, implying by Observation 1(e) that
IS = ¥, 4om (Gv; V) < %,(G,) — 1.

Suppose that uyu, € E(G). By Claim 11, wy, u; € L. Let Q = V(G,) U {u, v;} and let
G’ = G — Q. Suppose that G’ € Bigom- In this case, let S’ be a minimum type-1 NeRD-set of
G’ with respect to the vertex u;. By Observation 1(d), IS'l < %, 4om (G’ w1) < 7,(G") — 1. The
set S'U{uluUS2 is a RD-set of G, and so %(G) <IST+ 1+ 1S3 < (3(G) — D+
1+ (G) -1 =%(G)+7y(G,)—1, implying that w(G) < w(G") + w(G,) — 10.
However, w(G)>9+ W(G)—-2—-4)+ W(G,)—-1—-4)=w(G)+w(G,)—2, a
contradiction. Hence, G’ & Bigom. Thus, w(G) > 9 + (W(G') —2) + wW(G,) —1—4) =
w(G") + w(G,) + 2. Every y,-set of G’ can be extended to an RD-set of G by adding to it the
set S2U {u}, implying that %.(G)<%(G)+I1Sd+1<yG)+#(G)—-1D+1=
%.(G") + ¥.(Gy). Thus, w(G) < w(G") + w(G,) < w(G) — 2 < w(G), a contradiction.

Hence, iyu, € E(G). Let Q = V(G,) U {u, v} and let G’ be obtained from G — Q by
adding the edge u; u,. The resulting graph G’ is a connected subcubic graph. Suppose that
G' € Brgom- In this case, let Q* = Q\ {u}, and let G* = G — Q*, and so G* is obtained from
G’ by subdividing the added edge u; u, where u is the resulting new vertex of degree 2 in
G*. By Observation 2, y,(G*) < 7,(G’) and there exists a y,-set S* of G* that contains u.
The set S*U S is a RD-set of G, and so %.(G) < IS* + IS} < %(G) + %(G,) — 1,
implying that w(G) < w(G’) + w(G,) — 10. However, w(G) > 9 + (W(G') — 4)+
w(G,) —1—4) =w(G) + w(G,), a contradiction. Hence, G’ & Bigom.- Thus,
w(G) = 9+w(G") + W(G,) — 1 — 4) = w(G') + W(G,) + 4. Let S’ be a y,-set of G'. If at
least one of u; and u, belongs to S’, let S=S' U{u} U S2. If u; & S’ and u, & S, let
S=Suf{w}usSl. In both cases, S is an RD-set of G and ISI <ISl+ 1+
%.(G,) — 1 =9(G) + 5(Gy). Thus, w(G)<w(G)+ w(G,) <w(G)—4<w(G), a
contradiction. O

By our earlier observations, every edge of G either joins two large vertices or belongs to a
2-linkage or belongs to a 1-linkage. Hence as an immediate consequence of Claims 14, 15, and
16, we have the following property of the graph G.
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Claim 17. The removal of a bridge cannot create a component that belongs to Bygom-
As a consequence of Claim 17, we have the following claim.
Claim 18. The graph G does not contain Ry, as a subgraph.

Proof. Suppose, to the contrary, that R’ is a subgraph of G, where R’ = Ry,. Let v be
small vertex (of degree 2) in R'. Since G & B,qom, We note that R’ # G, implying that v is a
large vertex in G. Let v’ be the vertex adjacent to v that does not belong to R'. The edge w’
is a bridge of G whose removal creates a Rjp-component, contradicting Claim 17. O

We are now in a position to prove that there is no 2-linkage in G.
Claim 19. There is no 2-linkage in G.

Proof. Suppose, to the contrary, that G contains a 2-linkage. Let P : uv;v,v be a 2-
linkage, where x and y are the two neighbors of v not on P.

Claim 19.1. At least one of ux and uy is not an edge.

Proof. Suppose, to the contrary, that u is adjacent to both x and y. By Claim 13,
x,y € L. If xy is an edge, then the graph G is determined and ,(G) = 2 and w(G) = 26,
a contradiction. Hence, xy is not an edge. Let x; and y, be the neighbors of x and y, and
let G' = G — {u, vy, v5}. Suppose G’ € Bygom. In this case, xvy is a path in G’ where x, v,
and y all have degree 2 in G’, implying that G’ € {R;, R3, Rg}. If G' = R;, then G = Rs, a
contradiction. If G’ = R, then G could contain a 3-linkage, a contradiction. If G’ = Ry,
then G is determined and y,(G) < 6 and w(G) = 60, a contradiction. Hence, G’ & Bdom,
implying that w(G) = 14 + W(G") — 3) = w(G') + 11. Let S’ be a y,-set of G". If v & S,
then either x € S’ and y € S’ or x € S’ and y € S'. In this case, we let S = S’ U {v,}. If
v € S’ and neither x not y belongs to S’, then we let S = S’ U {u}. If v € S” and at least
one of x and y belongs to S’, then we let S = S’ U {1,}. In all cases, S is an RD-set of G,
and so 3,.(G) < ISI =181 + 1 = .(G") + 1, and so w(G) < w(G’) + 10. This contradicts
our earlier observation that w(G) = w(G’') + 11. O

Claim 19.2. Neither ux nor uy is an edge.

Proof.  Suppose, to the contrary, that u is adjacent to exactly one of x and y. We may assume
that uy is an edge. By Claim 13, y € £. By Claim 19.1, ux is not an edge. Let G’ be obtained
from G — {v, vy, v,} by adding the edge ux. The graph G’ is a connected special subcubic
graph of order less than n. Let S” be ay,-set of G'. Ifu € S, thenletS = S’ U {v}. Ifu ¢ S" and
x € S thenweletS = S" U {v}.Ifu & S and x ¢ S’, then we let S = S’ U {v,}. In all cases,
S isan RD-set of G, and so0 .(G) < ISI = ISl + 1 = %.(G") + 1, and so w(G) < w(G") + 10.
If G' & {R), R4, Rs}, then w(G) > 14 + (Ww(G") — 1 — 3) = w(G’) + 10, a contradiction.
Hence, G’ € {R;, R4, Rs}. Since u is a vertex of degree 3 in G’, we note that G’ # Ry. If
G’ = Ry, then G = R;, a contradiction. If G’ = Rs, then G = Ry, a contradiction. O
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By Claim 19.2, the vertex u is adjacent to neither x nor y. Renaming vertices if
necessary, we may assume that deg;(x) < deg;(y).

Claim 19.3. x,y € S.

Proof. Suppose that y € L. Let G’ be obtained from G — {v, vy, v,} by adding the edge
ux. As in the proof of Claim 19.2, 3.(G) < ISI = 1Sl + 1 = §.(G') + 1, implying that
w(G) < w(G’) + 10. If no component of G’ belongs to Byqom, then w(G) = w(G’) + 13, a
contradiction. Hence, at least one component in G’ belongs to Bigom. Suppose that G’ is
connected. Since u is a vertex of degree 3 in G, we note that G’ # R;. If G’ € {Ry, Rs}, then
the graph G is determined and in all cases, y.(G) = 4 and w(G) = 49, a contradiction.
Hence, G ¢ {Ry, R4, Rs}, implying that w(G) > 14 + (W(G") — 1 — 3) = w(G') + 10, a
contradiction.

Hence, G’ is disconnected with two components. Let G, be the component of G’
containing the vertices u and x, and let G, be the component containing the vertex y.
Both G, and G, are connected special subcubic graphs. Further, we note that the edge vy
is a bridge in G, implying by Claim 17 that G, & Brsom and therefore Gy € Bigom. Let G, be
the component of G — vy that contains the vertex v. Thus, G, is obtained from the graph
G' by subdividing the edge ux three times, resulting in the path uv;v,vx.

Let S} be a minimum type-1 NeRD-set of G, with respect to the vertex v, and let S2 be a
minimum type-2 NeRD-set of G, with respect to the vertex v. By Observation 4,
ISY = % ndom (G*; V1) < %.(G") and IS}] = %, 4o, (G*; v1) < 7.(G"). Let S, be a y,-set of G,,. If
yES,, let S=S,US,. Ify &S, let S=S,U S5 In both cases, S is an RD-set of G,
implying that ».(G) <%(Gy) + %.(G"), and so w(G) < w(Gy) + w(G’). However,
w(G) > 14 + (W(G") — 4) + wW(Gy) — 1) = w(Gy) + W(G’) + 9, a contradiction. Hence,
y € S. By our choice of the vertex x, this implies that x € S. O

By Claim 19.3, x € S and y € S. Thus, all three neighbors of v are small vertices.
Interchanging the roles of u and v, analogous arguments show that all three neighbors of
u are small vertices. Recall that ux ¢ E(G) and uy ¢ E(G), and so u and v do not have a
common neighbor. By Claim 11, no small vertex belongs to a triangle, implying that
xy ¢ E(G). Let x; and y, be the neighbors of x and y, respectively, different from v.
Possibly, x3 = y;,.

Claim 194. x; # ).

Proof. Suppose, to the contrary, that x; = y,. In this case, we let z = x;. Since G has no
handle, z € L. Thus, C : vxgyv is a 4-cycle in G, where v,z € £ and x,y € S. Let z; be
the neighbor of z different from x and y. Since all three neighbors of u belong to S, we
note that uz € E(G). Thus, u # z;. Let G’ be obtained from G — {v, v,, x, y, 7} by adding
the edge v;z;. The resulting graph G’ is a connected subcubic graph.

Suppose that G’ € Bigom- Let G* =G —y, that is, G* is obtained from G’ by
subdividing the added edge v, z; four times resulting in the path v;v,vxzz;. By Observation
5, there exists a RD-set S* of G* such that1S* < y.(G") + 1 and S* N {v,, v, x, 2} = {2, Z}.
The set S* is an RD-set of G, and so ¥%(G) <IS* =y,(G’) + 1, implying that
w(G) < w(G’) + 10. Noting that G’ # R; and the degrees of the vertices in G’ are the
same as their degrees in G, we have w(G)>23 + (w(G)—4) =w(G)+19, a
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contradiction. Hence, G’  Brgom, implying that w(G) = 22 + w(G’). Let S’ be a y,-set of
G'. If at least one of v; and g; belongs to S', let S = S" U {v,, z}. fuy € S" and 73 & S, let
S =5"U {v,x}. In both cases, S is an RD-set of G and IS| < ISl + 2 = y.(G") + 2. Thus,
w(G) < w(G") + 20, a contradiction. O

By Claim 19.4, x3 # y,. By Claim 12 if 3 € S, then ux; € E(G) and if y, € S, then
uy, ¢ E(G).

Claim 19.5. x ¥, € E(G).

Proof. Suppose that x; y; € E(G). Let G’ be obtained from G — {v, vy, v, X, y} by adding
the edge x; y;. The resulting graph G’ is a subcubic graph. We note that either G’ is
connected or has two components. Let Gy, be the component of G’ containing the added
edge x y,. If G’ is disconnected, then let G, be the second component of G’ which
necessarily contains the vertex u. In this case, the edge uv; is a bridge in G, implying by
Claim 17 that G, & Brgom. Therefore, the component G,, is the only possible component
of G’ that belongs to Bidom-

Let " be a yset of G. If € S, let S=S" U{v,y}. If 3 ¢S and y, € §', let
S=Suv{y,x}. fxegS,y¢S anduesS,lete S=Su{l. If &S,y €S and
ué¢ S, letS==S"U{v v, Inallcases, S is an RD-set of G and IS < ISl + 2 = y.(G") + 2.
Thus, w(G) <10y.(G) < w(G')+20. If G’ has no component in Bigom, then
w(G) > 24 + (W(G") — 1) = w(G’) + 23, a contradiction. Hence by our earlier
observations, G’ has exactly one component in Bgom, namely the component Gy,. By
our earlier properties of the graph G, we note that Gy, # Ry. If Gy, & {R4, Rs}, then
w(G) > 24 + (W(G") — 1 - 3) =w(G') + 20, a contradiction. Hence, Gy, € {R4, Rs},
implying that w(G) = 24 + (wW(G') — 1 — 4) = w(G’) — 19.

If G’ is connected, then G’ = G, and we let G* = G — {vy, v,}. If G’ is disconnected, then
G’ consists of the two components G, and Gy, and we let G* = G — (V(G,) U {v1, v,}). In
both cases, G* is the graph obtained from G, by subdividing the added edge x; y, three times
resulting in the path xxvyy,. Recall that Gy, € {R4, Rs}. Applying Observation 4 we have
¥%.dom (G*; V) < %.(Gy). Thus, there exists a type-2 NeRD-set S* in G* with respect to the
vertex v such that 1S* < y,(Gy). If G’ is connected, then let S = S*, and note that in this case,
ISI < %.4om (G*; V) < %,(Gy) = %.(G'). If G' is disconnected, let S = S* U S, where S, isa -
set of G, and note that in this case, ISI < ¥, 4., (G*; V) + %.(Gy) < % (Gy + %(Gy) = ,.(G).
In both cases, ISI < ¥,(G"). Further, in both cases S U {v;} is a RD-set of G, implying that
7%, (G) < ISl + 1 <¥,(G') + 1. Hence, w(G) < 10y,(G) < w(G") + 10, a contradiction. []

By Claim 19.5, x3 ¥, € E(G). Since G has no handle, at least one of x; and y, is large. If
exactly one of x; and y, is large, then we would contradict Claim 13. Hence, x; € £ and
» € L. Let G' = G — {v, vy, v, x, ¥}. The resulting graph G’ is a special subcubic graph.
Let G, be the component of G’ containing the edge x; y;, and let G, be the component of
G’ containing the vertex u. If G’ is connected, then G, = Gy,. If G’ is disconnected, then
Gy and G, are the two components of G'. Further, in this case, uv; is a bridge in G,
implying by Claim 17 that G, & Brqom. Therefore, the component G, is the only possible
component of G’ that belongs to Bygom-

Let S’ be ay-setof G'. If {u, xy, y,} € S, let S =S"U {vy, vo}. I S" N {u, x, y,} = {u, y,},
let S=S"U{v,xt IS n{u,x,n={untleS=S Uy IS n{ux,n =I{ul
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let S=S" Ul If S'n{u,x,nt =00} let S=S Ul If ' n{u,x, =X} let
S=S" Uyt If S niux,y}={n let S=S"U{v,x}. If Snfu,x,nl=0, let
S=5"U{v,v,}. In all cases, S is an RD-set of G and IS < IS'| + 2 = %.(G’) + 2. Thus,
w(G) < 10y%.(G) < w(G") + 20.

If Gyy & Brdom Or if Gy € Brgom,1, then w(G) > 24 + (W(G') — 3 — 1) = w(G’) + 20, a
contradiction. Hence, Gy, € {Ri, R, R3, R4, Rs, Ro}. We note that x; and y, are adjacent
vertices of degree 2 in G, implying that Gy, & {R4, Ro}. If Gy, = R;, then necessarily
G’ = Gy and the graph G is determined. In this case, .(G) =4 and w(G) = 46, a
contradiction. Hence, Gy, # R;. If G, = R3, then since G has no 3-linkage, G = Gy and
the graph G is determined. In this case, ¥.(G) = 5 and w(G) = 59, a contradiction.
Hence, Gy, # Rs. Therefore, Gy, € {R;, Rs}. By our earlier observations, the vertex u is
adjacent to neither x; nor y,. Further, we note that the vertex u and its two neighbors in
G', as well as x3 and y;, all have degree 2 in G'. Moreover, Xx; y; in an edge. These
properties implies that G is disconnected. Thus, G’ has two components, namely Gy, and
G,. As observed earlier, G, & Brjom- Let X and y, be the neighbors of x and y,,
respectively, in Gy,.

Suppose that Gy, = R,. We note that x; and y, are the two large vertices in R,. Let z;
and z, be the two common neighbors of X, and y, in Gy,. Thus, the graph in Figure 7 is a
subgraph of G. Let S, be a y.-set of G,. If u € S, let S={v,x,y,,z}. fu &S,, let
S = {v2, %, %, y;}. In both cases, S is an RD-set of G, and s0 %,(G) < IS,| + 4 = %,(G,) + 4.
Hence, w(G) < w(G,) + 40. However, w(G) =50+ (W(G,) — 1) =w(G,) +49, a
contradiction.

Hence, Gy, # R, and so Gy, = Rs. Let x; and y; be the two common neighbors of x, and y,
in Gy, and let x4 and y, be the remaining vertices in G, where x3X4 ), y; is a path. Thus, the
graph in Figure 8 is a subgraph of G. Let S, be a y;,-set of G, and let S = S, U {v1, X, y, X3, ¥;}.
The set S is an RD-set of G, and so ¥%(G)<IS,)+5=y/(G,) + 5. Hence,
w(G) < w(G,) + 50. However, w(G) = 58 + (W(G,) — 1) = w(G,) + 57, a contradiction.
This completes the proof of Claim 19. O

22

Yy N Y2

FIGURE 7 A subgraph in the proof of Claim 19 when Gy, = R,.

Y1 Y3
Y Y2

FIGURE 8 A subgraph in the proof of Claim 19 when G, = Rs.
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By Claim 19, there is no 2-linkage in G. By our earlier observations, every vertex of degree 2
in G, if any, therefore belongs to a 1-linkage.

Claim 20. Two large vertices cannot be the ends of two common 1-linkages.

Proof. Suppose, to the contrary, that there are two large vertices u and v such that uv,v
and vv,u are 1-linkages in G. Thus, C : uv;vv,u is a 4-cycle in G, where u,v € £ and
V1, Vy € S.

Claim 20.1. The vertices v; and v, are the only two common neighbors of u and v.

Proof. Suppose that u and v have a third common neighbor v;. If v; € S, then y,.(G) = 2
and w(G) = 23, a contradiction. Hence, v; € L. Let 1, be the neighbor of v, different from u
and v. ify € £, thenlet G’ = G — {u, v, vy, v,, v3}. By Claim 17, G’ & Bigom. Every y,-set of
G’ can be extended to an RD-set of G by adding to it v and v;, and so y.(G) < .(G") + 2,
implying that w(G) < w(G") + 20. However, w(G) = 22 + (w(G') — 1) = w(G’') + 21, a
contradiction. Hence, 1, € S. Let vs be the neighbor of v, different from v;. If vs € £, then let
G' =G — {u,v, vy, vy, V3, W}. By Claim 17, G’ & Bygom. Let S’ be a y.-set of G'. If vs € S, let
S=Sufv,v}.Ifvs& S, let S=S" U {v, vz} In both cases, S is an RD-set of G, and so
7 (G)<ISI=1S1+2=y(G)+ 2, implying that w(G)< w(G’)+ 20. However,
w(G) =27 + W(G") — 1) = w(G’') + 26, a contradiction. Hence, vs € S. Let v be
the neighbor of vs different from . By Claim 3, vs€ £. In this case, let
G' =G —{u,v,vy, vy, 3,0, vs}. By Claim 17, G’ & Bygom. Every y-set of G’ can be
extended to an RD-set of G by adding to it {v,v;,vs}, and so %.(G) <¥.(G') + 3,
implying that w(G) < w(G") + 30. However, w(G) = 32 + (W(G") — 1) = w(G’) + 31, a
contradiction. O

By Claim 20.1, the vertices v; and v, are the only two common neighbors of u and v.
Let x be the neighbor of u different from v; and v,, and let y be the neighbor of v different
from v; and v,.

Claim 20.2. The vertices x and y are not adjacent.

Proof. Suppose that x and y are adjacent. If x€ S and y € S, then G=R,, a
contradiction. Hence at least one of x and y are large. Renaming vertices if necessary,
assume that y € L. Let y, be neighbor of y different from x and v. If x € S, then the edge
Yy, is a bridge whose removal creates an R,-component, contradicting Claim 17. Hence,
x € L. Let x; be neighbor of x different from u and y.

Suppose that x; # y,. In this case, let G’ be obtained from G’ — {u, v, v1, v,, y} by adding
the edge xy,. Let S" be a y-set of G. If x € S, let S= S"U {v,y}. fx ¢ S’ and y, € S, let
S=Su{u,v}. fxgS and y, ¢ S, let S=5"U{v,v}. In all cases, S is an RD-set
of G, and so %.(G) < ISI =181 + 2 = %,(G') + 2, implying that w(G) < w(G’") + 20. If
G’ & Brgom, then w(G) = w(G’) + 21, a contradiction. Hence, G’ € Bigom. Let G* = G — v,,
that is, G* is obtained from G’ by subdividing the edge xy, four times resulting in the path
xuvyvyy,. By Observation 5, there exists an RD-set S* of G* such that S* N {u, vy, v, y} = {u, y}
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and I1S* < y,.(G’) + 1. The set S* is an RD-set of G, and so y.(G) < IS*1 < y.(G") + 1,
implying that w(G) < w(G") + 10. However, w(G) < 22 + (W(G") — 1 — 4) = w(G) + 17,a
contradiction.

Hence, x; = y,. In this case, we let £ = x;. Since no small vertex belongs to a triangle, we
note that z € L. Let z; be the neighbor of z different from x and y. If z; € £, then we let
G =G —{u,v,v,v,,x,,2}. By Claim 17, we note that G’ & Bgom. Since y,(G)<
%(G) +2, we have w(G)<w(G')+ 20. However, w(G)=30+ wW(G)—-1)=
w(G") + 29, a contradiction. Hence, z; € S. Let Z, be the neighbor of z; different from z.
Since every vertex of degree 2 belongs to a 1-linkage, we note that z, € £. We now let
G =G—{u,v,v,v2,x,y,2,z1). By Claim 17, we note that G’ & Bigom. Since
7,(G) < y.(G") + 3, we have w(G) < w(G’) + 30. However, w(G) = 35 + (w(G') — 1) =
w(G’) + 34, a contradiction. O

By Claim 20.2, the vertices x and y are not adjacent.
Claim 203. x€ Landy € L.

Proof. Suppose that at least one of x and y is small. Renaming vertices if necessary, we
may assume that x € S. Let z be the neighbor of x different from u. Necessarily, z € L.
Suppose that yz ¢ E(G). In this case, let G’ be the connected subcubic graph obtained
from G — {u, v, vy, v,, x} by adding the edge yz. Let S" be a y,-set of G'. If at least one of z
and y belongs to S, let S=S"U{v,x}. Iif z & S"  and y ¢ S', let S = S’ U {u, v1}. In both
cases, S is an RD-set of G, and so %(G)<ISI<IS'1+2=7/(G)+ 2. Thus,
w(G) < w(G") + 20. If G’ & {R,, R4, Rs}, then w(G) > w(G’) + 20, a contradiction.
Hence, G’ € {R;, R4, Rs}. Since every vertex of degree 2 in G belongs to a 1-linkage,
G' & {R,Rs}, and so G’ = Ry4. Let G* = G — v,, and so G* is obtained from G’ by
subdividing the added edge yz four times resulting in the path zxuv,vy. By Observation 5,
there exists an RD-set S* of G* such that S* N {x, u, v, v} = {x,v} and IS* < ¥,(G).
The set S* is an RD-set of G, and so ¥%(G)<IS* <y(G’), implying that
w(G) < 10%.(G") £ w(G'). However, w(G) =w(G’) + 19, a contradiction. Hence,
vz € E(G). Recall that x € S and z € L.

Suppose that y € £. In this case, let G' =G — {u,v,v,v,,x}. We note that
%.(G) < y%(G)+2, implying that w(G)<w(G)+20. If G €& Buom, then
w(G) > w(G") + 21, a contradiction. Hence, G’ € Bygom. A type-1 NeRD-set of G’ with
respect to the vertex y can be extended to an RD-set of G by adding to it the set {v, x}.
Therefore by Observation 1, %,(G) < % 14om(G3¥) +2 < (5(G) = D + 2 =%(G) + 1,
implying that w(G) < w(G") + 10. However, w(G) > w(G’) + 17, a contradiction.
Hence, y € S. Let z; be the neighbor of z different from x and y.

Ifz € £, thenletG' = G — {u, v, vy, v, x, ¥, z}. By Claim 17, G’ € Bygom- We note that
7%.(G) < %.(G") + 3, implying that w(G) < w(G") + 30. However, w(G) = w(G’) + 31, a
contradiction. Hence, z; € S. Let z, be the neighbor of z; different from z. Necessarily,
Z, € L. WenowletG' = G — {u, v, vy, V2, X, ¥, 2, 21}. By Claim 17, G’ & Bigom. Every y,-set
of G’ can be extended to an RD-set of G by adding to it the set {v,x,z}, and so
7.(G) < .(G") + 3, implying that w(G) < w(G") + 30. However, w(G) = w(G’) + 36, a
contradiction. O
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By Claim 20.3, x € £ and y € L. Recall that x and y are not adjacent. Let x; and x, be
the two neighbors of x different from u.

Claim 20.4. xx% € E(G).

Proof. Suppose that xx & E(G). Let G’ be the subcubic graph obtained from
G — {u, v, vy, vy, x} by adding the edge x;%. Let G, be the component of G’ containing the
added edge x;%. If G’ is disconnected, then let G, be the second component of G’ which
necessarily contains the vertex y. In this case, the edge vy is a bridge in G, implying by Claim
17 that G, & Brgom. Therefore, the component G, is the only possible component of G’ that
belongs to Bigom. Let S’ be a y.-set of G'. If at least one of x; and x belongs to S’, let
S=Sufv,x}.Ifx; &€ S"andx, & S',let S = S’ U {u, v}. In both cases, S is an RD-set of G,
and so %(G)<ISI<IS1+2=y(G)+2, implying that w(G) <w(G') +20. If
Gy & Brdom, then w(G) > w(G") + 21, a contradiction. Hence, G, € Bigom. Our earlier
properties of the graph G imply that G, # R;. Let G* be obtained from G, by subdividing the
added edge x;x, resulting in the path xx5. Applying Observation 2, there exists a y,-set S* of
G* such that x € S* and IS* = §.(G*) < ¥,.(Gy). If G’ is connected, then let S = S* U {v}.
In this case, ISI<ISM+1<y(G)+1=y(G)+1 If G is disconnected, let
S=S8*uUS,uU{v}, where S, is a y-set of G,. In this case, ISI <IS* + IS+ 1<
7%, (Gy) + 1,.(Gy) + 1 =y.(G") + 1. In both cases, S is an RD-set of G and IS| < %,.(G) + 1,
implying that w(G) < w(G") + 10. However, w(G) > w(G") — 17, a contradiction. O

We now return to the proof of Claim 20. By Claim 20.4, x;3 € E(G). Since no vertex
of degree 2 belongs to a triangle in G, we note that x;,, € £. Recall that y € L. If y is
adjacent to both x; and X, then the graph G is determined and y,.(G) = 2 and w(G) = 34,
a contradiction. Hence renaming vertices if necessary, we may assume that x; y € E(G).
Let G’ be the connected subcubic graph obtained from G — {u, v, vy, v, X} by adding the
edge x; y. Let S” be a y,-set of G'. If at least one of x; and y belongs to ", let S = S’ U {v, x}.
If &S and y ¢ S, let S=S"U {u,v}. In both cases, S is an RD-set of G, and so
%.(G) < ISI <181+ 2 = y.(G") + 2, implying that w(G) < w(G') + 20. If G’ & Brdom,
then w(G) > w(G’) + 21, a contradiction. Hence, G’ € Bygom. Let G* = G — v,, that is, G* is
obtained from G’ by subdividing the edge x; y four times resulting in the path xxuv;vy. By
Observation 5, there exists an RD-set S* of G* such that S* n {x, u, vy, v} = {x, v} and
IS*1 < %.(G") + 1. The set S* is an RD-set of G, and so ¥,.(G) < IS* < %.(G’) + 1, implying
that w(G) < w(G") + 10. However, w(G) > w(G’) + 17, a contradiction. This completes
the proof of Claim 20. O

By Claim 20, there is no 4-cycle in G that contains two small (nonadjacent) vertices.
Claim 21. No small vertex in G belongs to a 4-cycle.

Proof. Suppose, to the contrary, that there is a vertex v € S that belongs to a 4-cycle
C : vwv,13v. By our earlier observations, v; € £ for i € [3]. Let u; be the neighbor of v

that does not belong to C for i € [3].

Claim 21.1. wy € Landus € L.
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Proof. Suppose that at least one of u; and u; is small. Renaming vertices if necessary, we
may assume that iy € S. Since no small vertex belongs to a triangle, u;v, ¢ E(G). Since
no 4-cycle contains two small vertices, iy V3 & E (G). Let u be the neighbor of u; different
from v;. By our earlier observations, u € £ and u & {v,, v3}. If u is adjacent to both v, and
V3, then the graph G is determined and y,(G) = 2 and w(G) = 26, a contradiction. Hence,
u is not adjacent to at least one of v, and vs.

Suppose that uv; ¢ E(G). In this case, let G’ be the connected subcubic graph obtained
from G — {v,v;, wy} by adding the edge uvs;. Let S’ be a y-set of G'. If u € S, let
S=Su{plIfueg S andvs e S, 1letS =8 U {w}. Ifu & S'andvs & S, letS = S" U {v}.
In all cases, S is an RD-set of G, and so y.(G) < ISI < ISl + 1 = %,(G") + 1, implying that
w(G) < w(G") + 10. If G’ & {R;, R4, Rs}, then w(G) > w(G’) + 10, a contradiction.
Hence, G’ € {R, Ry, Rs}. We note that u and v; are adjacent vertices of degree
3 in G', and so G’ # Ry. Since there is no 2-linkage in G, we note that G’ # Rs. Hence,
G’ = Ry. The graph G is now determined and satisfies y.(G) =4 or w(G) =49, a
contradiction.

Hence, uv; € E(G), that is, u = uz. We now let G’ = G — {v, v, us}. The graph G’ is a
connected subcubic graph. Let S’ be a y.-set of G'. Ifu € S', let S = S’ U {v}. If u ¢ S’ and
vze S, letS=S Uy} fuég S andvs & S, let S =S U {v;}. In all cases, S is an RD-
set of G, and 50 %,(G) < ISI < IS + 1 = %,(G’) + 1, implying that w(G) < w(G") + 10. If
G' & Bidom or if G’ € Bigom1, then w(G) > w(G’) + 10, a contradiction. Hence,
G' € Bigom,; for some i € {2, 3, 4, 5}. Since uv3v, is a path in G’, and u, v;, and v, all
have degree 2 in G’, either G' =R, or G' = R;. If G’ = R;, then G would contain a
2-linkage, and if G’ = R;, then G would contain a 3-linkage. Both cases produce a
contradiction. O

By Claim 21.1,u; € £ andu; € L. Ifuy = up = us, then the graph G is determined and
%.(G) = 2 and w(G) = 21, a contradiction. Renaming vertices if necessary, we may
assume that u, # uz. In this case, let G' be the subcubic graph obtained from
G — {v, v, v} by adding the edge u,v;. Let G; be the component of G’ containing the
vertex u; and let G, be the component of G’ containing the added edge w,vs. If G’ is
connected, then G’ = G; = G,. If disconnected, then the edge wu;v; is a bridge in G,
implying by Claim 17 that G; & B.4om. Therefore, the component G, is the only possible
component of G’ that belongs to B;gom.

Let S" be a y-set of G'. If u, €S’ let S=S'UP}. If , €S and v, € S, let
S=S U}l Ifu, & S"andv; & S’,let S = S’ U {v;}. In all cases, S is an RD-set of G, and
s0 %.(G) < ISI < 1Sl + 1 = %.(G") + 1, implying that w(G) < w(G’) + 10. By our earlier
properties of the graph G, we note that G, # R. If G, & {R4, Rs, Ro}, then
w(G) > w(G) + 10, a contradiction. Hence, G, € {R4, Rs, Ro}. If G’ is connected, then
the graph G is determined and either G, € {R4, Rs}, in which case %.(G) <4 and
w(G) = 47, or G, = Ry, in which case ,(G) < 5 and w(G) = 58. In both cases, we have a
contradiction. Hence, G’ is disconnected.

Since every small vertex in G belongs to a 1-linkage, the case G, = Rs cannot occur,
and so G, € {R4, Ro}. Let G, be the component of G — v that contains the vertex v.
Thus, G, is obtained from G, by subdividing the added edge u,v; three times resulting in
the path w,v,v;vv; and adding the edge v,vs. If G, = R4, then §.(G,) <4, and so
%.(G) £ %.(G1) + %.(G)) £ %.(Gy) + 4, implying that w(G) < w(G;) + 40. However in
this case, w(G) = w(G,) + 47, a contradiction. If G, = Ry, then ¥,(G,) < 5, and so
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%.(G) £ %.(G1) + 1.(G)) £v.(Gy) + 5, implying that w(G) < w(Gy) + 50. However in
this case, w(G) = w(G;) + 58, a contradiction. This completes the proof of Claim 21. []

Recall that no small vertex belongs to a triangle. By Claim 21, no small vertex in G belongs
to a 4-cycle. Hence every cycle that contains a small vertex in G has at least five vertices.

Claim 22. No large vertex has two small neighbors and one large neighbor.

Proof. Suppose, to the contrary, that v € £ and N (v) = {vy, v, v3} where vy, v, € S and
v3 € L. Letu; and u, be the neighbors of v; and v,, respectively, different from v. Since no
vertex of degree 2 belongs to a triangle or a 4-cycle, {u, u,} N N (v) = @. Further, u;v; and
u,v, are the only edges between {uy, u,} and N (v). Let uz and w; be the neighbors of v;
different from v;. The graph illustrated in Figure 9 is a subgraph of G.

Let G =G — {v,v,v,}. The graph G’ is a subcubic graph with at most three
components. Let S" be ay,-set of G'. If u; € S’,let S=S" U {1p}. Ifuy & S" and u, € ', let
S=Su{n}.Ifuy & S andu, & S',let S = S’ U {v}. In all cases, S is an RD-set of G, and
so %(G)LISILIST+1=y(G)+1, implying that w(G) <w(G')+ 10. If no
component belongs to Bygom, then w(G) > w(G’) + 11, a contradiction. Hence at least
one component of G’ belongs to Bigom. Let H be such a component of G'. Possibly,
G’ = H. Since the removal of a bridge cannot create a component that belongs to Bqom,
the component H necessarily contains at least two vertices from the set {u, u,, v3}. We
note that each of u, u,, and v; has degree 2 in G'. Thus, at least one of u; and u, belong to
the component H.

Suppose that exactly one of u; and u, belong to H. Let G* be obtained from G’ by
adding the edge u;u,. The resulting graph G* is a connected subcubic graph that contains
a bridge, namely the added edge u;u,. Since no graph in B,y contains a bridge,
G* & Brdom- Let S*be ay,-set of G*. If u; € S*,1let S = S* U {v,}. If iy & S* and u, € S*, let
S=8*U{nl Ifu & S* and u, & S*, let S = S* U {v}. In all cases, S is an RD-set of G,
and s0%,(G) < ISI < 1S* + 1 = 3.(G*) + 1, implying that w(G) < w(G*) + 10. However,
since G* € Brgom, We have w(G) = w(G*) + 13, a contradiction. Hence, {u;, u,} C V (H).

Let X = {u, up}, and so X C V (H). As observed earlier, u; and u, have degree 2 in G'.
Let Sy be a minimum type-2 NeRD-set in H with respect to the set X. By Observation 1(f),
we have ISyl = ¥ 4o (H; X) < %.(H) — 1. Suppose that G’ = H. In this case, the set
SH=SyuUf{v} is a RD=set of G, and so y(G) <ISH +1 < (H) — 1) + 1 =y(G),
implying that w(G) < w(G"). However, w(G) > w(G") + 7, a contradiction. Hence, G’ # H.
Let G be the component of G’ containing the vertex vs, and so G' = H U G;. We note that the
removal of the bridge vv; creates the component Gs, implying that G; & Bigom. Let S; be a
y-set of G;. In this case, the set S;; =Sy US;U{v} is a RD-set of G, and so
% (G) <ISH + 1S3l + 1 < ((H) — 1) + %,(G3) + 1 = y,.(G"). Therefore, w(G) < w(G").

FIGURE 9 A subgraph in the proof of Claim 22.
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However, w(G) > 14 + (W(H) =2 —4) + (W(G3) — 1) = (W(H) + w(G3)) + 7=w(G) + 7, a
contradiction. This completes the proof of Claim 22. O

By Claim 22, no large vertex has two small neighbors and one large neighbor. Hence if a
large vertex has a small neighbor, then it has either one small neighbor or three small
neighbors.

Claim 23. No large vertex has exactly one small neighbor.

Proof. Suppose, to the contrary, that v € £ has exactly one small neighbor. Let
N ) = {vy, v, v3}, where v; € S and v,, v; € L. Let u be the neighbor of v; different from
v. Necessarily, u € L. Let u; and u, be the two neighbors of u different from v;. Since no
vertex of degree 2 belongs to a 3-cycle or 4-cycle, the vertices uy, Uy, 5, V3 are pairwise
distinct.

Claim 23.1. {ul, blz} cS.

Proof. Suppose, to the contrary, that at least one of u; and u, is large. By Claim 22 this
implies that both u; and u, are large. Let G' = G — {u, v, v1}. Suppose that G’ contains a
component F such that F € Bygom. Since the removal of a bridge cannot create a
component that belongs to B;qom, the component F contains at least two vertices from the
set {uy, Uy, vy, V3}.

Suppose that F contains a vertex from both {uy, u,} and {v,, v3}. By symmetry, and
renaming vertices if necessary, we may assume that {u,, v3} C V (F). We note that both u,
and v; have degree 2 in F. Applying Observation 1(f) to the graph F with X = {u, v}, we
have ¥, 4o, (F; X) < 7,(F) — 1. Let Sp be a minimum type-2 NeRD-set of F with respect to
the set X, and s0 ISpl = ¥, 4o, (F; X) < 3, (F) — 1.

Suppose that F is the only component of G’ that belongs to Bygom. If G’ is connected,
then the set Sp U {v1} is an RD-set of G. If G’ is disconnected, then the set Sp U {v;} can be
extended to an RD-set by adding to it a y.-set from the component(s) of G’ different from
F. In both cases, we infer that .(G) <1+ (y(G) — 1) = y.(G'), implying that
w(G) < w(G’"). Since G’ has exactly one component that belongs to Bijom, We have
w(G) > w(G’) + 4, a contradiction. Hence, the graph G’ contains a component H,
different from F, that belongs to Bygom. In this case, {4, v,} C V (H) and, analogously as
with the component F, there exists a minimum type-2 NeRD-set of H with respect
to the set {uy, v,} satisfying ISyl < 3. (H) — 1. The set Sy U Sy U {v1} is a RD-set of G,
and s0 ,.(G) <1+ ISpl + 1Syl <1 + (. (F) — 1) + (3,(H) — 1) = %.(G") — 1, noting that
G'=FUH. This implies that w(G)<w(G)—10. However, w(G) > 13+
W(G") —4 — 5—5) =w(G’) — 1, a contradiction. Hence, if the graph G’ contains a
component C in Bigom, then either {u, u,} CV(C) and {v,, v} NV (C)=@ or
{v2, 13} CV(C) and {u, up} N V(C) = @. If all edges are present between {u, u,} and
{vo, v3}, then G = Ry, a contradiction. Hence renaming vertices if necessary, we may
assume that u;v, € E(G).

Let G” be the graph obtained from G’ by adding the edge u; v,. The resulting graph G’ is
a subcubic graph with at most three components. Let G; be the component of G’
containing the added edge w;v,, and let G, and G; be the components of G’ containing v,
and u,, respectively. If G’ is connected, then G; = G, = G;. Let S’ be a y,-set of G'. If
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wmeS,letS=S vl Ifuy g S"andv, e S letS=S"ufu}. Ifu; € S"and v, € ', let
S =5"U{v}. In all cases, S is an RD-set of G, and so ,.(G) < ISI < ISl + 1 = y.(G) + 1,
implying that w(G) < w(G’) + 10. If no component of G’ belongs to Bigom, then
w(G) > w(G’) + 11, a contradiction. Hence at least one component of G’ belongs to
Brdaom- Let H be such a component of G. If H # G, then since the removal of a bridge in G
cannot create a component in Bigom, this implies that {u,, v} C V(H) and
{fu, v} N V(H) = @. However, such a component H is a component in G,
contradicting our earlier properties of a component of G’ that belongs to Bygom. Hence,
H = G; and H is the only component of G’ that belongs to Bqom.

Suppose that G’ is connected, and so G’ = G; € Bigom and the graph G is determined.
We note that the vertices u; and v, are adjacent vertices of degree 3 in G’, and so
G’ ¢ {R, R,}. Further, we note that u, and v; have degree 2 in G'. Reconstructing the
graph G from G’ € Byyom it can be readily checked that 10y.(G) < w(G), a contradiction.
Hence, G’ is disconnected, and so G; # G, or G; # G;. By symmetry and renaming
vertices if necessary, we may assume that G; # Gs. Let G, be obtained from G; by
subdividing the added edge u; v, of G; three times resulting path in the path uuv,vv,. Let
S. be a minimum type-1 NeRD-set of G, with respect to the vertex u, and let SZ be a
minimum type-2 NeRD-set of G, with respect to the vertex u. By Observation 4,
IS, = ¥ ndom (Gus W) < %.(G1) and ISy) = ¥, 4o (Gus w) < %,(Gy). Recall that G, # Gs. Let S
be a y,-set of Gs. If u, € S, then let S = S}, U S, while ifu, & S3, thenlet S = S, U S;. In
both cases, IS < %,(G1) + %,(G3).

If G, = G; or G, = G, then ¥ (G") = ,.(G1) + ¥.(G3) and S is a RD-set of G. If G, # G,
or G, # G;, theny (G") = ¥,(G1) + 1,(G>) + %,(G3) and S can be extended to a RD-set of G
by adding to it a y,-set of G,. In both cases, we have that y.(G) < IS| < y.(G’), and we infer
that w(G) < w(G"). As observed earlier, G; is the only component of G’ that belongs to
Braom- Hence, w(G) > 13 + (W(G') — 2 — 4) = w(G’) + 7, a contradiction. O

By Claim 23.1,uy; € S and u, € S.
Claim 23.2. There is no edge between {uy, u,} and {v,, v5}.

Proof. Suppose that there is an edge between {u;, u,} and {v,, v3}. Renaming vertices if
necessary, we may assume that u;v, € E(G). Since no small vertex belongs to a 4-cycle,
we note that u,v, € E(G). Suppose that u,v; € E(G). If v,v; € E(G), then the graph G is
determined and y,(G) = 3 and w(G) = 31, a contradiction. Hence, v,v; ¢ E(G). In this
case, let G’ be the connected subcubic graph obtained from G — {u, v, v1, uy, u,} by adding
the edge v,v;. Let S’ be a y,-set of G'. If v, € S, let S = S" U {up, v}. If v, & S’ and v; € S,
letS=S"U{v,u}.Ifv, & S’andv; & S',let S = S’ U {u, v;}. In all cases, S is an RD-set of
G,ands0y,(G) < ISI <181 + 2 = %,(G') + 2, implying that w(G) < w(G") + 20. We note
that v, and v; are adjacent vertices of degree 2 in G’. By our earlier properties of the
graph G, we infer that G’ & {R;, R4, Rs}. Let G* be obtained from G’ by subdividing the
edge v,v; four times resulting in the path v,u; uv;vv;. By Observation 6(a), there exists an
RD-set S* in G* such that v; € S* and I1S* < y.(G"). The set S* U {u,} is a RD-set of G,
and so y.(G) <I1S* + 1<y (G)+ 1, implying that w(G) < w(G’) + 10. However,
w(G) > w(G) + 18, a contradiction. Hence, u,v; € E(G). Let x be the neighbor of u,
different from u. By our earlier observations, x € £ and x & {v,, v3}.
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We show next that xv, € E(G). Suppose, to the contrary, that xv, ¢ E (G). In this case,
let G’ be the subcubic graph obtained from G — {u, v, vy, uy, u,} by adding the edge xv,.
Let G, be the component containing the added edge xv,, and let G3 be the component
containing the vertex vs. If G’ is connected, then Gy = G;. If G’ is disconnected, then it has
two components, Gy and Gs. In this case, since the removal of a bridge cannot create a
component in Bygom, We note that Gz & Bgom-

Let S" be a y-set of G'. If v, €8, let S=S"U{wp,v}. f v, €S’ and x € 5, let
S=SuUfv,u}tIfv, & Sand x & S, letS = S’ U {u, v}. In all cases, S is an RD-set of G,
and so y.(G) < ISI < ISl + 2 = .(G") + 2, implying that w(G) < w(G") + 20. We note
that v, and x are adjacent vertices of degree 2 and degree 3, respectively, in Gy. In
particular, G, # Ri. If Gy = Rs, then G’ = G,, and the graph G is determined and
7.(G) < 5 and w(G) = 57, a contradiction. Hence, Gy # Rs.

Suppose that G, = R4. If G’ = Gy, then the graph G is determined and 7,(G) < 5 and
w(G) = 57, a contradiction. Hence, G’ is disconnected. In this case, let G, be the
component of G — vv; that contains the vertex v. We infer from the structure of the graph
G, (using the structure of Gy) that a y,-set of G; can be extended to an RD-set of G by
adding to it five vertices from G,, and so ¥%(G) <5 + ¥.(G3). This implies that
w(G) < w(G3) + 50. However, w(G) = w(G3) + 56, a contradiction. Hence, G, # R4.

Suppose that G, = Ry. If G’ = G, then the graph G is determined and ,(G) < 6 and
w(G) = 60, a contradiction. Hence, G’ is disconnected. In this case, let G, be the
component of G — vv; that contains the vertex v. We infer from the structure of the graph
G, (using the structure of Gy) that a y.-set of G; can be extended to an RD-set of G by
adding to it six vertices from G,, and so ¥%.(G) < 6 + ¥.(G3). This implies that
w(G) < w(G3) + 60. However, w(G) = w(G3) + 60, a contradiction. Hence, G, # Ro.

Hence, G, € {Ry, R4, Rs, Ro}. Recall that if G3 # Gy, then G3 € Bgom. Thus there is at
most one bad component in G’, and such a component does not belong to {R;, Ry, Rs, Ro}.
Hence, w(G) > w(G’) + 20, a contradiction. Hence, xv, € E(G). The graph G therefore
contains the subgraph shown in Figure 10A. Let C be the cycle vw;uwv,v, and let G’ be
the connected special subcubic graph obtained from G — V (C) by adding the edge u,v;.
Let S’ be a y-set of G'. If , € S’, let S=S"Ufv,v}. If , €S" and v; € S, let
S=SUfu,u}.Ifu, & S andvs; & S’, let S = S’ U {vy, v,}. In all cases, S is an RD-set of
G, and so %(G) <ISI <181+ 2 =¥/(G) + 2, implying that w(G) < w(G") + 20. If
G’ & Brgom, then w(G) = w(G’) + 21, a contradiction. Hence, G’ € Brgom. We note that
P :xu,v; is a path in G’ where the vertices x, u, and v; have degrees 2, 2, and 3,
respectively in G'. Our earlier properties of the graph G, together with the existence of the
path P in G', imply that G’ = R;. Reconstructing the graph G from G’ now yields the
graph shown in Figure 10B that satisfies y.(G) = 6 and w(G) = 70, a contradiction. (The
six shaded vertices, e.g., shown in Figure 10B form a y,-set in G.) This completes the proof
of Claim 23.2. O

Let x and y be the neighbors of 4y and u,, respectively, different from u. By Claim 23.2,
there is no edge between {uy, u,} and {v,, v3}, implying that {x, y} N {v,, v;} = @. Hence,
the graph illustrated in Figure 11 is a subgraph of G, where possibly edges between
{x,y} and {v,,v3} may exist. By our earlier observations, {vi,u;, u} CS and
{u,v,v5,v3,%,y} C L.

Claim 23.3. xy ¢ E(G).
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(A) . (B) , { !

FIGURE 10 (A) A subgraphs in the proof of Claim 23.2. (B) The graph G in the proof of Claim 23.2.

FIGURE 11 A subgraph in the proof of Claim 23.

Proof. Suppose that xy € E(G). Thus, C : xuuu, yx is a 5-cycle in G. Let x; and y, be the
neighbors of x and y, respectively, that do not belong to the 5-cycle C. (Possibly, x3 = y;.)
By Claim 22, x3,y; € L. Let G’ be the special subcubic graph obtained from G — V (C) by
adding the edge v;x. Let G, be the component of G’ containing the added edge v;X, and
let Gy be the component of G’ containing y,. If G’ is connected, then G, = G,. If G’ is
disconnected, then G’ has two components, G, and G,. In this case, since the removal of a
bridge cannot create a component in Bygom, We note that G, & Briom.

Let S" be a y-set of G. If y €S, let S=S Ufu, ). If 3 ¢ S" and v; € §', let
S=SuUfx,y..Ifx & S andv, & S, letS = S U {iy, y}. In all cases, S is an RD-set of G,
and so ¥(G)<ISI<IST+2=y(G)+2, implying that w(G) < w(G') + 20. If
Gy & Bigom, then w(G) = w(G’) + 21, a contradiction. Hence, Gy € Bgom. Let G% be
the component of G — {u,, y} that contains the vertex x. Thus, G% is obtained from the
graph G, by subdividing the added edge v;x; three times resulting in the path v;uu;xx.
Let S% be a minimum type-2 NeRD-set of G% with respect to the vertex x. Thus the set S%
is a dominating set in G%. Further, x € S¥ and the vertex x is the only possible vertex in
G with all its neighbors in S3. By Observation 4, we have ISl = 7, 3., (G x) < 7,.(Gy).
Let S* = S% U {w,}. If G’ is connected, then ¥,(Gy) = ¥.(G’) and S* is an RD-set of G. In
this case, %.(G) < I1S* = 1S3l + 1 < %.(G") + 1. If G’ is disconnected, then Gy # G, and
S*uUS, is an RD-set of G, where S, is a y-set of G,. In this Ccase,
%.(G) <IS* +1S1 = 1S3 + 1 + ISl < %.(Gy) + 1 + 1,(Gy)) = %.(G") + 1. In both cases,
7.(G) £ %.(G") + 1, implying that w(G) < w(G’) + 10. However, w(G) > w(G') + 17, a
contradiction. O

We now return to the proof of Claim 23. By Claim 23.3, the vertices x and y are not
adjacent in G. Let G’ be the special subcubic graph obtained from G — {u, u, u, v, v1} by
adding the edge xy. Let G, be the component of G’ containing the added edge xy, and let
G, and G; be the components of G’ containing v, and vs, respectively. If G’ is connected,
then G, = G, = Gs. Let S’ be a yset of G'. If x € S’, let S = S" U {up, v}. If x ¢ S’ and
veS,leteS=Su{u,v . Ifx¢ S,y S andv,e S, letS=S"u{ul. ifx¢S,y¢s
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and v, &S, let S=S"Uf{u,v}. In all cases, S is an RD-set of G, and so
%.(G) < IS <181 + 2 = y.(G") + 2, implying that w(G) < w(G’) + 20. If no component
of G’ belongs to Bigom, then w(G) = w(G’') + 21, a contradiction. Hence, there is a
component in G’ that belongs to Biqom.

Suppose that G, or G is different from G, and belongs to B.gom. Renaming vertices if
necessary, by symmetry, we may assume that G, # G, and G, € B;gom. Since the removal of
a bridge cannot create a component in B4, We infer that G, = Gs. Further, both v, and v,
have degree 2 in G,. Applying Observation 1(f) to the graph G, with X = {v,, v3}, we have
¥%.dom (G2 X) < %.(G,) — 1. Let S* be a minimum type-2 NeRD-set of G, with respect to the
set X. Let Sy be a y,-set of Gy. If x € Sy, let S = S, U S* U {up, v1}. If x ¢ Sy and y € S, let
S=8S, US*Uf{u,n}.IfxgS,andy & Sy, let S =S, U S*U {u, n}. In all cases, S is an
RD-set of G, and so ¥.(G) <ISd + IS*1 + 2 < %.(Gy) + #(G) — 1) + 2 =y(G) + 1,
implying that w(G) < w(G") + 10. However, w(G) > w(G") + 13, a contradiction. Hence
if G, # Gy, then G, € Bdom, and if G; # G, then Gz € Bdom.

Since there is a component in G’ that belongs to B,qom, We infer that G, is the only such
component of G'. If G, € Bigom,1, then w(G) = w(G’) + 20, a contradiction. Hence,
Gy & {Rs, Ry, Rg}. We note that x and y are adjacent vertices of degree 3 in G,, implying
that G, # {Ri, R}. If Gy = R;, then our properties of the graph G imply that G’ is
connected and v, and v; are the vertices of degree 2 in R; that have no degree 3 neighbor.
In this case, the graph G is determined and %,.(G) = 4 and w(G) = 59, a contradiction.
Hence, Gy # Rz, implying that G, € {Ry, Rs, Ro}.

Let G* be obtained from G, by subdividing the added edge xy three times resulting in
the path xu;uu, y. Applying Observation 4(b) we have y, 4., (G*; u) < %,(Gy). Thus, there
exists a type-2 NeRD-set S* in G* with respect to the vertex u such that1S* < y,.(Gy). The
set S* is a dominating set in G*. Further, u ¢ S* and the vertex u is the only possible
vertex in G* with all its neighbors in S*. Let S = S* U {v}. If G’ is connected, then S* U {v}
is an RD-set of G, and so %(G)<ISYI+1<y(G)+1=¥(G)+1 If G is
disconnected, then every y,-set of G' — V(Gy) can be extended to an RD-set of G by
adding to it the set S* U {v}, implying once again that y,(G) < %,(G’) + 1. Hence in both
cases we infer that w(G) < w(G’) + 10. However, w(G) = w(G’) + 17, a contradiction.
This completes the proof of Claim 23. O

Claim 24. The graph G is a cubic graph.

Proof. Suppose, to the contrary, that G contains a small vertex. By Claim 22, no large
vertex has exactly two small neighbors. By Claim 23, no large vertex has exactly one small
neighbor. Hence if a large vertex has a small neighbor, then all three of its neighbors are
small. Thus the three neighbors of every large vertex are either all small or all large. Since
G is connected and contains at least one small vertex, this implies that G is a bipartite
subcubic graph with partite sets S and £. Thus, by Lemma 1, %(G) < I£l, and so
w(G) < 10y.(G) < 10IL1. However in this case, 31l = 2ISl, and so w(G) = 5IS| + 4IL] =
5% %IEI + 41£1 > 10l£, a contradiction. O

By Claim 24, G is a (connected) cubic graph. Recall by Claim 18 that Ry, is not a subgraph of
G. We note that Ry contains three small vertices, and every graph in Bygom \ {Ro, Rio} contains at
least four small vertices. Our earlier observations therefore yield the following properties of
graph G.
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Claim 25. 1If E' is a k-edge-cut in G and G’ is a component of G — E’ that belongs to
Brdom, then k > 3 and the following properties hold.

(a) If k = 3, then G’ = R,.
(b) Ifk = 4, then G’ € {Rz, R4, Rs, Rg}
(C) Ifk = 5, then G’ € {Rl, R67 R7, Rg}

Claim 26. If G’ € Bigom is a special subcubic component of G — S where S C V (G),
then G’ contains at least three vertices of degree 2.

Claim 27. The graph G contains no diamond.

Proof. Suppose, to the contrary, that G contains a diamond D, where
V(D) = {v1, V3, v3, 1y} and where vyv, is the missing edge in D. Let u; be the neighbor
of v; not in D fori € [2]. Suppose thatu; = u,. Let u be the neighbor of iy different from v,
and v,, and let G' = G — (V (D) U {u, w}). The graph G’ is a special subcubic graph that
contains exactly two small vertices, and so by Claim 26 no component of G’ belongs
to Brgom. Every y,-set of G’ can be extended to an RD-set of G by adding to it the
set {vs,u}, and so ¥.(G) <¥(G) + 2, implying that w(G) < w(G’) + 20. However,
w(G) = w(G) + 22, a contradiction. Hence, u; # u,. In this case, let G' = G — V(D). The
graph G’ is a special subcubic graph that contains exactly two small vertices, and so no
component of G’ belongs to Bygom. Every y.-set of G’ can be extended to an RD-set of G by
adding to it the vertex vs, and so ¥,.(G) < %,(G) + 1, implying that w(G) < w(G’) + 10. In
this case, w(G) = w(G) + 14, a contradiction. O

Claim 28. The graph G contains no triangle.

Proof. Suppose, to the contrary, that T is a triangle in G where V (T) = {vy, v, v3}. Let x;
be the third neighbor of v; that does not belong to T fori € [3]. By Claim 27, the graph G
contains no diamond, and so the vertices Xj,% and x3 are pairwise distinct. Let
X = {x, %, x3}. Suppose that G[X] contains a vertex of degree 2. Renaming vertices if
necessary, we may assume that {x;3, %x3} C E(G). If ;33 € E(G), then G is the 3-prism
C; K, and so0 %,(G) = 2 and w(G) = 24, a contradiction. Hence, xx; ¢ E (G). Let y, be
the neighbor of x; different from X% and v for i € {1,3}. If y, =y;, then we let
Q=V((T)uXuU{y}and G = G — Q. In this case, G’ is a special connected subcubic
graph that contains exactly one small vertex, and so, by Claim 26, G' € Biqom. Since
7%, (G) <y(G) + 2, we have w(G) < w(G") + 20. However, w(G)=w(G) + 27, a
contradiction. Hence, y, # ;. We now let Q=V(T)UX and G' =G — Q. In this
case, G’ is a special subcubic graph that contains exactly two small vertices, and so,
by Claim 26, no component of G' belongs to Biom. Once again y.(G) < y.(G) + 2,
implying that w(G) < w(G") + 20. However, w(G) = 24 + (w(G") — 2) = w(G) + 22, a
contradiction.

Hence, G [X] contains no vertex of degree 2, implying that G [X] contains at least one
isolated vertex. By symmetry, we may assume that x; is isolated in G [X], that is, x; is
adjacent to neither x, nor x;. Let y; and y, be the two neighbors of x; different from v,. We
now let Q = V(T) U {x} and let G’ = G — Q. The graph G’ is a special subcubic graph.
We note that k' + r’ < 4.
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LetS'beay-setof G.If yy € S, let S=S"U {v}. If y, & S', let S = S" U {1y}. In both
cases, S is an RD-set of G, and so .(G) < ISI = 1Sl + 1 = y.(G') + 1, implying that
w(G) < w(G’) + 10. If no component of G’ belongs to Byqom, then w(G) = w(G’) + 12, a
contradiction. Hence, G’ contains a component G; that belongs to Bygom- By Claim 25,
there is only one such component and G; € {R,, R4, Rs, Ro}. Thus, G; contains at least
three small vertices. Let X; C V (G1) N {y}, ¥,, %} be chosen so that IXjl = 2. Let S; be a
minimum type-2 NeRD-set of G; with respect to the set X;. By Observation 1(f),
1S1 = % 4om (G1; X1) < 7,(Gy) — 1.

Suppose that G; € {R,, R4, Rs}. By Claim 25, G’ = Gy, and so k' = 1 and r' = 0. In this
case, the set S; U {11} is a RD-set of G, and so %,(G) < 1Sil + 1 < %,.(G1) = ¥,(G"). Suppose
that G; = Ry, implying that k' = r’ = 1. In this case, we let G, be the second component of
G’, and s0 G, & Braom. Let S, be a y,-set of G,. The set S, can be extended to an RD-set of G by
adding to it the set S; U {11}, and so ¥,(G) < ISl + 1 + 1S3l < %.(Gy) + ¥%,.(G2) = 7.(G'). In
both cases, 7.(G) < %.(G'), implying that w(G) < w(G"). However, w(G) > w(G') + 8, a
contradiction. O

Claim 29. The graph G contains no K ; as a subgraph.

Proof. Suppose, to the contrary, that H is a subgraph of G, where H = K; ;. Let X and Y
be the partite sets of H where X = {x;, %, x3} and Y = {y,, y,}. Since G is triangle-free, the
sets X and Y are independent. Let v; be the neighbor of x; not in H for i € [3]. If
V1 = v, =3, then G = K;3. In this case, 3.(G) = 2 and w(G) = 24, a contradiction.
Hence renaming vertices if necessary, we may assume that v; # v;.

Claim 29.1. The vertices vy, v,, V3 are pairwise distinct.

Proof. Suppose, to the contrary, that the vertices vy, v, v3 are not pairwise distinct, and
SO V; = V3 Or v, = v3. Renaming vertices if necessary, we may assume that v, = v;.
Suppose that v;v, € E(G). In this case, let v denote the neighbor of v; different from x
and v,. Thus, v, is a bridge in G. Let G’ be the component of G — vv; that contains the
vertex v. By Claim 25, G’ € Bygom- Let S’ be a y-set of G'. If v € §', let S = {y, %}. If
v & S, let S = {x3, v,}. In both cases, S is an RD-set of G, and so %,(G) < IS = 3,(G") + 2,
implying that w(G) < w(G") + 20. However, w(G) = w(G’) + 27, a contradiction.
Hence, viv; € E(G). We now let G' = G — (V(H) U {v,}). The graph G’ is a special
subcubic graph that contains exactly two small vertices. By Claim 25, no component of G’
belongs to B;dom- Every y,-set of G’ can be extended to an RD-set of G by adding to it the
set {y,%}, and so ¥.(G) <¥.(G) + 2, implying that w(G) < w(G’) + 20. However,
w(G) = w(G’) + 22, a contradiction. O

By Claim 29.1, the vertices vy, v,, V3 are pairwise distinct.
Claim 29.2. The graph G[{vy, v,, v5}] is isolate-free.
Proof. Suppose, to the contrary, that G[{vy,v,,v3}] contains an isolated vertex.
Renaming vertices if necessary, we may assume that the vertex v; is adjacent to

neither v, nor v;. Let G’ = G — (V(H) U {v}). Thus, G’ is a special subcubic graph that
contains exactly four small vertices. Let S’ be a y,-set of G’. Let u; and u, be two neighbors

851801 SUOWILIOD 8AIIER1D) 3|edt [dde au) Aq peuenob 812 s9pile YO '8sN JO S9IN 104 ARG 17 8UIUO AB]IA UO (SUORIPUCD-PL-SWSY W00 A8 | 1M Ale.q U1 UO//:SHNL) SUORIPUOD pUe SWie | U1 88S *[202/90/8T] U0 AkeiqiT auljuo A8 |IM "BIUSAOIS 8URI490D Ad S60€Z 161/200T 0T/10p/W00" AB| 1M Ae1d 1 Buljuo//Siy WOl papeojumoq * ‘v20g ‘8TT0L60T



BRESAR and HENNING 801
WILEY-—™

of v; in G different from x. Ifuy & S, let S = S" U P,y ). Ifuy € S, let S = S" U {3, %}.
In both cases, S is an RD-set of G, and so ¥.(G) < ISI = y.(G) + 2, implying that
w(G) < w(G’) + 20. If no component of G’ belongs to Bygom, then w(G) = w(G’) + 20, a
contradiction. Hence, G’ contains a component G; that belongs to Bygom- By Claim 25,
there is only one such component and G; € {R,, R4, Rs, Ro}.

At least one of 4y and u,, and at least one of v, and v; belong to G;. Renaming vertices if
necessary, we may assume that {uy, v,} C V (Gy). Let S; be a minimum type-2 NeRD-set of G,
with respect to the set X; = {u, v,}. By Observation 1(f), I1Sil = ¥, 4o, (G1; X1) < %.(G1) — 1.
Suppose that G; € {R,, R4, Rs}. By Claim 25, G’ = Gy, and so k' = 1 and r’ = 0. In this case,
the set Sy U {x,y,} is a RD-set of G, and so y,.(G) < IS)l + 2 < %.(G) + 1 =%.(G') + 1.
Suppose that G; = Ry, implying that k' = ' = 1. In this case, we let G, be the second
component of G’, and s0 G, & Brgom. Let S be a y,-set of G,. The set S, can be extended to an
RD-set of G by adding to it the set S; U {x3,y,}, and so y,.(G) <1811 + 2 + 1S,l < y.(G)+
%(G2) +1=%(G)+ 1. In both cases, (G)<y(G)+ 1, implying that w(G)<
w(G’) + 10. However, w(G) > w(G’) + 16, a contradiction. O

By Claim 29.2, the graph G [{v;, v,, v3}] is isolate-free. Renaming vertices if necessary,
we may assume that v;v, and v,v; are edges. Since G is triangle-free, we note that v;v; is
not an edge. Let u; be the neighbor of v; different from x and v,, and let u; be the
neighbor of v; different from x; and v,. Suppose that u; # us. Hence, the graph illustrated
in Figure 12A is a subgraph of G. In this case, let Q = V(H) U {v1, v, v3} and let
G’ = G — Q. We note that G’ is a special subcubic graph and is obtained by deleting the
edges of a 2-edge-cut in G. By Claim 25, no component of G’ belongs to Bygom. Every y,-set
of G’ can be extended to an RD-set of G by adding to it the set {v,, %,y,}, and so
7,(G) < y.(G") + 3, implying that w(G) < w(G") + 30. However, w(G) = w(G) + 30, a
contradiction.

Hence, u; = u3 and let us rename this common neighbor of v; and v; by u. Let w be the
third neighbor of u different from v; and v;. Thus, the graph illustrated in Figure 12B is a
subgraph of G. In this case, let Q = V (H) U {vy, v,, v3, u} and let G’ = G — Q. We note that
G' is a connected special subcubic graph and is obtained by deleting the cut-edge uw in G. By
Claim 25, G" & B:dom. Every y,-set of G’ can be extended to an RD-set of G by adding to it the
set {u,x%,y,}, and so %.(G) < y.(G") + 3, implying that w(G) < w(G") + 30. However,
w(G) = w(G") + 35, a contradiction. This completes the proof of Claim 29. O

Claim 30. The graph G contains no domino as a subgraph.

FIGURE 12 Subgraphs in the proof of Claim 29. (A) u; # us. (B) u; = uz = u.
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Proof. Suppose, to the contrary, that G contains a domino F as a subgraph. Let
V(F) = {v, Vs, ..., Vs}, where viv,...0v; is a 6-cycle and v,vs is an edge. Since G is
triangle-free and K, ;-free, we note that F is an induced subgraph of G. Let x; be the
neighbor of v; that does not belong to F for i € {1, 3, 4, 6}. Since G is triangle-free,
X1 # Xg and X3 # X4.

Claim 30.1. x # X3 and x4 # Xs.

Proof. Suppose, to the contrary, that x; = x; or x4 = x¢. Renaming vertices if necessary,
we may assume by symmetry that x; = x3. Thus, x is a common neighbor of v; and v
different from v,. Let us rename the vertex x; by x for notational simplicity.

Suppose firstly that x4 = x4, and so x4 is a common neighbor of v, and v different
from vs. Let us rename the vertex x4 by y for notational simplicity. If xy € E (G), then the
graph G is determined and y,(G) = 2 and w(G) = 32, a contradiction. Hence, xy ¢ E (G).
Let x; and y, be the neighbors of x and y, respectively, that do not belong to F. Suppose
that x; = y;, and let us rename this common neighbor of x and y by w. Let z be the third
neighbor of w different from x and y. In this case, let G’ be the component of G — wz that
contains the vertex z. We note that G’ is a connected special subcubic graph and the
vertex z is the only vertex of degree 2 in G’, and so G’ & B;gom. Every y.-set of G’ can be
extended to an RD-set of G by adding to it the set {v;, vy, w}, and so y,(G) < y.(G') + 3,
implying that w(G) < w(G") + 30. However, w(G) = w(G’) + 35, a contradiction.
Hence, x # y;. In this case, we let G'= G — (V(F) U {x,y}). We note that G’ is a
special subcubic graph that contains exactly two vertices of degree 2. By Claim 25, no
component of G’ belongs to Bygom. Every y.-set of G’ can be extended to an RD-set of G by
adding to it the set {v, v}, and so ¥,(G) < ¥,(G’) + 2, implying that w(G) < w(G") + 20.
However, w(G) = w(G") + 30, a contradiction.

Hence, x4 # x4, that is, vs is the only common neighbor of v, and ve. Since G is
triangle-free, x # x4 and x # X, that is, the vertices X, x4, Xxs are pairwise distinct.
Suppose that x is adjacent to x4 or xs. Renaming vertices if necessary, we may assume
Xxxs € E(G). Suppose that x,xs € E(G). In this case, let y be the neighbor of x, different
from vy and x¢. Hence, the graph illustrated in Figure 13A is a subgraph of G. Let G’ be
the component of G — x, y that contains the vertex y. We note that G’ & Bgom. Every
y,-set of G’ can be extended to an RD-set of G by adding to it the set {x, x4, vs}, and so
%.(G) < %.(G") + 3, implying that w(G) < w(G") + 30. However, w(G) = w(G’) + 35, a
contradiction. Hence, x4x¢ & E (G). In this case, let w be the neighbor of x4 different from
x and vg. Hence, the graph illustrated in Figure 13B is a subgraph of G. We now let
G' = G — (V(F) U {x, x¢}). The special subcubic graph G’ contains exactly two vertices of
degree 2, and so by Claim 25 no component of G’ belongs to Bygom. Every y,-set of G’ can

(B)

FIGURE 13 Subgraphs in the proof of Claim 30.1. (A) x4xs € E(G). (B) x4%s ¢ E(G). (C) xxs ¢ E(G).
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be extended to an RD-set of G by adding to it the set {v1, W, X6}, and so .(G) < y.(G") + 3,
implying that w(G) < w(G") + 30. However, w(G) = w(G’) + 30, a contradiction.
Hence, x is adjacent to neither x; nor xs. In this case, let z be the neighbor of x
different from v; and v;. Hence, the graph illustrated in Figure 13C is a subgraph of G
(where the edge x4Xx¢ may or may not exist). We now let G' = G — (V (F) U {x}). Every
y,-set of G’ can be extended to an RD-set of G by adding to it the set {v;, v}, and so
¥%.(G) < %.(G") + 2, implying that w(G) < w(G’) + 20. Since G’ is obtained from G by
deleting the edges in a 3-edge-cut, by Claim 25 either no component of G’ belongs to
Brdom or G’ is connected and G’ = Ry. Hence, w(G) > w(G’) + 22, a contradiction. [

Claim 30.2. x; # x4 and X3 # Xs.

Proof. Suppose, to the contrary, that x; = x4 or X3 = x¢. Renaming vertices if necessary,
we may assume by symmetry that x; = x4. Thus, x is a common neighbor of v; and vj.
Let us rename the vertex x; by x for notational simplicity. Suppose firstly that x; = xg,
and so x; is a common neighbor of v; and vs. Let us rename the vertex x; by y for
notational simplicity. If xy € E(G), then the graph G is determined and y.(G) = 3 and
w(G) = 32, a contradiction. Hence, xy & E (G). Let x; and y; be the neighbors of x and y,
respectively, that do not belong to F. Suppose that x; = y,, and let us rename this
common neighbor of x and y by w. Let z be the third neighbor of w different from x and
¥. In this case, let G’ be the component of G — wz that contains the vertex z, and so G’ is a
connected special subcubic graph. Further, the vertex z is the only vertex of degree 2 in
G’, and so G’ & Byqom- Every y,-set of G’ can be extended to an RD-set of G by adding
to it the set {v, w,y}, and so y.(G) < y.(G') + 3, implying that w(G) < w(G’) + 30.
However, w(G) =w(G") + 35, a contradiction. Hence, X3 #y,. We now let
G =G - (V(F)Uf{x,y}), and so G’ is a special subcubic graph that contains exactly
two vertices of degree 2. By Claim 25, no component of G’ belongs to Bygom. Every y,-set of
G' can be extended to an RD-set of G by adding to it the set {x,y,v,}, and so
%.(G) < (G + 3, implying that w(G) < w(G") + 30. However, w(G) = w(G’) + 30, a
contradiction.

Hence, x; # X5, that is, the vertices x, x3, X are pairwise distinct. Suppose that x is
adjacent to neither x; nor xs. Let x" be the neighbor of x different from v; and vy. In this
case,weletG' = G — (V(F) U {x}). Let S'be ay.-set of G'. If x" € §’,let S = S" U {v;, vg}.
If xS, let S=S5"U{v,w} In both cases, the set S is an RD-set of G, and so
%.(G) < %.(G") + 2, implying that w(G) < w(G’) + 20. Since G’ is obtained from G by
deleting the edges in a 3-edge-cut, by Claim 25 either no component of G’ belongs to
Brdom Or G’ is connected and G’ = Ry. Hence, w(G) > w(G’) + 22, a contradiction. Thus,
either xx; € E(G) or xx¢ € E(G).

Suppose that xoi € E(G). If x3x6 € E(G), then let y be the neighbor of x4 different
from x; and vs, and let G’ be the component of G — x4 y that contains the vertex y. Thus,
G’ & Birdom- Every y.-set of G’ can be extended to an RD-set of G by adding to it the set
{xs, vi, W}, and so ¥.(G) < ¥.(G) + 3, implying that w(G) < w(G’) + 30. However,
w(G) = w(G’) + 35, a contradiction. Hence, x3;x¢ € E(G). In this case, we let
G' =G — (V(F) U {x, x3}). The special subcubic graph G’ contains exactly two vertices
of degree 2, and so by Claim 25 no component of G’ belongs to Bgom. Every y,-set
of G’ can be extended to an RD-set of G by adding to it the set {v3, vs, X3}, and so
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7,(G) < y.(G") + 3, implying that w(G) < w(G") + 30. However, w(G) = w(G’) + 30, a
contradiction.

Hence, x5 € E(G), implying that xxs € E(G). If x3x6 € E(G), then let y be the
neighbor of x; different from v; and x4, and let G’ be the component of G — x3 y that
contains the vertex y. We note that G’ & Brgom- Every y.-set of G’ can be extended
to an RD-set of G by adding to it the set {x3, vy, W}, and so y.(G) < %.(G") + 3, implying
that w(G) < w(G’) + 30. However, w(G) = w(G’) + 35, a contradiction. Hence,
X3xg & E(G). In this case, we let G'=G — (V(F) U {x, x¢}). The special subcubic
graph G’ contains exactly two vertices of degree 2, and so by Claim 25 no component of G’
belongs to B;gom- Every y,.-set of G’ can be extended to an RD-set of G by adding to it the
set {3, Vs, X6}, and so %.(G) < %,(G') + 3, implying that w(G) < w(G’) + 30. However,
w(G) = w(G") + 30, a contradiction. O

By Claim 30.1, x; # x3 and x4 # X¢. By Claim 30.2, x; # x4 and x3 # X¢. Thus the vertices
X1, X3, X4, X are pairwise distinct. Let G’ = G — V (F). The graph G’ is a special subcubic
graph with exactly four vertices of degree 2. Every y,-set of G’ can be extended to a RD-set of G
by adding to it the set {v;, v}, and s0 ¥,.(G) < ¥.(G") + 2, implying that w(G) < w(G") + 20.
If no component of G’ belongs to Bigom, then w(G) = w(G’) + 20, a contradiction. Hence,
G’ contains a component G; that belongs to Bygom- By Claim 25, there is only one such
component and G; € {Ry, R4, Rs, Ro}. Necessarily, G; contains at least three vertices from the
set {x1, X3, X4, Xg}. In particular, {x3, x4} C V(Gy) or {x3, xs} C V (G1). Renaming vertices if
necessary, we may assume by symmetry that {x;, xs} C V (Gy). Let S; be a minimum type-2
NeRD-set of G; with respect to the set X; = {x3, xs}. We note that X; N S; = @. By
Observation 1(f), 1Sil = ¥, 4o (G1; X1) < %.(G1) — 1. If G’ is connected, then G’ = G, and the
set Sy U {vy, 1y} isaRD-set of G,and s0 .(G) < ISl + 2 < (.(G) — 1) + 2 =y(G) + 1. If
G' is disconnected, then let G, be the component of G’ different from G; which yields
G1 = Ry. In this case, let S, be a y,-set of G, and note that the set S; U S, U {vy, 14} is a RD-set
of G, implying that y.(G) <ISil + 1Sl +2 < #(G) — 1) +%(G) +2=y(G) + 1.
Thus in both cases, %.(G) < y.(G') + 1, implying that w(G) < w(G’) + 10. However,
w(G) > w(G’) + 17, a contradiction. This completes the proof of Claim 30. O

By Claim 30, the graph G contains no domino as a subgraph.

Claim 31. 1If the graph G contains a 4-cycle C, then the subgraph of G induced by V' (C)
and all neighbors in G of vertices in V' (C) is isomorphic to the corona C o Kj of the
4-cycle C.

Proof. Suppose that G contains a 4-cycle C : v;v,v314v11y. Since G is triangle-free, the
cycle C is an induced cycle. Let x; be the neighbor of v; that does not belong to C for
i € [4]. Since G has no triangle and no K, ;-subgraph, the vertices x;, %, X3, X4 are pairwise
distinct. Let X = {x1, %, X3, X4}. To prove the claim, it suffices to show that the set X is
independent. Suppose, to the contrary, that X is not an independent set. Since G contains
no domino as a subgraph, x;x;,1 € E(G) for all i € [4], where indices are taken modulo
4. Hence, x;x;4» € E(G) for some i € [4], where indices are taken modulo 4. Renaming
vertices if necessary, we may assume that x;x; € E(G). Let y, be the third neighbor of x
different from v; and x;, and let y, be the third neighbor of x; different from v; and x.
Since G is triangle-free, y, # y,. Further, since G contains no domino as a subgraph,
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{y1, ¥3} N (%, x4} = @. Thus, the vertices x, X4, y;, ¥; are pairwise distinct and the graph
illustrated in Figure 14 is a subgraph of G. Let G' = G — (V(C) U {x1, x3}).

Let S'beay-setof G.Ify, € S, let S=S" U{vs,u}. Ify, € S, let S=S"U {v, x3}.
In both cases, the set S is an RD-set of G, and so .(G) < y.(G') + 2, implying
that w(G) < w(G’) + 20. If no component of G’ belongs to Bigom, then w(G) = 24+
wW(G") — 4) = w(G’) + 20, a contradiction. Hence, G’ contains a component G; that
belongs to Bigom- By Claim 25, there is only one such component and
G; € {R, Ry, Rs, Rg}. Necessarily, G; contains at least three vertices from the set
{%, X4, 1, ¥5}. At least one of y; and y, belong to G;. By symmetry, we may assume
that y, € V(G,). Further, at least one of x, and x4 belongs to G;. By symmetry, we may
assume that x € V (Gy).

Let S; be a minimum type-2 NeRD-set of G; with respect to the set Xj =
{y, %} C V(Gy). We note that X; N S; = @. By Observation 1(f), ISl = ¥ dom (G15 X1)
<y.(Gy) — 1. If G’ is connected, then G’ = G; and the set S; U {v;, x3} is a RD-set of G,
and so ¥%.(G) < IS +2 < (4(G) — 1)+ 2 =y(G") + 1. If G’ is disconnected, then let
G, be the component of G’ different from G;. In this case, let S, be a y.-set of G,.
The set S;U S, U {v;,x3} is a RD-set of G, implying that ¥,(G) < ISjl + 1S, + 2<
#(G) — 1) +%(G) +2=%(G)+1. Thus in both cases, y.(G)<y(G)+1,
implying that w(G) < w(G") + 10. However, w(G) > w(G’) + 16, a contradiction.
Hence, the set X is an independent set. |

Claim 32. If G contains a 4-cycle C : v1v,v3v5V11y Where X; is the neighbor of v; that does
not belong to C for i € [4], then IN (x;) N N (x;32)! < 1 fori € [2].

Proof. Let the cycle C and the vertices x, %, X3, X4 be as in the statement of the claim. By
Claim 31 and our earlier observations, the graph illustrated in Figure 15 is a subgraph
of G where {x,%,x3, x;} is an independent set. Suppose, to the contrary, that
IN(x;) N N(x;42)l =2 for some i€ [2]. By symmetry, we may assume that
IN(g) N N(x)l =2. Let u and z be the two common neighbors of x; and x;. Since G
is triangle-free, the vertices u and z are not adjacent. Let u’ and z’ be the third neighbors
of u and z, respectively, different from x; and x;. Since G has no K, 3;-subgraph, we note
that u’ # z'.

FIGURE 14 A subgraph in the proof of Claim 31.

1 V1 V2 T2

T4 Vg U3 xrs3

FIGURE 15 A subgraph in the proof of Claim 32.
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Claim 32.1. {u', 7'} # {%, x4}.

Proof. Suppose that {u', 2’} = {%, x,}. Renaming vertices if necessary, we may assume
by symmetry that u’ = % and g’ = x4. Suppose that % and x, have a common neighbor x.
Let y be the third neighbor of x. Let G’ be the component of G — xy that contains the
vertex y, and so G’ is a connected special subcubic graph that contains exactly one vertex
of degree 2. Every y,-set of G’ can be extended to an RD-set of G by adding to it the set
{x1, x4, 2,13}, and so ¥.(G) <¥.(G) + 4, implying that w(G) < w(G’) + 40. Since
G’ & Briom, we have w(G) = w(G’) + 43, a contradiction. Hence, x, and x, have no
common neighbor. Let y, be the neighbor of x, different from u and v,, and let y, be the
neighbor of x, different from z and 1. By our earlier observations, y, #y,. If
», ) € E(G), then let Q = V(C) U {x1, %, X3, x4} U {U,2,¥,, )} and G' = G — Q. Thus,
G' is a special subcubic graph with exactly two vertices of degree 2, implying that no
component of G’ belongs to Bygom. Every y,-set of G’ can be extended to an RD-set of G by
adding to it the set {v,vs3,x,)}, and so y(G)<y(G)+ 4, implying that
w(G) < w(G") + 40. However, w(G) = w(G’') + 46, a contradiction.

Hence, »,% € E(G). We now let Q=V(C)U {x,%, x5, x4 U{u,z,5} and
G' = G — Q. Thus, G’ is a special subcubic graph with exactly three vertices of degree
2, implying that either no component of G’ belongs to B4om or G’ is connected and
G’ = Ry. Every y.-set of G’ can be extended to an RD-set of G by adding to it the set
{v3,1,%,,}, and so ¥.(G) <(G") + 4, implying that w(G) < w(G') + 40. If no
component of G’ belongs to Bigom, then w(G) = w(G’) + 41, a contradiction. Hence,
G’ = Gy. In this case the set {v;, i, X1, y,} can be extended to a RD-set of G by adding to it
7,(G’) — 1 vertices from G" applying Observation 1(d) with respect to the vertex x4, and so
7,(G) < y.(G") + 3, implying that w(G) < w(G’) + 30. However since G’ = Gy, we have
w(G) = w(G") + 38, a contradiction. O

Claim 32.2. {U,Z'} n {0, x4} = @.

Proof. Suppose that {u',z'}n{6,x;}# @, implying by Claim 32.1 that
Hu', 2’} N Po, x4}l = 1. Renaming vertices if necessary, we may assume by symmetry
that u’ = X. Thus, 2" # x4. Let v be the neighbor of u’ different from u and v,. Since the
set {x1, %, X3, X4} is independent, v # x4. Since G contains no K, ; as a subgraph, u’ # z/,
thatis,v # z. If v # z’, then we let Q = V(C) U {x, %, X3, U, 2} and let G’ = G — Q. Thus,
G’ is a special subcubic graph with exactly three vertices of degree 2. Every y,-set of G’ can
be extended to an RD-set of G by adding to it the set {x;, %, v3}, and s0 ¥,(G) < %,.(G") + 3,
implying that w(G) < w(G’) + 30. Since either no component of G’ belongs to By4om or G’
is connected and G’ = Gy, we have w(G) = w(G") + 30, a contradiction. Hence, v = z’. If
vxy € E(G), then we let w be the neighbor of x, different from v and v,. Further we let
Q=V(C)U{x,%,x3,x4,u,v,2} and G' =G — Q. Thus, G’ is a connected special
subcubic graph with exactly one vertex of degree 2. Every y,-set of G’ can be extended to
an RD-set of G by adding to it the set {X, v, v}, and so ¥.(G) < y.(G") + 3, implying that
w(G) < w(G") + 30. Since G’ & Bigom, Wwe have w(G) = w(G’) + 43, a contradiction.
Hence, vx; & E(G). Wenow let Q = V(C) U {x1, %, X3, 4, v, z} and G’ = G — Q. Thus, G
is a special subcubic graph with exactly two vertices of degree 2. Once again, every y,-set
of G' can be extended to a RD-set of G by adding to it the set {x,v,v3}, and so
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7,(G) < y.(G") + 3, implying that w(G) < w(G") + 30. Since no component of G’ belongs
to Brgom, We have w(G) = w(G’) + 38, a contradiction. O

By Claim 32.2, {u', 2’} N {3, x4} = @. Let Q = V(C) U {x1, x5, u, z} and let G’ = G — Q.
Thus, G’ is a special subcubic graph with exactly four vertices of degree 2. Every y,-set of
G' can be extended to an RD-set of G by adding to it the set {x,v;}, and so
%, (G) < y.(G") + 2, implying that w(G) < w(G’) + 20. Since at most one component of
G’ belongs to Bigom, We have w(G) = w(G’) + 24, a contradiction. This completes the
proof of Claim 32. ]

Claim 33. If G contains a 4-cycle C : v1v,v3v5V1Vy Where X; is the neighbor of v; that does
not belong to C for i € [4], then N (x;) N N (x;4,) = @ fori € [2].

Proof. Let the cycle C and the vertices X, X%, X3, X4 be as in the statement of the claim.
Thus the graph illustrated in Figure 15 is a subgraph of G where {x, %, X3, X4} is an
independent set. Suppose, to the contrary, that IN (x;) N N (x;,2)! > 1 for somei € [2]. By
symmetry, we may assume that IN (x) N N (33)! > 1. By Claim 32, IN (;q) N N ()l = 1.
Let z be the common neighbor of x; and X3, and let z’ be the third neighbor of z.

Claim 33.1. The vertex z is adjacent to neither x nor x,.

Proof. Suppose, to the contrary, that the vertex z is adjacent to X, or x4, thatis, 2’ = X% or
7' = x4. By symmetry, we may assume that z’ = x4. Let Q = V(C) U {x1, %, X3, X4, Z}. Let
¥, be the neighbor of x; not in Q for i € {1, 3, 4}. Since the vertex z is the only common
neighbor of x; and x;, we note that y, # y,.

Claim 33.1.1. The vertices y,, y;, ), are pairwise distinct.

Proof. Suppose that the vertices y,, y;,); are not pairwise distinct. By symmetry, we
may assume that y, =}). Suppose firstly that y, =y, =). In this case, let
Q' =V(C)U{x,x3,x4,,2} and let G' =G — Q'. Thus, G’ is a connected special
subcubic graph with exactly small vertex, and so G’ & Bqom and w(G) > w(G’) + 35.
However, ¥,(G) < %,(G’) + 3, implying that w(G) < w(G’) + 30, a contradiction. Hence,
the vertices y; and y, are distinct.

Let z; be the neighbor of y, different from x; and x4. Suppose that x,, y;, z; are pairwise
distinct. In this case, we let Q" = V(C) U {x, X3, X4, );, 2} and G' = G — Q'. Thus, G’ is a
special subcubic graph with three small vertices, and so by Claim 25 either no component
of G’ belongs to Bijom or G’ is connected and G’ = Ry. Hence, w(G) > w(G’) + 30.
Moreover, ¥,(G) < ¥.(G’) + 3, implying that w(G) < w(G’) + 30, a contradiction. Hence,
X, Y5, 2 are not pairwise distinct vertices. Since X, and x; are not adjacent, x, # y;. Hence
either z; = % or g3 = y;,.

Suppose that z; = X,. In this case, let y, be the neighbor of x, different from v, and y;.
If y, #, then let Q'=V(C) U {x,%,x3,%4,¥,2} and G'=G — Q. Thus, G’ is a
special subcubic graph with two small vertices, and so no component of G’ belongs to
Brdom, whence w(G) = w(G’") + 38. However, 7%,(G)<y(G')+ 3, implying that
w(G) < w(G') + 30, a contradiction. If y, =y, then in this case let
Q' =V(C) VU {x,%,x3,X1,¥,,¥,,2} and G’ =G — Q. Thus, G’ is a connected special
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subcubic graph with one small vertex, and so G’ & Biom and w(G) = w(G’) + 43.
However, ¥.(G) < y.(G") + 4, implying that w(G) < w(G’) + 40, a contradiction.
Hence, z;=y,. Suppose that xy;€ E(G). In this case, we let
Q' =V(C) VU {x,%,x3,X1,¥, 5,2} and let G' = G — Q'. Thus, G’ is a connected special
subcubic graph with one small vertex, and so G’ & Biom and w(G) = w(G’) + 43.
However, 7,(G) < ¥%,(G') + 4, implying that w(G) < w(G’) + 40, a contradiction. Hence,
%y, € E(G). In this case, we let Q' = V(C) U {x1, X3, X1, )1, 15,2} and let G' = G — Q'.
Thus, G’ is a special subcubic graph with two small vertices, and so no component
of G’ belongs to Bigom, yielding w(G) = w(G’) + 38. However, ¥.(G) <¥.(G) + 3, a
contradiction. O

Claim 33.1.2. The vertex x, is adjacent to at most one of y; and y,.

Proof. Suppose that x is adjacent to both y, and y. In this case, we let
Q' =V(C) VU {x,%,x3,Xx1,¥,%,2} and let G = G — Q'. Suppose that G’ is a special
subcubic graph, and so G’ contains exactly three small vertices. By Claim 25 either no
component of G’ belongs to Bgom 0or G’ is connected and G’ = Ry. If no component of G’
belongs to Bigom, then w(G) = w(G") + 41, while if G’ = Ry, then w(G) = w(G") + 38.
However, 7,(G) < %,(G’) + 3, implying that w(G) < w(G’) + 30, a contradiction. Hence,
G' is not a special subcubic graph.

Let z; and z4 be the neighbors of y, and y,, respectively, in G that do not belong to
Q. Since G’ is not a special subcubic graph, the vertices y;, 7,24 are not pairwise
distinct. If y, is adjacent to both y; and y,, then the graph G is determined and
7%.(G) = 3 and w(G) = 48, a contradiction. If y, is adjacent to exactly one of y, and y,,
then by symmetry we may assume that y;), is an edge. In this case, we let
Q' =V(C) VU {x,%,x3,%, ¥, V3. 0,2} and let G'=G — Q. Thus, G’ is a special
subcubic graph with two small vertices, and so no component of G’ belongs to
Biiom and w(G) =w(G’) + 46. However, ¥%(G)<y(G)+ 3, implying that
w(G) < w(G) + 30, a contradiction. Hence, y, is adjacent to neither y, nor y, that
is, y; # 71 and y; # z4, implying that z; = z4.

Ifzy, € E(G), thenwelet Q"= QU {¥,y;, ).z} and let G' = G — Q'. Thus, G’ is a
special subcubic graph with one small vertex, and so G’ ¢ Biqom and w(G) = w(G") + 51.
However, %,(G) <¥%.(G') + 4, implying that w(G) < w(G’) + 40, a contradiction. If
21y, € E(G), then let 7’ be the neighbor of z; different from y, and y,, and in this case let
Q' =QuU{y,y,.z}andG' = G — Q'. Thus, G’ is a special subcubic graph with two small
vertices, and so no component of G’ belongs to Bygom and w(G) = w(G’) + 46. However,
.(G) < %.(G") + 3, implying that w(G) < w(G’) + 30, a contradiction. O

By Claim 33.1.2, the vertex x, is adjacent to at most one of y, and y,. By symmetry, we
may assume that %y, € E(G). Let Q' = Q\ {x;} and let G’ be obtained from G — Q' by
adding the edge % y;. Thus, G’ is a subcubic graph with exactly two small vertices, namely
¥, and Y, and so no component of G’ belongs to Bygom and w(G) = w(G’) + 30. Let S’ be
a y-set of G. If €S, let S=SU{v,u,x}. If x¢S and y €5, let
S=SU{v,vs,xg). f 5 ¢S and y; ¢ S, let S=5"U {v, 13, x4}. In all cases, S is an
RD-set of G, and so y(G)<y(G)+ 3, implying that w(G) < w(G’) + 30, a
contradiction. This completes the proof of Claim 33. O

851801 SUOWILIOD 8AIIER1D) 3|edt [dde au) Aq peuenob 812 s9pile YO '8sN JO S9IN 104 ARG 17 8UIUO AB]IA UO (SUORIPUCD-PL-SWSY W00 A8 | 1M Ale.q U1 UO//:SHNL) SUORIPUOD pUe SWie | U1 88S *[202/90/8T] U0 AkeiqiT auljuo A8 |IM "BIUSAOIS 8URI490D Ad S60€Z 161/200T 0T/10p/W00" AB| 1M Ae1d 1 Buljuo//Siy WOl papeojumoq * ‘v20g ‘8TT0L60T



BRESAR and HENNING 809
WILEY-—*

Claim 34. The graph G has no 4-cycle.

Proof. Suppose, to the contrary, that G contains a 4-cycle C : v;v,v3V1vy. Let x; be the
neighbor of v; that does not belong to C fori € [4]. Thus the graph illustrated in Figure 15
is a subgraph of G where {x,x%,xs, x4} is an independent set. By Claim 33,
N(@;) N N(x;42) = @ for i € [2]. Thus, 3 and x; have no common neighbor, and %
and x4, have no common neighbor. Let y; and z; be the two neighbors of x; different from
v; for i € {1, 3}. By our earlier observations, the vertices X, X4, ¥;, ¥;, 21, <3 are pairwise
distinct.

If % is adjacent to both y, and z3, then C’ : % y;%323% is a 4-cycle. However, in this
case the neighbors v, and v; of the vertices X, and x3, respectively, that do not belong to
the cycle C’ are adjacent, contradicting Claim 31. Hence, the vertex x, is not adjacent to at
least one of y, and z;. Renaming vertices, if necessary, we may assume that x, is not
adjacent to y;. Let Q = V(C) U {x, x3} and let G’ be obtained from G — Q by adding the
edge % y;. The resulting graph G’ is a special subcubic that contains exactly four small
vertices, namely X4, y;, &1, Z3. Thus at most one component of G’ belongs to Brgom.

Let S’ be a y.-set of G’, and let S be the set defined as follows. If y, € S"and y, ¢ S, let
S=SuU{v,v}.Ify, e Sandy € S, letS=S"U{v,u}.Ify, € S, % € S"and y, ¢ S,
let S=S'U{v,x}. fy; €S, €8 and y, €S, let S=5"U{,x} If ¢S and
¥, €S, let S=S"Uf{x,v;}. The resulting set S is an RD-set of G, and so
7%, (G) < y.(G) + 2, implying that w(G) < w(G') + 20. If G’ has no component in
Brdom, then w(G) = 24 + w(G') — 4) = w(G’) + 20, a contradiction. Hence, G’ contains
a component G, that belongs to B.qom. By Claim 25, there is only one such component
and G; € {Ry, R4, Rs, Ro}.

Suppose that the added edge x, y; belongs to G;. In this case, G; contains two adjacent
vertices of degree 3, and so G; € {R4, Rs, Ro}. Let G} be the graph obtained from G; by
subdividing the edge X, y; three times resulting in the path x%v,v3x;y;. Let ST be a
minimum type-2 NeRD-set of G} with respect to the vertex vs. By Observation 4(b),
ISH1 = ¥ dom (GT; v3) < 7.(Gy). By our earlier observations, at least one of y; and g; belong
to the graph G;. Renaming vertices if necessary, we may assume that y, € V(Gy). If
¥, € S7,thenletS = ST U {v3}. If y; & ST, thenlet S = ST U {v;}. If G’ = Gy, then the set S
is a RD-set of G, and so %.(G) < ISl + 1 <.(G1) + 1 =¥%,(G') + 1. If G’ # Gy, then
G1 = Ry. In this case, G; contains three vertices of degree 2 in G', and so G’ is
disconnected and contains a second component G,. Since G, contains exactly one
small vertex, the component G, does not belong to Bygom. Every y,-set of G, can be
extended to an RD-set of G by adding to it the set S, and so in this case
%,(G) < ISI+ 1Sl = IS + 1 + 1S3l < (3,(Gy1) + 1) + %.(G2) = .(G) + 1. In both cases,
7,(G) < y.(G) + 1, implying that w(G) < w(G") + 10. However, w(G) > w(G’) + 16, a
contradiction.

Hence, the added edge x y, does not belong to G;, implying that G’ is disconnected.
Let G, = G' — V (Gy). We note that G, contains the added edge %, y, and contains at most
two components and contains at most one small vertex. Thus, no component of G,
belongs to Brjom- Let S, be a y,-set of G,. We note that y.(G") = %.(G1) + ¥,.(G>). Recall
that G; contains at least three vertices from the set {x4, y;, 21, 23}.

Suppose that y; € S, or %, € S,. In this case, we let X; C V' (G;) such that IXj| = 2 and
X C {x4,y,, 71} noting that at least two vertices in {x4, y;, 71} belong to the component G;.
Let S; be a minimum type-2 NeRD-set of G; with respect to the vertex X;. By Observation
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1(0), 1811 = ¥ 4om (G1; X1) £ %.(G1) — L. If y; € Sy, let S* = S U S U v, v} Ify, € S, and
X € Sy, let S* = S; U S, U {v1, x3}. Suppose that y; ¢ S, and x, & S,. At least one of y,
and z; belong to the graph G;. Renaming vertices if necessary, we may assume that
¥, € V(Gy). In this case, we let S; be a minimum type-1 NeRD-set of G; with respect to
the vertex y;. By Observation 1(d), ISl =¥ 14om (G ¥1) <%(G1) — 1. Let
S*= 81U S, U {x,vs}. In all cases, ISl < y.(G1) — 1 and the set S* is a RD-set of G,
and so %.(G) < ISI + 1S3l + 2 < (5.(G1) — 1) + ¥.(G2) + 2 =¥,(G') + 1, implying that
w(G) < w(G’) + 10. However, w(G) > w(G’) + 16, a contradiction. This completes the
proof of Claim 34. O

Claim 35. The graph G has no 5-cycle.

Proof. Suppose to the contrary that G contains a 5-cycle C : v;v,v31 5. Let x; be the
neighbor of v; that does not belong to C for i € [5]. Let X ={x,..,xs} and let
Q=V({C)uX.

Claim 35.1. Each vertex x € X has at least one neighbor in X.

Proof. Suppose, to the contrary, that there is a vertex in X with no neighbor in X.
Renaming vertices if necessary that x3 has no neighbor in X. Let y, and g be the two
neighbors of x; different from v;. If x, is adjacent to both y; and z, then x; ¥,z is a 4-
cycle in G, a contradiction. Hence we may assume that xz; € E(G). Let Q' = V(C) U {x}
and let G’ be obtained from G — Q' by adding the edge e = %z;. Thus, G’ is a special
subcubic graph that contains exactly four small vertices. By Claim 25, at most one
component of G’ belongs to Bygom. Let S"be a y-set of G'. If x, € S', let S = S’ U {x3, w}. If
&S andg e S, letS=S U{v,v). Ifx, &S andzg & S, let S =S5 U {v,vs}. In all
cases, S is an RD-set of G, and so y.(G) <ISI + 2 =y(G") + 2, implying that
w(G) < w(G’) + 20. If no component of G’ belongs to Bygom, then w(G) = w(G’) + 20,
a contradiction. Hence, G’ contains a component G; that belongs to B;gom. By Claim 25,
there is only one such component and G; € {R,, R4, Rs, Ro}. If G; = R, then since G
contains no 4-cycle the added edge e belongs to G;, implying that G; contains two
adjacent vertices of degree 3, a contradiction. Hence, G; € {R4, Rs, Ro}.

Suppose that e € E(Gy). If G; € {R4, Rs}, then the graph G is determined (in the sense
that V(G) = V(C) U V(Gy)) and y.(G) <4 and w(G) = 56, a contradiction. Hence,
G1 = Ry. In this case, G’ is disconnected and contains two components. Let G, be the
second component of G’, and so G, contains exactly one small vertex and G, & B;gom. Let
G* be the subgraph of G or order 17 induced by V (C) U V (G,). Every y,-set of G* can be
extended to an RD-set of G by adding to it a y-set of G, and so
%.(G) £ 7%.(Gp) + %,(G*) < %.(Gy) + 6, implying that w(G) < w(G,) + 60. However,
w(G) =17 X 4 + (W(G,) — 1) = w(G,) + 67, a contradiction. Hence, e ¢ E(G;). Let
G, =G — V(Gy), and so e € E(G,) and ¥,.(G") = %,(G1) + %,(G,). Since G; contains at
least three small vertices, the graph G, contains at most one small vertex. Further, G, has
at most two components, and so no component of G, belongs to Brgom. Let S, be a y,.-set of
G,. We now define an RD-set S in G as follows.

Suppose that x; € S,. We note that at least one of x4 and y, belongs to G;. Let
V € {x4, 1} N V(Gy). Let S; be a minimum type-1 NeRD-set of G; with respect to the
vertex v. By Observation 1(d), ISl = %, j4om (G1; v) < %,(G1) — 1. Let S = S; U S, U {x1, v}

851801 SUOWILIOD 8AIIER1D) 3|edt [dde au) Aq peuenob 812 s9pile YO '8sN JO S9IN 104 ARG 17 8UIUO AB]IA UO (SUORIPUCD-PL-SWSY W00 A8 | 1M Ale.q U1 UO//:SHNL) SUORIPUOD pUe SWie | U1 88S *[202/90/8T] U0 AkeiqiT auljuo A8 |IM "BIUSAOIS 8URI490D Ad S60€Z 161/200T 0T/10p/W00" AB| 1M Ae1d 1 Buljuo//Siy WOl papeojumoq * ‘v20g ‘8TT0L60T



BRESAR and HENNING 811
WILEY-—

Suppose that x, & S, and 3 € S,. We note that at least one of x; and x4 belongs to G;.
Let v € {x3, x4} N V (Gy). Let S be a minimum type-2 NeRD-set of G; with respect to the
vertex v. By Observation 1(e), ISl = % 4o, (G1; V) < %.(G1) — 1. Let S = S; U S5 U {v, vs}.

Suppose that x, ¢ S, and z; & S,. We note that at least one of x4 and x5 belongs to G;.
Let v € {x4, X5} N V(G1). Let S; be a minimum type-2 NeRD-set of G; with respect to the
vertex v. By Observation 1(e), ISil = %, 4o, (G1; V) < %.(G1) — 1. Let S = S; U Sy U {vy, v}

In all cases, IS]l <%(G;) —1 and the set S is an RD-set of G. Therefore,
%.(G) SIS + 1S3l + 2 < (.(G1) — 1) + %.(Gy) + 2 = .(G") + 1, implying that w(G) <
w(G’) + 10. However, w(G) > w(G’) + 16, a contradiction. O

By Claim 35.1, each vertex x € X has at least one neighbor in X. Hence, G [X]
contains at least three edges. Since G has no 4-cycles, we infer that G [X] contains at most
five edges. Using symmetry, we may assume without loss of generality that
{ax4, %X4, X35} C E(G) noting that G contains no 4-cycles.

Claim 35.2. G[X] contains at least four edges.

Proof. Suppose, to the contrary, that G[X] contains exactly three edges. Let ) be
neighbor of x; not in Q fori € {1, 2, 3, 5}. Since G has no 4-cycles, we note that y, # y,,
and since G has no triangles, we note that y, # y;. We show firstly that y, # y,. Suppose,
to the contrary, that y, = y,, and let z be the third neighbor of y,.

Suppose that y; = ys. Let 2’ be the neighbor of y, different from x; and xs. Suppose that
z = Z'. In this case, let Q" = QU {y,,¥,,z} and let G' = G — Q’. Thus, G’ is a connected
special subcubic graph that contains exactly one small vertex, and so G’ € Bigom and
w(G) = w(G’") + 51. However, %.(G) < %.(G') + 5, implying that w(G) < w(G’) + 50, a
contradiction. Hence, z # z'. In this case, let Q" = Q U {y;, y,} and let G’ = G — Q’. Thus,
G’ is a special subcubic graph that contains exactly two small vertices, and so no
component of G’ belongs to Bygom and w(G) = w(G’) + 46. However, ¥.(G) < y.(G) + 4,
a contradiction.

Hence, y, # ¥s. Since G contain no 4-cycle, y, y; € E(G). Suppose that y, y, & E(G),
and so z is distinct from both y, and y,. In this case, let Q"= QU {y,} and let
G' =G — Q'. Thus, G’ is a special subcubic graph that contains exactly three small
vertices, and so either no component of G’ belongs to Bgom 0or G’ is connected and
G’ = Ry. Therefore, w(G) > w(G’) + 38. However, ¥,(G) < ¥.(G') + 3, implying that
w(G) < w(G") + 30, a contradiction.

Hence, y, ¥, € E(G). If, in addition, y, y; € E(G), then let Q' = Q U {y,, »,, s} and let
G' = G — Q. Thus, G’ is a connected special subcubic graph that contains exactly one small
vertex and so G’ & Brgom and w(G) > w(G’) + 51. However, §,.(G) < %.(G") + 4, implying
that w(G) < w(G’) + 40, a contradiction. On the other hand, if y;y, € E(G) and
»nYs & E(G), then let Q'=QU{y,»,} and let G'=G — Q'. Thus, G' is a special
subcubic graph that contains two small vertices and so no component of G’ is in Bigom
and w(G) > w(G’) + 46. However, 3,(G) < %,(G") + 4, implying that w(G) < w(G’) + 40,
a contradiction. Hence, y, # ys.

We show next that y, # ys. Suppose, to the contrary, that y, = y;, and let z be the third
neighbor of y,. Suppose that y; = y,. Let z’ be the neighbor of y, different from x; and x;.
Suppose that z = z'. In this case, let Q' = Q U {3, ¥,,z} and let G’ = G — Q'. Thus, G’ is a
connected special subcubic graph that contains exactly one small vertex, and so
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G’ & Brom and w(G) = w(G") + 51. However, ¥%.(G)<y(G)+ 5, implying that
w(G) < w(G’) + 50, a contradiction. Hence, z # z'. In this case, let Q' = Q U {y;, ,}
and let G’ = G — Q'. Thus, G’ is a special subcubic graph that contains exactly two small
vertices, and so no component of G’ belongs to Bygom and w(G) = w(G’) + 46. However,
7,(G) < y.(G") + 4, a contradiction.

Hence, y, # y,;. Since G contains no 4-cycle, vertex y, is not adjacent to y,, that is,
Z # ¥;. Suppose that z # ;. In this case, let Q" = Q U {y,} and let G’ = G — Q’. Thus, G’ is
a special subcubic graph that contains exactly three small vertices, and either no
component of G’ belongs to Bom or G is connected and G’ = Re. Thus,
w(G) = w(G’) + 38. However, ¥.(G) < y.(G") + 3, a contradiction.

Hence, z=y,, that is, ¥y, € E(G). If, in addition, y,y; € E(G), then let
Q' =QU{y,¥,,y;} and let G'=G — Q. Thus, G’ is a connected special subcubic
graph that contains exactly one small vertex and so G’ & Biqom and w(G) > w(G") + 51.
However, %.(G) < %.(G') + 4, implying that w(G) < w(G’) + 40, a contradiction. On the
other hand, if y;y, € E(G) and y,y; & E(G), then let Q'=QU {y,»,} and let
G' = G — Q. Thus, G’ is a special subcubic graph that contains two small vertices and
so no component of G’ is in Bygom and w(G) > w(G’) + 46. However, ¥,.(G) < .(G") + 4,
implying that w(G) < w(G’) + 40, a contradiction. Hence, y, # s.

By our earlier observations, the vertices y,;,y,,y;, and y; are pairwise distinct. Let
G’ = G — Q. Thus, G’ is a special subcubic graph that contains exactly four small vertices.
At most one component of G' belongs to Biom and w(G) > w(G’) + 32. However,
.(G) < %.(G") + 3, implying that w(G) < w(G’) + 30, a contradiction. This completes
the proof of Claim 35.2. O

By Claim 35.2, the graph G [X] contains at least four edges. Hence at least one of x;x3
and x%X;s is an edge. By symmetry, we may assume that x;x; € E (G). If 3x5s € E(G), then
the graph G is determined and is isomorphic to the Petersen graph shown in Figure 1. In
this case, ¥,(G) = 4 and w(G) = 40, a contradiction. Hence, %xs ¢ E(G). Let y; be the
neighbor of x; not in Q for i € {2, 5}. Suppose that y, = y. In this case, let Q" = Q U {y,}
and let G'= G — Q'. Thus, G’ is a connected special subcubic graph that contains
exactly one small vertex, and so G’ & Biom and w(G) = w(G’) + 41. However,
7.(G) < %.(G") + 3, implying that w(G) < w(G’) + 30, a contradiction. Hence, y, # ;.
We now let G’ = G — Q. Thus, G’ is a special subcubic graph that contains exactly two
small vertices, and so no component of G’ belongs to Bjom and w(G) > w(G’) + 38.
However, y.(G) < y.(G") + 3, implying that w(G) < w(G’) + 30, a contradiction. This
completes the proof of Claim 35. O

Claim 36. The graph G has no 6-cycle.

Proof. Suppose, to the contrary, that G contains a 6-cycle C : v;v,v3V5v6v;. Thus, G has
girth equal to 6. In particular, C is an induced cycle in G. Let x; be the neighbor of v; that
does not belong to C fori € [6]. The girth condition implies that x; # x;j for1 <i <j < 6.
Let X = {x, ..., X¢}. The girth condition implies that the only possible edges in G [X] are
the edges xx4,%Xs and x3xs. Let G’ be the special subcubic graph obtained from
G — V(C) by adding the edge x;%. Thus, G’ contains exactly four small vertices, namely
X3, X4, X5, X¢. By Claim 25, at most one component of G’ belongs to Bygom. Let S” be a y,-set
of G . Ifx; €S letS=S Ufv,vst Ifxy €S andxp € S, letS=S" Ufv,w}.Ifx &85

851801 SUOWILIOD 8AIIER1D) 3|edt [dde au) Aq peuenob 812 s9pile YO '8sN JO S9IN 104 ARG 17 8UIUO AB]IA UO (SUORIPUCD-PL-SWSY W00 A8 | 1M Ale.q U1 UO//:SHNL) SUORIPUOD pUe SWie | U1 88S *[202/90/8T] U0 AkeiqiT auljuo A8 |IM "BIUSAOIS 8URI490D Ad S60€Z 161/200T 0T/10p/W00" AB| 1M Ae1d 1 Buljuo//Siy WOl papeojumoq * ‘v20g ‘8TT0L60T



BRESAR and HENNING 813
WILEY-—%

and x &S, let S=S U{v;, ). In all cases, S is an RD-set of G, and so
%.(G) <181+ 2 = %,(G") + 2, implying that w(G) < w(G") + 20.

If no component of G’ belongs to Bjom, then w(G) = w(G’) + 20, a contradiction.
Hence, G’ contains a component G; that belongs to Bygom. By Claim 25, there is only one
such component and G; € {R,, Ry, Rs, Ro}. The set X; = {X3, X4, X5, X¢} of small vertices in
G, is either independent or induces a graph that contains exactly one edge, namely the
edge x3x6. Further, every cycle of length less than 6 in G; must contain the added edge
X% since graph G contains no cycles of length 3, 4 or 5. If G; contains the edge x;x, then
G contains two adjacent vertices of degree 3. From these properties of the graph G’ we
infer that G; ¢ {R,, Ro}. Since Rs contains two pairs of small vertices that are adjacent
while the set X; contains at most one pair of small vertices that are adjacent, G; # Rs,
implying that G; = R4 and X; C V (Gy). The structure of R, implies that in this case, every
small vertex in R, is at distance 2 from two other small vertices. In particular, the vertex x, is
at distance 2 from at least one of x; or x5 in G'. If x; and x, are at distance 2 in G’ and w
denotes their common neighbor in G’, then x,1v3x3wxy is a 5-cycle in G. If x, and x5 are at
distance 2 in G’ and z denotes their common neighbor in G’, then x4v,vsxs52x,4 is a 5-cycle in
G. In both cases, we contradict the girth at least 6 condition in G. |

By Claim 36, the graph G has no 6-cycle. Let u and v be adjacent vertices in G, and
let N(u) = {w, up,v} and N (v) = {u, vy, vo}. Further, let N (u;) = {u, us, up} and let
N®) ={v, v, v} for i € [2]. Thus, G contains the subgraph shown in Figure 16. Let
X = {1, W, Upy, Upa, V11, V12, V21, Vo). Since the graph G has girth at least 7, the set X is an
independent set. The subgraph shown in Figure 16 is therefore an induced subgraph of G.

Let Q = {u, wy, up, v, v1, o} and let G’ be obtained from G — Q be adding the edges
e = upuy and f = vypvy. Thus, G’ is a special subcubic graph that contains exactly four
small vertices, namely the vertices in the set X’ = {u3, up, V11, v22}. Let S” be a ,-set of G,
and let S = S’ U {u*, v*} where the vertices u* and v* are defined as follows. If u;, € S’, let
u* = uy. Ifuy, & S’ and Uy € Sl, letu* = wy. Ifuy, & S’ and Uy & Sl, letu* = u.Ifvy, € S’,
letvi=v,, Ifvp, € S"and vy € S, let v¥ = v, If v, € S and vy € S, let v* = v. The
resulting set S is an RD-set of G, and so ¥(G) <%/(G)+ 2, implying that
w(G) < w(G") + 20.

If G’ has no component in Bygom, then w(G) = w(G") + 20, a contradiction. Hence, G’
contains a component G; that belongs to Bigom. By Claim 25, there is only one such
component and G; € {R, R4, Rs, Ro}. Necessarily, G; contains at least three vertices from
the set X'. As observed earlier, the set X is an independent set, and therefore so too is the
subset X’ of X, implying that G; € {R,, Rs}. Every cycle of length less than 7 in G; must
contain at least one of the added edges e and f since the graph G has girth at least 7. If G,
contains the edge e or f, then both ends of the added edge have degree 3 in G;. From
these properties of the graph G’, we deduce that if G; = R4, then G’ = G;. But this would

U1 U12 Uu21 U22 V11 V12 V21 V22

FIGURE 16 A subgraph in the graph G.
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imply that G[X] = Cs, contradicting our earlier observation that X is an independent set.
Hence, G; = Ry. In this case, both added edges ¢ and f must belong to G;. However,
removing any two edges from Rgy creates a graph which still contains a 5-cycle. This
implies that G itself contains a 5-cycle, which is a contradiction. This final contradiction
concludes the proof of Theorem 3. O

6 | PROOF OF MAIN RESULT

In this section, we prove our main result, namely Theorem 2. As a consequence of key result,
namely Theorem 3, we have the following upper bound on the restrained domination number
of a cubic graph.

Theorem 5. If G is a cubic graph of order n, then y,(G) < %n.

Proof. Let G be a cubic graph of order n. Thus, n,(G) = 0 and n3(G) = n. Since every
graph in the family B.4om contains a vertex of degree 2, no component of G belongs to the
family Biqom- The weight of G is therefore w(G) = 4n. Hence by Theorem 3,
10y,(G) < w(G) = 4n, or, equivalently, y,(G) < %n. O

By Theorem 5, Crgom < % As observed earlier, the Petersen graph shows that cyqom > %
Consequently, ¢;gom = % yielding the result of Theorem 2. We remark that a classical result in
domination theory due to Blank [3] and McCuaig and Shepherd [22] states that if G is a
connected graph of order n > 8 with §(G) > 2, then y(G) < %n. Hence by Theorem 5 this %—

bound for domination also holds for restrained domination if we replace the minimum degree
at least 2 requirement with a 3-regularity condition.
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