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Abstract

A dominating set in a graphG is a set S of vertices such

that every vertex inV G S( )⧹ is adjacent to a vertex in S.

A restrained dominating set of G is a dominating set S

with the additional restraint that the graph G S−

obtained by removing all vertices in S is isolate‐free.
The domination number γ G( ) and the restrained

domination number γ G( )r are the minimum cardinali-

ties of a dominating set and restrained dominating set,

respectively, of G. Let G be a cubic graph of order n. A

classical result of Reed states that γ G n( )
3

8
≤ , and this

bound is best possible. To determine the best possible

upper bound on the restrained domination number of

G is more challenging, and we prove that γ G n( )r
2

5
≤ .
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1 | INTRODUCTION

A dominating set of a graph G is a set S of vertices of G such that every vertex not in S has a
neighbor in S, where two vertices are neighbors in G if they are adjacent. The domination
number of G, denoted by γ G( ), is the minimum cardinality of a dominating set of G. A set S
dominates a vertex v is v S∈ or if v has a neighbor in S. A restrained dominating set (RD‐set), of
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G is a dominating set S of G with the additional property that every vertex not in S has a
neighbor not in S, that is, the subgraph of G induced by the set V G S( )⧹ is isolate‐free. The
restrained domination number ofG, denoted by γ G( )r , is the minimum cardinality of an RD‐set
of G. A γr‐set of G is an RD‐set of G of minimum cardinality γ G( )r . Restrained domination in
graphs is well studied in the literature with over 100 publications, according to MathSciNet. We
refer the reader to the excellent book chapter by Hattingh and Joubert in 2020 on restrained
domination in graphs that gives the state of the art on the topic. For recent books on
domination in graphs, we refer the reader to [13–15, 19].

A cubic graph, also called a 3‐regular graph, is a graph in which every vertex has degree 3.
A subcubic graph is a graph with maximum degree at most 3. Domination in cubic and subcubic
graphs is very well studied in the literature (see, e.g., [1, 2, 4–6, 9–12, 18, 20, 21, 23–27]). We
define a special subcubic graph as a subcubic graph G with minimum degree at least 2. In this
paper, we continue the study of restrained domination in cubic graphs. We consider the following
problem.

Problem 1. Determine the best possible constant crdom such that γ G c n G( ) ( )r rdom≤ ⋅

for all cubic graphs G.

The best known upper bound to date, before this paper, on crdom is due to Hattingh and
Joubert [11], who proved that crdom

5

11
≤ . Their proof is nontrivial and uses intricate and

ingenious counting arguments. We observe that the Petersen graph G, illustrated in Figure 1,

has order n G( ) = 10 and γ G n G( ) = 4 = ( )r
2

5
, where the set consisting of the four shaded

vertices is an example of a γr‐set of G. This yields the trivial lower bound crdom
2

5
≥ .

Theorem 1 (Hattingh and Joubert [11]). c
2

5

5

11
rdom≤ ≤ .

It is conjectured in [17] that the lower bound in Theorem 1 is the correct value of crdom. In
this paper, we prove that this is indeed the case.

Theorem 2. c =
2

5
rdom .

To prove Theorem 2, it suffices to show that if G is a cubic graph of order n, then
γ G n( )r

2

5
≤ . However to prove this result, we relax the 3‐regularity condition to allow vertices of

degree 2 in the mix to make the inductive hypothesis easier to handle. If n G( )2 and n G( )3

denote the number of vertices of degree 2 and 3, respectively, in such a graphG, then we would

like to prove that γ G n G n G10 ( ) 5 ( ) + 4 ( )r 2 3≤ since if G is 3‐regular this yields γ G n( )r
2

5
≤ .

FIGURE 1 The Petersen graph G.
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However, relaxing the 3‐regularity condition results in a family rdom of “troublesome graphs” for
which the desired inequality γ G n G n G10 ( ) 5 ( ) + 4 ( )r 2 3≤ does not hold. Therefore we add a
function GΩ( ) such that the statement becomes true even for these troublesome graphs. However,
we try to keep GΩ( ) as small as possible to establish a bound on γ G( )r that remains as strong as
possible. The resulting bound will be the key result that will enable us to prove Theorem 2.

We proceed as follows. In Section 2, we formally state our key result, namely Theorem 3. In
Section 2.1, we present the necessary graph theory notation. In Section 2.2, we introduce the
concept of near‐restrained dominating sets, which we will need when proving our key result.
Known results are discussed in Section 2.3. In Section 3, we discuss properties of troublesome
graphs that belong to the family rdom . A preliminary result is proven in Section 4. Proof of our
key result is given in Section 5, and thereafter in Section 6, we deduce our main result.

2 | KEY RESULT

To prove our main result, namely Theorem 2, we identify a family R R R= { , , …, }rdom 1 2 10 of 10
troublesome graphs G shown in Figure 2 that satisfy γ G n G n G10 ( ) > 5 ( ) + 4 ( )r 2 3 . Let

R R R R= { , , , }rdom,1 6 7 8 10 , R R= { , }rdom,2 2 3 , R= { }rdom,3 9 , R R= { , }rdom,4 4 5 and =rdom,5 R{ }1 .
Let f G( )i denote the number of components of a special subcubic graphG that belong to irdom,
for i [5]∈ . We define

G if GΩ( ) = ( ).
i

i
=1

5

We note that if G is a connected graph and G rdom∉ , then GΩ( ) = 0, while if G rdom∈ ,
then G irdom,∈ for some i [5]∈ in which case G iΩ( ) = 5≤ . We define a weight function
Gw( ) associated with G by

G n G n G Gw( ) = 5 ( ) + 4 ( ) + Ω( ).2 3

We define the weight vw ( )G of a vertex v in G as its contribution to the weight
n G n G5 ( ) + 4 ( )2 3 . Thus, if vdeg ( ) = 2G , then vw ( ) = 5G , and if vdeg ( ) = 3G , then vw ( ) = 4G . We

FIGURE 2 The family rdom .
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define the weight Sw ( )G of a set S of vertices inG as the sum of the weights of vertices in S, that
is, S vw ( ) = w ( )G v S G∈ . We are now in a position to state our key result, a proof of which will be
given in Section 5.

Theorem 3. If G is a special subcubic graph, then γ G G10 ( ) w( )r ≤ .

2.1 | Notation

For notation and graph theory terminology, we in general follow [15]. Specifically, let G be
a graph with vertex set V G( ) and edge set E G( ), and of order  n G V G( ) = ( ) and size

 m G E G( ) = ( ) . For a set of vertices S V G( )⊆ , the subgraph induced by S is denoted by
G S[ ]. Two vertices inG are neighbors if they are adjacent. The open neighborhood N v( )G of a
vertex v in G is the set of neighbors of v, while the closed neighborhood of v is the set
N v v N v[ ] = { } ( )G ∪ . Two vertices are open twins if they have the same open neighborhood.
We denote the degree of v inG by  v N vdeg ( ) = ( )G G . The minimum and maximum degree in
G is denoted by δ G( ) and GΔ( ), respectively. An isolated vertex is a vertex of degree 0. A
graph is isolate‐free if it contains no isolated vertex.

We denote a path, a cycle, and a complete graph on n vertices by P C,n n, and Kn,
respectively. A diamond is the graph K e−4 , where e is an arbitrary edge of the K4. A
domino is a graph that can be obtained from a 6‐cycle by adding an edge between two
antipodal vertices of the 6‐cycle. An F ‐component of a graph G is a component of G that is
isomorphic to F . An edge‐cut of a connected graph is a set of edges whose removal
disconnected the graph. A k‐edge‐cut is an edge‐cut of cardinality k. The girth of G is the
length of the shortest cycle in G.

If G is a special subcubic graph, then we denote by n G( )2 and n G( )3 the number of vertices
of degree 2 and 3, respectively, inG. For a special subcubic graphG, let  and  be the set of all
vertices of degree 2 and 3 in G, respectively, that is, v V G v= { ( ) : deg ( ) = 3}G ∈ and

v V G v= { ( ) : deg ( ) = 2}G ∈ . We call a vertex in  a large vertex, and a vertex in  a small
vertex. For k 3≥ , we define a k‐handle to be a k‐cycle that contains exactly one large vertex. For
k 1≥ , a k‐linkage is a path on k + 2 vertices that starts and ends at distinct large vertices and
with k internal vertices of degree 2 inG. A handle is a k‐handle for some k 3≥ , and a linkage is
a k‐linkage for some k 1≥ . We use the standard notation k k[ ] = {1, …, }.

2.2 | Near restrained dominating sets

To prove our main result, we introduce the concept of a near‐restrained dominating set. Given
a graph G and a set S of vertices in G, we let S denote the complement of S, that is,
S V G S= ( )⧹ . We define a near restrained dominating set, abbreviated NeRD‐set, of G with
respect to a subset X of vertices ofG as a relaxed variant of an RD‐set S ofG such that either the
vertices in X need not be dominated by S but every vertex in S is still required to have a
neighbor in S or the vertices in X are dominated by S but need not have a neighbor in S .
Formally, a NeRD‐set of G with respect to a specified subset X is a set S V G( )⊆ such that
exactly one of the following two conditions hold:

(C1) The set S dominates the set V G X( )⧹ , and every vertex in S has a neighbor in S .
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(C2) The set S dominates the setV G( ), the set X S⊆ , and every vertex in S X⧹ has a neighbor
in S .

If condition (C1) holds, then we refer to the NeRD‐set as a type‐1 such set, while if
condition (C2) holds, then we refer to the NeRD‐set as a type‐2 such set. We denote by
γ G X( ; )r,ndom the minimum cardinality of a type‐1 NeRD‐set with respect to the set X (where
“ndom” stands for “not dominated” since the vertices in X are not required to be dominated),
and we denote by γ G X( ; )r,dom the minimum cardinality of a type‐2 NeRD‐set with respect to
the set X (where “dom” stands for “dominated” since the vertices in X are dominated but not
required to have a neighbor that is not dominated). If X v= { }, we simply write γ G v( ; )r,ndom and
γ G v( ; )r,dom rather than γ G v( ; { })r,ndom and γ G v( ; { })r,dom , respectively. Since every RD‐set is also
a NeRD‐set, we note that γ G X γ G( ; ) ( )r r,ndom ≤ and γ G X γ G( ; ) ( )r r,dom ≤ .

2.3 | Known bounds on restrained domination

Closed formulas for the restrained domination number of paths and cycles are given in [7], where it
is shown that for  n γ P n1, ( ) = − 2r n

n − 1

3
≥ and for  n γ C n3, ( ) = − 2r n

n

3
≥ . The following

theorem summarizes classical results on bounds on the restrained domination number of a graph.

Theorem 4. If G is a connected graph of order n, then the following hold.

(a) [7] If δ G( ) 1≥ , then γ G n( ) − 2r ≤ , unless G is a star K n1, −1, in which case γ G n( ) =r .

(b) [8] If δ G( ) 2≥ and G C5≠ , then γ G n( )r
1

2
≤ .

(c) [7, 16] If δ (G) ≥ 2 and n ≥ 9, then γr (G) ≤ 12 (n − 1).
(d) [11] If G is a cubic graph, then γ G n( )r

5

11
≤ .

3 | PROPERTIES OF GRAPH IN THE FAMILY ℬrdom

In this section, we present properties of graphs that belong to the family R R= { , …, }rdom 1 10 .
We note that there are no open twins in the graphs in the family rdom with the exception of R2
which contains two vertices of degree 2 that have two common neighbors (of degree 3). We
shall need the following properties of graphs in the family rdom . These properties are
straightforward to check (or can be checked by computer).

Observation 1. If G rdom∈ and v is a vertex of degree 2 in G, then the following
properties hold.

(a) γ R( ) = 3r i for i γ R{1, 2, 10}, ( ) = 4r i∈ for i {3, 4, 5}∈ , and γ R( ) = 5r i for
i {6, 7, 8, 9}∈ .

(b) There exists a γr‐set of G that contains v.
(c) There exists a γr‐set of G that does not contains v.
(d) γ G v γ G( ; ) ( ) − 1r r,ndom ≤ .
(e) γ G v γ G( ; ) ( ) − 1r r,dom ≤ , unless v is an open twin of R2.

BREŠAR and HENNING | 767
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(f) If X consists of two vertices of degree 2, then γ G X γ G( ; ) ( ) − 1r r,dom ≤ .

Observation 2. Let G rdom∈ and let e xy= be an arbitrary edge of G. If G* is obtained
fromG by subdividing the edge e resulting in a new vertex v* of degree 2 (with neighbors
x and y), then γ G γ G( *) ( )r r≤ . Furthermore, there exists a γr‐set of G* that contains v*
and contains neither x nor y.

Observation 3. Let G rdom∈ and let e xy= be an arbitrary edge of G. If G* is obtained
from G by subdividing the edge e twice, resulting in a path xx y y1 1 , then γ G γ G( *) ( )r r≤ .
Furthermore, there exists a γr‐set of G* that contains x1 but not y1.

Observation 4. Let G rdom∈ and let e xy= be an arbitrary edge of G. If G* is obtained
from G by subdividing the edge e three times resulting in a path xv v v y1 2 3 , then the
following properties hold.

(a) γ G v γ G( *; ) ( )r r,dom 1 ≤ and γ G v γ G( *; ) ( )r r,ndom 1 ≤ .
(b) If G R R R{ , , }4 5 9∈ , then γ G v γ G( *; ) ( )r r,dom 2 ≤ .

Observation 5. Let G rdom∈ and let e xy= be an arbitrary edge of G. If G* is obtained
from G by subdividing the edge e four times resulting in a path xv v v v y1 2 3 4 , then there
exists a RD‐set S* ofG* such that S v v v v v v* { , , , } = { , }1 2 3 4 1 4∩ and the following properties
hold.

(a) If G R R{ , }4 5∉ , then  S γ G* ( ) + 1r≤ .
(b) If G R R{ , }4 5∈ , then  S γ G* ( )r≤ .

Observation 6. Let G rdom∈ and let e xy= be an arbitrary edge of G. If G* is obtained
from G by subdividing the edge e four times resulting in a path xv v v v y1 2 3 4 , then there
exists a RD‐set S* of G* such that v S*2 ∈ and the following properties hold.

(a) If G R2≠ or if G R= 2 and neither x nor y is an open twin in G, then  S γ G* ( )r≤ .
(b) If G R= 2 and x or y is an open twin in G, then  S γ G* ( ) + 1r≤ .

4 | PRELIMINARY RESULT

In this section, we present a preliminary result that we will need when proving our main
result.

Lemma 1. If G is a bipartite special subcubic graph with partite sets  and , then
 γ G( )r ≤ .

Proof. Let G be a bipartite subcubic graph with partite sets  and . Thus  and  are
independent sets, and every vertex in  has degree 2 with two neighbors in  and every
vertex in  has degree 3 with three neighbors in  . Let  s =  and  ℓ =  .

Let F be the graph with V F( ) = , where two vertices are adjacent in F if and only if
they have a common neighbor (that belongs to ) in the graph G. Let 1 be a maximal
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independent set in F , and let =2 1  ⧹ . Let  ℓ =1 1 and let  ℓ =2 2 . Let 1 be the set
of vertices dominated by 1 in the graph G, and let =2 1  ⧹ . Possibly, =2 ∅.

If a vertex in 1 has both its neighbors in 1 , then the set 1 would contain two
adjacent vertices in F , contradicting the fact that 1 is an independent set in F . Hence
every vertex in 1 is adjacent to exactly one vertex of 1 and to exactly one vertex in 2 . In
particular, this implies that the subgraph G [ ]1 1 ∪ of G induced by the set 1 1 ∪
consists of ℓ1 vertex disjoint copies of K1,3 where the central vertex of each star belongs
to 1 .

By the maximality of the independent set 1 , the set 1 is a dominating set in F ,
implying that every vertex in 2 must have at least one neighbor inG that belongs to the
set 1 , that is, the set 1 dominates the set 2 inG. Let i2. be the set of vertices in 2 that
have exactly i neighbors in 1 for i [3]∈ . Further, let  ℓ =i i2. 2. for i [3]∈ , and so
ℓ = ℓ + ℓ + ℓ2 2.1 2.2 2.3.

Since each vertex in 1 has exactly one neighbor in 2 , no two vertices in 2 have a
common neighbor in 1 . For each vertex v in 2.3 , we select an arbitrary neighbor v′ in 1
and let 1.1 be the resulting subset of vertices in 1 , that is,

 v= { ′}.
v

1.1
2.3


∈

By our earlier observations,   = ℓ1.1 2,3 . Let =1.2 1 1.1  ⧹ . Each vertex in 2.3 has one
neighbor in 1.1 and two neighbors in 1.2 , while each vertex in i2. has i neighbors in 1.2
and i3 − neighbors in 2 for i {1, 2}∈ . Each vertex in 2 therefore has at least one
neighbor in 1.2 , and each vertex in 1.2 has exactly one neighbor in 2 . Therefore, the
subgraph of G induced by the set 1.2 2 ∪ is isolate‐free.

We now consider the set D = 1 1.1 2  ∪ ∪ . By construction, V G D( ) = 1.2 2 ⧹ ∪ .
As observed earlier, the subgraph of G induced by the set 1.2 2 ∪ is isolate‐free.
Moreover, every vertex in 1.2 is dominated by the set D1 ⊆ and every vertex of 2 is
dominated by the set S D1.1 2 ∪ ⊆ . Hence, D is indeed an RD‐set. It remains for us to
show that  D ℓ≤ . Each vertex in 2 has no neighbor in 1 2.3 ∪ , and therefore has both
its neighbors in 2.1 2.2 ∪ . Counting edges between the set 2 and the sets 2.1 2.2 ∪ ,
we, therefore, have  2 = 2ℓ + ℓ 2ℓ + 2ℓ2 2.1 2.2 2.1 2.2 ≤ , and so   ℓ + ℓ2 2.1 2.2 ≤ . Recall that
  = ℓ1.1 2,3 . Hence,        D = + + ℓ + (ℓ + ℓ ) + ℓ = ℓ + ℓ = ℓ1 2 1.1 1 2.1 2.2 2.3 1 2   ≤ , as
required. Therefore,  γ G D( ) ℓr ≤ ≤ . □

5 | PROOF OF KEY RESULT

In this section, we present proof of our key result, namely Theorem 3. Recall its statement.

Theorem 3. If G is a special subcubic graph, then γ G G10 ( ) w( )r ≤ .

Proof. Suppose, to the contrary, that there exists a counterexample to the theorem.
Among all counterexamples, let G be chosen to have a minimum order. Thus if G′ is a
special subcubic graph of order less than n G( ), then G′ is not a counterexample,
that is, γ G G10 ( ) > w( )r and γ G G10 ( ′) w( ′)r ≤ for all special subcubic graphs G′ with
n G n G( ′) < ( ). The restrained domination number of a graph is the sum of the restrained
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domination numbers of its components. Hence by the minimality of G, the
counterexample G is connected. For notational simplicity, we adopt the following
notation throughout the proof. Let n n G n n G= ( ), = ( )2 2 , and n n G= ( )3 3 . If G′ is a
special subcubic graph, then we let n n G n n G′ = ( ′), ′ = ( ′)2 2 , and n n G′ = ( ′)3 3 . Further, let
k′ be the number of components of G′ that belong rdom , and let r′ be the remaining
components of G′. If G′ is a connected graph, then we note that k r′ + ′ = 1. Since
δ G( ) 2≥ , we note that n 3≥ . If G rdom∈ , then γ G G10 ( ) = w( )r , contradicting the fact
thatG is a counterexample. Hence,G rdom∉ . If n {3, 4, 5}∈ , then it is straightforward to
check that γ G G10 ( ) w( )r ≤ , a contradiction. Hence, n 6≥ . In what follows, we present a
series of claims describing some structural properties of G, which culminate in the
implication of its nonexistence.

Claim 1. GΔ( ) = 3.

Proof. Suppose, to the contrary, that GΔ( ) = 2, and so G is a cycle Cn (and n 6≥ ). In this
case, G nw( ) = 5 and  γ C n( ) = − 2r n

n

3
. Thus if n 0 (mod 3)≡ , then γ C n10 ( ) = 10 3r n ∕ . If

n 1 (mod 3)≡ , then n 7≥ and γ C n10 ( ) = 10( + 2) 3r n ∕ . If n 2 (mod 3)≡ , then n 8≥ and
γ C n10 ( ) = 10( + 4) 3r n ∕ . In all cases, γ G G10 ( ) w( )r ≤ , a contradiction. □

Claim 2. The graphG does not contain a path on five vertices with the internal vertices
all of degree 2 in G and such that either the two ends of the path are not adjacent or the
two ends are adjacent and both have degree 3 in G.

Proof. Suppose, to the contrary, that P uv v v w: 1 2 3 is a path inG, where vdeg ( ) = 2G i for
i [3]∈ and if uw is an edge, then u wdeg ( ) = deg ( ) = 3G G . Since δ G( ) = 2 and GΔ( ) = 3,
we can choose the path P so that udeg ( ) = 3G . Let G′ be the graph of order n n′ = − 3

obtained from G by deleting the set of vertices v v v{ , , }1 2 3 . Further, if u and w are not
adjacent, then we add the edge uw to G′. Let S′ be a γr‐set of G′. If u w S{ , } ′⊆ , let
S S v= ′ { }1∪ . If u S′∈ and w S′∉ , let S S v= ′ { }3∪ . If u S′∉ and w S′∈ , let
S S v= ′ { }1∪ . If u S′∉ and w S′∉ , let S S v= ′ { }2∪ . In all cases, S is an RD‐set of G,
and so γ G γ G( ) ( ′) + 1r r≤ .

Suppose that u and w are not adjacent inG. In this case, the edge uw was added toG′,
implying that the degree of the vertices u and w remain unchanged. In particular,

udeg ( ) = 3G′ . The graph G′ is a connected special subcubic and is not a counterexample,
and so γ G G10 ( ′) w( ′)r ≤ . Suppose that G′ rdom∉ . In this case, G Gw( ) = w( ′) + 15, and
so γ G γ G G G10 ( ) 10( ( ′) + 1) w( ′) + 10 < w( )r r≤ ≤ , a contradiction. Hence, G′ rdom∈ .
Thus, G is obtained from one of the graphs in rdom by subdividing the (added) edge uw
inG′ three times, where as observed earlier udeg ( ) = 3G′ (and wdeg ( ) {2, 3}G′ ∈ ). Since R1
has no vertex of degree 3, we note thatG R1≠ . IfG R′ = 2, then γ G( ) 4r ≤ and Gw( ) = 43.
IfG R R R′ { , , }3 4 5∈ , then γ G( ) 5r ≤ and Gw( ) 51≥ . IfG R R R R′ { , , , }6 7 8 9∈ , then γ G( ) 6r ≤

and Gw( ) 64≥ . IfG R′ = 10, then γ G( ) 4r ≤ and Gw( ) = 44. In all cases, γ G G10 ( ) w( )r ≤ ,
a contradiction.

Hence, u and w are adjacent inG. As before, the graphG′ is a connected special subcubic
graph and γ G G10 ( ′) w( ′)r ≤ . By supposition, both u and w have degree 3 inG, and therefore
have degree 2 inG′. Hence the weight of each of u and w decreases by 1 from weight 5 inG′
to weight 4 in G. If G′ rdom∉ , then G G Gw( ) = w( ′) + 15 − 2 = w( ′) + 13, and so
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γ G γ G G G10 ( ) 10( ( ′) + 1) w( ′) + 10 < w( )r r≤ ≤ , a contradiction. Hence,G′ rdom∈ . Thus,
G is obtained from one of the graphs in rdom by adding an extra edge between two vertices
of degree 2 inG′, and then subdividing this added edge three times. Since none of R R,4 9, and
R10 has two adjacent vertices of degree 2, we note that G R R R′ { , , }4 9 10≠ .
If G R′ = 1, then G R= 3, while if G R′ = 5, then G R= 8. In both cases, G rdom∈ , a
contradiction. If G R′ = 2, then γ G( ) = 4r and Gw( ) = 41. If G R′ = 3, then γ G( ) = 5r and
Gw( ) = 51. If G R R R′ { , , }6 7 8∈ , then γ G( ) = 6r and Gw( ) = 62. In all cases,
γ G G10 ( ) w( )r ≤ , a contradiction. □

As a consequence of Claim 2, we have the following structure of handles and linkages.

Claim 3. The following properties hold in the graph G.

(a) If G contains a k‐handle, then k {3, 4, 5}∈ .
(b) If G contains a k‐linkage, then k {1, 2}∈ .

Claim 4. Let G be obtained from the disjoint union of a special subcubic graph G′ of
order less than n and a graph H by adding at least one edge between H and G′. If
γ G γ G p( ) ( ′) +r r≤ for some integer p 0≥ , then G G pw( ) < w( ′) + 10 .

Proof. Suppose that γ G γ G p( ) ( ′) +r r≤ for some integer p 0≥ . Since G′ is not a
counterexample, no component of G′ is a counterexample, implying by linearity that
γ G G10 ( ′) w( ′)r ≤ . If G G pw( ) w( ′) + 10≥ , then γ G γ G p G10 ( ) 10( ( ′) + ) w( ′) +r r≤ ≤

p G10 w( )≤ , a contradiction. □

Claim 5. Let G be obtained from the disjoint union of a special subcubic graph G′ of
order less than n and a graph H by adding at least one edge between H and G′. If there
exists a γr‐set SH of H such that every component ofG′ in rdom has at least one neighbor
that belongs to SH in the graph G, then G G pw( ) < w( ′) + 10 where p γ H k= ( ) − ′r .

Proof. If k′ 1≥ , let G G, …, k1 ′ denote the component of G′ that belong to rdom . By
supposition, there exists a γr‐set SH of H such that the component Gi contains a vertex vi
that is adjacent to a vertex in SH for all i k[ ′]∈ . By Observation 1(d),
γ G v γ G( ; ) ( ) − 1r i i r i,ndom ≤ for all i k[ ′]∈ . If G′ has r′ 1≥ components that do not
belong to rdom , let G G, …,k k r′+1 ′+ ′ denote these components of G′. Hence,

 



 
























γ G S γ G v γ G

γ H γ G k

γ H γ G k

γ G p

( ) + ( ; ) + ( )

( ) + ( ) − ′

= ( ) + ( ′) − ′

= ( ′) + ,

r H

i

k

r i i

i k

k r

r i

r
i

k r

r i

r r

r

=1

′

,ndom
= ′+1

′+ ′

=1

′+ ′

≤

≤

where p γ H k= ( ) − ′r . By Claim 4, G G pw( ) < w( ′) + 10 . □
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Claim 6. There is no 3‐handle in G.

Proof. Suppose that C vv v v: 1 2 is a 3‐handle, where vdeg ( ) = 3G . Let v3 be the third
neighbor of v. Suppose that vdeg ( ) = 3G 3 . LetG G V C′ = − ( ). We note thatG′ is a connected
special subcubic graph and k r′ + ′ = 1. Applying Claim 5 with H C= and S v= { }H , we have
G G pw( ) < w( ′) + 10 , where p γ H k k= ( ) − ′ = 1 − ′r . The weights of the vertices in G′

remain unchanged in G, except for v3 whose weight increases by 1 from weight 4 in G to
weight 5 in G′. Moreover, if k′ = 1 (i.e., if G′ rdom∈ ), then there is an additional
weight increase of at most 5 for creating the component G′ that belongs to
rdom . Hence, G V C G k r G k kw( ) w ( ( )) + (w( ′) − 6 ′ − ′) = 14 + (w( ′) − 6 ′ + ( ′ − 1))G≥

G k G p G p= 14 + (w( ′) − 5 ′ − 1) = 14 + (w( ′) − 5(1 − ) − 1) = w( ′) + 5 + 8. Therefore,
G p G G pw( ′) + 5 + 8 w( ) < w( ′) + 10≤ , and so p8 < 5 , implying that p 2≥ . However,

p k= 1 − ′ 1≤ , a contradiction.
Hence, vdeg ( ) = 2G 3 . Let v4 be the neighbor of v3 different from v. Suppose that
vdeg ( ) = 3G 4 . Let G G v v v v′ = − { , , , }1 2 3 . Suppose that G′ rdom∉ , implying that

G G Gw( ) = 19 + (w( ′) − 1) = w( ′) + 18. Let S′ be a γr‐set of G′. If v S′4 ∈ , let
S S v= ′ { }1∪ , and if v S′4 ∉ , let S S v= ′ { }∪ . In both cases, S is an RD‐set of G, and
so γ G γ G( ) ( ′) + 1r r≤ . Hence, γ G γ G G G10 ( ) 10( ( ′) + 1) w( ′) + 10 = (w( ) − 18) +r r≤ ≤

G10 < w( ), a contradiction. Hence, G′ rdom∈ , and so the graph G is determined. If v4
is an open twin of G′, then γ G( ) = 4r and Gw( ) = 46, and so γ G G10 ( ) < w( )r ,
a contradiction. Hence, v4 is not an open twin of G′. By Observation 1(e),

 γ G v γ G v γ G γ G( ) { } + ( ′; ) 1 + ( ( ′) − 1) = ( ′)r r r r,dom 4≤ ≤ , and so γ G γ G10 ( ) 10 ( ′)r r≤ ≤

Gw( ′). However, G G Gw( ) 19 + (w( ′) − 6) = w( ′) + 13≥ , a contradiction.
Hence, vdeg ( ) = 2G 4 . Let v5 be the neighbor of v4 different from v3. By Claim 3, we have
vdeg ( ) = 3G 5 . Let Q v v v v v= { , , , , }1 2 3 4 and let G G Q′ = − . We note that G′ is a connected

special subcubic graph and k r′ + ′ = 1. Applying Claim 5 with H G Q= [ ] and S v v= { , }H 1 4 ,
we have G G pw( ) < w( ′) + 10 , where p γ H k k= ( ) − ′ = 2 − ′r . Hence, G Qw( ) w ( )+G≥

G k r G k k(w( ′) − 6 ′ − ′) = 24 + (w( ′) − 6 ′ + ( ′ − 1)) G k= 24 + (w( ′) − 5 ′ − 1) = 24+

G p G p(w( ′) − 5(2 − ) − 1) = w( ′) + 5 + 13. Therefore, G p Gw( ′) + 5 + 13 w( ) <≤

G pw( ′) + 10 , and so p13 < 5 , implying that p 3≥ . However, p k= 2 − ′ 2≤ , a
contradiction. □

By Claim 6, there is no 3‐handle.

Claim 7. There is no 4‐handle in G.

Proof. Suppose that C vv v v v: 1 2 3 is a 4‐handle, where vdeg ( ) = 3G . Let v4 be the
neighbor of v not on C.

Claim 7.1. vdeg ( ) = 2G 4 .

Proof. Suppose, to contrary, that vdeg ( ) = 3G 4 . Let x and y be the two neighbors of v4
different from v3. Suppose that x and y are both large vertices. Let Q v v v v v= { , , , , }1 2 3 4

and let G G Q′ = − . We note that G′ has at most two components, and so k r′ + ′ 2≤ .
Applying Claim 5 with H G Q= [ ] and S v v= { , }H 2 4 , we have G G pw( ) < w( ′) + 10 , where
p γ H k k= ( ) − ′ = 2 − ′r . On the other hand, G G k rw( ) 23 + (w( ′) − 6 ′ − ′) 23 +≥ ≥

G k k(w( ′) − 6 ′ + ( ′ − 2)) G k= 23 + (w( ′) − 5 ′ − 2) G p= 23 + (w( ′) − 5(2 − ) − 2)

772 | BREŠAR and HENNING

 10970118, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23095 by C

ochrane Slovenia, W
iley O

nline L
ibrary on [18/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



G p= w( ′) + 5 + 11. Therefore, G p G G pw( ′) + 5 + 11 w( ) < w( ′) + 10≤ , and so
p11 < 5 , implying that p 3≥ . However, p k= 2 − ′ 2≤ , a contradiction.

Hence, at least one of x and y is a small vertex. Renaming vertices if necessary, we may
assume that xdeg ( ) = 2G . Note that ydeg ( ) {2, 3}G ∈ . Suppose xy E G( )∈ . Since there is no
3‐handle, the vertex y is large. Let z be the neighbor of y, different from x and v4. LetG′ be
obtained fromG by deleting x y, , and v4, and adding the edge vz. The graphG′ is a connected
special subcubic graph of order less than n. Since no graph in rdom contains a 4‐handle, we
note thatG′ rdom∉ , implying that G Gw( ) = w( ′) + 13. Let S′ be a γr‐set ofG′. If v S′∈ , let
S S y= ′ { }∪ . If v S′∉ and z S′∈ , let S S v= ′ { }4∪ . If v S′∉ and z S′∉ , let S S x= ′ { }∪ . In
all cases, S is an RD‐set of G, and so    γ G S S γ G( ) = ′ + 1 = ( ′) + 1r r≤ . Hence,
γ G γ G G G G10 ( ) 10( ( ′) + 1) w( ′) + 10 = (w( ) − 13) + 10 < w( )r r≤ ≤ , a contradiction.
Hence, xy E G( )∉ . Let Q v v v v v= { , , , , }1 2 3 4 and let G′ be obtained from G Q− by

adding the edge xy. The resulting graphG′ is a connected special subcubic graph of order
less than n. Suppose G′ rdom∉ . In this case, G Gw( ) = 23 + w( ′). Let S′ be a γr‐set of G′.
If x S′∈ or y S′∈ , let S S v v= ′ { , }1 4∪ . If x S′∉ and y S′∉ , let S S v v= ′ { , }1∪ . In both
cases, S is an RD‐set of G, and so    γ G S S γ G( ) = ′ + 2 = ( ′) + 2r r≤ . Therefore,
γ G γ G G G10 ( ) 10( ( ′) + 2) w( ′) + 20 < w( )r r≤ ≤ , a contradiction.
Hence,G′ rdom∈ . LetG G V C* = − ( ). We note that in this case,G* is obtained from

G′ by subdividing the edge xy of G′, where v4 is the resulting vertex of degree 2 in G*. By
Observation 2, γ G γ G( *) ( ′)r r≤ , and there exists a γr‐set S* of G* that contains the vertex
v4. The set S v* { }2∪ is a RD‐set of G, and so  γ G S γ G γ G( ) 1 + * = 1 + ( *) 1 + ( ′)r r r≤ ≤ .
Hence, G γ G γ G Gw( ) < 10 ( ) 10( ( ′) + 1) w( ′) + 10r r≤ ≤ . Moreover, noting that the
degrees of the vertices in G′ are the same as their degrees in G, we have
G G Gw( ) 23 + (w( ′) − 5) = w( ′) + 18≥ , a contradiction. □

By Claim 7.1, we have vdeg ( ) = 2G 4 . Let v5 be the neighbor of v4 different from v. Suppose
that vdeg ( ) = 3G 5 . Let Q v v v v v= { , , , , }1 2 3 4 and let G G Q′ = − . The resulting graph G′ is a
connected special subcubic graph of order less than n. We note that k r′ + ′ = 1. Applying
Claim 5 with H G Q= [ ] and S v v= { , }H 2 4 , we have G G pw( ) < w( ′) + 10 where
p γ H k k= ( ) − = 2 −r , implying p 2≤ . On the other hand, using the same calculations
as in the earlier proofs, we have G G k r G pw( ) 24 + (w( ′) − 6 ′ − ′) w( ′) + 5 + 13≥ ≥ .
Therefore, G p G G pw( ′) + 5 + 13 w( ) < w( ′) + 10≤ , and so p13 < 5 , that is, p 3≥ .
However, p k= 2 − ′ 2≤ , a contradiction.

Hence, vdeg ( ) = 2G 5 . Let v6 be the neighbor of v5 different from v4. By Claim 3,
vdeg ( ) = 3G 6 . Let Q v v v v v v= { , , , , , }1 2 3 4 5 and let G G Q′ = − . The resulting graph

G′ is a connected special subcubic graph of order less than n. Let S′ be a γr‐set of G′. If
v S′6 ∈ , let S S v v= ′ { , }1∪ . If v S′6 ∉ , let S S v v= ′ { , }2 4∪ . In both cases, S is an RD‐set ofG,
and so    γ G S S γ G( ) = ′ + 2 = ( ′) + 2r r≤ . We note that k r′ + ′ = 1. Applying Claim 4
with H G Q= [ ] and p = 2, we have G G p Gw( ) < w( ′) + 10 = w( ′) + 20. However,
G G k r G k r Gw( ) 29 + (w( ′) − 6 ′ − ′) 29 + w( ′) − 6( ′ + ′) = 29 + w( ′) − 6≥ ≥ G= w( ′)

+23, a contradiction. This completes the proof of Claim 7. □

By Claim 7, there is no 4‐handle.

Claim 8. There is no handle in G.
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Proof. Suppose, to the contrary, thatG contains a handle. By our earlier observations, it
must be a 5‐handle. Let C vv v v v v: 1 2 3 4 be a 5‐handle, where vdeg ( ) = 3G . Let v5 be the
third neighbor of v not on C.

Claim 8.1. vdeg ( ) = 2G 5 .

Proof. Suppose, to the contrary, that vdeg ( ) = 3G 5 . Let G G V C′ = − ( ). The resulting
graph G′ is a connected special subcubic graph of order less than n. Suppose that
G R R R′ { , , }1 4 5∈ . If G R′ = 1, then γ G( ) = 4r and Gw( ) = 48. If G R R′ { , }4 5∈ , then
γ G( ) = 5r and Gw( ) = 59. If G R′ = 9, then γ G( ) = 4r and Gw( ) = 52. In all cases,
γ G G10 ( ) w( )r ≤ , a contradiction. Hence, G R R R R′ { , , , }1 4 5 9∉ . Let S′ be a γr‐set of G′. If

v S′5 ∈ , let S S v v= ′ { , }2 3∪ . If v S′5 ∉ , let S S v v= ′ { , }1 4∪ . In both cases, S is an RD‐set of
G, and so    γ G S S γ G( ) = ′ + 2 = ( ′) + 2r r≤ . We note that k r′ + ′ = 1. Applying Claim 4
with H C= and p = 2, we have G G p Gw( ) < w( ′) + 10 = w( ′) + 20. Since G′∉

R R R R{ , , , }1 4 5 9 , when reconstructing the graph G the contribution of the weight of G′ to
the weight of G decreases by at most k r3 ′ + ′. Thus, G G k rw( ) 24 + (w( ′) − 3 ′ − ′)≥ ≥

G k r G24 + w( ′) − 3( ′ + ′) = 24 + w( ′) − 3 G= w( ′) + 21, a contradiction. □

By Claim 8.1, we have vdeg ( ) = 2G 5 . Let v6 be the neighbor of v5 different from v.

Claim 8.2. vdeg ( ) = 2G 6 .

Proof. Suppose, to the contrary, that vdeg ( ) = 3G 6 . Let x and y be the two neighbors of v6
different from v5. Suppose that x and y are both large vertices. LetQ v v v v v v v= { , , , , , , }1 2 3 4 5 6

and let G G Q′ = − . We note that G′ has at most two components, and so k r′ + ′ 2≤ .
Applying Claim 5 with H G Q= [ ] and S v v v= { , , }H 1 4 6 , we have G G pw( ) < w( ′) + 10 where
p γ H k k= ( ) − ′ = 3 − ′r . On the other hand, G G k rw( ) 33 + (w( ′) − 6 ′ − ′)≥ ≥

G k k33 + (w( ′) − 6 ′ + ( ′ − 2)) G k= 33 + (w( ′) − 5 ′ − 2) G p= 33 + (w( ′) − 5(3 − ) − 2)

G p= w( ′) + 5 + 16. Therefore, G p G G pw( ′) + 5 + 16 w( ) < w( ′) + 10≤ , and so p16 < 5 ,
that is, p 4≥ . However, p k= 3 − ′ 3≤ , a contradiction.

Hence at least one of x and y is a small vertex. Renaming vertices if necessary, we may
assume that xdeg ( ) = 2G . Note that ydeg ( ) {2, 3}G ∈ . Suppose xy E G( )∈ . Since there is no
3‐handle, the vertex y is large. Let z be the neighbor of y different from x and v6. Let G′ be
obtained fromG by deleting x y, and v6, and adding the edge v z5 . The graphG′ is a connected
special subcubic graph of order less than n. Since no graph in rdom contains a 5‐handle, we
note thatG′ rdom∉ , implying that G Gw( ) = w( ′) + 13. Let S′ be a γr‐set ofG′. If v S′5 ∈ , let
S S y= ′ { }∪ . If v S′5 ∉ and z S′∈ , let S S v= ′ { }6∪ . If v S′5 ∉ and z S′∉ , let S S x= ′ { }∪ .
In all cases, S is an RD‐set of G, and so    γ G S S γ G( ) = ′ + 1 = ( ′) + 1r r≤ . Hence,
γ G γ G w G G G10 ( ) 10( ( ′) + 1) ( ′) + 10 = (w( ) − 13) + 10 < w( )r r≤ ≤ , a contradiction.
Hence, xy E G( )∉ . LetQ v v v v v v v= { , , , , , , }1 2 3 4 5 6 and letG′ be obtained fromG Q− by

adding the edge xy. The resulting graphG′ is a connected special subcubic graph of order
less than n. Suppose G′ rdom∉ . In this case, G Gw( ) = 33 + w( ′). Let S′ be a γr‐set of G′.
If x S′∈ or y S′∈ , let S S v v v= ′ { , , }1 4 6∪ . If x S′∉ and y S′∉ , let S S v v v= ′ { , , }2 3 5∪ . In
both cases, S is an RD‐set of G, and so    γ G S S γ G( ) = ′ + 3 = ( ′) + 3r r≤ . Therefore,
γ G γ G G G10 ( ) 10( ( ′) + 3) w( ′) + 30 < w( )r r≤ ≤ , a contradiction. Hence, G′ rdom∈ . Let

G G v v v v v v* = − { , , , , , }1 2 3 4 5 . We note that in this case, G* is obtained from G′ by
subdividing the edge xy of G′ where v6 is the resulting vertex of degree 2 in G*. By

774 | BREŠAR and HENNING

 10970118, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23095 by C

ochrane Slovenia, W
iley O

nline L
ibrary on [18/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Observation 2, γ G γ G( *) ( ′)r r≤ and there exists a γr‐set S* ofG* that contains the vertex v6.
The set S v v* { , }1 4∪ is a RD‐set of G, and so  γ G S γ G γ G( ) 2 + * = 2 + ( *) ( ′) + 2r r r≤ ≤ .
Hence, G γ G γ G Gw( ) < 10 ( ) 10( ( ′) + 2) w( ′) + 20r r≤ ≤ . However noting that the
degrees of the vertices in G′ are the same as their degrees in G, we have
G G Gw( ) 33 + (w( ′) − 5) = w( ′) + 28≥ , a contradiction. □

By Claim 8.2, we have vdeg ( ) = 2G 6 . Let v7 be the neighbor of v6 different from v5. By
Claim 3, vdeg ( ) = 3G 7 . Let Q v v v v v v v= { , , , , , , }1 2 3 4 5 6 and let G G Q′ = − . The resulting
graph G′ is a connected special subcubic graph of order less than n. We note that
k r′ + ′ = 1. Applying Claim 5 with H G Q= [ ] and S v v v= { , , }H 1 4 6 , we have

G G pw( ) < w( ′) + 10 where p γ H k k= ( ) − ′ = 3 − ′r . On the other hand, Gw( ) 33 +≥

G k r G k k(w( ′) − 6 ′ − ′) = 33 + (w( ′) − 6 ′ + ( ′ − 1)) G k= 33 + (w( ′) − 5 ′ − 1) = 33 +

G p(w( ′) − 5(3 − ) − 1) G p= w( ′) + 15 + 17. Therefore, G p Gw( ′) + 15 + 17 w( ) <≤

G pw( ′) + 10 , and so p17 < 5 , that is, p 4≥ . However, k′ 0≥ and p k= 3 − ′ 3≤ , a
contradiction. This completes the proof of Claim 8. □

By Claim 8, there is no handle in G. In particular, the removal of a bridge cannot create a
C5‐component. Recall that there is no k‐linkage for any k 3≥ . Hence if δ G( ) = 2, then every
vertex of degree 2 in G belongs to a k‐linkage for some k {1, 2}∈ .

Claim 9. If G contains a 2‐linkage, then the two large vertices on the linkage are not
adjacent.

Proof. Suppose, to the contrary, thatG contains a 2‐linkage P vv v u: 1 2 where u and v are
adjacent. We note that u v, ∈ and v v,1 2 ∈ .

Claim 9.1. The vertices u and v have no common neighbor.

Proof. Suppose thatu and v have a common neighbor, v3. Sincen 6≥ , the vertex v3 is large.
Let v4 be the neighbor of v3 not on P. Suppose that vdeg ( ) = 3G 4 . LetQ v v v v u= { , , , , }1 2 3 and
letG G Q′ = − . The graphG′ is a connected special subcubic graph of order less than n. We
note that k r′ + ′ = 1. Applying Claim 5 with H G Q= [ ] and S v v= { , }H 1 3 , we have
G G pw( ) < w( ′) + 10 where p γ H k k= ( ) − ′ = 2 − ′r . SinceG has no handle, we note that

G R′ 1≠ , implying that G G k r G k kw( ) 22 + (w( ′) − 5 ′ − ′) = 22 + (w( ′) − 5 ′ + ′ − 1)≥

G k= 22 + (w( ′) − 4 ′ − 1) G p= 22 + (w( ′) − 4(2 − ) − 1) G pw( ′) + 4 + 13≥ . Therefore,
G p G G pw( ′) + 4 + 13 w( ) < w( ′) + 10≤ , and so p13 < 6 , that is, p 3≥ . However,

p k= 2 − ′ 2≤ , a contradiction.
Hence, vdeg ( ) = 2G 4 . Let v5 be the neighbor of v4 different from v3. Suppose that
vdeg ( ) = 3G 5 . Let G G v v v v v u′ = − { , , , , , }1 2 3 4 . Let S′ be a γr‐set of G′. If v S′5 ∈ ,

let S S u v= ′ { , }∪ . If v S′5 ∉ , let S S v v= ′ { , }1 3∪ . In both cases, S is an RD‐set of G,
and so    γ G S S γ G( ) = ′ + 2 = ( ′) + 2r r≤ . Applying Claim 4 with p = 2, we have
G G p Gw( ) < w( ′) + 10 = w( ′) + 20. Recall that G has no handle, and so G R′ 1≠ .

Therefore, G G Gw( ) 27 + (w( ′) − 1 − 4) = w( ′) + 22≥ , a contradiction.
Hence, vdeg ( ) = 2G 5 . Let v6 be the neighbor of v5 different from v4. By Claim 3,
vdeg ( ) = 3G 6 . LetQ v v v v v v u= { , , , , , , }1 2 3 4 5 and letG G Q′ = − . The resulting graphG′ is a

connected special subcubic graph of order less than n. We note that k r′ + ′ = 1. Applying
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Claim 5 with H G Q= [ ] and S u v v= { , , }H 5 , we have G G pw( ) < w( ′) + 10 where
p γ H k k= ( ) − ′ = 3 − ′r . On the other hand, noting that G R′ 1≠ , we have Gw( ) 32+≥

G k r G k k(w( ′) − 5 ′ − ′) 32 + (w( ′) − 5 ′ + ′ − 1)≥ G k= 32 + (w( ′) − 4 ′ − 1) = 32+

G p(w( ′) − 4(3 − ) − 1) G p= w( ′) + 4 + 19. Therefore, G p Gw( ′) + 4 + 19 w( ) <≤

G pw( ′) + 10 , and so p19 < 6 , that is, p 4≥ . However, k′ 0≥ and p k= 3 − ′ 3≤ , a
contradiction. □

By Claim 9.1, the vertices u and v have no common neighbor. Let v3 be the third
neighbor of v not on P. Since u and v have no common neighbor, u and v3 are not
adjacent. Let G′ be obtained from G v v v− { , , }1 2 by adding the edge uv3. The resulting
graph G′ is a connected special subcubic graph of order less than n. Suppose that
G′ rdom∉ . In this case, G G Gw( ) = 14 + (w( ′) − 1) = w( ′) + 13. Let S′ be a γr‐set of G′.
If u S′∈ , let S S v= ′ { }∪ . If u S′∉ and v S′3 ∈ , let S S v= ′ { }2∪ . If u S′∉ and v S′3 ∉ , let
S S v= ′ { }1∪ . In all cases S is an RD‐set of G, and so    γ G S S γ G( ) = ′ + 1 = ( ′) + 1r r≤ .
Therefore, G γ G γ G G Gw( ) < 10 ( ) 10( ( ′) + 1) w( ′) + 10 < w( )r r≤ ≤ , a contradiction.

Hence, G′ rdom∈ . If G R′ = 1, then G would contain a 4‐linkage, a contradiction. If
G R R{ , }4 5∈ , then γ G( ) = 4r and Gw( ) = 49, and so γ G G10 ( ) w( )r ≤ , a contradiction.
Hence,G R R R′ { , , }1 4 5∉ . LetG G v v* = − { , }1 2 . Thus,G* is obtained fromG′ by subdividing
the edge uv3 of G′ where v is the resulting vertex of degree 2 in G*. By Observation 2,
γ G γ G( *) ( ′)r r≤ and there exists a γr‐set S* of G* that contains the vertex v and
does not contain u or v3. The set S v* { }1∪ is a RD‐set of G, and so

 γ G S γ G γ G( ) 1 + * = 1 + ( *) 1 + ( ′)r r r≤ ≤ . Hence, G γ Gw( ) < 10 ( )r γ G10( ( ′) + 1)r≤

Gw( ′) + 10≤ . We note that the degrees of the vertices in G′ are the same as their
degrees inG, except for the vertexu which has degree 3 inG and degree 2 inG′. As observed
earlier, G R R R′ { , , }1 4 5∉ , implying that G G Gw( ) 14 + (w( ′) − 1 − 3) = w( ′) + 10≥ , a
contradiction. This completes the proof of Claim 9. □

Claim 10. If G contains a 1‐linkage, then the two large vertices on the linkage are not
adjacent.

Proof. Suppose, to the contrary, that G contains a 1‐linkage P vv u: 1 where u and v are
adjacent. We note that u v, ∈ and v1 ∈ .

Claim 10.1. The vertices u and v have no common neighbor.

Proof. Suppose that u and v have a common neighbor, v2, and so G v v v u[{ , , , }]1 2 is a
diamond. Since n 6≥ , the vertex v2 is large. Let v3 be the third neighbor of v2 not on P.
Suppose that vdeg ( ) = 3G 3 . Let Q v v v u= { , , , }1 2 and let G G Q′ = − . The graph G′ is a
connected special subcubic graph of order less than n. We note that k r′ + ′ = 1. Every
γr‐set of G′ can be extended to an RD‐set of G by adding to it the vertex v, and
so γ G γ G( ) ( ′) + 1r r≤ . Thus, G γ G γ G Gw( ) < 10 ( ) 10( ( ′) + 1) w( ′) + 10r r≤ ≤ . Since
there is no handle in G, we note that G R′ 1≠ , implying that Gw( ) 17+≥

G G(w( ′) − 1 − 4) = w( ′) + 12, a contradiction.
Hence, vdeg ( ) = 2G 3 . Let v4 be the neighbor of v3 different from v2. Suppose that
vdeg ( ) = 3G 4 . Let Q v v v v u= { , , , , }1 2 3 and let G G Q′ = − . The graph G′ is a connected

special subcubic graph of order less than n different from R1. We note that k r′ + ′ = 1.
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Applying Claim 5 with H G Q= [ ] and S v v= { , }H 1 3 , we have G G pw( ) < w( ′) + 10 where
p γ H k k= ( ) − ′ = 2 − ′r . On the other hand, G G k rw( ) 22 + (w( ′) − 5 ′ − ′) =≥

G pw( ′) + 4 + 13. Therefore, G p G G pw( ′) + 5 + 13 w( ) < w( ′) + 10≤ , and so p13 < 5 ,
that is, p 3≥ . However, p k= 2 − ′ 2≤ , a contradiction. Hence, vdeg ( ) = 2G 4 . Let v5 be the
neighbor of v4 different from v3. By Claim 3, vdeg ( ) = 3G 5 . LetQ v v v v v u= { , , , , , }1 2 3 4 and let
G G Q′ = − . The resulting graphG′ is a connected special subcubic graph of order less thann.
We note that k r′ + ′ = 1. Applying Claim 5 with H G Q= [ ] and S v v= { , }H 4 , we have
G G pw( ) < w( ′) + 10 where p γ H k k= ( ) − ′ = 2 − ′r . On the other hand noting that

G R′ 1≠ , we have G G k r G pw( ) 27 + (w( ′) − 5 ′ − ′) w( ′) + 4 + 18≥ ≥ . Therefore,
G p G G pw( ′) + 4 + 18 w( ) < w( ′) + 10≤ , and so p18 < 6 , that is, p 4≥ . However,

k′ 0≥ and p k= 2 − ′ 2≤ , a contradiction. □

By Claim 10.1, the vertices u and v have no common neighbor. Let v2 and u2 be the
third neighbors of v and u, respectively, not on P. Since u and v have no common
neighbor, u v1 2≠ .

Claim 10.2. The vertices u2 and v2 are not adjacent.

Proof. Suppose that u2 and v2 are adjacent. Since n 6≥ , at least one of u2 and v2 is large.
Renaming vertices if necessary, assume that u2 ∈ . Suppose that v2 ∈ and
N v v u( ) = { , }2 2 . Let u3 be the neighbor of u2 different from u and v2. Suppose that u3 ∈ .
Let Q v v v u u= { , , , , }1 2 2 and let G G Q′ = − . The graph G′ is a connected special subcubic
graph of order less than n. We note that k r′ + ′ = 1. Applying Claim 5 with H G Q= [ ]

and S v u= { , }H 1 2 , we have G G pw( ) < w( ′) + 10 where p γ H k k= ( ) − ′ = 2 − ′r .
On the other hand, G G k r G pw( ) 22 + (w( ′) − 5 ′ − ′) = w( ′) + 4 + 13≥ . Therefore,
G p G G pw( ′) + 4 + 13 w( ) < w( ′) + 10≤ , and so p13 < 6 , that is, p 3≥ . However,

p k= 2 − ′ 2≤ , a contradiction. Hence, u3 ∈ . Let u4 be the neighbor of u3 different
from u2.

Suppose that u4 ∈ . Let Q v v v u u u= { , , , , , }1 2 2 3 and let G G Q′ = − . The graph G′ is a
connected special subcubic graph of order less than n. We note that k r′ + ′ = 1. Applying
Claim 5 with H G Q= [ ] and S v u= { , }H 3 , we have G G pw( ) < w( ′) + 10 where
p γ H k k= ( ) − ′ = 2 − ′r . On the other hand, G G k rw( ) 27 + (w( ′) − 5 ′ − ′) =≥

G pw( ′) + 4 + 18. Therefore, G p G G pw( ′) + 4 + 18 w( ) < w( ′) + 10≤ , and so p18 < 6 ,
that is, p 4≥ . However, p k= 2 − ′ 2≤ , a contradiction.

Hence, u4 ∈ . Let u5 be the neighbor of u4 different from u3. By Claim 3, udeg ( ) = 3G 3 .
Let Q v v v u u u u= { , , , , , , }1 2 2 3 4 and let G G Q′ = − . The resulting graph G′ is a connected
special subcubic graph of order less than n. We note that k r′ + ′ = 1. Let S′ be a γr‐set ofG′.
If u S′5 ∈ , let S S u v= ′ { , }2 1∪ . If u S′5 ∉ , let S S v u= ′ { , }3∪ . In both cases, S is an
RD‐set ofG, and so    γ G S S γ G( ) = ′ + 2 = ( ′) + 2r r≤ . Applying Claim 4 with p = 2, we
have G G p Gw( ) < w( ′) + 10 = w( ′) + 20. However, G Gw( ) 32 + (w( ′) − 1 − 4) =≥

Gw( ′) + 27, a contradiction.
Hence, v2 ∈ . Recall that u2 ∈ . Let Q v v u= { , , }1 and let G G Q′ = − . We note that

k r′ + ′ = 1. Applying Claim 5 with H G Q= [ ] and S v= { }H , we have G G pw( ) < w( ′) + 10

where p γ H k k= ( ) − ′ = 1 − ′r . Since there is no 3‐linkage in G, we note
that G R′ 1≠ , implying that G G k r G pw( ) 13 + (w( ′) − 5 ′ − ′) = w( ′) + 4 + 7≥ .
Therefore, G p G G pw( ′) + 4 + 7 w( ) < w( ′) + 10≤ , and so p7 < 6 , that is, p 2≥ .
However, p k= 1 − ′ 1≤ , a contradiction. □
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By Claim 10.2, the vertices u2 and v2 are not adjacent. Let G′ be obtained from
G v v u− { , , }1 by adding the edge u v2 2. The resulting graphG′ is a connected special subcubic
graph of order less than n. Suppose that G′ rdom∉ , implying that G Gw( ) = 13 + w( ′).
Let S′ be a γr‐set of G′. If v S′2 ∈ , let S S u= ′ { }∪ . If v S′2 ∉ and u S′2 ∈ , let S S v= ′ { }∪ .
If u S′2 ∉ and v S′2 ∉ , let S S v= ′ { }1∪ . In all cases, S is an RD‐set of G, and so

   γ G S S γ G( ) = ′ + 1 = ( ′) + 1r r≤ . Therefore, G γ G γ Gw( ) < 10 ( ) 10( ( ′) + 1)r r≤ ≤

G G Gw( ′) + 10 = w( ) − 3 < w( ), a contradiction. Hence, G′ rdom∈ . Let G G v* = − 1.
We note that in this case, G* is obtained from G′ by subdividing the edge u v2 3 of G′ twice
where v vuu2 2 is the resulting path inG*. By Observation 3, γ G γ G( *) ( ′)r r≤ and there exists a
γr‐set S* ofG* that contains the vertex v and does not contain u. The set S* is an RD‐set ofG,
and so  γ G S γ G γ G( ) * = ( *) ( ′)r r r≤ ≤ . Hence, G γ G γ G Gw( ) < 10 ( ) 10 ( ′) w( ′)r r≤ ≤ .
However, G G Gw( ) 13 + (w( ′) − 5) = w( ′) + 9≥ , a contradiction. This completes the
proof of Claim 10. □

Recall thatG has no handle. By Claim 10, no small vertex belongs to a triangle. We state this
formally.

Claim 11. No small vertex belongs to a triangle.

Claim 12. Two large vertices cannot be the ends of two common 2‐linkages.

Proof. Suppose, to the contrary, that there are two large vertices u and v that belong to
two common 2‐linkages uv v v1 2 and vv v u3 4 in G. Thus, C uv v vv v u: 1 2 3 4 is a 6‐cycle in G,
where u v, ∈ and v v v v, , ,1 2 3 4 ∈ .

Claim 12.1. The vertices u and v have no common neighbor.

Proof. Suppose that u and v have a common neighbor, v5. If v5 ∈ , then the graph G is
determined and γ G( ) = 3r and Gw( ) = 33, a contradiction. Hence, v5 ∈ . Let v6 be the
neighbor of v5 different from u and v. Suppose that v6 ∈ . LetQ u v v v v v v= { , , , , , , }1 2 3 4 5 and
letG G Q′ = − . The graphG′ is a connected special subcubic graph of order less than n. We
note that k r′ + ′ = 1. Applying Claim 5 with H G Q= [ ] and S v v v= { , , }H 1 3 5 , we have
G G pw( ) < w( ′) + 10 where p γ H k k= ( ) − ′ = 3 − ′r . On the other hand,
G G k r G pw( ) 32 + (w( ′) − 5 ′ − ′) = w( ′) + 4 + 19≥ . Therefore, G pw( ′) + 4 + 19≤

G G pw( ) < w( ′) + 10 , and so p19 < 6 , that is, p 4≥ . However, p k= 3 − ′ 3≤ , a
contradiction.

Hence, v6 ∈ . Let v7 be the neighbor of v6 different from v5. Suppose that v7 ∈ . Let
Q u v v v v v v v= { , , , , , , , }1 2 3 4 5 6 and let G G Q′ = − . The graph G′ is a connected special
subcubic graph of order less than n. We note that k r′ + ′ = 1. Applying Claim 5 with
H G Q= [ ] and S v v v= { , , }H 1 3 6 , we have G G pw( ) < w( ′) + 10 where p γ H k= ( ) − ′ =r

k3 − ′. On the other hand, G G k r G pw( ) 37 + (w( ′) − 5 ′ − ′) = w( ′) + 4 + 24≥ .
Therefore, G p G G pw( ′) + 4 + 24 w( ) < w( ′) + 10≤ , and so p24 < 6 , that is, p 5≥ .
However, p k= 3 − ′ 3≤ , a contradiction.

Hence, v7 ∈ . Let v8 be the neighbor of v7 different from v6. By Claim 3, vdeg ( ) = 3G 8 .
LetQ u v v v v v v v v= { , , , , , , , , }1 2 3 4 5 6 7 and letG G Q′ = − . The graphG′ is a connected special
subcubic graph of order less than n. Let S′ be a γr‐set ofG′. If v S′8 ∈ , let S S v v v= ′ { , , }1 3 5∪ .
If v S′5 ∉ , let S S v v v= ′ { , , }1 3 6∪ . In both cases, S is an RD‐set of G, and so
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   γ G S S γ G( ) = ′ + 3 = ( ′) + 3r r≤ . Applying Claim 4 with H G Q= [ ] and p = 3, we
have G G p Gw( ) < w( ′) + 10 = w( ′) + 30. However, G Gw( ) 42 + (w( ′) − 1 − 4) =≥

Gw( ′) + 37, a contradiction. □

By Claim 12.1, the vertices u and v have no common neighbor. Let x be the neighbor of
u different from v1 and v4, and let y be the neighbor of v different from v2 and v3. Suppose
that x and y are adjacent. If both x and y have degree 2, then the graph G is determined
and γ G( ) = 2r and Gw( ) = 38, a contradiction. Hence at least one of x and y are large.
Renaming vertices if necessary, assume that y is large. An analogous proof as before shows
that x ∈ . LetQ u v v v v v= { , , , , , }1 2 3 4 and consider the graphG G u v v v v v′ = − { , , , , , }1 2 3 4 .
Every γr‐set of G′ can be extended to an RD‐set of G by adding to it the set u v{ , },
and so γ G γ G( ) ( ′) + 2r r≤ . Applying Claim 4 with H G Q= [ ] and p = 2, we
have G G p Gw( ) < w( ′) + 10 = w( ′) + 20. However, G Gw( ) 28 + (w( ′) − 1 − 4) =≥

Gw( ′) + 23, a contradiction.
Hence, the vertices x and y are not adjacent. Let Q u v v v v v= { , , , , , }1 2 3 4 , and let G′ be

obtained from G G Q′ = − by adding the edge xy. The resulting graph G′ is a connected
special subcubic graph of order less than n. Suppose that G′ rdom∉ , implying
that G Gw( ) = 28 + w( ′). Every γr‐set of G′ can be extended to an RD‐set of G by
adding to it u and v or v1 and v3, implying that γ G γ G( ) ( ′) + 2r r≤ . Therefore,
G γ G γ G G G Gw( ) < 10 ( ) 10( ( ′) + 2) w( ′) + 20 = w( ) − 8 < w( )r r≤ ≤ , a contradiction.

Hence, G′ rdom∈ . Let G G v v* = − { , }3 4 . Thus, G* is obtained from G′ by subdividing
the edge xy ofG′ four times where xuv v vy1 2 is the resulting path inG*. By Observation 5,
there exists a RD‐set S* of G* such that  S γ G* ( ′) + 1r≤ and S u v v v u v* { , , , } = { , }1 2∩ .
The set S* is an RD‐set of G, and so  γ G S γ G( ) * = ( ′) + 1r r≤ . Hence,
G γ G γ G Gw( ) < 10 ( ) 10( ( ′) + 1) w( ′) + 10r r≤ ≤ . Since G has no 3‐linkage, we note that

G R′ 1≠ , implying that G G Gw( ) 28 + (w( ′) − 4) = w( ′) + 24≥ , a contradiction. This
completes the proof of Claim 12. □

Claim 13. Two large vertices cannot be the ends of a common 1‐linkage and a common
2‐linkage.

Proof. Suppose, to the contrary, that there are two large vertices u and v such that
uv v v1 2 is a 2‐linkage and uv v3 is a 1‐linkage in G. Thus, C uv v vv u: 1 2 3 is a 5‐cycle in G,
where u v, ∈ and v v v, ,1 2 3 ∈ .

Claim 13.1. The vertex v3 is the only common neighbor of u and v.

Proof. Suppose that u and v have two common neighbors. Let v4 be the common
neighbor of u and v different from v3. If v4 ∈ , then G R= 2, a contradiction. Hence,
v4 ∈ . Let v5 be the neighbor of v4 different from u and v.

Suppose that v5 ∈ . Let v6 be the neighbor of v5 different from v4. If v6 ∈ , then let
Q u v v v v v v= { , , , , , , }1 2 3 4 5 and let G G Q′ = − . Applying Claim 5 with H G Q= [ ] and
S v v v= { , , }H 1 3 5 we obtain a contradiction. Hence, v6 ∈ . Let v7 be the neighbor of v6
different from v5. By Claim 3, we have vdeg ( ) = 3G 7 . LetQ u v v v v v v v= { , , , , , , , }1 2 3 4 5 6 and
let G G Q′ = − . In this case, γ G γ G( ) ( ′) + 3r r≤ , and applying Claim 4 with H G Q= [ ]

and p = 3 we obtain a contradiction.
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Hence, v5 ∈ . Let x and y be the two neighbors of v5 different from v4. Suppose that x
and y are not adjacent. Let Q u v v v v v v= { , , , , , , }1 2 3 4 5 and let G′ be obtained from G Q−

by adding the edge xy. If G′ rdom∉ , then γ G γ G( ) ( ′) + 3r r≤ , and applying Claim 4 with
H G Q= [ ] and p = 3 we obtain a contradiction. Hence, G′ rdom∈ . In this case, we let
Q u v v v v v* = { , , , , , }1 2 3 4 and letG G Q* = − *. Thus,G* is obtained fromG′ by subdividing
the edge xy of G′, where xv y5 is the resulting path in G*. Applying Observation 2,
γ G γ G( ) ( ′) + 2r r≤ , implying that G Gw( ) < w( ′) + 20. However since G contains no
6‐handle, G R′ 1≠ , and so G G Gw( ) 31 + (w( ′) − 4) = w( ′) + 27≥ , a contradiction.

Hence, xy E G( )∈ . Since there is no 3‐handle in G, at least one of x and y is a large
vertex. Hence by Claim 11, x ∈ and y ∈ . Let w v= 5, and soG w x y[{ , , }] is a triangle.
Let x1 and y1 be the neighbors of x and y, respectively, different from w.

We show next that x y1 1≠ . Suppose that x y=1 1. Since no vertex of degree 2 belongs to a
triangle, x1 ∈ . Let x2 be the neighbor of x1 different from x and y. If x2 ∈ , then we let
Q u v v v v v w x y x= { , , , , , , , , , }1 2 3 4 1 and G G Q′ = − , and applying Claim 5 with H G Q= [ ]

and S v v v x= { , , , }H 2 4 1 we obtain a contradiction. Hence, x2 ∈ . Let x3 be the neighbor of x2
different from x1. If x3 ∈ , then we let Q u v v v v v w x y x x= { , , , , , , , , , , }1 2 3 4 1 2 and
G G Q′ = − . In this case, γ G γ G( ) ( ′) + 4r r≤ , and applying Claim 4 with H G Q= [ ] and
p = 4, we obtain a contradiction. Hence, x3 ∈ . Let x4 be the neighbor of x3 different
from x2. By Claim 3, xdeg ( ) = 3G 4 . Thus, G contains the subgraph illustrated in Figure 3.
We now let Q u v v v v v w x y x x x= { , , , , , , , , , , , }1 2 3 4 1 2 3 and G G Q′ = − . In this case,
γ G γ G( ) ( ′) + 4r r≤ , and applying Claim 4 with H G Q= [ ] and p = 4, we obtain a
contradiction.

Hence, x y1 1≠ , and so G contains the subgraph illustrated in Figure 4. Suppose that
x1 ∈ and y1 ∈ . LetQ u v v v v v w x y= { , , , , , , , , }1 2 3 4 and letG G Q′ = − . LetGx andGy be
the components of G′. Possibly, G G=x y, in which case G′ is connected. By our earlier
observations, neither Gx nor Gy is an R1‐component. Applying Claim 4 with H G Q= [ ] and
p = 3 we have G Gw( ) < w( ′) + 30. If at most one component of G′ belongs to rdom , then
G Gw( ) w( ′) + 33≥ , a contradiction. Hence,G Gx y≠ and bothGx andGy belong to rdom . If

G R R{ , }x 4 5∉ , then G Gw( ) w( ′) + 30≥ , a contradiction. Hence,G R R{ , }x 4 5∈ . Analogously,
G R R{ , }y 4 5∈ . LetGw be the component ofG v w− 4 that contains v4, and soG R=w 2. We now
take a NeRD‐set of type‐2 in Gx , and a NeRD‐set of type‐1 in each of Gy and Gw, and extend

FIGURE 3 A subgraph in the proof of Claim 13.1.

FIGURE 4 A subgraph in the proof of Claim 13.1.
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these sets to an RD‐set of G by adding to them the vertices w and y. By Observation 1,
γ G γ G w γ G x γ G y( ) 2 + ( ; ) + ( ; ) + ( ; )r r w r x r y,ndom ,dom ,ndom≤ γ G γ G2 + ( ( ) − 1) + ( ( ) − 1)+r w r x≤

γ G( ( ) − 1)r y γ G γ G γ G= ( ) + ( ) + ( ) − 1r w r x r y . Thus, G γ G G Gw( ) < 10 ( ) w( ) + w( )+r w x≤

Gw( ) − 10y . However, G G G Gw( ) 12 + (w( ) − 3) + (w( ) − 5) + (w( ) − 5) =w x y≥

G G Gw( ) + w( ) + w( ) − 1w x y , a contradiction.
Hence, x1 ∈ or y1 ∈ . Renaming vertices if necessary, we may assume that x1 ∈ .

Suppose that x y E G( )1 1 ∈ . By Claim 9, y1 ∈ . Let y2 be the neighbor of y1 different from
x1 and y. Thus, G contains the subgraph illustrated in Figure 5. If y2 ∈ , then we let
Q u v v v v v w x x y y= { , , , , , , , , , , }1 2 3 4 1 1 and G G Q′ = − , and applying Claim 5 with
H G Q= [ ] and S v v w y= { , , , }H 1 3 1 we obtain a contradiction. Hence, y2 ∈ . Let y3
be the neighbor of y2 different from y1. If y3 ∈ , then we let Q u v v v= { , , , ,1 2

v v w x x y y y, , , , , , , }3 4 1 1 2 and G G Q′ = − , and applying Claim 5 with H G Q= [ ] and
S v v w x y= { , , , , }H 1 3 1 2 we obtain a contradiction. Hence, y3 ∈ . Let y4 be the neighbor
of y3 different from y2. By Claim 3, y4 ∈ . We now let Q u v v v= { , , , ,1 2

v v w x x y y y y, , , , , , , , }3 4 1 1 2 3 and let G G Q′ = − . Applying Claim 5 with H G Q= [ ] and
S v v w x y= { , , , , }H 1 3 1 3 , we obtain a contradiction.

Hence, x y E G( )1 1 ∉ . Let z be the neighbor of x1 different from x . Suppose that
y z E G( )1 ∉ . In this case, letQ u v v v v v w x x y= { , , , , , , , , , }1 2 3 4 1 and let G′ be obtained from
G Q− by adding the edge y z1 . If G′ rdom∉ , then G Gw( ) = 44 + w( ′). However,
γ G γ G( ) ( ′) + 4r r≤ , and so G Gw( ) < w( ′) + 40, a contradiction. Hence, G′ rdom∈ . Let
G G u v v v v v w* = − { , , , , , , }1 2 3 4 , and soG* is obtained fromG′ by subdividing the edge y z1
of G′ three times where zx xyy1 1 is the resulting path in G*. A NeRD‐set of type‐1 in G*
with respect to the vertex y can be extended to a RD‐set by adding to it the set v v w{ , , }1 3 ,
implying by Observation 4 that γ G γ G y γ G( ) ( *; ) + 3 ( ′) + 3r r r,ndom≤ ≤ , and so
G Gw( ) < w( ′) + 30. Since G R′ 1≠ , we have G G Gw( ) 44 + (w( ′) − 4) = w( ) + 40≥ , a

contradiction.
Hence, y z E G( )1 ∈ . Thus G contains the subgraph illustrated in Figure 6, where

x1 ∈ . Since there is no 3‐linkage, y1 ∈ or z ∈ . If y1 ∈ and z ∈ , then we let
Q u v v v v v w x x y= { , , , , , , , , , }1 2 3 4 1 and G G Q′ = − , and applying Claim 5 with H G Q= [ ]

and S v v w x= { , , , }H 1 3 1 we obtain a contradiction. Hence, either y1 ∈ and z ∈ or
y1 ∈ and z ∈ .

FIGURE 5 A subgraph in the proof of Claim 13.1.

FIGURE 6 A subgraph in the proof of Claim 13.1.
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Suppose that y1 ∈ and z ∈ . Let z1 be the neighbor of z different from x1 and y1. If
G′ is obtained from G w x x y y z− { , , , , , }1 1 by adding the edge v z4 1, then
γ G γ G( ) ( ′) + 2r r≤ , and so G Gw( ) < w( ′) + 20. Since the graph G′ contains a bridge,
we note that G′ rdom∉ , implying that G Gw( ) = w( ′) + 26, a contradiction. Hence,
y1 ∈ and z ∈ . Let y2 be the neighbor of y1 different from y and z. If G′ is obtained
from G w x x y y z− { , , , , , }1 1 by adding the edge v y4 2, then γ G γ G( ) ( ′) + 2r r≤ , and so
G Gw( ) < w( ′) + 20. Since G′ rdom∉ , we have G Gw( ) = w( ′) + 26, a contradiction.

This completes the proof of Claim 13.1. □

By Claim 13.1, the vertex v3 is the only common neighbor of u and v. Let x be the
neighbor of u different from v1 and v3, and let y be the neighbor of v different from v2 and v3.

Claim 13.2. The vertices x and y are not adjacent.

Proof. Suppose that x and y are adjacent. By Claim 12, at least one of x and y is large.
Renaming vertices if necessary, we assume that y ∈ . Let y1 be neighbor of y different
from x and v.

Suppose that x ∈ . If y1 ∈ , then we letQ u v v v v x y= { , , , , , , }1 2 3 andG G Q′ = − . The
graph G′ is a connected subcubic graph. We note that k r′ + ′ = 1. Applying Claim 5 with
H G Q= [ ] and S v v y= { , , }H 1 3 , we have G G pw( ) < w( ′) + 10 where p γ H k= ( ) − ′ =r

k3 − ′. On the other hand, G G k r G pw( ) 32 + (w( ′) − 5 ′ − ′) = w( ′) + 4 + 19≥ .
Therefore, G p G G pw( ′) + 4 + 19 w( ) < w( ′) + 10≤ , and so p19 < 6 , that is, p 4≥ .
However, p k= 3 − ′ 3≤ , a contradiction. Hence, y1 ∈ . Let y2 be the neighbor
of y1 different from y. If y2 ∈ , then let G G u v v v v x y y′ = − { , , , , , , , }1 2 3 1 . In this
case, γ G γ G( ) ( ′) + 3r r≤ , implying that G γ G Gw( ) < 10 ( ) w( ′) + 30r ≤ . However,
G G Gw( ) 37 − (w( ′) − 1 − 4) w( ′) + 32≥ ≥ , a contradiction. Hence, y2 ∈ . Let y3 be

the neighbor of y2 different from y1. By Claim 3, y3 ∈ . In this case, let
Q u v v v v x y y y= { , , , , , , , , }1 2 3 1 2 and let G G Q′ = − . Applying Claim 5 with H G Q= [ ]

and S v v x y= { , , , }H 2 3 2 , we obtain a contradiction.
Hence, x ∈ . We now consider the graph G G u v v v v′ = − { , , , , }1 2 3 . Let S′ be a γr‐set

of G′. In this case, γ G γ G( ) ( ′) + 2r r≤ , implying that G γ G Gw( ) < 10 ( ) w( ′) + 20r ≤ . If
G rdom∉ , then G G Gw( ) 23 + (w( ′) − 2) = w( ′) + 21≥ , a contradiction. Hence,
G rdom∈ . We note that x and y are adjacent vertices of degree 2 in G′. Applying
Observation 1(f) to the graph G′ with X x y= { , }, we have γ G X γ G( ′; ) ( ′) − 1r r,dom ≤ . Let
S″ be a minimum type‐2 NeRD‐set ofG′ with respect to the set X . The set S v v″ { , }1 3∪ is a
RD‐set of G, implying that  γ G S γ G( ) ″ + 2 ( ′) + 1r r≤ ≤ and G Gw( ) < w( ′) + 10.
However, G G Gw( ) 23 + (w( ′) − 2 − 4) = w( ′) + 15≥ , a contradiction. □

By Claim 13.2, the vertices x and y are not adjacent. Let G′ be obtained from
G u v v v v− { , , , , }1 2 3 by adding the edge xy. Suppose that G′ rdom∉ , implying that

G Gw( ) 23 + w( ′)≥ . Let S′ be a γr‐set of G′. If x S′∈ , let S v v= { , }2 . If x S′∉ and y S′∈ ,
let S u v= { , }1 . If x S′∉ and y S′∉ , let S v v= { , }1 3 . In all cases, S is an RD‐set of G,
and so  γ G S γ G( ) + 2 = ( ′) + 2r r≤ , implying that G γ G Gw( ) < 10 ( ) w( ′) + 20r ≤ , a
contradiction. Hence, G′ rdom∈ . Let G G v* = − 3, and so G* is obtained from G′ by
subdividing the added edge xy four times resulting in the path xuv v vy1 2 .

Suppose thatG R′ 2≠ orG R′ = 2 and neither x nor y is an open twin inG′. In this case, by
Observation 6(a) there exists an RD‐set S* ofG* such that v S*2 ∈ and  S γ G* ( )r≤ . The set
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S v* { }3∪ is a RD‐set of G, and so  γ G S γ G( ) * + 1 ( ′) + 1r r≤ ≤ , implying that
G γ G Gw( ) < 10 ( ) w( ′) + 10r ≤ . However, G G Gw( ) 23 + (w( ′) − 4) = w( ′) + 19≥ , a

contradiction. Hence, G R′ = 2 and x or y is an open twin in G. In this case, by
Observation 6(b) there exists an RD‐set S* ofG* such that v S*2 ∈ and  S γ G* ( ) + 1r≤ . The
set S v* { }3∪ is a RD‐set of G, and so  γ G S γ G( ) * + 1 ( ′) + 2r r≤ ≤ , implying that
G Gw( ) < w( ′) + 20. However since G R′ = 2, in this case G Gw( ) 23 + (w( ′) − 2) =≥

Gw( ′) + 21, a contradiction. This completes the proof of Claim 13. □

Claim 14. The removal of a bridge joining two large vertices cannot create a component
that belongs to rdom .

Proof. Let e xy= be a bridge inG joining two adjacent large vertices x and y. LetGx and
Gy be the components ofG e− containing x and y, respectively. We note that bothGx and
Gy are connected special subcubic graphs. Suppose, to the contrary, that at least one ofGx
and Gy belongs to rdom . Renaming components if necessary, we may assume that
Gy rdom∈ .

Suppose that Gx rdom∈ . Since there is no handle in G, we note that G Rx 1≠ and
G Ry 1≠ . Therefore, G G G G Gw( ) (w( ) − 1 − 4) + (w( ) − 1 − 4) = w( ) + w( ) − 10x y x y≥ .
By Observation 1(b) there exists a γr‐set Sx of Gx that contains x . A type‐1 NeRD‐set of Gy
with respect to the vertex y can be extended to a RD‐set of G by adding to it the set Sx.
Hence by Observation 1(d), γ G γ G γ G y γ G γ G( ) ( ) + ( ; ) ( ) + ( ) − 1r r x r r x r y,ndom≤ ≤ . Hence,
γ G γ G γ G G G G10 ( ) 10( ( ) + ( ) − 1) w( ) + w( ) − 10 w( )r r x r y x y≤ ≤ ≤ , a contradiction.
Hence, Gx rdom∉ . By Claim 13 if G R=y 2, then the vertex y cannot be one of the two

open twins in R2. Let Sx be a γr‐set ofGx . If x Sx∈ , then let Sy be a minimum type‐1 NeRD‐set
ofGy with respect to the vertex y. In this case, the set S Sx y∪ is an RD‐set ofG, implying by
Observation 1(d) that    γ G S S γ G γ G y γ G γ G( ) + ( ) + ( ; ) ( ) + ( ) − 1r x y r x r r x r y,ndom≤ ≤ ≤ .
If x Sx∉ , then let Sy is a minimum type‐2 NeRD‐set of Gy with respect to the vertex
y. In this case, the set S Sx y∪ is an RD‐set of G, implying by Observation 1(e)
that    γ G S S γ G γ G y γ G γ G( ) + ( ) + ( ; ) ( ) + ( ) − 1r x y r x r r x r y,dom≤ ≤ ≤ . In both cases,
γ G γ G γ G( ) ( ) + ( ) − 1r r x r y≤ , implying that G G Gw( ) < w( ) + w( ) − 10x y . However,
G G G G Gw( ) (w( ) − 1) + (w( ) − 1 − 4) = w( ) + w( ) − 6x y x y≥ , a contradiction. □

Claim 15. The removal of the two small vertices on a 2‐linkage cannot create a
component that belongs to rdom .

Proof. Let P vv v u: 1 2 be a 2‐linkage, and so u v, ∈ and v v,1 2 ∈ . By Claim 9,
uv E G( )∉ . Suppose, to the contrary, that G G v v′ = − { , }1 2 creates a component that
belongs to rdom . Let Gu and Gv be the components of G e− containing u and v,
respectively, where we may assume renaming vertices, if necessary, that Gv rdom∈ .
Suppose thatG G=u v, and so the graphG′ is connected. In this case, let Sv be a minimum
type‐1 NeRD‐set of Gv with respect to the vertex v. The set S v{ }v 1∪ is an RD‐set
of G, implying by Observation 1 that γ G γ G v γ G( ) 1 + ( ; ) ( )r r r v,ndom≤ ≤ . Hence,
G γ G Gw( ) < 10 ( ) w( )r v≤ . However, G G Gw( ) = 10 + (w( ) − 2 − 4) = w( ) + 4v v , a

contradiction. Hence,G Gu v≠ , and soG′ is disconnected with two componentsGu andGv.
Let Su be a γr‐set ofGv. Suppose that u Su∈ . In this case, the set Su can be extended to an

RD‐set of G by adding to it a γr‐set of Gv that contains v, which exists by Observation 1(d),
implying that γ G γ G γ G( ) ( ) + ( )r r u r v≤ . Suppose that u Su∉ . By Observation 1(d),
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γ G v γ G( ; ) ( ) − 1r v r v,ndom ≤ . In this case, the set Su can be extended to an RD‐set of G by
adding to it the vertex v2 and a minimum type‐1 NeRD‐set ofGv with respect to the vertex v,
implying that  γ G S γ G v γ G γ G( ) + 1 + ( ; ) ( ) + ( )r u r v r u r v,ndom≤ ≤ . Thus in both cases,
γ G γ G γ G( ) ( ) + ( )r r u r v≤ , implying that G G Gw( ) < w( ) + w( )u v . However, Gw( ) 10≥

G G G G+(w( ) − 1 − 4) + (w( ) − 1 − 4) = w( ) + w( )u v u v , a contradiction. □

Claim 16. The removal of the small vertex on a 1‐linkage cannot create a component
that belongs to rdom .

Proof. Let P vv u: 1 be a 1‐linkage, and so u v, ∈ and v1 ∈ . By Claim 9, uv E G( )∉ .
Suppose, to the contrary, thatG G v′ = − 1 creates a component that belongs to rdom . Let
Gu and Gv be the components of G v− 1 containing u and v, respectively, where we may
assume renaming vertices if necessary, that Gv rdom∈ . Let u1 and u2 be the two
neighbors of u different from v1. Let Sv

1 be a minimum type‐1 NeRD‐set ofGv with respect
to the vertex v. By Observation 1(d),  S γ G v γ G= ( ; ) ( ) − 1v r v r v

1
,ndom ≤ . Let Sv

2 be a

minimum type‐2 NeRD‐set of Gv with respect to the vertex v. By Claim 13, if G R=v 2,
then the vertex v is not one of the open twins in Gv, implying by Observation 1(e) that
 S γ G v γ G= ( ; ) ( ) − 1v r v r v
2

,dom ≤ .

Suppose that u u E G( )1 2 ∈ . By Claim 11, u u,1 2 ∈ . Let Q V G u v= ( ) { , }v 1∪ and let
G G Q′ = − . Suppose that G′ rdom∈ . In this case, let S′ be a minimum type‐1 NeRD‐set of
G′ with respect to the vertex u1. By Observation 1(d),  S γ G u γ G′ ( ′; ) ( ′) − 1r r,ndom 1≤ ≤ . The

set S u S′ { } v
2∪ ∪ is a RD‐set of G, and so    γ G S S γ G( ) ′ + 1 + ( ( ′) − 1)+r v r

2≤ ≤
γ G γ G γ G1 + ( ( ) − 1) = ( ′) + ( ) − 1r v r r v , implying that G G Gw( ) < w( ′) + w( ) − 10v .

However, G G G G Gw( ) 9 + (w( ′) − 2 − 4) + (w( ) − 1 − 4) = w( ′) + w( ) − 2v v≥ , a
contradiction. Hence, G′ rdom∉ . Thus, G G Gw( ) 9 + (w( ′) − 2) + (w( ) − 1 − 4) =v≥
G Gw( ′) + w( ) + 2v . Every γr‐set ofG′ can be extended to an RD‐set ofG by adding to it the

set S u{ }v
2 ∪ , implying that  γ G γ G S γ G γ G( ) ( ′) + + 1 ( ′) + ( ( ) − 1) + 1 =r r v r r v

2≤ ≤
γ G γ G( ′) + ( )r r v . Thus, G G G G Gw( ) < w( ′) + w( ) w( ) − 2 < w( )v ≤ , a contradiction.

Hence, u u E G( )1 2 ∉ . Let Q V G u v= ( ) { , }v 1∪ and let G′ be obtained from G Q− by
adding the edge u u1 2. The resulting graphG′ is a connected subcubic graph. Suppose that
G′ rdom∈ . In this case, letQ Q u* = { }⧹ , and letG G Q* = − *, and soG* is obtained from
G′ by subdividing the added edge u u1 2 where u is the resulting new vertex of degree 2 in
G*. By Observation 2, γ G γ G( *) ( ′)r r≤ and there exists a γr‐set S* of G* that contains u.
The set S S* v

2∪ is a RD‐set of G, and so    γ G S S γ G γ G( ) * + ( ′) + ( ) − 1r v r r v
2≤ ≤ ,

implying that G G Gw( ) < w( ′) + w( ) − 10v . However, G Gw( ) 9 + (w( ′) − 4)+≥
G G G(w( ) − 1 − 4) = w( ′) + w( )v v , a contradiction. Hence, G′ rdom∉ . Thus,
Gw( ) 9+≥ G G G Gw( ′) + (w( ) − 1 − 4) = w( ′) + w( ) + 4v v . Let S′ be a γr‐set of G′. If at

least one of u1 and u2 belongs to S′, let S S u S= ′ { } v
2∪ ∪ . If u S′1 ∉ and u S′2 ∉ , let

S S v S= ′ { } v1
1∪ ∪ . In both cases, S is an RD‐set of G and    S S′ + 1+≤

γ G γ G γ G( ) − 1 = ( ′) + ( )r v r r v . Thus, G G G G Gw( ) < w( ′) + w( ) w( ) − 4 < w( )v ≤ , a
contradiction. □

By our earlier observations, every edge of G either joins two large vertices or belongs to a
2‐linkage or belongs to a 1‐linkage. Hence as an immediate consequence of Claims 14, 15, and
16, we have the following property of the graph G.

784 | BREŠAR and HENNING

 10970118, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23095 by C

ochrane Slovenia, W
iley O

nline L
ibrary on [18/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Claim 17. The removal of a bridge cannot create a component that belongs to rdom .

As a consequence of Claim 17, we have the following claim.

Claim 18. The graph G does not contain R10 as a subgraph.

Proof. Suppose, to the contrary, that R′ is a subgraph of G, where R R′ = 10. Let v be
small vertex (of degree 2) in R′. SinceG rdom∉ , we note that R G′ ≠ , implying that v is a
large vertex inG. Let v′ be the vertex adjacent to v that does not belong to R′. The edge vv′
is a bridge of G whose removal creates a R10‐component, contradicting Claim 17. □

We are now in a position to prove that there is no 2‐linkage in G.

Claim 19. There is no 2‐linkage in G.

Proof. Suppose, to the contrary, that G contains a 2‐linkage. Let P uv v v: 1 2 be a 2‐
linkage, where x and y are the two neighbors of v not on P.

Claim 19.1. At least one of ux and uy is not an edge.

Proof. Suppose, to the contrary, that u is adjacent to both x and y. By Claim 13,
x y, ∈ . If xy is an edge, then the graph G is determined and γ G( ) = 2r and Gw( ) = 26,
a contradiction. Hence, xy is not an edge. Let x1 and y1 be the neighbors of x and y, and
let G G u v v′ = − { , , }1 2 . Suppose G′ rdom∈ . In this case, xvy is a path in G′ where x v, ,
and y all have degree 2 in G′, implying that G R R R′ { , , }1 3 8∈ . If G R′ = 1, then G R= 5, a
contradiction. If G R′ = 3, then G could contain a 3‐linkage, a contradiction. If G R′ = 8,
then G is determined and γ G( ) 6r ≤ and Gw( ) = 60, a contradiction. Hence, G′ rdom∉ ,
implying that G G Gw( ) = 14 + (w( ′) − 3) = w( ′) + 11. Let S′ be a γr‐set of G′. If v S∉ ,
then either x S′∈ and y S′∉ or x S′∉ and y S′∈ . In this case, we let S S v= ′ { }2∪ . If
v S′∈ and neither x not y belongs to S′, then we let S S u= ′ { }∪ . If v S′∈ and at least
one of x and y belongs to S′, then we let S S v= ′ { }2∪ . In all cases, S is an RD‐set of G,
and so    γ G S S γ G( ) = ′ + 1 = ( ′) + 1r r≤ , and so G Gw( ) < w( ′) + 10. This contradicts
our earlier observation that G Gw( ) = w( ′) + 11. □

Claim 19.2. Neither ux nor uy is an edge.

Proof. Suppose, to the contrary, thatu is adjacent to exactly one of x and y. We may assume
that uy is an edge. By Claim 13, y ∈ . By Claim 19.1, ux is not an edge. LetG′ be obtained
from G v v v− { , , }1 2 by adding the edge ux . The graph G′ is a connected special subcubic
graph of order less than n. Let S′ be a γr‐set ofG′. Ifu S∈ , then let S S v= ′ { }∪ . Ifu S′∉ and
x S′∈ , then we let S S v= ′ { }1∪ . If u S′∉ and x S′∉ , then we let S S v= ′ { }2∪ . In all cases,
S is an RD‐set ofG, and so    γ G S S γ G( ) = ′ + 1 = ( ′) + 1r r≤ , and so G Gw( ) < w( ′) + 10.
If G R R R′ { , , }1 4 5∉ , then G G Gw( ) 14 + (w( ′) − 1 − 3) = w( ′) + 10≥ , a contradiction.
Hence, G R R R′ { , , }1 4 5∈ . Since u is a vertex of degree 3 in G′, we note that G R′ 1≠ . If
G R′ = 4, then G R= 7, a contradiction. If G R′ = 5, then G R= 6, a contradiction. □
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By Claim 19.2, the vertex u is adjacent to neither x nor y. Renaming vertices if
necessary, we may assume that x ydeg ( ) deg ( )G G≤ .

Claim 19.3. x y, ∈ .

Proof. Suppose that y ∈ . Let G′ be obtained from G v v v− { , , }1 2 by adding the edge
ux . As in the proof of Claim 19.2,    γ G S S γ G( ) = ′ + 1 = ( ′) + 1r r≤ , implying that

G Gw( ) < w( ′) + 10. If no component ofG′ belongs to rdom , then G Gw( ) = w( ′) + 13, a
contradiction. Hence, at least one component in G′ belongs to rdom . Suppose that G′ is
connected. Since u is a vertex of degree 3 inG′, we note thatG R′ 1≠ . IfG R R′ { , }4 5∈ , then
the graph G is determined and in all cases, γ G( ) = 4r and Gw( ) = 49, a contradiction.
Hence, G R R R{ , , }1 4 5∉ , implying that G G Gw( ) 14 + (w( ′) − 1 − 3) = w( ′) + 10≥ , a
contradiction.

Hence, G′ is disconnected with two components. Let Gx be the component of G′
containing the vertices u and x, and let Gy be the component containing the vertex y.
Both Gx and Gy are connected special subcubic graphs. Further, we note that the edge vy
is a bridge inG, implying by Claim 17 thatGy rdom∉ and thereforeGx rdom∈ . LetGv be
the component of G vy− that contains the vertex v. Thus, Gv is obtained from the graph
G′ by subdividing the edge ux three times, resulting in the path uv v vx1 2 .

Let Sv
1 be a minimum type‐1 NeRD‐set ofGv with respect to the vertex v, and let Sv

2 be a
minimum type‐2 NeRD‐set of Gv with respect to the vertex v. By Observation 4,
 S γ G v γ G= ( *; ) ( ′)v r r
1

,ndom 1 ≤ and  S γ G v γ G= ( *; ) ( ′)v r r
2

,dom 1 ≤ . Let Sy be a γr‐set of Gy. If
y Sy∈ , let S S S= y v

1∪ . If y Sy∉ , let S S S= y v
2∪ . In both cases, S is an RD‐set of G,

implying that γ G γ G γ G( ) ( ) + ( ′)r r y r≤ , and so G G Gw( ) < w( ) + w( ′)y . However,
G G G G Gw( ) 14 + (w( ′) − 4) + (w( ) − 1) = w( ) + w( ′) + 9y y≥ , a contradiction. Hence,

y ∈ . By our choice of the vertex x , this implies that x ∈ . □

By Claim 19.3, x ∈ and y ∈ . Thus, all three neighbors of v are small vertices.
Interchanging the roles of u and v, analogous arguments show that all three neighbors of
u are small vertices. Recall that ux E G( )∉ and uy E G( )∉ , and so u and v do not have a
common neighbor. By Claim 11, no small vertex belongs to a triangle, implying that
xy E G( )∉ . Let x1 and y1 be the neighbors of x and y, respectively, different from v.
Possibly, x y=1 1.

Claim 19.4. x y1 1≠ .

Proof. Suppose, to the contrary, that x y=1 1. In this case, we let z x= 1. Since G has no
handle, z ∈ . Thus, C vxzyv: is a 4‐cycle in G, where v z, ∈ and x y, ∈ . Let z1 be
the neighbor of z different from x and y. Since all three neighbors of u belong to  , we
note that uz E G( )∉ . Thus, u z1≠ . Let G′ be obtained from G v v x y z− { , , , , }2 by adding
the edge v z1 1. The resulting graph G′ is a connected subcubic graph.

Suppose that G′ rdom∈ . Let G G y* = − , that is, G* is obtained from G′ by
subdividing the added edge v z1 1 four times resulting in the path v v vxzz1 2 1. By Observation
5, there exists a RD‐set S* of G* such that  S γ G* ( ′) + 1r≤ and S v v x z v z* { , , , } = { , }2 2∩ .
The set S* is an RD‐set of G, and so  γ G S γ G( ) * = ( ′) + 1r r≤ , implying that
G Gw( ) < w( ′) + 10. Noting that G R′ 1≠ and the degrees of the vertices in G′ are the

same as their degrees in G, we have G G Gw( ) 23 + (w( ′) − 4) = w( ′) + 19≥ , a
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contradiction. Hence, G′ rdom∉ , implying that G Gw( ) = 22 + w( ′). Let S′ be a γr‐set of
G′. If at least one of v1 and z1 belongs to S′, let S S v z= ′ { , }2∪ . If u S′1 ∉ and z S′1 ∉ , let
S S v x= ′ { , }∪ . In both cases, S is an RD‐set of G and    S S γ G′ + 2 = ( ′) + 2r≤ . Thus,

G Gw( ) < w( ′) + 20, a contradiction. □

By Claim 19.4, x y1 1≠ . By Claim 12 if x1 ∈ , then ux E G( )1 ∉ and if y1 ∈ , then
uy E G( )1 ∉ .

Claim 19.5. x y E G( )1 1 ∈ .

Proof. Suppose that x y E G( )1 1 ∉ . Let G′ be obtained from G v v v x y− { , , , , }1 2 by adding
the edge x y1 1. The resulting graph G′ is a subcubic graph. We note that either G′ is
connected or has two components. Let Gxy be the component of G′ containing the added
edge x y1 1. If G′ is disconnected, then let Gu be the second component of G′ which
necessarily contains the vertex u. In this case, the edge uv1 is a bridge in G, implying by
Claim 17 that Gu rdom∉ . Therefore, the component Gxy is the only possible component
of G′ that belongs to rdom .

Let S′ be a γr‐set of G′. If x S′1 ∈ , let S S v y= ′ { , }1∪ . If x S′1 ∉ and y S′1 ∈ , let
S S v x= ′ { , }1∪ . If x S y S′, ′1 1∉ ∉ and u S′∈ , let S S v= ′ { }∪ . If x S y S′, ′1 1∉ ∉ and
u S′∉ , let S S v v= ′ { , }2∪ . In all cases, S is an RD‐set ofG and    S S γ G′ + 2 = ( ′) + 2r≤ .
Thus, G γ G Gw( ) < 10 ( ) w( ′) + 20r ≤ . If G′ has no component in rdom , then
G G Gw( ) 24 + (w( ′) − 1) = w( ′) + 23≥ , a contradiction. Hence by our earlier

observations, G′ has exactly one component in rdom , namely the component Gxy. By
our earlier properties of the graph G, we note that G Rxy 1≠ . If G R R{ , }xy 4 5∉ , then
G G Gw( ) 24 + (w( ′) − 1 − 3) = w( ′) + 20≥ , a contradiction. Hence, G R R{ , }xy 4 5∈ ,

implying that G G Gw( ) = 24 + (w( ′) − 1 − 4) = w( ′) − 19.
IfG′ is connected, thenG G′ = xy and we letG G v v* = − { , }1 2 . IfG′ is disconnected, then

G′ consists of the two components Gu and Gxy and we let G G V G v v* = − ( ( ) { , })u 1 2∪ . In
both cases,G* is the graph obtained fromGxy by subdividing the added edge x y1 1 three times
resulting in the path x xvyy1 1. Recall that G R R{ , }xy 4 5∈ . Applying Observation 4 we have
γ G v γ G( *; ) ( )r r xy,dom ≤ . Thus, there exists a type‐2 NeRD‐set S* in G* with respect to the
vertex v such that  S γ G* ( )r xy≤ . IfG′ is connected, then let S S= *, and note that in this case,
 S γ G v γ G γ G( *; ) ( ) = ( ′)r r xy r,dom≤ ≤ . If G′ is disconnected, let S S S= * u∪ where Su is a γr‐
set ofGu, and note that in this case,  S γ G v γ G γ G γ G γ G( *; ) + ( ) ( + ( ) = ( ′)r r u r xy r u r,dom≤ ≤ .
In both cases,  S γ G( ′)r≤ . Further, in both cases S v{ }1∪ is a RD‐set of G, implying that

 γ G S γ G( ) + 1 ( ′) + 1r r≤ ≤ . Hence, G γ G Gw( ) < 10 ( ) w( ′) + 10r ≤ , a contradiction. □

By Claim 19.5, x y E G( )1 1 ∈ . SinceG has no handle, at least one of x1 and y1 is large. If
exactly one of x1 and y1 is large, then we would contradict Claim 13. Hence, x1 ∈ and
y1 ∈ . Let G G v v v x y′ = − { , , , , }1 2 . The resulting graph G′ is a special subcubic graph.
Let Gxy be the component of G′ containing the edge x y1 1, and let Gu be the component of
G′ containing the vertex u. If G′ is connected, then G G=u xy. If G′ is disconnected, then
Gxy and Gu are the two components of G′. Further, in this case, uv1 is a bridge in G,
implying by Claim 17 that Gu rdom∉ . Therefore, the component Gxy is the only possible
component of G′ that belongs to rdom .

Let S′ be a γr‐set of G′. If u x y S{ , , } ′1 1 ⊆ , let S S v v= ′ { , }1 2∪ . If S u x y u y′ { , , } = { , }1 1 1∩ ,
let S S v x= ′ { , }1∪ . If S u x y u y′ { , , } = { , }1 1 1∩ , let S S v y= ′ { , }1∪ . If S u x y u′ { , , } = { }1 1∩ ,
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let S S v= ′ { }∪ . If S u x y x y′ { , , } = { , }1 1 1 1∩ , let S S v= ′ { }2∪ . If S u x y x′ { , , } = { }1 1 1∩ , let
S S v y= ′ { , }2∪ . If S u x y y′ { , , } = { }1 1 1∩ , let S S v x= ′ { , }2∪ . If S u x y′ { , , } =1 1∩ ∅, let
S S v v= ′ { , }2∪ . In all cases, S is an RD‐set of G and    S S γ G′ + 2 = ( ′) + 2r≤ . Thus,

G γ G Gw( ) < 10 ( ) w( ′) + 20r ≤ .
If Gxy rdom∉ or if Gxy rdom,1∈ , then G G Gw( ) 24 + (w( ′) − 3 − 1) = w( ′) + 20≥ , a

contradiction. Hence, G R R R R R R{ , , , , , }xy 1 2 3 4 5 9∈ . We note that x1 and y1 are adjacent
vertices of degree 2 in Gxy, implying that G R R{ , }xy 4 9∉ . If G R=xy 1, then necessarily
G G′ = xy and the graph G is determined. In this case, γ G( ) = 4r and Gw( ) = 46, a
contradiction. Hence, G Rxy 1≠ . If G R=xy 3, then since G has no 3‐linkage, G G′ = xy and
the graph G is determined. In this case, γ G( ) = 5r and Gw( ) = 59, a contradiction.
Hence, G Rxy 3≠ . Therefore, G R R{ , }xy 2 5∈ . By our earlier observations, the vertex u is
adjacent to neither x1 nor y1. Further, we note that the vertex u and its two neighbors in
G′, as well as x1 and y1, all have degree 2 in G′. Moreover, x y1 1 in an edge. These
properties implies thatG′ is disconnected. Thus,G′ has two components, namely Gxy and
Gu. As observed earlier, Gu rdom∉ . Let x2 and y2 be the neighbors of x1 and y1,
respectively, in Gxy.

Suppose that G R=xy 2. We note that x2 and y2 are the two large vertices in R2. Let z1
and z2 be the two common neighbors of x2 and y2 in Gxy. Thus, the graph in Figure 7 is a
subgraph of G. Let Su be a γr‐set of Gu. If u Su∈ , let S v x y z= { , , , }2 1 . If u Su∉ , let
S v x x y= { , , , }2 1 2 1 . In both cases, S is an RD‐set ofG, and so  γ G S γ G( ) + 4 = ( ) + 4r u r u≤ .
Hence, G Gw( ) < w( ) + 40u . However, G G Gw( ) = 50 + (w( ) − 1) = w( ) + 49u u , a
contradiction.

Hence,G Rxy 2≠ , and soG R=xy 5. Let x3 and y3 be the two common neighbors of x2 and y2
inGxy, and let x4 and y4 be the remaining vertices inGxy, where x x y y3 4 4 3 is a path. Thus, the
graph in Figure 8 is a subgraph ofG. Let Su be a γr‐set ofGu, and let S S v x y x y= { , , , , }u 1 3 3∪ .
The set S is an RD‐set of G, and so  γ G S γ G( ) + 5 = ( ) + 5r u r u≤ . Hence,
G Gw( ) < w( ) + 50u . However, G G Gw( ) = 58 + (w( ) − 1) = w( ) + 57u u , a contradiction.

This completes the proof of Claim 19. □

FIGURE 7 A subgraph in the proof of Claim 19 when G R=xy 2.

FIGURE 8 A subgraph in the proof of Claim 19 when G R=xy 5.
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By Claim 19, there is no 2‐linkage inG. By our earlier observations, every vertex of degree 2
in G, if any, therefore belongs to a 1‐linkage.

Claim 20. Two large vertices cannot be the ends of two common 1‐linkages.

Proof. Suppose, to the contrary, that there are two large vertices u and v such that uv v1
and vv u2 are 1‐linkages in G. Thus, C uv vv u: 1 2 is a 4‐cycle in G, where u v, ∈ and
v v,1 2 ∈ .

Claim 20.1. The vertices v1 and v2 are the only two common neighbors of u and v.

Proof. Suppose that u and v have a third common neighbor v3. If v3 ∈ , then γ G( ) = 2r

and Gw( ) = 23, a contradiction. Hence, v3 ∈ . Let v4 be the neighbor of v3 different from u

and v. if v4 ∈ , then let G G u v v v v′ = − { , , , , }1 2 3 . By Claim 17, G′ rdom∉ . Every γr‐set of
G′ can be extended to an RD‐set of G by adding to it v and v1, and so γ G γ G( ) ( ′) + 2r r≤ ,
implying that G Gw( ) < w( ′) + 20. However, G G Gw( ) = 22 + (w( ′) − 1) = w( ′) + 21, a
contradiction. Hence, v4 ∈ . Let v5 be the neighbor of v4 different from v3. If v5 ∈ , then let
G G u v v v v v′ = − { , , , , , }1 2 3 4 . By Claim 17, G′ rdom∉ . Let S′ be a γr‐set of G′. If v S′5 ∈ , let
S S v v= ′ { , }1∪ . If v S′5 ∉ , let S S v v= ′ { , }3∪ . In both cases, S is an RD‐set of G, and so

   γ G S S γ G( ) = ′ + 2 = ( ′) + 2r r≤ , implying that G Gw( ) < w( ′) + 20. However,
G G Gw( ) = 27 + (w( ′) − 1) = w( ′) + 26, a contradiction. Hence, v5 ∈ . Let v6 be

the neighbor of v5 different from v4. By Claim 3, v6 ∈ . In this case, let
G G u v v v v v v′ = − { , , , , , , }1 2 3 4 5 . By Claim 17, G′ rdom∉ . Every γr‐set of G′ can be
extended to an RD‐set of G by adding to it v v v{ , , }1 5 , and so γ G γ G( ) ( ′) + 3r r≤ ,
implying that G Gw( ) < w( ′) + 30. However, G G Gw( ) = 32 + (w( ′) − 1) = w( ′) + 31, a
contradiction. □

By Claim 20.1, the vertices v1 and v2 are the only two common neighbors of u and v.
Let x be the neighbor of u different from v1 and v2, and let y be the neighbor of v different
from v1 and v2.

Claim 20.2. The vertices x and y are not adjacent.

Proof. Suppose that x and y are adjacent. If x ∈ and y ∈ , then G R= 2, a
contradiction. Hence at least one of x and y are large. Renaming vertices if necessary,
assume that y ∈ . Let y1 be neighbor of y different from x and v. If x ∈ , then the edge
yy1 is a bridge whose removal creates an R2‐component, contradicting Claim 17. Hence,
x ∈ . Let x1 be neighbor of x different from u and y.

Suppose that x y1 1≠ . In this case, let G′ be obtained from G u v v v y′ − { , , , , }1 2 by adding
the edge xy1. Let S′ be a γr‐set of G′. If x S′∈ , let S S v y= ′ { , }∪ . If x S′∉ and y S1 ∈ , let
S S u v= ′ { , }1∪ . If x S′∉ and y S1 ∉ , let S S v v= ′ { , }1∪ . In all cases, S is an RD‐set
of G, and so    γ G S S γ G( ) = ′ + 2 = ( ′) + 2r r≤ , implying that G Gw( ) < w( ′) + 20. If
G′ rdom∉ , then G Gw( ) = w( ′) + 21, a contradiction. Hence,G′ rdom∈ . LetG G v* = − 2,
that is, G* is obtained from G′ by subdividing the edge xy1 four times resulting in the path
xuv vyy1 1. By Observation 5, there exists an RD‐set S* ofG* such that S u v v y u y* { , , , } = { , }1∩
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and  S γ G* ( ′) + 1r≤ . The set S* is an RD‐set of G, and so  γ G S γ G( ) * ( ′) + 1r r≤ ≤ ,
implying that G Gw( ) < w( ′) + 10. However, G G Gw( ) 22 + (w( ′) − 1 − 4) = w( ′) + 17≤ , a
contradiction.

Hence, x y=1 1. In this case, we let z x= 1. Since no small vertex belongs to a triangle, we
note that z ∈ . Let z1 be the neighbor of z different from x and y. If z1 ∈ , then we let
G G u v v v x y z′ = − { , , , , , , }1 2 . By Claim 17, we note that G′ rdom∉ . Since γ G( )r ≤

γ G( ′) + 2r , we have G Gw( ) < w( ′) + 20. However, G Gw( ) = 30 + (w( ′) − 1) =

Gw( ′) + 29, a contradiction. Hence, z1 ∈ . Let z2 be the neighbor of z1 different from z.
Since every vertex of degree 2 belongs to a 1‐linkage, we note that z2 ∈ . We now let
G G u v v v x y z z′ = − { , , , , , , , }1 2 1 . By Claim 17, we note that G′ rdom∉ . Since
γ G γ G( ) ( ′) + 3r r≤ , we have G Gw( ) < w( ′) + 30. However, G Gw( ) = 35 + (w( ′) − 1) =

Gw( ′) + 34, a contradiction. □

By Claim 20.2, the vertices x and y are not adjacent.

Claim 20.3. x ∈ and y ∈ .

Proof. Suppose that at least one of x and y is small. Renaming vertices if necessary, we
may assume that x ∈ . Let z be the neighbor of x different from u. Necessarily, z ∈ .
Suppose that yz E G( )∉ . In this case, let G′ be the connected subcubic graph obtained
from G u v v v x− { , , , , }1 2 by adding the edge yz. Let S′ be a γr‐set of G′. If at least one of z
and y belongs to S′, let S S v x= ′ { , }∪ . If z S′∉ and y S′∉ , let S S u v= ′ { , }1∪ . In both
cases, S is an RD‐set of G, and so    γ G S S γ G( ) ′ + 2 = ( ′) + 2r r≤ ≤ . Thus,
G Gw( ) < w( ′) + 20. If G R R R′ { , , }1 4 5∉ , then G Gw( ) w( ′) + 20≥ , a contradiction.

Hence, G R R R′ { , , }1 4 5∈ . Since every vertex of degree 2 in G belongs to a 1‐linkage,
G R R′ { , }1 5∉ , and so G R′ = 4. Let G G v* = − 2, and so G* is obtained from G′ by
subdividing the added edge yz four times resulting in the path zxuv vy1 . By Observation 5,
there exists an RD‐set S* of G* such that S x u v v x v* { , , , } = { , }1∩ and  S γ G* ( )r≤ .
The set S* is an RD‐set of G, and so  γ G S γ G( ) * ( ′)r r≤ ≤ , implying that
G γ G Gw( ) < 10 ( ′) w( ′)r ≤ . However, w G G( ) = w( ′) + 19, a contradiction. Hence,

yz E G( )∈ . Recall that x ∈ and z ∈ .
Suppose that y ∈ . In this case, let G G u v v v x′ = − { , , , , }1 2 . We note that

γ G γ G( ) ( ′) + 2r r≤ , implying that G Gw( ) < w( ′) + 20. If G′ rdom∉ , then
G Gw( ) w( ′) + 21≥ , a contradiction. Hence, G′ rdom∈ . A type‐1 NeRD‐set of G′ with

respect to the vertex y can be extended to an RD‐set of G by adding to it the set v x{ , }.
Therefore by Observation 1, γ G γ G y γ G γ G( ) ( ′; ) + 2 ( ( ) − 1) + 2 = ( ) + 1r r r r,ndom≤ ≤ ,
implying that G Gw( ) < w( ′) + 10. However, G Gw( ) w( ′) + 17≥ , a contradiction.
Hence, y ∈ . Let z1 be the neighbor of z different from x and y.

If z1 ∈ , then letG G u v v v x y z′ = − { , , , , , , }1 2 . By Claim 17,G′ rdom∉ . We note that
γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30. However, G Gw( ) = w( ′) + 31, a
contradiction. Hence, z1 ∈ . Let z2 be the neighbor of z1 different from z. Necessarily,
z2 ∈ . We now letG G u v v v x y z z′ = − { , , , , , , , }1 2 1 . By Claim 17,G′ rdom∉ . Every γr‐set
of G′ can be extended to an RD‐set of G by adding to it the set v x z{ , , }1 , and so
γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30. However, G Gw( ) = w( ′) + 36, a
contradiction. □
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By Claim 20.3, x ∈ and y ∈ . Recall that x and y are not adjacent. Let x1 and x2 be
the two neighbors of x different from u.

Claim 20.4. x x E G( )1 2 ∈ .

Proof. Suppose that x x E G( )1 2 ∉ . Let G′ be the subcubic graph obtained from
G u v v v x− { , , , , }1 2 by adding the edge x x1 2. Let Gx be the component of G′ containing the
added edge x x1 2. If G′ is disconnected, then let Gy be the second component of G′ which
necessarily contains the vertex y. In this case, the edge vy is a bridge inG, implying by Claim
17 that Gy rdom∉ . Therefore, the component Gx is the only possible component of G′ that
belongs to rdom . Let S′ be a γr‐set of G′. If at least one of x1 and x2 belongs to S′, let
S S v x= ′ { , }∪ . If x S′1 ∉ and x S′2 ∉ , let S S u v= ′ { , }1∪ . In both cases, S is an RD‐set ofG,
and so    γ G S S γ G( ) ′ + 2 = ( ′) + 2r r≤ ≤ , implying that G Gw( ) < w( ′) + 20. If
Gx rdom∉ , then G Gw( ) w( ′) + 21≥ , a contradiction. Hence, Gx rdom∈ . Our earlier
properties of the graphG imply thatG Rx 1≠ . LetG* be obtained from Gx by subdividing the
added edge x x1 2 resulting in the path x xx1 2. Applying Observation 2, there exists a γr‐set S* of
G* such that x S*∈ and  S γ G γ G* = ( *) ( )r r x≤ . If G′ is connected, then let S S v= * { }∪ .
In this case,    S S γ G γ G* + 1 ( ) + 1 = ( ′) + 1r x r≤ ≤ . If G′ is disconnected, let
S S S v= * { }y∪ ∪ , where Sy is a γr‐set of Gy. In this case,      S S S* + + 1y≤ ≤

γ G γ G γ G( ) + ( ) + 1 = ( ′) + 1r x r y r . In both cases, S is an RD‐set of G and  S γ G( ′) + 1r≤ ,
implying that G Gw( ) < w( ′) + 10. However, G Gw( ) w( ′) − 17≥ , a contradiction. □

We now return to the proof of Claim 20. By Claim 20.4, x x E G( )1 2 ∈ . Since no vertex
of degree 2 belongs to a triangle in G, we note that x x,1 2 ∈ . Recall that y ∈ . If y is
adjacent to both x1 and x2, then the graphG is determined and γ G( ) = 2r and Gw( ) = 34,
a contradiction. Hence renaming vertices if necessary, we may assume that x y E G( )1 ∉ .
Let G′ be the connected subcubic graph obtained from G u v v v x− { , , , , }1 2 by adding the
edge x y1 . Let S′ be a γr‐set ofG′. If at least one of x1 and y belongs to S′, let S S v x= ′ { , }∪ .
If x S′1 ∉ and y S′∉ , let S S u v= ′ { , }1∪ . In both cases, S is an RD‐set of G, and so

   γ G S S γ G( ) ′ + 2 = ( ′) + 2r r≤ ≤ , implying that G Gw( ) < w( ′) + 20. If G′ rdom∉ ,
then G Gw( ) w( ′) + 21≥ , a contradiction. Hence,G′ rdom∈ . LetG G v* = − 2, that is,G* is
obtained from G′ by subdividing the edge x y1 four times resulting in the path x xuv vy1 1 . By
Observation 5, there exists an RD‐set S* of G* such that S x u v v x v* { , , , } = { , }1∩ and
 S γ G* ( ′) + 1r≤ . The set S* is an RD‐set of G, and so  γ G S γ G( ) * ( ′) + 1r r≤ ≤ , implying
that G Gw( ) < w( ′) + 10. However, G Gw( ) w( ′) + 17≥ , a contradiction. This completes
the proof of Claim 20. □

By Claim 20, there is no 4‐cycle in G that contains two small (nonadjacent) vertices.

Claim 21. No small vertex in G belongs to a 4‐cycle.

Proof. Suppose, to the contrary, that there is a vertex v ∈ that belongs to a 4‐cycle
C vv v v v: 1 2 3 . By our earlier observations, vi ∈ for i [3]∈ . Let ui be the neighbor of vi
that does not belong to C for i [3]∈ .

Claim 21.1. u1 ∈ and u3 ∈ .
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Proof. Suppose that at least one of u1 and u3 is small. Renaming vertices if necessary, we
may assume that u1 ∈ . Since no small vertex belongs to a triangle, u v E G( )1 2 ∉ . Since
no 4‐cycle contains two small vertices, u v E G( )1 3 ∉ . Let u be the neighbor of u1 different
from v1. By our earlier observations, u ∈ and u v v{ , }2 3∉ . If u is adjacent to both v2 and
v3, then the graphG is determined and γ G( ) = 2r and Gw( ) = 26, a contradiction. Hence,
u is not adjacent to at least one of v2 and v3.

Suppose that uv E G( )3 ∉ . In this case, letG′ be the connected subcubic graph obtained
from G v v u− { , , }1 1 by adding the edge uv3. Let S′ be a γr‐set of G′. If u S′∈ , let
S S v= ′ { }∪ . If u S′∉ and v S′3 ∈ , let S S u= ′ { }1∪ . If u S′∉ and v S′3 ∉ , let S S v= ′ { }1∪ .
In all cases, S is an RD‐set ofG, and so    γ G S S γ G( ) ′ + 1 = ( ′) + 1r r≤ ≤ , implying that
G Gw( ) < w( ′) + 10. If G R R R′ { , , }1 4 5∉ , then G Gw( ) w( ′) + 10≥ , a contradiction.

Hence, G R R R′ { , , }1 4 5∈ . We note that u and v3 are adjacent vertices of degree
3 in G′, and so G R′ 1≠ . Since there is no 2‐linkage in G, we note that G R′ 5≠ . Hence,
G R′ = 4. The graph G is now determined and satisfies γ G( ) = 4r or Gw( ) = 49, a
contradiction.

Hence, uv E G( )3 ∈ , that is, u u= 3. We now let G G v v u′ = − { , , }1 1 . The graph G′ is a
connected subcubic graph. Let S′ be a γr‐set ofG′. If u S′∈ , let S S v= ′ { }∪ . If u S′∉ and
v S′3 ∈ , let S S u= ′ { }1∪ . If u S′∉ and v S′3 ∉ , let S S v= ′ { }1∪ . In all cases, S is an RD‐
set of G, and so    γ G S S γ G( ) ′ + 1 = ( ′) + 1r r≤ ≤ , implying that G Gw( ) < w( ′) + 10. If
G′ rdom∉ or if G′ rdom,1∈ , then G Gw( ) w( ′) + 10≥ , a contradiction. Hence,
G′ irdom,∈ for some i {2, 3, 4, 5}∈ . Since uv v3 2 is a path in G′, and u v, 3, and v2 all
have degree 2 in G′, either G R′ = 1 or G R′ = 3. If G R′ = 1, then G would contain a
2‐linkage, and if G R′ = 3, then G would contain a 3‐linkage. Both cases produce a
contradiction. □

By Claim 21.1, u1 ∈ and u3 ∈ . If u u u= =1 2 3, then the graphG is determined and
γ G( ) = 2r and Gw( ) = 21, a contradiction. Renaming vertices if necessary, we may
assume that u u2 3≠ . In this case, let G′ be the subcubic graph obtained from
G v v v− { , , }1 2 by adding the edge u v2 3. Let G1 be the component of G′ containing the
vertex u1 and let G2 be the component of G′ containing the added edge u v2 3. If G′ is
connected, then G G G′ = =1 2. If disconnected, then the edge u v1 1 is a bridge in G,
implying by Claim 17 that G1 rdom∉ . Therefore, the component G2 is the only possible
component of G′ that belongs to rdom .

Let S′ be a γr‐set of G′. If u S′2 ∈ , let S S v= ′ { }∪ . If u S′2 ∉ and v S′3 ∈ , let
S S v= ′ { }2∪ . If u S′2 ∉ and v S′3 ∉ , let S S v= ′ { }1∪ . In all cases, S is an RD‐set ofG, and
so    γ G S S γ G( ) ′ + 1 = ( ′) + 1r r≤ ≤ , implying that G Gw( ) < w( ′) + 10. By our earlier
properties of the graph G, we note that G R2 1≠ . If G R R R{ , , }2 4 5 9∉ , then
G Gw( ) w( ) + 10≥ , a contradiction. Hence, G R R R{ , , }2 4 5 9∈ . If G′ is connected, then

the graph G is determined and either G R R{ , }2 4 5∈ , in which case γ G( ) 4r ≤ and
Gw( ) = 47, orG R=2 9, in which case γ G( ) 5r ≤ and Gw( ) = 58. In both cases, we have a

contradiction. Hence, G′ is disconnected.
Since every small vertex in G belongs to a 1‐linkage, the case G R=2 5 cannot occur,

and so G R R{ , }2 4 9∈ . Let Gv be the component of G v u− 1 1 that contains the vertex v.
Thus, Gv is obtained from G2 by subdividing the added edge u v2 3 three times resulting in
the path u v v vv2 2 1 3 and adding the edge v v2 3. If G R=2 4, then γ G( ) 4r v ≤ , and so
γ G γ G γ G γ G( ) ( ) + ( ) ( ) + 4r r r v r1 1≤ ≤ , implying that G Gw( ) < w( ) + 401 . However in
this case, G Gw( ) = w( ) + 471 , a contradiction. If G R=2 9, then γ G( ) 5r v ≤ , and so
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γ G γ G γ G γ G( ) ( ) + ( ) ( ) + 5r r r v r1 1≤ ≤ , implying that G Gw( ) < w( ) + 501 . However in
this case, G Gw( ) = w( ) + 581 , a contradiction. This completes the proof of Claim 21. □

Recall that no small vertex belongs to a triangle. By Claim 21, no small vertex in G belongs
to a 4‐cycle. Hence every cycle that contains a small vertex in G has at least five vertices.

Claim 22. No large vertex has two small neighbors and one large neighbor.

Proof. Suppose, to the contrary, that v ∈ and N v v v v( ) = { , , }1 2 3 where v v,1 2 ∈ and
v3 ∈ . Let u1 and u2 be the neighbors of v1 and v2, respectively, different from v. Since no
vertex of degree 2 belongs to a triangle or a 4‐cycle, u u N v{ , } ( ) =1 2 ∩ ∅. Further, u v1 1 and
u v2 2 are the only edges between u u{ , }1 2 and N v( ). Let u3 and w3 be the neighbors of v3
different from v3. The graph illustrated in Figure 9 is a subgraph of G.

Let G G v v v= − { , , }1 2 . The graph G′ is a subcubic graph with at most three
components. Let S′ be a γr‐set of G′. If u S′1 ∈ , let S S v= ′ { }2∪ . If u S′1 ∉ and u S′2 ∈ , let
S S v= ′ { }1∪ . If u S′1 ∉ and u S′2 ∉ , let S S v= ′ { }∪ . In all cases, S is an RD‐set of G, and
so    γ G S S γ G( ) ′ + 1 = ( ′) + 1r r≤ ≤ , implying that G Gw( ) < w( ′) + 10. If no
component belongs to rdom , then G Gw( ) w( ′) + 11≥ , a contradiction. Hence at least
one component of G′ belongs to rdom . Let H be such a component of G′. Possibly,
G H′ = . Since the removal of a bridge cannot create a component that belongs to rdom ,
the component H necessarily contains at least two vertices from the set u u v{ , , }1 2 3 . We
note that each of u u,1 2, and v3 has degree 2 inG′. Thus, at least one of u1 and u2 belong to
the component H .

Suppose that exactly one of u1 and u2 belong to H . Let G* be obtained from G′ by
adding the edge u u1 2. The resulting graphG* is a connected subcubic graph that contains
a bridge, namely the added edge u u1 2. Since no graph in rdom contains a bridge,
G* rdom∉ . Let S* be a γr‐set ofG*. If u S*1 ∈ , let S S v= * { }2∪ . If u S*1 ∉ and u S*2 ∈ , let
S S v= * { }1∪ . If u S*1 ∉ and u S*2 ∉ , let S S v= * { }∪ . In all cases, S is an RD‐set of G,
and so    γ G S S γ G( ) * + 1 = ( *) + 1r r≤ ≤ , implying that G Gw( ) < w( *) + 10. However,
since G* rdom∉ , we have G Gw( ) = w( *) + 13, a contradiction. Hence, u u V H{ , } ( )1 2 ⊂ .

Let X u u= { , }1 2 , and so X V H( )⊂ . As observed earlier, u1 and u2 have degree 2 in G′.
Let SH be a minimum type‐2 NeRD‐set in H with respect to the set X . By Observation 1(f),
we have  S γ H X γ H= ( ; ) ( ) − 1H r r,dom ≤ . Suppose that G H′ = . In this case, the set
S S v* = { }H H ∪ is a RD‐set of G, and so  γ G S γ H γ G( ) * + 1 ( ( ) − 1) + 1 = ( ′)r H r r≤ ≤ ,
implying that G Gw( ) < w( ′). However, G Gw( ) w( ′) + 7≥ , a contradiction. Hence,G H′ ≠ .
LetG3 be the component ofG′ containing the vertex v3, and soG H G′ = 3∪ . We note that the
removal of the bridge vv3 creates the component G3, implying that G3 rdom∉ . Let S3 be a
γr‐set of G3. In this case, the set S S S v* = { }H H 3∪ ∪ is a RD‐set of G, and so

   γ G S S γ H γ G γ G( ) * + + 1 ( ( ) − 1) + ( ) + 1 = ( ′)r H r r r3 3≤ ≤ . Therefore, G Gw( ) < w( ′).

FIGURE 9 A subgraph in the proof of Claim 22.
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However, G H G H G Gw( ) 14 + (w( ) − 2 − 4) + (w( ) − 1) = (w( ) + w( )) + 7 = w( ′) + 73 3≥ , a
contradiction. This completes the proof of Claim 22. □

By Claim 22, no large vertex has two small neighbors and one large neighbor. Hence if a
large vertex has a small neighbor, then it has either one small neighbor or three small
neighbors.

Claim 23. No large vertex has exactly one small neighbor.

Proof. Suppose, to the contrary, that v ∈ has exactly one small neighbor. Let
N v v v v( ) = { , , }1 2 3 , where v1 ∈ and v v,2 3 ∈ . Let u be the neighbor of v1 different from
v. Necessarily, u ∈ . Let u1 and u2 be the two neighbors of u different from v1. Since no
vertex of degree 2 belongs to a 3‐cycle or 4‐cycle, the vertices u u v v, , ,1 2 2 3 are pairwise
distinct.

Claim 23.1. u u{ , }1 2 ⊂ .

Proof. Suppose, to the contrary, that at least one of u1 and u2 is large. By Claim 22 this
implies that both u1 and u2 are large. Let G G u v v′ = − { , , }1 . Suppose that G′ contains a
component F such that F rdom∈ . Since the removal of a bridge cannot create a
component that belongs to rdom , the component F contains at least two vertices from the
set u u v v{ , , , }1 2 2 3 .

Suppose that F contains a vertex from both u u{ , }1 2 and v v{ , }2 3 . By symmetry, and
renaming vertices if necessary, we may assume that u v V F{ , } ( )2 3 ⊂ . We note that both u2
and v3 have degree 2 in F . Applying Observation 1(f) to the graph F with X u v= { , }2 3 , we
have γ F X γ F( ; ) ( ) − 1r r,dom ≤ . Let SF be a minimum type‐2 NeRD‐set of F with respect to
the set X , and so  S γ F X γ F= ( ; ) ( ) − 1F r r,dom ≤ .

Suppose that F is the only component of G′ that belongs to rdom . If G′ is connected,
then the set S v{ }F 1∪ is an RD‐set ofG. IfG′ is disconnected, then the set S v{ }F 1∪ can be
extended to an RD‐set by adding to it a γr‐set from the component(s) of G′ different from
F . In both cases, we infer that γ G γ G γ G( ) 1 + ( ( ′) − 1) = ( ′)r r r≤ , implying that
G Gw( ) < w( ′). Since G′ has exactly one component that belongs to rdom , we have
G Gw( ) w( ′) + 4≥ , a contradiction. Hence, the graph G′ contains a component H ,

different from F , that belongs to rdom . In this case, u v V H{ , } ( )1 2 ⊂ and, analogously as
with the component F , there exists a minimum type‐2 NeRD‐set of H with respect
to the set u v{ , }1 2 satisfying  S γ H( ) − 1H r≤ . The set S S v{ }F H 1∪ ∪ is a RD‐set of G,
and so    γ G S S γ F γ H γ G( ) 1 + + 1 + ( ( ) − 1) + ( ( ) − 1) = ( ′) − 1r F H r r r≤ ≤ , noting that
G F H′ = ∪ . This implies that G Gw( ) w( ′) − 10≤ . However, Gw( ) 13+≥

G G(w( ′) − 4 − 5 − 5) = w( ′) − 1, a contradiction. Hence, if the graph G′ contains a
component C in rdom , then either u u V C{ , } ( )1 2 ⊆ and v v V C{ , } ( ) =2 3 ∩ ∅ or
v v V C{ , } ( )2 3 ⊆ and u u V C{ , } ( ) =1 2 ∩ ∅. If all edges are present between u u{ , }1 2 and
v v{ , }2 3 , then G R= 10, a contradiction. Hence renaming vertices if necessary, we may
assume that u v E G( )1 2 ∉ .

LetG″ be the graph obtained fromG′ by adding the edge u v1 2. The resulting graphG′ is
a subcubic graph with at most three components. Let G1 be the component of G′
containing the added edge u v1 2, and let G2 and G3 be the components of G′ containing v3
and u2, respectively. If G′ is connected, then G G G= =1 2 3. Let S′ be a γr‐set of G′. If
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u S′1 ∈ , let S S v= ′ { }∪ . If u S′1 ∉ and v S′2 ∈ , let S S u= ′ { }∪ . If u S′1 ∉ and v S′2 ∉ , let
S S v= ′ { }1∪ . In all cases, S is an RD‐set of G, and so    γ G S S γ G( ) ′ + 1 = ( ′) + 1r r≤ ≤ ,
implying that G Gw( ) < w( ′) + 10. If no component of G′ belongs to rdom , then
G Gw( ) w( ′) + 11≥ , a contradiction. Hence at least one component of G′ belongs to

rdom . Let H be such a component ofG. If H G1≠ , then since the removal of a bridge inG
cannot create a component in rdom , this implies that u v V H{ , } ( )2 3 ⊂ and
u v V H{ , } ( ) =1 2 ∩ ∅. However, such a component H is a component in G′,
contradicting our earlier properties of a component of G′ that belongs to rdom . Hence,
H G= 1 and H is the only component of G′ that belongs to rdom .

Suppose that G′ is connected, and so G G′ = 1 rdom∈ and the graph G is determined.
We note that the vertices u1 and v2 are adjacent vertices of degree 3 in G′, and so
G R R′ { , }1 2∉ . Further, we note that u2 and v3 have degree 2 in G′. Reconstructing the
graph G from G′ rdom∈ it can be readily checked that γ G G10 ( ) w( )r ≤ , a contradiction.
Hence, G′ is disconnected, and so G G1 2≠ or G G1 3≠ . By symmetry and renaming
vertices if necessary, we may assume that G G1 3≠ . Let Gu be obtained from G1 by
subdividing the added edge u v1 2 ofG1 three times resulting path in the path u uv vv1 1 2. Let
Su
1 be a minimum type‐1 NeRD‐set of Gu with respect to the vertex u, and let Sv

2 be a
minimum type‐2 NeRD‐set of Gu with respect to the vertex u. By Observation 4,
 S γ G u γ G= ( ; ) ( )u r u r
1

,ndom 1≤ and  S γ G u γ G= ( ; ) ( )u r u r
1

,dom 1≤ . Recall thatG G1 3≠ . Let S3
be a γr‐set of G3. If u S2 3∈ , then let S S S= u

1
3∪ , while if u S2 3∉ , then let S S S= u

2
3∪ . In

both cases,  S γ G γ G( ) + ( )r r1 3≤ .
IfG G=2 1 or G G=2 3, then γ G γ G γ G( ′) = ( ) + ( )r r1 3 and S is a RD‐set ofG. IfG G2 1≠

orG G2 3≠ , then γ G γ G γ G γ G( ′) = ( ) + ( ) + ( )r r r1 2 3 and S can be extended to a RD‐set ofG
by adding to it a γr‐set ofG2. In both cases, we have that  γ G S γ G( ) ( ′)r r≤ ≤ , and we infer
that G Gw( ) < w( ′). As observed earlier, G1 is the only component of G′ that belongs to

rdom . Hence, G G Gw( ) 13 + (w( ′) − 2 − 4) = w( ′) + 7≥ , a contradiction. □

By Claim 23.1, u1 ∈ and u2 ∈ .

Claim 23.2. There is no edge between u u{ , }1 2 and v v{ , }2 3 .

Proof. Suppose that there is an edge between u u{ , }1 2 and v v{ , }2 3 . Renaming vertices if
necessary, we may assume that u v E G( )1 2 ∈ . Since no small vertex belongs to a 4‐cycle,
we note that u v E G( )2 2 ∉ . Suppose that u v E G( )2 3 ∈ . If v v E G( )2 3 ∈ , then the graphG is
determined and γ G( ) = 3r and Gw( ) = 31, a contradiction. Hence, v v E G( )2 3 ∉ . In this
case, letG′ be the connected subcubic graph obtained fromG u v v u u− { , , , , }1 1 2 by adding
the edge v v2 3. Let S′ be a γr‐set ofG′. If v S′2 ∈ , let S S u v= ′ { , }2∪ . If v S′2 ∉ and v S′3 ∈ ,
let S S v u= ′ { , }1∪ . If v S′2 ∉ and v S′3 ∉ , let S S u v= ′ { , }1∪ . In all cases, S is an RD‐set of
G, and so    γ G S S γ G( ) ′ + 2 = ( ′) + 2r r≤ ≤ , implying that G Gw( ) < w( ′) + 20. We note
that v2 and v3 are adjacent vertices of degree 2 in G′. By our earlier properties of the
graph G, we infer that G R R R′ { , , }1 4 5∉ . Let G* be obtained from G′ by subdividing the
edge v v2 3 four times resulting in the path v u uv vv2 1 1 3. By Observation 6(a), there exists an
RD‐set S* in G* such that v S*1 ∈ and  S γ G* ( ′)r≤ . The set S u* { }2∪ is a RD‐set of G,
and so  γ G S γ G( ) * + 1 ( ′) + 1r r≤ ≤ , implying that G Gw( ) < w( ′) + 10. However,
G Gw( ) w( ) + 18≥ , a contradiction. Hence, u v E G( )2 3 ∉ . Let x be the neighbor of u2

different from u. By our earlier observations, x ∈ and x v v{ , }2 3∉ .
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We show next that xv E G( )2 ∈ . Suppose, to the contrary, that xv E G( )2 ∉ . In this case,
let G′ be the subcubic graph obtained from G u v v u u− { , , , , }1 1 2 by adding the edge xv2.
Let Gx be the component containing the added edge xv2, and let G3 be the component
containing the vertex v3. IfG′ is connected, thenG G=x 3. IfG′ is disconnected, then it has
two components, Gx and G3. In this case, since the removal of a bridge cannot create a
component in rdom , we note that G3 rdom∉ .

Let S′ be a γr‐set of G′. If v S′2 ∈ , let S S u v= ′ { , }2∪ . If v S′2 ∉ and x S′∈ , let
S S v u= ′ { , }1∪ . If v S′2 ∉ and x S′∉ , let S S u v= ′ { , }1∪ . In all cases, S is an RD‐set ofG,
and so    γ G S S γ G( ) ′ + 2 = ( ′) + 2r r≤ ≤ , implying that G Gw( ) < w( ′) + 20. We note
that v2 and x are adjacent vertices of degree 2 and degree 3, respectively, in Gx . In
particular, G Rx 1≠ . If G R=x 5, then G G′ = x, and the graph G is determined and
γ G( ) 5r ≤ and Gw( ) = 57, a contradiction. Hence, G Rx 5≠ .

Suppose that G R=x 4. If G G′ = x, then the graph G is determined and γ G( ) 5r ≤ and
Gw( ) = 57, a contradiction. Hence, G′ is disconnected. In this case, let Gv be the

component ofG vv− 3 that contains the vertex v. We infer from the structure of the graph
Gv (using the structure of Gx) that a γr‐set of G3 can be extended to an RD‐set of G by
adding to it five vertices from Gv, and so γ G γ G( ) 5 + ( )r r 3≤ . This implies that
G Gw( ) < w( ) + 503 . However, G Gw( ) = w( ) + 563 , a contradiction. Hence, G Rx 4≠ .
Suppose that G R=x 9. If G G′ = x, then the graph G is determined and γ G( ) 6r ≤ and
Gw( ) = 60, a contradiction. Hence, G′ is disconnected. In this case, let Gv be the

component ofG vv− 3 that contains the vertex v. We infer from the structure of the graph
Gv (using the structure of Gx) that a γr‐set of G3 can be extended to an RD‐set of G by
adding to it six vertices from Gv, and so γ G γ G( ) 6 + ( )r r 3≤ . This implies that
G Gw( ) < w( ) + 603 . However, G Gw( ) = w( ) + 603 , a contradiction. Hence, G Rx 9≠ .
Hence, G R R R R{ , , , }x 1 4 5 9∉ . Recall that if G Gx3 ≠ , then G3 rdom∉ . Thus there is at

most one bad component inG′, and such a component does not belong to R R R R{ , , , }1 4 5 9 .
Hence, G Gw( ) w( ′) + 20≥ , a contradiction. Hence, xv E G( )2 ∈ . The graph G therefore
contains the subgraph shown in Figure 10A. Let C be the cycle vv uu v v1 1 2 , and let G′ be
the connected special subcubic graph obtained from G V C− ( ) by adding the edge u v2 3.
Let S′ be a γr‐set of G′. If u S′2 ∈ , let S S v v= ′ { , }2∪ . If u S′2 ∉ and v S′3 ∈ , let
S S u u= ′ { , }1∪ . If u S′2 ∉ and v S′3 ∉ , let S S v v= ′ { , }1 2∪ . In all cases, S is an RD‐set of
G, and so    γ G S S γ G( ) ′ + 2 = ( ′) + 2r r≤ ≤ , implying that G Gw( ) < w( ′) + 20. If
G′ rdom∉ , then G Gw( ) = w( ′) + 21, a contradiction. Hence, G′ rdom∈ . We note that
P xu v: 2 3 is a path in G′ where the vertices x u, 2 and v3 have degrees 2, 2, and 3,
respectively inG′. Our earlier properties of the graphG, together with the existence of the
path P in G′, imply that G R′ = 7. Reconstructing the graph G from G′ now yields the
graph shown in Figure 10B that satisfies γ G( ) = 6r and Gw( ) = 70, a contradiction. (The
six shaded vertices, e.g., shown in Figure 10B form a γr‐set inG.) This completes the proof
of Claim 23.2. □

Let x and y be the neighbors of u1 and u2, respectively, different from u. By Claim 23.2,
there is no edge between u u{ , }1 2 and v v{ , }2 3 , implying that x y v v{ , } { , } =2 3∩ ∅. Hence,
the graph illustrated in Figure 11 is a subgraph of G, where possibly edges between
x y{ , } and v v{ , }2 3 may exist. By our earlier observations, v u u{ , , }1 1 2 ⊆ and
u v v v x y{ , , , , , }2 3 ⊆ .

Claim 23.3. xy E G( )∉ .
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Proof. Suppose that xy E G( )∈ . Thus,C xu uu yx: 1 2 is a 5‐cycle inG. Let x1 and y1 be the
neighbors of x and y, respectively, that do not belong to the 5‐cycle C. (Possibly, x y=1 1.)
By Claim 22, x y,1 1 ∈ . LetG′ be the special subcubic graph obtained fromG V C− ( ) by
adding the edge v x1 1. Let Gx be the component of G′ containing the added edge v x1 1, and
let Gy be the component of G′ containing y1. If G′ is connected, then G G=x y. If G′ is
disconnected, thenG′ has two components,Gx andGy. In this case, since the removal of a
bridge cannot create a component in rdom , we note that Gy rdom∉ .

Let S′ be a γr‐set of G′. If x S′1 ∈ , let S S u u= ′ { , }2∪ . If x S′1 ∉ and v S′1 ∈ , let
S S x y= ′ { , }∪ . If x S′1 ∉ and v S′1 ∉ , let S S u y= ′ { , }1∪ . In all cases, S is an RD‐set ofG,
and so    γ G S S γ G( ) ′ + 2 = ( ′) + 2r r≤ ≤ , implying that G Gw( ) < w( ′) + 20. If
Gx rdom∉ , then G w Gw( ) = ( ′) + 21, a contradiction. Hence, Gx rdom∈ . Let G*x be
the component of G u y− { , }2 that contains the vertex x . Thus, G*x is obtained from the
graph Gx by subdividing the added edge v x1 1 three times resulting in the path v uu xx1 1 1.
Let S*x be a minimum type‐2 NeRD‐set ofG*x with respect to the vertex x . Thus the set S*x
is a dominating set in G*x. Further, x S*x∉ and the vertex x is the only possible vertex in
G*x with all its neighbors in S*x . By Observation 4, we have  S γ G x γ G* = ( *; ) ( )x r x r x,dom ≤ .

Let S S u* = * { }x 2∪ . If G′ is connected, then γ G γ G( ) = ( ′)r x r and S* is an RD‐set of G. In
this case,    γ G S S γ G( ) * = * + 1 ( ′) + 1r x r≤ ≤ . If G′ is disconnected, then G Gx y≠ and
S S* y∪ is an RD‐set of G, where Sy is a γr‐set of Gy. In this case,

       γ G S S S S γ G γ G γ G( ) * + = * + 1 + ( ) + 1 + ( ) = ( ′) + 1r y x y r x r y r≤ ≤ . In both cases,
γ G γ G( ) ( ′) + 1r r≤ , implying that G Gw( ) < w( ′) + 10. However, G Gw( ) w( ′) + 17≥ , a
contradiction. □

We now return to the proof of Claim 23. By Claim 23.3, the vertices x and y are not
adjacent in G. Let G′ be the special subcubic graph obtained from G u u u v v− { , , , , }1 2 1 by
adding the edge xy. Let Gx be the component of G′ containing the added edge xy, and let
G2 and G3 be the components of G′ containing v2 and v3, respectively. If G′ is connected,
then G G G= =x 2 3. Let S′ be a γr‐set of G′. If x S′∈ , let S S u v= ′ { , }2∪ . If x S′∉ and
y S′∈ , let S S u v= ′ { , }1∪ . If x S y S′, ′∉ ∉ and v S2 ∈ , let S S u= ′ { }∪ . If x S y S′, ′∉ ∉

(A) (B)

FIGURE 10 (A) A subgraphs in the proof of Claim 23.2. (B) The graph G in the proof of Claim 23.2.

FIGURE 11 A subgraph in the proof of Claim 23.
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and v S2 ∉ , let S S u v= ′ { , }1∪ . In all cases, S is an RD‐set of G, and so
   γ G S S γ G( ) ′ + 2 = ( ′) + 2r r≤ ≤ , implying that G Gw( ) < w( ′) + 20. If no component

of G′ belongs to rdom , then G Gw( ) = w( ′) + 21, a contradiction. Hence, there is a
component in G′ that belongs to rdom .

Suppose that G2 or G3 is different from Gx and belongs to rdom . Renaming vertices if
necessary, by symmetry, we may assume thatG Gx2 ≠ andG2 rdom∈ . Since the removal of
a bridge cannot create a component in rdom , we infer that G G=2 3. Further, both v2 and v3
have degree 2 in G2. Applying Observation 1(f) to the graph G2 with X v v= { , }2 3 , we have
γ G X γ G( ; ) ( ) − 1r r,dom 2 2≤ . Let S* be a minimum type‐2 NeRD‐set ofG2 with respect to the
set X . Let Sx be a γr‐set of Gx . If x Sx∈ , let S S S u v= * { , }x 2 1∪ ∪ . If x Sx∉ and y Sx∈ , let
S S S u v= * { , }x 1 1∪ ∪ . If x Sx∉ and y Sx∉ , let S S S u v= * { , }x 1∪ ∪ . In all cases, S is an
RD‐set of G, and so    γ G S S γ G γ G γ G( ) + * + 2 ( ) + ( ( ) − 1) + 2 = ( ′) + 1r x r x r r2≤ ≤ ,
implying that G Gw( ) < w( ′) + 10. However, G Gw( ) w( ′) + 13≥ , a contradiction. Hence
if G Gx2 ≠ , then G2 rdom∉ , and if G Gx3 ≠ , then G3 rdom∉ .

Since there is a component inG′ that belongs to rdom , we infer thatGx is the only such
component of G′. If Gx rdom,1∈ , then G Gw( ) = w( ′) + 20, a contradiction. Hence,
G R R R{ , , }x 6 7 8∉ . We note that x and y are adjacent vertices of degree 3 in Gx , implying
that G R R{ , }x 1 2≠ . If G R=x 3, then our properties of the graph G imply that G′ is
connected and v2 and v3 are the vertices of degree 2 in R3 that have no degree 3 neighbor.
In this case, the graph G is determined and γ G( ) = 4r and Gw( ) = 59, a contradiction.
Hence, G Rx 3≠ , implying that G R R R{ , , }x 4 5 9∈ .

Let G* be obtained from Gx by subdividing the added edge xy three times resulting in
the path xu uu y1 2 . Applying Observation 4(b) we have γ G u γ G( *; ) ( )r r x,dom ≤ . Thus, there
exists a type‐2 NeRD‐set S* inG* with respect to the vertex u such that  S γ G* ( )r x≤ . The
set S* is a dominating set in G*. Further, u S*∉ and the vertex u is the only possible
vertex inG* with all its neighbors in S*. Let S S v= * { }∪ . IfG′ is connected, then S v* { }∪

is an RD‐set of G, and so  γ G S γ G γ G( ) * + 1 ( ) + 1 = ( ′) + 1r r x r≤ ≤ . If G′ is
disconnected, then every γr‐set of G V G′ − ( )x can be extended to an RD‐set of G by
adding to it the set S v* { }∪ , implying once again that γ G γ G( ) ( ′) + 1r r≤ . Hence in both
cases we infer that G Gw( ) < w( ′) + 10. However, G w Gw( ) = ( ′) + 17, a contradiction.
This completes the proof of Claim 23. □

Claim 24. The graph G is a cubic graph.

Proof. Suppose, to the contrary, that G contains a small vertex. By Claim 22, no large
vertex has exactly two small neighbors. By Claim 23, no large vertex has exactly one small
neighbor. Hence if a large vertex has a small neighbor, then all three of its neighbors are
small. Thus the three neighbors of every large vertex are either all small or all large. Since
G is connected and contains at least one small vertex, this implies that G is a bipartite
subcubic graph with partite sets  and . Thus, by Lemma 1,  γ G( )r ≤ , and so

 G γ Gw( ) < 10 ( ) 10r ≤ . However in this case,    3 = 2  , and so    Gw( ) = 5 + 4 = 

    5 × + 4 > 10
3

2
  , a contradiction. □

By Claim 24,G is a (connected) cubic graph. Recall by Claim 18 that R10 is not a subgraph of
G. We note that R9 contains three small vertices, and every graph in R R{ , }rdom 9 10 ⧹ contains at
least four small vertices. Our earlier observations therefore yield the following properties of
graph G.
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Claim 25. If E′ is a k‐edge‐cut in G and G′ is a component of G E− ′ that belongs to

rdom , then k 3≥ and the following properties hold.

(a) If k = 3, then G R′ = 9.
(b) If k = 4, then G R R R R′ { , , , }2 4 5 9∈ .
(c) If k = 5, then G R R R R′ { , , , }1 6 7 8∈ .

Claim 26. If G′ rdom∈ is a special subcubic component of G S− where S V G( )⊂ ,
then G′ contains at least three vertices of degree 2.

Claim 27. The graph G contains no diamond.

Proof. Suppose, to the contrary, that G contains a diamond D, where
V D v v v v( ) = { , , , }1 2 3 4 and where v v1 2 is the missing edge in D. Let ui be the neighbor
of vi not in D for i [2]∈ . Suppose that u u=1 2. Let u be the neighbor of u1 different from v1
and v2, and let G G V D u u′ = − ( ( ) { , })1∪ . The graph G′ is a special subcubic graph that
contains exactly two small vertices, and so by Claim 26 no component of G′ belongs
to rdom . Every γr‐set of G′ can be extended to an RD‐set of G by adding to it the
set v u{ , }3 , and so γ G γ G( ) ( ) + 2r r≤ , implying that G Gw( ) < w( ′) + 20. However,
G Gw( ) = w( ) + 22, a contradiction. Hence, u u1 2≠ . In this case, letG G V D′ = − ( ). The

graph G′ is a special subcubic graph that contains exactly two small vertices, and so no
component ofG′ belongs to rdom . Every γr‐set ofG′ can be extended to an RD‐set ofG by
adding to it the vertex v3, and so γ G γ G( ) ( ) + 1r r≤ , implying that G Gw( ) < w( ′) + 10. In
this case, G Gw( ) = w( ) + 14, a contradiction. □

Claim 28. The graph G contains no triangle.

Proof. Suppose, to the contrary, thatT is a triangle inG whereV T v v v( ) = { , , }1 2 3 . Let xi
be the third neighbor of vi that does not belong to T for i [3]∈ . By Claim 27, the graph G
contains no diamond, and so the vertices x x,1 2 and x3 are pairwise distinct. Let
X x x x= { , , }1 2 3 . Suppose that G X[ ] contains a vertex of degree 2. Renaming vertices if
necessary, we may assume that x x x x E G{ , } ( )1 2 2 3 ⊂ . If x x E G( )1 3 ∈ , then G is the 3‐prism
C K3 2□ , and so γ G( ) = 2r and Gw( ) = 24, a contradiction. Hence, x x E G( )1 3 ∉ . Let yi be
the neighbor of xi different from x2 and vi for i {1, 3}∈ . If y y=1 3, then we let
Q V T X y= ( ) { }1∪ ∪ and G G Q′ = − . In this case, G′ is a special connected subcubic
graph that contains exactly one small vertex, and so, by Claim 26, G′ rdom∉ . Since
γ G γ G( ) ( ) + 2r r≤ , we have G Gw( ) < w( ′) + 20. However, G Gw( ) = w( ) + 27, a
contradiction. Hence, y y1 3≠ . We now let Q V T X= ( ) ∪ and G G Q′ = − . In this
case, G′ is a special subcubic graph that contains exactly two small vertices, and so,
by Claim 26, no component of G′ belongs to rdom . Once again γ G γ G( ) ( ) + 2r r≤ ,
implying that G Gw( ) < w( ′) + 20. However, G G Gw( ) = 24 + (w( ′) − 2) = w( ) + 22, a
contradiction.

Hence, G X[ ] contains no vertex of degree 2, implying that G X[ ] contains at least one
isolated vertex. By symmetry, we may assume that x1 is isolated in G X[ ], that is, x1 is
adjacent to neither x2 nor x3. Let y1 and y2 be the two neighbors of x1 different from v1. We
now let Q V T x= ( ) { }1∪ and let G G Q′ = − . The graph G′ is a special subcubic graph.
We note that k r′ + ′ 4≤ .
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Let S′ be a γr‐set of G′. If y S′1 ∈ , let S S v= ′ { }2∪ . If y S′1 ∉ , let S S v= ′ { }1∪ . In both
cases, S is an RD‐set of G, and so    γ G S S γ G( ) = ′ + 1 = ( ′) + 1r r≤ , implying that
G Gw( ) < w( ′) + 10. If no component ofG′ belongs to rdom , then G Gw( ) = w( ′) + 12, a

contradiction. Hence, G′ contains a component G1 that belongs to rdom . By Claim 25,
there is only one such component and G R R R R{ , , , }1 2 4 5 9∈ . Thus, G1 contains at least
three small vertices. Let X V G y y x( ) { , , }1 1 1 2 2⊂ ∩ be chosen so that  X = 21 . Let S1 be a
minimum type‐2 NeRD‐set of G1 with respect to the set X1. By Observation 1(f),
 S γ G X γ G= ( ; ) ( ) − 1r r1 ,dom 1 1 1≤ .

Suppose that G R R R{ , , }1 2 4 5∈ . By Claim 25, G G′ = 1, and so k′ = 1 and r′ = 0. In this
case, the set S v{ }1 1∪ is a RD‐set of G, and so  γ G S γ G γ G( ) + 1 ( ) = ( ′)r r r1 1≤ ≤ . Suppose
that G R=1 9, implying that k r′ = ′ = 1. In this case, we let G2 be the second component of
G′, and soG2 rdom∉ . Let S2 be a γr‐set ofG2. The set S2 can be extended to an RD‐set ofG by
adding to it the set S v{ }1 1∪ , and so    γ G S S γ G γ G γ G( ) + 1 + ( ) + ( ) = ( ′)r r r r1 2 1 2≤ ≤ . In
both cases, γ G γ G( ) ( ′)r r≤ , implying that G Gw( ) < w( ′). However, G Gw( ) w( ′) + 8≥ , a
contradiction. □

Claim 29. The graph G contains no K2,3 as a subgraph.

Proof. Suppose, to the contrary, that H is a subgraph ofG, where H K2,3≅ . Let X and Y
be the partite sets of H where X x x x= { , , }1 2 3 and Y y y= { , }1 2 . SinceG is triangle‐free, the
sets X and Y are independent. Let vi be the neighbor of xi not in H for i [3]∈ . If
v v v= =1 2 3, then G K= 3,3. In this case, γ G( ) = 2r and Gw( ) = 24, a contradiction.
Hence renaming vertices if necessary, we may assume that v v1 2≠ .

Claim 29.1. The vertices v v v, ,1 2 3 are pairwise distinct.

Proof. Suppose, to the contrary, that the vertices v v v, ,1 2 3 are not pairwise distinct, and
so v v=1 3 or v v=2 3. Renaming vertices if necessary, we may assume that v v=2 3.
Suppose that v v E G( )1 2 ∈ . In this case, let v denote the neighbor of v1 different from x1
and v2. Thus, vv1 is a bridge in G. Let G′ be the component of G vv− 1 that contains the
vertex v. By Claim 25, G′ rdom∉ . Let S′ be a γr‐set of G′. If v S′∈ , let S y x= { , }1 2 . If
v S′∉ , let S x v= { , }1 2 . In both cases, S is an RD‐set ofG, and so  γ G S γ G( ) = ( ′) + 2r r≤ ,
implying that G Gw( ) < w( ′) + 20. However, G w Gw( ) = ( ′) + 27, a contradiction.
Hence, v v E G( )1 2 ∉ . We now let G G V H v′ = − ( ( ) { })2∪ . The graph G′ is a special
subcubic graph that contains exactly two small vertices. By Claim 25, no component ofG′
belongs to rdom . Every γr‐set of G′ can be extended to an RD‐set of G by adding to it the
set y x{ , }1 2 , and so γ G γ G( ) ( ′) + 2r r≤ , implying that G Gw( ) < w( ′) + 20. However,
G Gw( ) = w( ′) + 22, a contradiction. □

By Claim 29.1, the vertices v v v, ,1 2 3 are pairwise distinct.

Claim 29.2. The graph G v v v[{ , , }]1 2 3 is isolate‐free.

Proof. Suppose, to the contrary, that G v v v[{ , , }]1 2 3 contains an isolated vertex.
Renaming vertices if necessary, we may assume that the vertex v1 is adjacent to
neither v2 nor v3. Let G G V H v′ = − ( ( ) { })1∪ . Thus, G′ is a special subcubic graph that
contains exactly four small vertices. Let S′ be a γr‐set ofG′. Let u1 and u2 be two neighbors
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of v1 in G different from x1. If u S′1 ∉ , let S S x y= ′ { , }1 1∪ . If u S′1 ∈ , let S S y x= ′ { , }1 2∪ .
In both cases, S is an RD‐set of G, and so  γ G S γ G( ) = ( ′) + 2r r≤ , implying that
G Gw( ) < w( ′) + 20. If no component ofG′ belongs to rdom , then G Gw( ) = w( ′) + 20, a

contradiction. Hence, G′ contains a component G1 that belongs to rdom . By Claim 25,
there is only one such component and G R R R R{ , , , }1 2 4 5 9∈ .

At least one of u1 and u2, and at least one of v2 and v3 belong to G1. Renaming vertices if
necessary, we may assume that u v V G{ , } ( )1 2 1⊂ . Let S1 be a minimum type‐2 NeRD‐set ofG1

with respect to the set X u v= { , }1 1 2 . By Observation 1(f),  S γ G X γ G= ( ; ) ( ) − 1r r1 ,dom 1 1 1≤ .
Suppose that G R R R{ , , }1 2 4 5∈ . By Claim 25,G G′ = 1, and so k′ = 1 and r′ = 0. In this case,
the set S x y{ , }1 1 1∪ is a RD‐set of G, and so  γ G S γ G γ G( ) + 2 ( ) + 1 = ( ′) + 1r r r1 1≤ ≤ .
Suppose that G R=1 9, implying that k r′ = ′ = 1. In this case, we let G2 be the second
component ofG′, and soG2 rdom∉ . Let S2 be a γr‐set ofG2. The set S2 can be extended to an
RD‐set of G by adding to it the set S x y{ , }1 1 1∪ , and so    γ G S S γ G( ) + 2 + ( )+r r1 2 1≤ ≤

γ G γ G( ) + 1 = ( ′) + 1r r2 . In both cases, γ G γ G( ) ( ′) + 1r r≤ , implying that Gw( )<

Gw( ′) + 10. However, G Gw( ) w( ′) + 16≥ , a contradiction. □

By Claim 29.2, the graph G v v v[{ , , }]1 2 3 is isolate‐free. Renaming vertices if necessary,
we may assume that v v1 2 and v v2 3 are edges. Since G is triangle‐free, we note that v v1 3 is
not an edge. Let u1 be the neighbor of v1 different from x1 and v2, and let u3 be the
neighbor of v3 different from x3 and v2. Suppose that u u1 3≠ . Hence, the graph illustrated
in Figure 12A is a subgraph of G. In this case, let Q V H v v v= ( ) { , , }1 2 3∪ and let
G G Q′ = − . We note that G′ is a special subcubic graph and is obtained by deleting the
edges of a 2‐edge‐cut inG. By Claim 25, no component ofG′ belongs to rdom . Every γr‐set
of G′ can be extended to an RD‐set of G by adding to it the set v x y{ , , }2 2 2 , and so
γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30. However, G Gw( ) = w( ′) + 30, a
contradiction.

Hence, u u=1 3 and let us rename this common neighbor of v1 and v3 by u. Let w be the
third neighbor of u different from v1 and v3. Thus, the graph illustrated in Figure 12B is a
subgraph ofG. In this case, letQ V H v v v u= ( ) { , , , }1 2 3∪ and letG G Q′ = − . We note that
G′ is a connected special subcubic graph and is obtained by deleting the cut‐edge uw inG. By
Claim 25,G′ rdom∉ . Every γr‐set ofG′ can be extended to an RD‐set ofG by adding to it the
set u x y{ , , }2 2 , and so γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30. However,
G Gw( ) = w( ′) + 35, a contradiction. This completes the proof of Claim 29. □

Claim 30. The graph G contains no domino as a subgraph.

(A) (B)

FIGURE 12 Subgraphs in the proof of Claim 29. (A) u1 ≠ u3. (B) u1 = u3 = u.
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Proof. Suppose, to the contrary, that G contains a domino F as a subgraph. Let
V F v v v( ) = { , , …, }1 2 6 , where v v v v…1 2 6 1 is a 6‐cycle and v v2 5 is an edge. Since G is
triangle‐free and K2,3‐free, we note that F is an induced subgraph of G. Let xi be the
neighbor of vi that does not belong to F for i {1, 3, 4, 6}∈ . Since G is triangle‐free,
x x1 6≠ and x x3 4≠ .

Claim 30.1. x x1 3≠ and x x4 6≠ .

Proof. Suppose, to the contrary, that x x=1 3 or x x=4 6. Renaming vertices if necessary,
we may assume by symmetry that x x=1 3. Thus, x1 is a common neighbor of v1 and v3
different from v2. Let us rename the vertex x1 by x for notational simplicity.

Suppose firstly that x x=4 6, and so x4 is a common neighbor of v4 and v6 different
from v5. Let us rename the vertex x4 by y for notational simplicity. If xy E G( )∈ , then the
graphG is determined and γ G( ) = 2r and Gw( ) = 32, a contradiction. Hence, xy E G( )∉ .
Let x1 and y1 be the neighbors of x and y, respectively, that do not belong to F . Suppose
that x y=1 1, and let us rename this common neighbor of x and y by w. Let z be the third
neighbor of w different from x and y. In this case, letG′ be the component ofG wz− that
contains the vertex z. We note that G′ is a connected special subcubic graph and the
vertex z is the only vertex of degree 2 in G′, and so G′ rdom∉ . Every γr‐set of G′ can be
extended to an RD‐set of G by adding to it the set v v w{ , , }1 4 , and so γ G γ G( ) ( ′) + 3r r≤ ,
implying that G Gw( ) < w( ′) + 30. However, G Gw( ) = w( ′) + 35, a contradiction.
Hence, x y1 1≠ . In this case, we let G G V F x y′ = − ( ( ) { , })∪ . We note that G′ is a
special subcubic graph that contains exactly two vertices of degree 2. By Claim 25, no
component ofG′ belongs to rdom . Every γr‐set ofG′ can be extended to an RD‐set ofG by
adding to it the set v v{ , }1 4 , and so γ G γ G( ) ( ′) + 2r r≤ , implying that G Gw( ) < w( ′) + 20.
However, G w Gw( ) = ( ′) + 30, a contradiction.

Hence, x x4 6≠ , that is, v5 is the only common neighbor of v4 and v6. Since G is
triangle‐free, x x4≠ and x x6≠ , that is, the vertices x x x, ,4 6 are pairwise distinct.
Suppose that x is adjacent to x4 or x6. Renaming vertices if necessary, we may assume
xx E G( )6 ∈ . Suppose that x x E G( )4 6 ∈ . In this case, let y be the neighbor of x4 different
from v4 and x6. Hence, the graph illustrated in Figure 13A is a subgraph of G. Let G′ be
the component of G x y− 4 that contains the vertex y. We note that G′ rdom∉ . Every
γr‐set of G′ can be extended to an RD‐set of G by adding to it the set x x v{ , , }4 5 , and so
γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30. However, G Gw( ) = w( ′) + 35, a
contradiction. Hence, x x E G( )4 6 ∉ . In this case, let w be the neighbor of x6 different from
x and v6. Hence, the graph illustrated in Figure 13B is a subgraph of G. We now let
G G V F x x′ = − ( ( ) { , })6∪ . The special subcubic graphG′ contains exactly two vertices of
degree 2, and so by Claim 25 no component of G′ belongs to rdom . Every γr‐set of G′ can

(A) (B) (C)

FIGURE 13 Subgraphs in the proof of Claim 30.1. (A) x4x6 ∈ E(G). (B) x4x6 ∉ E(G). (C) xx6 ∉ E(G).
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be extended to an RD‐set ofG by adding to it the set v v x{ , , }1 4 6 , and so γ G γ G( ) ( ′) + 3r r≤ ,
implying that G Gw( ) < w( ′) + 30. However, G Gw( ) = w( ′) + 30, a contradiction.

Hence, x is adjacent to neither x4 nor x6. In this case, let z be the neighbor of x
different from v1 and v3. Hence, the graph illustrated in Figure 13C is a subgraph of G
(where the edge x x4 6 may or may not exist). We now let G G V F x′ = − ( ( ) { })∪ . Every
γr‐set of G′ can be extended to an RD‐set of G by adding to it the set v v{ , }1 4 , and so
γ G γ G( ) ( ′) + 2r r≤ , implying that G Gw( ) < w( ′) + 20. Since G′ is obtained from G by
deleting the edges in a 3‐edge‐cut, by Claim 25 either no component of G′ belongs to

rdom or G′ is connected and G R′ = 9. Hence, G Gw( ) w( ′) + 22≥ , a contradiction. □

Claim 30.2. x x1 4≠ and x x3 6≠ .

Proof. Suppose, to the contrary, that x x=1 4 or x x=3 6. Renaming vertices if necessary,
we may assume by symmetry that x x=1 4. Thus, x1 is a common neighbor of v1 and v4.
Let us rename the vertex x1 by x for notational simplicity. Suppose firstly that x x=3 6,
and so x3 is a common neighbor of v3 and v6. Let us rename the vertex x3 by y for
notational simplicity. If xy E G( )∈ , then the graph G is determined and γ G( ) = 3r and
Gw( ) = 32, a contradiction. Hence, xy E G( )∉ . Let x1 and y1 be the neighbors of x and y,

respectively, that do not belong to F . Suppose that x y=1 1, and let us rename this
common neighbor of x and y by w. Let z be the third neighbor of w different from x and
y. In this case, letG′ be the component ofG wz− that contains the vertex z, and soG′ is a
connected special subcubic graph. Further, the vertex z is the only vertex of degree 2 in
G′, and so G′ rdom∉ . Every γr‐set of G′ can be extended to an RD‐set of G by adding
to it the set v v y{ , , }1 4 , and so γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30.
However, G Gw( ) = w( ′) + 35, a contradiction. Hence, x y1 1≠ . We now let
G G V F x y′ = − ( ( ) { , })∪ , and so G′ is a special subcubic graph that contains exactly
two vertices of degree 2. By Claim 25, no component ofG′ belongs to rdom . Every γr‐set of
G′ can be extended to an RD‐set of G by adding to it the set x y v{ , , }2 , and so
γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30. However, G Gw( ) = w( ′) + 30, a
contradiction.

Hence, x x3 6≠ , that is, the vertices x x x, ,3 6 are pairwise distinct. Suppose that x is
adjacent to neither x3 nor x6. Let x′ be the neighbor of x different from v1 and v4. In this
case, we let G G V F x′ = − ( ( ) { })∪ . Let S′ be a γr‐set ofG′. If x S′ ′∈ , let S S v v= ′ { , }3 6∪ .
If x S′ ′∉ , let S S v v= ′ { , }1 4∪ . In both cases, the set S is an RD‐set of G, and so
γ G γ G( ) ( ′) + 2r r≤ , implying that G Gw( ) < w( ′) + 20. Since G′ is obtained from G by
deleting the edges in a 3‐edge‐cut, by Claim 25 either no component of G′ belongs to

rdom or G′ is connected and G R′ = 9. Hence, G Gw( ) w( ′) + 22≥ , a contradiction. Thus,
either xx E G( )3 ∈ or xx E G( )6 ∈ .

Suppose that xx E G( )3 ∈ . If x x E G( )3 6 ∈ , then let y be the neighbor of x6 different
from x3 and v6, and let G′ be the component of G x y− 6 that contains the vertex y. Thus,
G′ rdom∉ . Every γr‐set of G′ can be extended to an RD‐set of G by adding to it the set
x v v{ , , }6 1 4 , and so γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30. However,
G Gw( ) = w( ′) + 35, a contradiction. Hence, x x E G( )3 6 ∉ . In this case, we let

G G V F x x′ = − ( ( ) { , })3∪ . The special subcubic graph G′ contains exactly two vertices
of degree 2, and so by Claim 25 no component of G′ belongs to rdom . Every γr‐set
of G′ can be extended to an RD‐set of G by adding to it the set v v x{ , , }3 6 3 , and so
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γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30. However, G Gw( ) = w( ′) + 30, a
contradiction.

Hence, xx E G( )3 ∉ , implying that xx E G( )6 ∈ . If x x E G( )3 6 ∈ , then let y be the
neighbor of x3 different from v3 and x6, and let G′ be the component of G x y− 3 that
contains the vertex y. We note that G′ rdom∉ . Every γr‐set of G′ can be extended
to an RD‐set of G by adding to it the set x v v{ , , }3 1 4 , and so γ G γ G( ) ( ′) + 3r r≤ , implying
that G Gw( ) < w( ′) + 30. However, G w Gw( ) = ( ′) + 35, a contradiction. Hence,
x x E G( )3 6 ∉ . In this case, we let G G V F x x′ = − ( ( ) { , })6∪ . The special subcubic
graphG′ contains exactly two vertices of degree 2, and so by Claim 25 no component ofG′
belongs to rdom . Every γr‐set of G′ can be extended to an RD‐set of G by adding to it the
set v v x{ , , }3 6 6 , and so γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30. However,
G Gw( ) = w( ′) + 30, a contradiction. □

By Claim 30.1, x x1 3≠ and x x4 6≠ . By Claim 30.2, x x1 4≠ and x x3 6≠ . Thus the vertices
x x x x, , ,1 3 4 6 are pairwise distinct. Let G G V F′ = − ( ). The graph G′ is a special subcubic
graph with exactly four vertices of degree 2. Every γr‐set ofG′ can be extended to a RD‐set ofG
by adding to it the set v v{ , }1 4 , and so γ G γ G( ) ( ′) + 2r r≤ , implying that G Gw( ) < w( ′) + 20.
If no component of G′ belongs to rdom , then w G G( ) = w( ′) + 20, a contradiction. Hence,
G′ contains a component G1 that belongs to rdom . By Claim 25, there is only one such
component andG R R R R{ , , , }1 2 4 5 9∈ . Necessarily,G1 contains at least three vertices from the
set x x x x{ , , , }1 3 4 6 . In particular, x x V G{ , } ( )1 4 1⊂ or x x V G{ , } ( )3 6 1⊂ . Renaming vertices if
necessary, we may assume by symmetry that x x V G{ , } ( )3 6 1⊂ . Let S1 be a minimum type‐2
NeRD‐set of G1 with respect to the set X x x= { , }1 3 6 . We note that X S =1 1∩ ∅. By
Observation 1(f),  S γ G X γ G= ( ; ) ( ) − 1r r1 ,dom 1 1 1≤ . IfG′ is connected, thenG G′ = 1 and the
set S v v{ , }1 1 4∪ is a RD‐set ofG, and so  γ G S γ G γ G( ) + 2 ( ( ′) − 1) + 2 = ( ′) + 1r r r1≤ ≤ . If
G′ is disconnected, then let G2 be the component of G′ different from G1 which yields
G R=1 9. In this case, let S2 be a γr‐set ofG2 and note that the set S S v v{ , }1 2 1 4∪ ∪ is a RD‐set
of G, implying that    γ G S S γ G γ G γ G( ) + + 2 ( ( ) − 1) + ( ) + 2 = ( ′) + 1r r r r1 2 1 2≤ ≤ .
Thus in both cases, γ G γ G( ) ( ′) + 1r r≤ , implying that G Gw( ) < w( ′) + 10. However,
G Gw( ) w( ′) + 17≥ , a contradiction. This completes the proof of Claim 30. □

By Claim 30, the graph G contains no domino as a subgraph.

Claim 31. If the graph G contains a 4‐cycle C, then the subgraph ofG induced by V C( )

and all neighbors in G of vertices in V C( ) is isomorphic to the corona C K1∘ of the
4‐cycle C.

Proof. Suppose that G contains a 4‐cycle C v v v v v v: 1 2 3 4 1 4. Since G is triangle‐free, the
cycle C is an induced cycle. Let xi be the neighbor of vi that does not belong to C for
i [4]∈ . SinceG has no triangle and no K2,3‐subgraph, the vertices x x x x, , ,1 2 3 4 are pairwise
distinct. Let X x x x x= { , , , }1 2 3 4 . To prove the claim, it suffices to show that the set X is
independent. Suppose, to the contrary, that X is not an independent set. SinceG contains
no domino as a subgraph, x x E G( )i i+1 ∉ for all i [4]∈ , where indices are taken modulo
4. Hence, x x E G( )i i+2 ∈ for some i [4]∈ , where indices are taken modulo 4. Renaming
vertices if necessary, we may assume that x x E G( )1 3 ∈ . Let y1 be the third neighbor of x1
different from v1 and x3, and let y3 be the third neighbor of x3 different from v3 and x1.
Since G is triangle‐free, y y1 3≠ . Further, since G contains no domino as a subgraph,
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y y x x{ , } { , } =1 3 2 4∩ ∅. Thus, the vertices x x y y, , ,2 4 1 3 are pairwise distinct and the graph
illustrated in Figure 14 is a subgraph of G. Let G G V C x x′ = − ( ( ) { , })1 3∪ .

Let S′ be a γr‐set of G′. If y S′1 ∈ , let S S v v= ′ { , }3 4∪ . If y S′1 ∉ , let S S v x= ′ { , }1 3∪ .
In both cases, the set S is an RD‐set of G, and so γ G γ G( ) ( ′) + 2r r≤ , implying
that G Gw( ) < w( ′) + 20. If no component of G′ belongs to rdom , then Gw( ) = 24+

G G(w( ′) − 4) = w( ′) + 20, a contradiction. Hence, G′ contains a component G1 that
belongs to rdom . By Claim 25, there is only one such component and
G R R R R{ , , , }1 2 4 5 9∈ . Necessarily, G1 contains at least three vertices from the set
x x y y{ , , , }2 4 1 3 . At least one of y1 and y3 belong to G1. By symmetry, we may assume
that y V G( )1 1∈ . Further, at least one of x2 and x4 belongs to G1. By symmetry, we may
assume that x V G( )2 1∈ .

Let S1 be a minimum type‐2 NeRD‐set of G1 with respect to the set X =1
y x V G{ , } ( )1 2 1⊂ . We note that X S =1 1∩ ∅. By Observation 1(f),  S γ G X= ( ; )r1 ,dom 1 1

γ G( ) − 1r 1≤ . If G′ is connected, then G G′ = 1 and the set S v x{ , }1 1 3∪ is a RD‐set of G,
and so  γ G S γ G γ G( ) + 2 ( ( ′) − 1) + 2 = ( ′) + 1r r r1≤ ≤ . If G′ is disconnected, then let
G2 be the component of G′ different from G1. In this case, let S2 be a γr‐set of G2.
The set S S v x{ , }1 2 1 3∪ ∪ is a RD‐set of G, implying that    γ G S S( ) + + 2r 1 2≤ ≤

γ G γ G γ G( ( ) − 1) + ( ) + 2 = ( ′) + 1r r r1 2 . Thus in both cases, γ G γ G( ) ( ′) + 1r r≤ ,
implying that G Gw( ) < w( ′) + 10. However, G Gw( ) w( ′) + 16≥ , a contradiction.
Hence, the set X is an independent set. □

Claim 32. IfG contains a 4‐cycleC v v v v v v: 1 2 3 4 1 4 where xi is the neighbor of vi that does
not belong to C for i [4]∈ , then  N x N x( ) ( ) 1i i+2∩ ≤ for i [2]∈ .

Proof. Let the cycleC and the vertices x x x x, , ,1 2 3 4 be as in the statement of the claim. By
Claim 31 and our earlier observations, the graph illustrated in Figure 15 is a subgraph
of G where x x x x{ , , , }1 2 3 4 is an independent set. Suppose, to the contrary, that
 N x N x( ) ( ) = 2i i+2∩ for some i [2]∈ . By symmetry, we may assume that
 N x N x( ) ( ) = 21 3∩ . Let u and z be the two common neighbors of x1 and x3. Since G
is triangle‐free, the vertices u and z are not adjacent. Let u′ and z′ be the third neighbors
of u and z, respectively, different from x1 and x3. Since G has no K2,3‐subgraph, we note
that u z′ ′≠ .

FIGURE 14 A subgraph in the proof of Claim 31.

FIGURE 15 A subgraph in the proof of Claim 32.
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Claim 32.1. u z x x{ ′, ′} { , }2 4≠ .

Proof. Suppose that u z x x{ ′, ′} = { , }2 4 . Renaming vertices if necessary, we may assume
by symmetry that u x′ = 2 and z x′ = 4. Suppose that x2 and x4 have a common neighbor x .
Let y be the third neighbor of x . Let G′ be the component of G xy− that contains the
vertex y, and soG′ is a connected special subcubic graph that contains exactly one vertex
of degree 2. Every γr‐set of G′ can be extended to an RD‐set of G by adding to it the set
x x v v{ , , , }1 4 2 3 , and so γ G γ G( ) ( ′) + 4r r≤ , implying that G Gw( ) < w( ′) + 40. Since
G′ rdom∉ , we have G w Gw( ) = ( ′) + 43, a contradiction. Hence, x2 and x4 have no
common neighbor. Let y2 be the neighbor of x2 different from u and v2, and let y4 be the
neighbor of x4 different from z and v4. By our earlier observations, y y2 4≠ . If
y y E G( )2 4 ∈ , then let Q V C x x x x u z y y= ( ) { , , , } { , , , }1 2 3 4 2 4∪ ∪ and G G Q′ = − . Thus,
G′ is a special subcubic graph with exactly two vertices of degree 2, implying that no
component ofG′ belongs to rdom . Every γr‐set ofG′ can be extended to an RD‐set ofG by
adding to it the set v v x y{ , , , }2 3 1 4 , and so γ G γ G( ) ( ′) + 4r r≤ , implying that
G Gw( ) < w( ′) + 40. However, G Gw( ) = w( ′) + 46, a contradiction.
Hence, y y E G( )2 4 ∉ . We now let Q V C x x x x u z y= ( ) { , , , } { , , }1 2 3 4 2∪ ∪ and

G G Q′ = − . Thus, G′ is a special subcubic graph with exactly three vertices of degree
2, implying that either no component of G′ belongs to rdom or G′ is connected and
G R′ = 9. Every γr‐set of G′ can be extended to an RD‐set of G by adding to it the set
v v x y{ , , , }3 4 1 2 , and so γ G γ G( ) ( ′) + 4r r≤ , implying that G Gw( ) < w( ′) + 40. If no
component of G′ belongs to rdom , then G Gw( ) = w( ′) + 41, a contradiction. Hence,
G G′ = 9. In this case the set v v x y{ , , , }3 4 1 2 can be extended to a RD‐set ofG by adding to it
γ G( ′) − 1r vertices fromG′ applying Observation 1(d) with respect to the vertex x4, and so
γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30. However since G G′ = 9, we have
G Gw( ) = w( ′) + 38, a contradiction. □

Claim 32.2. u z x x{ ′, ′} { , } =2 4∩ ∅.

Proof. Suppose that u z x x{ ′, ′} { , }2 4∩ ≠ ∅, implying by Claim 32.1 that
 u z x x{ ′, ′} { , } = 12 4∩ . Renaming vertices if necessary, we may assume by symmetry
that u x′ = 2. Thus, z x′ 4≠ . Let v be the neighbor of u′ different from u and v2. Since the
set x x x x{ , , , }1 2 3 4 is independent, v x4≠ . Since G contains no K2,3 as a subgraph, u z′ ′≠ ,
that is, v z≠ . If v z′≠ , then we letQ V C x x x u z= ( ) { , , , , }1 2 3∪ and letG G Q′ = − . Thus,
G′ is a special subcubic graph with exactly three vertices of degree 2. Every γr‐set ofG′ can
be extended to an RD‐set ofG by adding to it the set x x v{ , , }1 2 3 , and so γ G γ G( ) ( ′) + 3r r≤ ,
implying that G Gw( ) < w( ′) + 30. Since either no component ofG′ belongs to rdom orG′
is connected andG G′ = 9, we have G Gw( ) = w( ′) + 30, a contradiction. Hence, v z= ′. If
vx E G( )4 ∈ , then we let w be the neighbor of x4 different from v and v4. Further we let
Q V C x x x x u v z= ( ) { , , , , , , }1 2 3 4∪ and G G Q′ = − . Thus, G′ is a connected special
subcubic graph with exactly one vertex of degree 2. Every γr‐set of G′ can be extended to
an RD‐set of G by adding to it the set x v v{ , , }1 3 , and so γ G γ G( ) ( ′) + 3r r≤ , implying that
G Gw( ) < w( ′) + 30. Since G′ rdom∉ , we have G Gw( ) = w( ′) + 43, a contradiction.

Hence, vx E G( )4 ∉ . We now let Q V C x x x u v z= ( ) { , , , , , }1 2 3∪ and G G Q′ = − . Thus, G′
is a special subcubic graph with exactly two vertices of degree 2. Once again, every γr‐set
of G′ can be extended to a RD‐set of G by adding to it the set x v v{ , , }1 3 , and so
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γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30. Since no component ofG′ belongs
to rdom , we have G Gw( ) = w( ′) + 38, a contradiction. □

By Claim 32.2, u z x x{ ′, ′} { , } =2 4∩ ∅. LetQ V C x x u z= ( ) { , , , }1 3∪ and letG G Q′ = − .
Thus, G′ is a special subcubic graph with exactly four vertices of degree 2. Every γr‐set of
G′ can be extended to an RD‐set of G by adding to it the set x v{ , }1 3 , and so
γ G γ G( ) ( ′) + 2r r≤ , implying that G Gw( ) < w( ′) + 20. Since at most one component of
G′ belongs to rdom , we have G Gw( ) = w( ′) + 24, a contradiction. This completes the
proof of Claim 32. □

Claim 33. IfG contains a 4‐cycleC v v v v v v: 1 2 3 4 1 4 where xi is the neighbor of vi that does
not belong to C for i [4]∈ , then N x N x( ) ( ) =i i+2∩ ∅ for i [2]∈ .

Proof. Let the cycle C and the vertices x x x x, , ,1 2 3 4 be as in the statement of the claim.
Thus the graph illustrated in Figure 15 is a subgraph of G where x x x x{ , , , }1 2 3 4 is an
independent set. Suppose, to the contrary, that  N x N x( ) ( ) 1i i+2∩ ≥ for some i [2]∈ . By
symmetry, we may assume that  N x N x( ) ( ) 11 3∩ ≥ . By Claim 32,  N x N x( ) ( ) = 11 3∩ .
Let z be the common neighbor of x1 and x3, and let z′ be the third neighbor of z.

Claim 33.1. The vertex z is adjacent to neither x2 nor x4.

Proof. Suppose, to the contrary, that the vertex z is adjacent to x2 or x4, that is, z x′ = 2 or
z x′ = 4. By symmetry, we may assume that z x′ = 4. Let Q V C x x x x z= ( ) { , , , , }1 2 3 4∪ . Let
yi be the neighbor of xi not in Q for i {1, 3, 4}∈ . Since the vertex z is the only common
neighbor of x1 and x3, we note that y y1 3≠ .

Claim 33.1.1. The vertices y y y, ,1 3 4 are pairwise distinct.

Proof. Suppose that the vertices y y y, ,1 3 4 are not pairwise distinct. By symmetry, we
may assume that y y=1 4. Suppose firstly that y y y= =1 3 4. In this case, let
Q V C x x x y z′ = ( ) { , , , , }1 3 4 1∪ and let G G Q′ = − ′. Thus, G′ is a connected special
subcubic graph with exactly small vertex, and so G′ rdom∉ and G Gw( ) w( ′) + 35≥ .
However, γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30, a contradiction. Hence,
the vertices y1 and y3 are distinct.

Let z1 be the neighbor of y1 different from x1 and x4. Suppose that x y z, ,2 3 1 are pairwise
distinct. In this case, we let Q V C x x x y z′ = ( ) { , , , , }1 3 4 1∪ and G G Q′ = − ′. Thus, G′ is a
special subcubic graph with three small vertices, and so by Claim 25 either no component
of G′ belongs to rdom or G′ is connected and G R′ = 9. Hence, G Gw( ) w( ′) + 30≥ .
Moreover, γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30, a contradiction. Hence,
x y z, ,2 3 1 are not pairwise distinct vertices. Since x2 and x3 are not adjacent, x y2 3≠ . Hence
either z x=1 2 or z y=1 3.

Suppose that z x=1 2. In this case, let y2 be the neighbor of x2 different from v2 and y1.
If y y2 3≠ , then let Q V C x x x x y z′ = ( ) { , , , , , }1 2 3 4 1∪ and G G Q′ = − ′. Thus, G′ is a
special subcubic graph with two small vertices, and so no component of G′ belongs to

rdom , whence G Gw( ) = w( ′) + 38. However, γ G γ G( ) ( ′) + 3r r≤ , implying that
G Gw( ) < w( ′) + 30, a contradiction. If y y=2 3, then in this case let

Q V C x x x x y y z′ = ( ) { , , , , , , }1 2 3 4 1 2∪ and G G Q′ = − ′. Thus, G′ is a connected special
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subcubic graph with one small vertex, and so G′ rdom∉ and G Gw( ) = w( ′) + 43.
However, γ G γ G( ) ( ′) + 4r r≤ , implying that G Gw( ) < w( ′) + 40, a contradiction.

Hence, z y=1 3. Suppose that x y E G( )2 3 ∈ . In this case, we let
Q V C x x x x y y z′ = ( ) { , , , , , , }1 2 3 4 1 3∪ and let G G Q′ = − ′. Thus, G′ is a connected special
subcubic graph with one small vertex, and so G′ rdom∉ and G Gw( ) = w( ′) + 43.
However, γ G γ G( ) ( ′) + 4r r≤ , implying that G Gw( ) < w( ′) + 40, a contradiction. Hence,
x y E G( )2 3 ∉ . In this case, we let Q V C x x x y y z′ = ( ) { , , , , , }1 3 4 1 3∪ and let G G Q′ = − ′.
Thus, G′ is a special subcubic graph with two small vertices, and so no component
of G′ belongs to rdom , yielding G Gw( ) = w( ′) + 38. However, γ G γ G( ) ( ′) + 3r r≤ , a
contradiction. □

Claim 33.1.2. The vertex x2 is adjacent to at most one of y1 and y4.

Proof. Suppose that x2 is adjacent to both y1 and y4. In this case, we let
Q V C x x x x y y z′ = ( ) { , , , , , , }1 2 3 4 1 4∪ and let G G Q′ = − ′. Suppose that G′ is a special
subcubic graph, and so G′ contains exactly three small vertices. By Claim 25 either no
component of G′ belongs to rdom or G′ is connected and G R′ = 9. If no component of G′
belongs to rdom , then G Gw( ) = w( ′) + 41, while if G R′ = 9, then G Gw( ) = w( ′) + 38.
However, γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30, a contradiction. Hence,
G′ is not a special subcubic graph.

Let z1 and z4 be the neighbors of y1 and y4, respectively, in G that do not belong to
Q. Since G′ is not a special subcubic graph, the vertices y z z, ,3 1 4 are not pairwise
distinct. If y3 is adjacent to both y1 and y4, then the graph G is determined and
γ G( ) = 3r and Gw( ) = 48, a contradiction. If y3 is adjacent to exactly one of y1 and y4,
then by symmetry we may assume that y y3 4 is an edge. In this case, we let
Q V C x x x′ = ( ) { , , ,1 2 3∪ x y y y z, , , , }4 1 3 4 and let G G Q′ = − ′. Thus, G′ is a special
subcubic graph with two small vertices, and so no component of G′ belongs to

rdom and G Gw( ) = w( ′) + 46. However, γ G γ G( ) ( ′) + 3r r≤ , implying that
G Gw( ) < w( ′) + 30, a contradiction. Hence, y3 is adjacent to neither y1 nor y4, that

is, y z3 1≠ and y z3 4≠ , implying that z z=1 4.
If z y E G( )1 3 ∈ , then we let Q Q y y y z′ = { , , , }1 3 4 1∪ and let G G Q′ = − ′. Thus, G′ is a

special subcubic graph with one small vertex, and soG′ rdom∉ and G Gw( ) = w( ′) + 51.
However, γ G γ G( ) ( ′) + 4r r≤ , implying that G Gw( ) < w( ′) + 40, a contradiction. If
z y E G( )1 3 ∉ , then let z′ be the neighbor of z1 different from y1 and y4, and in this case let
Q Q y y z′ = { , , }1 4 1∪ andG G Q′ = − ′. Thus,G′ is a special subcubic graph with two small
vertices, and so no component of G′ belongs to rdom and G Gw( ) = w( ′) + 46. However,
γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30, a contradiction. □

By Claim 33.1.2, the vertex x2 is adjacent to at most one of y1 and y4. By symmetry, we
may assume that x y E G( )2 1 ∉ . Let Q Q x′ = { }2⧹ and let G′ be obtained from G Q− ′ by
adding the edge x y2 1. Thus,G′ is a subcubic graph with exactly two small vertices, namely
y3 and y4, and so no component ofG′ belongs to rdom and G Gw( ) = w( ′) + 30. Let S′ be
a γr‐set of G′. If x S′2 ∈ , let S S v v x= ′ { , , }3 4 1∪ . If x S′2 ∉ and y S′1 ∈ , let
S S v v x= ′ { , , }2 3 4∪ . If x S′2 ∉ and y S′1 ∉ , let S S v x x= ′ { , , }1 3 4∪ . In all cases, S is an
RD‐set of G, and so γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30, a
contradiction. This completes the proof of Claim 33. □
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Claim 34. The graph G has no 4‐cycle.

Proof. Suppose, to the contrary, that G contains a 4‐cycle C v v v v v v: 1 2 3 4 1 4. Let xi be the
neighbor of vi that does not belong toC for i [4]∈ . Thus the graph illustrated in Figure 15
is a subgraph of G where x x x x{ , , , }1 2 3 4 is an independent set. By Claim 33,
N x N x( ) ( ) =i i+2∩ ∅ for i [2]∈ . Thus, x1 and x3 have no common neighbor, and x2
and x4 have no common neighbor. Let yi and zi be the two neighbors of xi different from
vi for i {1, 3}∈ . By our earlier observations, the vertices x x y y z z, , , , ,2 4 1 3 1 3 are pairwise
distinct.

If x2 is adjacent to both y3 and z3, then C x y x z x′ : 2 3 3 3 2 is a 4‐cycle. However, in this
case the neighbors v2 and v3 of the vertices x2 and x3, respectively, that do not belong to
the cycleC′ are adjacent, contradicting Claim 31. Hence, the vertex x2 is not adjacent to at
least one of y3 and z3. Renaming vertices, if necessary, we may assume that x2 is not
adjacent to y3. Let Q V C x x= ( ) { , }1 3∪ and let G′ be obtained from G Q− by adding the
edge x y2 3. The resulting graph G′ is a special subcubic that contains exactly four small
vertices, namely x y z z, , ,4 1 1 3. Thus at most one component of G′ belongs to rdom .

Let S′ be a γr‐set ofG′, and let S be the set defined as follows. If y S′3 ∈ and y S′1 ∉ , let
S S v v= ′ { , }1 2∪ . If y S′3 ∈ and y S′1 ∈ , let S S v v= ′ { , }2 4∪ . If y S x S′, ′3 2∉ ∈ and y S′1 ∉ ,
let S S v x= ′ { , }1 3∪ . If y S x S′, ′3 2∉ ∈ and y S′1 ∈ , let S S v x= ′ { , }4 3∪ . If x S′2 ∉ and
y S′3 ∉ , let S S x v= ′ { , }1 3∪ . The resulting set S is an RD‐set of G, and so
γ G γ G( ) ( ′) + 2r r≤ , implying that G Gw( ) < w( ′) + 20. If G′ has no component in

rdom , then G w G Gw( ) = 24 + ( ( ′) − 4) = w( ′) + 20, a contradiction. Hence, G′ contains
a component G1 that belongs to rdom . By Claim 25, there is only one such component
and G R R R R{ , , , }1 2 4 5 9∈ .

Suppose that the added edge x y2 3 belongs toG1. In this case,G1 contains two adjacent
vertices of degree 3, and so G R R R{ , , }1 4 5 9∈ . Let G*1 be the graph obtained from G1 by
subdividing the edge x y2 3 three times resulting in the path x v v x y2 2 3 3 3. Let S*1 be a
minimum type‐2 NeRD‐set of G*1 with respect to the vertex v3. By Observation 4(b),
 S γ G v γ G* = ( *; ) ( )r r1 ,dom 1 3 1≤ . By our earlier observations, at least one of y1 and z1 belong

to the graph G1. Renaming vertices if necessary, we may assume that y V G( )1 1∈ . If
y S*1 1∈ , then let S S v= * { }1 3∪ . If y S*1 1∉ , then let S S v= * { }1 1∪ . IfG G′ = 1, then the set S
is a RD‐set of G, and so  γ G S γ G γ G( ) * + 1 ( ) + 1 = ( ′) + 1r r r1 1≤ ≤ . If G G′ 1≠ , then
G R=1 9. In this case, G1 contains three vertices of degree 2 in G′, and so G′ is
disconnected and contains a second component G2. Since G2 contains exactly one
small vertex, the component G2 does not belong to rdom . Every γr‐set of G2 can be
extended to an RD‐set of G by adding to it the set S, and so in this case

       γ G S S S S γ G γ G γ G( ) + = * + 1 + ( ( ) + 1) + ( ) = ( ′) + 1r r r r2 1 2 1 2≤ ≤ . In both cases,
γ G γ G( ) ( ′) + 1r r≤ , implying that G Gw( ) < w( ′) + 10. However, G Gw( ) w( ′) + 16≥ , a
contradiction.

Hence, the added edge x y2 3 does not belong to G1, implying that G′ is disconnected.
LetG G V G= ′ − ( )2 1 . We note thatG2 contains the added edge x y2 3 and contains at most
two components and contains at most one small vertex. Thus, no component of G2

belongs to rdom . Let S2 be a γr‐set of G2. We note that γ G γ G γ G( ′) = ( ) + ( )r r r1 2 . Recall
that G1 contains at least three vertices from the set x y z z{ , , , }4 1 1 3 .

Suppose that y S3 2∈ or x S2 2∈ . In this case, we let X V G( )1 1⊂ such that  X = 21 and
X x y z{ , , }1 4 1 1⊂ noting that at least two vertices in x y z{ , , }4 1 1 belong to the componentG1.
Let S1 be a minimum type‐2 NeRD‐set ofG1 with respect to the vertex X1. By Observation

BREŠAR and HENNING | 809

 10970118, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23095 by C

ochrane Slovenia, W
iley O

nline L
ibrary on [18/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1(f),  S γ G X γ G= ( ; ) ( ) − 1r r1 ,dom 1 1 1≤ . If y S3 2∈ , let S S S v v* = { , }1 2 1 2∪ ∪ . If y S3 2∉ and
x S2 2∈ , let S S S v x* = { , }1 2 1 3∪ ∪ . Suppose that y S3 2∉ and x S2 2∉ . At least one of y1
and z1 belong to the graph G1. Renaming vertices if necessary, we may assume that
y V G( )1 1∈ . In this case, we let S1 be a minimum type‐1 NeRD‐set of G1 with respect to
the vertex y1. By Observation 1(d),  S γ G y γ G= ( ; ) ( ) − 1r r1 ,ndom 1 1 1≤ . Let
S S S x v* = { , }1 2 1 3∪ ∪ . In all cases,  S γ G( ) − 1r1 1≤ and the set S* is a RD‐set of G,
and so    γ G S S γ G γ G γ G( ) + + 2 ( ( ) − 1) + ( ) + 2 = ( ′) + 1r r r r1 2 1 2≤ ≤ , implying that
G Gw( ) < w( ′) + 10. However, G Gw( ) w( ′) + 16≥ , a contradiction. This completes the

proof of Claim 34. □

Claim 35. The graph G has no 5‐cycle.

Proof. Suppose to the contrary that G contains a 5‐cycle C v v v v v v: 1 2 3 4 5 1. Let xi be the
neighbor of vi that does not belong to C for i [5]∈ . Let X x x= { , …, }1 5 and let
Q V C X= ( ) ∪ .

Claim 35.1. Each vertex x X∈ has at least one neighbor in X .

Proof. Suppose, to the contrary, that there is a vertex in X with no neighbor in X .
Renaming vertices if necessary that x1 has no neighbor in X . Let y1 and z1 be the two
neighbors of x1 different from v1. If x2 is adjacent to both y1 and z1, then x y x z x1 1 2 1 1 is a 4‐
cycle inG, a contradiction. Hence we may assume that x z E G( )2 1 ∉ . LetQ V C x′ = ( ) { }1∪

and let G′ be obtained from G Q− ′ by adding the edge e x z= 2 1. Thus, G′ is a special
subcubic graph that contains exactly four small vertices. By Claim 25, at most one
component ofG′ belongs to rdom . Let S′ be a γr‐set ofG′. If x S′2 ∈ , let S S x v= ′ { , }1 4∪ . If
x S′2 ∉ and z S′1 ∈ , let S S v v= ′ { , }2 5∪ . If x S′2 ∉ and z S′1 ∉ , let S S v v= ′ { , }1 3∪ . In all
cases, S is an RD‐set of G, and so  γ G S γ G( ) + 2 = ( ′) + 2r r≤ , implying that
G Gw( ) < w( ′) + 20. If no component of G′ belongs to rdom , then G Gw( ) = w( ′) + 20,

a contradiction. Hence, G′ contains a component G1 that belongs to rdom . By Claim 25,
there is only one such component and G R R R R{ , , , }1 2 4 5 9∈ . If G R=1 2, then since G
contains no 4‐cycle the added edge e belongs to G1, implying that G1 contains two
adjacent vertices of degree 3, a contradiction. Hence, G R R R{ , , }1 4 5 9∈ .

Suppose that e E G( )1∈ . IfG R R{ , }1 4 5∈ , then the graphG is determined (in the sense
that V G V C V G( ) = ( ) ( )1∪ ) and γ G( ) 4r ≤ and Gw( ) = 56, a contradiction. Hence,
G R=1 9. In this case, G′ is disconnected and contains two components. Let G2 be the
second component ofG′, and soG2 contains exactly one small vertex andG2 rdom∉ . Let
G* be the subgraph of G or order 17 induced by V C V G( ) ( )1∪ . Every γr‐set of G* can be
extended to an RD‐set of G by adding to it a γr‐set of G2, and so
γ G γ G γ G γ G( ) ( ) + ( *) ( ) + 6r r r r2 2≤ ≤ , implying that G Gw( ) < w( ) + 602 . However,
G G Gw( ) = 17 × 4 + (w( ) − 1) = w( ) + 672 2 , a contradiction. Hence, e E G( )1∉ . Let

G G V G= ′ − ( )2 1 , and so e E G( )2∈ and γ G γ G γ G( ′) = ( ) + ( )r r r1 2 . Since G1 contains at
least three small vertices, the graphG2 contains at most one small vertex. Further,G2 has
at most two components, and so no component ofG2 belongs to rdom . Let S2 be a γr‐set of
G2. We now define an RD‐set S in G as follows.

Suppose that x S2 2∈ . We note that at least one of x4 and y1 belongs to G1. Let
v x y V G{ , } ( )4 1 1∈ ∩ . Let S1 be a minimum type‐1 NeRD‐set of G1 with respect to the
vertex v. By Observation 1(d),  S γ G v γ G= ( ; ) ( ) − 1r r1 ,ndom 1 1≤ . Let S S S x v= { , }1 2 1 4∪ ∪ .
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Suppose that x S2 2∉ and z S1 2∈ . We note that at least one of x3 and x4 belongs toG1.
Let v x x V G{ , } ( )3 4 1∈ ∩ . Let S1 be a minimum type‐2 NeRD‐set of G1 with respect to the
vertex v. By Observation 1(e),  S γ G v γ G= ( ; ) ( ) − 1r r1 ,dom 1 1≤ . Let S S S v v= { , }1 2 2 5∪ ∪ .

Suppose that x S2 2∉ and z S1 2∉ . We note that at least one of x4 and x5 belongs toG1.
Let v x x V G{ , } ( )4 5 1∈ ∩ . Let S1 be a minimum type‐2 NeRD‐set of G1 with respect to the
vertex v. By Observation 1(e),  S γ G v γ G= ( ; ) ( ) − 1r r1 ,dom 1 1≤ . Let S S S v v= { , }1 2 1 3∪ ∪ .

In all cases,  S γ G( ) − 1r1 1≤ and the set S is an RD‐set of G. Therefore,
   γ G S S γ G γ G γ G( ) + + 2 ( ( ) − 1) + ( ) + 2 = ( ′) + 1r r r r1 2 1 2≤ ≤ , implying that Gw( ) <

Gw( ′) + 10. However, G Gw( ) w( ′) + 16≥ , a contradiction. □

By Claim 35.1, each vertex x X∈ has at least one neighbor in X . Hence, G X[ ]

contains at least three edges. SinceG has no 4‐cycles, we infer thatG X[ ] contains at most
five edges. Using symmetry, we may assume without loss of generality that
x x x x x x E G{ , , } ( )1 4 2 4 3 5 ⊂ noting that G contains no 4‐cycles.

Claim 35.2. G X[ ] contains at least four edges.

Proof. Suppose, to the contrary, that G X[ ] contains exactly three edges. Let yi be
neighbor of xi not in Q for i {1, 2, 3, 5}∈ . Since G has no 4‐cycles, we note that y y1 2≠ ,
and since G has no triangles, we note that y y3 5≠ . We show firstly that y y2 3≠ . Suppose,
to the contrary, that y y=2 3, and let z be the third neighbor of y2.

Suppose that y y=1 5. Let z′ be the neighbor of y1 different from x1 and x5. Suppose that
z z= ′. In this case, let Q Q y y z′ = { , , }1 2∪ and let G G Q′ = − ′. Thus, G′ is a connected
special subcubic graph that contains exactly one small vertex, and so G′ rdom∉ and
G Gw( ) = w( ′) + 51. However, γ G γ G( ) ( ′) + 5r r≤ , implying that G Gw( ) < w( ′) + 50, a

contradiction. Hence, z z′≠ . In this case, letQ Q y y′ = { , }1 2∪ and letG G Q′ = − ′. Thus,
G′ is a special subcubic graph that contains exactly two small vertices, and so no
component ofG′ belongs to rdom and G Gw( ) = w( ′) + 46. However, γ G γ G( ) ( ′) + 4r r≤ ,
a contradiction.

Hence, y y1 5≠ . Since G contain no 4‐cycle, y y E G( )2 5 ∉ . Suppose that y y E G( )1 2 ∉ ,
and so z is distinct from both y1 and y5. In this case, let Q Q y′ = { }2∪ and let
G G Q′ = − ′. Thus, G′ is a special subcubic graph that contains exactly three small
vertices, and so either no component of G′ belongs to rdom or G′ is connected and
G R′ = 9. Therefore, G Gw( ) w( ′) + 38≥ . However, γ G γ G( ) ( ′) + 3r r≤ , implying that

G Gw( ) < w( ′) + 30, a contradiction.
Hence, y y E G( )1 2 ∈ . If, in addition, y y E G( )1 5 ∈ , then let Q Q y y y′ = { , , }1 2 5∪ and let

G G Q′ = − ′. Thus,G′ is a connected special subcubic graph that contains exactly one small
vertex and so G′ rdom∉ and G Gw( ) w( ′) + 51≥ . However, γ G γ G( ) ( ′) + 4r r≤ , implying
that G Gw( ) < w( ′) + 40, a contradiction. On the other hand, if y y E G( )1 2 ∈ and
y y E G( )1 5 ∉ , then let Q Q y y′ = { , }1 2∪ and let G G Q′ = − ′. Thus, G′ is a special
subcubic graph that contains two small vertices and so no component of G′ is in rdom
and G Gw( ) w( ′) + 46≥ . However, γ G γ G( ) ( ′) + 4r r≤ , implying that G Gw( ) < w( ′) + 40,
a contradiction. Hence, y y2 3≠ .

We show next that y y2 5≠ . Suppose, to the contrary, that y y=2 5, and let z be the third
neighbor of y2. Suppose that y y=1 3. Let z′ be the neighbor of y1 different from x1 and x3.
Suppose that z z= ′. In this case, letQ Q y y z′ = { , , }1 2∪ and letG G Q′ = − ′. Thus,G′ is a
connected special subcubic graph that contains exactly one small vertex, and so
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G′ rdom∉ and G Gw( ) = w( ′) + 51. However, γ G γ G( ) ( ′) + 5r r≤ , implying that
G Gw( ) < w( ′) + 50, a contradiction. Hence, z z′≠ . In this case, let Q Q y y′ = { , }1 2∪

and let G G Q′ = − ′. Thus, G′ is a special subcubic graph that contains exactly two small
vertices, and so no component of G′ belongs to rdom and G Gw( ) = w( ′) + 46. However,
γ G γ G( ) ( ′) + 4r r≤ , a contradiction.

Hence, y y1 3≠ . Since G contains no 4‐cycle, vertex y2 is not adjacent to y3, that is,
z y3≠ . Suppose that z y1≠ . In this case, letQ Q y′ = { }2∪ and letG G Q′ = − ′. Thus,G′ is
a special subcubic graph that contains exactly three small vertices, and either no
component of G′ belongs to rdom or G′ is connected and G R′ = 9. Thus,
G Gw( ) = w( ′) + 38. However, γ G γ G( ) ( ′) + 3r r≤ , a contradiction.
Hence, z y= 1, that is, y y E G( )1 2 ∈ . If, in addition, y y E G( )1 3 ∈ , then let

Q Q y y y′ = { , , }1 2 3∪ and let G G Q′ = − ′. Thus, G′ is a connected special subcubic
graph that contains exactly one small vertex and so G′ rdom∉ and G Gw( ) w( ′) + 51≥ .
However, γ G γ G( ) ( ′) + 4r r≤ , implying that G Gw( ) < w( ′) + 40, a contradiction. On the
other hand, if y y E G( )1 2 ∈ and y y E G( )1 3 ∉ , then let Q Q y y′ = { , }1 2∪ and let
G G Q′ = − ′. Thus, G′ is a special subcubic graph that contains two small vertices and
so no component ofG′ is in rdom and G Gw( ) w( ′) + 46≥ . However, γ G γ G( ) ( ′) + 4r r≤ ,
implying that G Gw( ) < w( ′) + 40, a contradiction. Hence, y y2 5≠ .

By our earlier observations, the vertices y y y, ,1 2 3, and y5 are pairwise distinct. Let
G G Q′ = − . Thus,G′ is a special subcubic graph that contains exactly four small vertices.
At most one component of G′ belongs to rdom and G Gw( ) w( ′) + 32≥ . However,
γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30, a contradiction. This completes
the proof of Claim 35.2. □

By Claim 35.2, the graph G X[ ] contains at least four edges. Hence at least one of x x1 3

and x x2 5 is an edge. By symmetry, we may assume that x x E G( )1 3 ∈ . If x x E G( )2 5 ∈ , then
the graphG is determined and is isomorphic to the Petersen graph shown in Figure 1. In
this case, γ G( ) = 4r and Gw( ) = 40, a contradiction. Hence, x x E G( )2 5 ∉ . Let yi be the
neighbor of xi not in Q for i {2, 5}∈ . Suppose that y y=2 5. In this case, let Q Q y′ = { }2∪

and let G G Q′ = − ′. Thus, G′ is a connected special subcubic graph that contains
exactly one small vertex, and so G′ rdom∉ and G Gw( ) = w( ′) + 41. However,
γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30, a contradiction. Hence, y y2 5≠ .
We now let G G Q′ = − . Thus, G′ is a special subcubic graph that contains exactly two
small vertices, and so no component of G′ belongs to rdom and G Gw( ) w( ′) + 38≥ .
However, γ G γ G( ) ( ′) + 3r r≤ , implying that G Gw( ) < w( ′) + 30, a contradiction. This
completes the proof of Claim 35. □

Claim 36. The graph G has no 6‐cycle.

Proof. Suppose, to the contrary, thatG contains a 6‐cycleC v v v v v v v: 1 2 3 4 5 6 1. Thus,G has
girth equal to 6. In particular, C is an induced cycle inG. Let xi be the neighbor of vi that
does not belong to C for i [6]∈ . The girth condition implies that x xi j≠ for i j1 < 6≤ ≤ .
Let X x x= { , …, }1 6 . The girth condition implies that the only possible edges in G X[ ] are
the edges x x x x,1 4 2 5 and x x3 6. Let G′ be the special subcubic graph obtained from
G V C− ( ) by adding the edge x x1 2. Thus, G′ contains exactly four small vertices, namely
x x x x, , ,3 4 5 6. By Claim 25, at most one component ofG′ belongs to rdom . Let S′ be a γr‐set
of G′. If x S′1 ∈ , let S S v v= ′ { , }2 5∪ . If x S′1 ∉ and x S′2 ∈ , let S S v v= ′ { , }1 4∪ . If x S′1 ∉
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and x S′2 ∉ , let S S v v= ′ { , }3 6∪ . In all cases, S is an RD‐set of G, and so
 γ G S γ G( ) ′ + 2 = ( ′) + 2r r≤ , implying that G Gw( ) < w( ′) + 20.

If no component of G′ belongs to rdom , then G Gw( ) = w( ′) + 20, a contradiction.
Hence, G′ contains a component G1 that belongs to rdom . By Claim 25, there is only one
such component and G R R R R{ , , , }1 2 4 5 9∈ . The set X x x x x= { , , , }1 3 4 5 6 of small vertices in
G1 is either independent or induces a graph that contains exactly one edge, namely the
edge x x3 6. Further, every cycle of length less than 6 in G1 must contain the added edge
x x1 2 since graphG contains no cycles of length 3, 4 or 5. IfG1 contains the edge x x1 2, then
G1 contains two adjacent vertices of degree 3. From these properties of the graph G′ we
infer that G R R{ , }1 2 9∉ . Since R5 contains two pairs of small vertices that are adjacent
while the set X1 contains at most one pair of small vertices that are adjacent, G R1 5≠ ,
implying thatG R=1 4 and X V G( )1 1⊂ . The structure of R4 implies that in this case, every
small vertex in R4 is at distance 2 from two other small vertices. In particular, the vertex x4 is
at distance 2 from at least one of x3 or x5 in G′. If x3 and x4 are at distance 2 in G′ and w
denotes their common neighbor inG′, then x v v x wx4 4 3 3 4 is a 5‐cycle inG. If x4 and x5 are at
distance 2 inG′ and z denotes their common neighbor inG′, then x v v x zx4 4 5 5 4 is a 5‐cycle in
G. In both cases, we contradict the girth at least 6 condition in G. □

By Claim 36, the graph G has no 6‐cycle. Let u and v be adjacent vertices in G, and
let N u u u v( ) = { , , }1 2 and N v u v v( ) = { , , }1 2 . Further, let N u u u u( ) = { , , }i i i1 2 and let
N v v v v( ) = { , , }i i i1 2 for i [2]∈ . Thus, G contains the subgraph shown in Figure 16. Let
X u u u u v v v v= { , , , , , , , }11 12 21 22 11 12 21 22 . Since the graphG has girth at least 7, the set X is an
independent set. The subgraph shown in Figure 16 is therefore an induced subgraph of G.

Let Q u u u v v v= { , , , , , }1 2 1 2 and let G′ be obtained from G Q− be adding the edges
e u u= 12 21 and f v v= 12 21. Thus, G′ is a special subcubic graph that contains exactly four
small vertices, namely the vertices in the set X u u v v′ = { , , , }11 22 11 22 . Let S′ be a γr‐set ofG′,
and let S S u v= ′ { *, *}∪ where the vertices u* and v* are defined as follows. If u S′12 ∈ , let
u u* = 2. If u S′12 ∉ and u S′21 ∈ , let u u* = 1. If u S′12 ∉ and u S′21 ∉ , let u u* = . If v S′12 ∈ ,
let v v* = 2. If v S′12 ∉ and v S′21 ∈ , let v v* = 1. If v S′12 ∉ and v S′21 ∉ , let v v* = . The
resulting set S is an RD‐set of G, and so γ G γ G( ) ( ′) + 2r r≤ , implying that
G Gw( ) < w( ′) + 20.
IfG′ has no component in rdom , then G Gw( ) = w( ′) + 20, a contradiction. Hence,G′

contains a component G1 that belongs to rdom . By Claim 25, there is only one such
component and G R R R R{ , , , }1 2 4 5 9∈ . Necessarily, G1 contains at least three vertices from
the set X′. As observed earlier, the set X is an independent set, and therefore so too is the
subset X′ of X , implying that G R R{ , }1 2 5∉ . Every cycle of length less than 7 in G1 must
contain at least one of the added edges e and f since the graphG has girth at least 7. IfG1

contains the edge e or f , then both ends of the added edge have degree 3 in G1. From
these properties of the graph G′, we deduce that if G R=1 4, then G G′ = 1. But this would

FIGURE 16 A subgraph in the graph G.
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imply thatG X C[ ] = 8, contradicting our earlier observation that X is an independent set.
Hence, G R=1 9. In this case, both added edges e and f must belong to G1. However,
removing any two edges from R9 creates a graph which still contains a 5‐cycle. This
implies that G itself contains a 5‐cycle, which is a contradiction. This final contradiction
concludes the proof of Theorem 3. □

6 | PROOF OF MAIN RESULT

In this section, we prove our main result, namely Theorem 2. As a consequence of key result,
namely Theorem 3, we have the following upper bound on the restrained domination number
of a cubic graph.

Theorem 5. If G is a cubic graph of order n, then γ G n( )r
2

5
≤ .

Proof. Let G be a cubic graph of order n. Thus, n G( ) = 02 and n G n( ) =3 . Since every
graph in the family rdom contains a vertex of degree 2, no component ofG belongs to the
family rdom . The weight of G is therefore G nw( ) = 4 . Hence by Theorem 3,
γ G G n10 ( ) w( ) = 4r ≤ , or, equivalently, γ G n( )r

2

5
≤ . □

By Theorem 5, crdom
2

5
≤ . As observed earlier, the Petersen graph shows that crdom

2

5
≥ .

Consequently, c =rdom
2

5
, yielding the result of Theorem 2. We remark that a classical result in

domination theory due to Blank [3] and McCuaig and Shepherd [22] states that if G is a

connected graph of order n 8≥ with δ G( ) 2≥ , then γ G n( )
2

5
≤ . Hence by Theorem 5 this 2

5
‐

bound for domination also holds for restrained domination if we replace the minimum degree
at least 2 requirement with a 3‐regularity condition.
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