Best possible upper bounds on the restrained domination number of cubic graphs

Boštjan Brešar ${ }^{1,2}$ | Michael A. Henning ${ }^{3}$ ©

${ }^{1}$ Department of Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
${ }^{2}$ Department of Mathematics, Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
${ }^{3}$ Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park, South Africa

Correspondence

Boštjan Brešar, Department of Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.
Email: bostjan.bresar@um.si

Abstract

A dominating set in a graph G is a set S of vertices such that every vertex in $V(G) \backslash S$ is adjacent to a vertex in S. A restrained dominating set of G is a dominating set S with the additional restraint that the graph $G-S$ obtained by removing all vertices in S is isolate-free. The domination number $\gamma(G)$ and the restrained domination number $\gamma_{r}(G)$ are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of G. Let G be a cubic graph of order n. A classical result of Reed states that $\gamma(G) \leq \frac{3}{8} n$, and this bound is best possible. To determine the best possible upper bound on the restrained domination number of G is more challenging, and we prove that $\gamma_{r}(G) \leq \frac{2}{5} n$.

KEYWORDS

cubic graphs, domination, restrained domination

```
```

AMSCLASSIFICATION

```
```

AMSCLASSIFICATION
05C69

```
```

05C69

```
```


1 | INTRODUCTION

A dominating set of a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S, where two vertices are neighbors in G if they are adjacent. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A set S dominates a vertex v is $v \in S$ or if v has a neighbor in S. A restrained dominating set (RD-set), of

[^0]© 2024 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC.
G is a dominating set S of G with the additional property that every vertex not in S has a neighbor not in S, that is, the subgraph of G induced by the set $V(G) \backslash S$ is isolate-free. The restrained domination number of G, denoted by $\gamma_{r}(G)$, is the minimum cardinality of an RD-set of G. A γ_{r}-set of G is an RD-set of G of minimum cardinality $\gamma_{r}(G)$. Restrained domination in graphs is well studied in the literature with over 100 publications, according to MathSciNet. We refer the reader to the excellent book chapter by Hattingh and Joubert in 2020 on restrained domination in graphs that gives the state of the art on the topic. For recent books on domination in graphs, we refer the reader to [13-15, 19].

A cubic graph, also called a 3-regular graph, is a graph in which every vertex has degree 3 . A subcubic graph is a graph with maximum degree at most 3 . Domination in cubic and subcubic graphs is very well studied in the literature (see, e.g., [1, 2, 4-6, 9-12, 18, 20, 21, 23-27]). We define a special subcubic graph as a subcubic graph G with minimum degree at least 2 . In this paper, we continue the study of restrained domination in cubic graphs. We consider the following problem.

Problem 1. Determine the best possible constant $c_{\text {rdom }}$ such that $\gamma_{r}(G) \leq c_{\text {rdom }} \cdot n(G)$ for all cubic graphs G.

The best known upper bound to date, before this paper, on $c_{\text {rdom }}$ is due to Hattingh and Joubert [11], who proved that $c_{\text {rdom }} \leq \frac{5}{11}$. Their proof is nontrivial and uses intricate and ingenious counting arguments. We observe that the Petersen graph G, illustrated in Figure 1, has order $n(G)=10$ and $\gamma_{r}(G)=4=\frac{2}{5} n(G)$, where the set consisting of the four shaded vertices is an example of a γ_{r}-set of G. This yields the trivial lower bound $c_{\text {rdom }} \geq \frac{2}{5}$.

Theorem 1 (Hattingh and Joubert [11]). $\frac{2}{5} \leq c_{\mathrm{rdom}} \leq \frac{5}{11}$.

It is conjectured in [17] that the lower bound in Theorem 1 is the correct value of $c_{\text {rdom }}$. In this paper, we prove that this is indeed the case.

Theorem 2. $\quad c_{\mathrm{rdom}}=\frac{2}{5}$.

To prove Theorem 2, it suffices to show that if G is a cubic graph of order n, then $\gamma_{r}(G) \leq \frac{2}{5} n$. However to prove this result, we relax the 3-regularity condition to allow vertices of degree 2 in the mix to make the inductive hypothesis easier to handle. If $n_{2}(G)$ and $n_{3}(G)$ denote the number of vertices of degree 2 and 3, respectively, in such a graph G, then we would like to prove that $10 \gamma_{r}(G) \leq 5 n_{2}(G)+4 n_{3}(G)$ since if G is 3-regular this yields $\gamma_{r}(G) \leq \frac{2}{5} n$.

FIGURE 1 The Petersen graph G.

However, relaxing the 3-regularity condition results in a family $\mathcal{B}_{\text {rdom }}$ of "troublesome graphs" for which the desired inequality $10 \gamma_{r}(G) \leq 5 n_{2}(G)+4 n_{3}(G)$ does not hold. Therefore we add a function $\Omega(G)$ such that the statement becomes true even for these troublesome graphs. However, we try to keep $\Omega(G)$ as small as possible to establish a bound on $\gamma_{r}(G)$ that remains as strong as possible. The resulting bound will be the key result that will enable us to prove Theorem 2.

We proceed as follows. In Section 2, we formally state our key result, namely Theorem 3. In Section 2.1, we present the necessary graph theory notation. In Section 2.2, we introduce the concept of near-restrained dominating sets, which we will need when proving our key result. Known results are discussed in Section 2.3. In Section 3, we discuss properties of troublesome graphs that belong to the family $\mathcal{B}_{\text {rdom }}$. A preliminary result is proven in Section 4. Proof of our key result is given in Section 5, and thereafter in Section 6, we deduce our main result.

2 | KEY RESULT

To prove our main result, namely Theorem 2 , we identify a family $\mathcal{B}_{\text {rdom }}=\left\{R_{1}, R_{2}, \ldots, R_{10}\right\}$ of 10 troublesome graphs G shown in Figure 2 that satisfy $10 \gamma_{r}(G)>5 n_{2}(G)+4 n_{3}(G)$. Let $\mathcal{B}_{\text {rdom }, 1}=\left\{R_{6}, R_{7}, R_{8}, R_{10}\right\}, \mathcal{B}_{\text {rdom }, 2}=\left\{R_{2}, R_{3}\right\}, \mathcal{B}_{\text {rdom }, 3}=\left\{R_{9}\right\}, \mathcal{B}_{\text {rdom }, 4}=\left\{R_{4}, R_{5}\right\}$ and $\mathcal{B}_{\text {rdom }, 5}=\left\{R_{1}\right\}$. Let $f_{i}(G)$ denote the number of components of a special subcubic graph G that belong to $\mathcal{B}_{\text {rdom, } i}$ for $i \in$ [5]. We define

$$
\Omega(G)=\sum_{i=1}^{5} i f_{i}(G)
$$

We note that if G is a connected graph and $G \notin \mathcal{B}_{\text {rdom }}$, then $\Omega(G)=0$, while if $G \in \mathcal{B}_{\text {rdom }}$, then $G \in \mathcal{B}_{\text {rdom, } i}$ for some $i \in[5]$ in which case $\Omega(G)=i \leq 5$. We define a weight function $\mathrm{w}(G)$ associated with G by

$$
\mathrm{w}(G)=5 n_{2}(G)+4 n_{3}(G)+\Omega(G)
$$

We define the weight $\mathrm{w}_{G}(v)$ of a vertex v in G as its contribution to the weight $5 n_{2}(G)+4 n_{3}(G)$. Thus, if $\operatorname{deg}_{G}(v)=2$, then $\mathrm{w}_{G}(v)=5$, and if $\operatorname{deg}_{G}(v)=3$, then $\mathrm{w}_{G}(v)=4$. We

R_{1}

R_{2}

R_{3}

R_{4}

R_{9}

R_{10}

FIGURE 2 The family $\mathcal{B}_{\text {rdom }}$.
define the weight $\mathrm{w}_{G}(S)$ of a set S of vertices in G as the sum of the weights of vertices in S, that is, $\mathrm{w}_{G}(S)=\sum_{v \in S} \mathrm{w}_{G}(v)$. We are now in a position to state our key result, a proof of which will be given in Section 5.

Theorem 3. If G is a special subcubic graph, then $10 \gamma_{r}(G) \leq \mathrm{w}(G)$.

2.1 | Notation

For notation and graph theory terminology, we in general follow [15]. Specifically, let G be a graph with vertex set $V(G)$ and edge set $E(G)$, and of order $n(G)=|V(G)|$ and size $m(G)=|E(G)|$. For a set of vertices $S \subseteq V(G)$, the subgraph induced by S is denoted by $G[S]$. Two vertices in G are neighbors if they are adjacent. The open neighborhood $N_{G}(v)$ of a vertex v in G is the set of neighbors of v, while the closed neighborhood of v is the set $N_{G}[v]=\{v\} \cup N(v)$. Two vertices are open twins if they have the same open neighborhood. We denote the degree of v in G by $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. The minimum and maximum degree in G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. An isolated vertex is a vertex of degree 0 . A graph is isolate-free if it contains no isolated vertex.

We denote a path, a cycle, and a complete graph on n vertices by P_{n}, C_{n}, and K_{n}, respectively. A diamond is the graph $K_{4}-e$, where e is an arbitrary edge of the K_{4}. A domino is a graph that can be obtained from a 6 -cycle by adding an edge between two antipodal vertices of the 6 -cycle. An F-component of a graph G is a component of G that is isomorphic to F. An edge-cut of a connected graph is a set of edges whose removal disconnected the graph. A k-edge-cut is an edge-cut of cardinality k. The girth of G is the length of the shortest cycle in G.

If G is a special subcubic graph, then we denote by $n_{2}(G)$ and $n_{3}(G)$ the number of vertices of degree 2 and 3, respectively, in G. For a special subcubic graph G, let \mathcal{S} and \mathcal{L} be the set of all vertices of degree 2 and 3 in G, respectively, that is, $\mathcal{L}=\left\{v \in V(G): \operatorname{deg}_{G}(v)=3\right\}$ and $\mathcal{S}=\left\{v \in V(G): \operatorname{deg}_{G}(v)=2\right\}$. We call a vertex in \mathcal{L} a large vertex, and a vertex in \mathcal{S} a small vertex. For $k \geq 3$, we define a k-handle to be a k-cycle that contains exactly one large vertex. For $k \geq 1$, a k-linkage is a path on $k+2$ vertices that starts and ends at distinct large vertices and with k internal vertices of degree 2 in G. A handle is a k-handle for some $k \geq 3$, and a linkage is a k-linkage for some $k \geq 1$. We use the standard notation $[k]=\{1, \ldots, k\}$.

2.2 | Near restrained dominating sets

To prove our main result, we introduce the concept of a near-restrained dominating set. Given a graph G and a set S of vertices in G, we let \bar{S} denote the complement of S, that is, $\bar{S}=V(G) \backslash S$. We define a near restrained dominating set, abbreviated NeRD-set, of G with respect to a subset X of vertices of G as a relaxed variant of an RD-set S of G such that either the vertices in X need not be dominated by S but every vertex in \bar{S} is still required to have a neighbor in \bar{S} or the vertices in X are dominated by S but need not have a neighbor in \bar{S}. Formally, a NeRD-set of G with respect to a specified subset X is a set $S \subseteq V(G)$ such that exactly one of the following two conditions hold:
(C1) The set S dominates the set $V(G) \backslash X$, and every vertex in \bar{S} has a neighbor in \bar{S}.
(C2) The set S dominates the set $V(G)$, the set $X \subseteq \bar{S}$, and every vertex in $\bar{S} \backslash X$ has a neighbor in \bar{S}.

If condition (C1) holds, then we refer to the NeRD-set as a type- 1 such set, while if condition (C2) holds, then we refer to the NeRD-set as a type-2 such set. We denote by $\gamma_{r, \text { ndom }}(G ; X)$ the minimum cardinality of a type-1 NeRD-set with respect to the set X (where "ndom" stands for "not dominated" since the vertices in X are not required to be dominated), and we denote by $\gamma_{r, \text { dom }}(G ; X)$ the minimum cardinality of a type-2 NeRD-set with respect to the set X (where "dom" stands for "dominated" since the vertices in X are dominated but not required to have a neighbor that is not dominated). If $X=\{v\}$, we simply write $\gamma_{r, \text { ndom }}(G ; v)$ and $\gamma_{r, \text { dom }}(G ; v)$ rather than $\gamma_{r, \text { ndom }}(G ;\{v\})$ and $\gamma_{r, \text { dom }}(G ;\{v\})$, respectively. Since every RD-set is also a NeRD-set, we note that $\gamma_{r, \text { ndom }}(G ; X) \leq \gamma_{r}(G)$ and $\gamma_{r, \text { dom }}(G ; X) \leq \gamma_{r}(G)$.

2.3 | Known bounds on restrained domination

Closed formulas for the restrained domination number of paths and cycles are given in [7], where it is shown that for $n \geq 1, \gamma_{r}\left(P_{n}\right)=n-2\left\lfloor\frac{n-1}{3}\right\rfloor$ and for $n \geq 3, \gamma_{r}\left(C_{n}\right)=n-2\left\lfloor\frac{n}{3}\right\rfloor$. The following theorem summarizes classical results on bounds on the restrained domination number of a graph.

Theorem 4. If G is a connected graph of order n, then the following hold.
(a) [7] If $\delta(G) \geq 1$, then $\gamma_{r}(G) \leq n-2$, unless G is a star $K_{1, n-1}$, in which case $\gamma_{r}(G)=n$.
(b) [8] If $\delta(G) \geq 2$ and $G \neq C_{5}$, then $\gamma_{r}(G) \leq \frac{1}{2} n$.
(c) $[7,16]$ If $\delta(G) \geq 2$ and $n \geq 9$, then $\gamma_{r}(G) \leq 12(n-1)$.
(d) [11] If G is a cubic graph, then $\gamma_{r}(G) \leq \frac{5}{11} n$.

3 | PROPERTIES OF GRAPH IN THE FAMILY $\mathcal{B}_{\text {rdom }}$

In this section, we present properties of graphs that belong to the family $\mathcal{B}_{\text {rdom }}=\left\{R_{1}, \ldots, R_{10}\right\}$. We note that there are no open twins in the graphs in the family $\mathcal{B}_{\text {rdom }}$ with the exception of R_{2} which contains two vertices of degree 2 that have two common neighbors (of degree 3). We shall need the following properties of graphs in the family $\mathcal{B}_{\text {rdom }}$. These properties are straightforward to check (or can be checked by computer).

Observation 1. If $G \in \mathcal{B}_{\text {rdom }}$ and v is a vertex of degree 2 in G, then the following properties hold.
(a) $\gamma_{r}\left(R_{i}\right)=3 \quad$ for $\quad i \in\{1,2,10\}, \gamma_{r}\left(R_{i}\right)=4 \quad$ for $\quad i \in\{3,4,5\}$, and $\gamma_{r}\left(R_{i}\right)=5$ for $i \in\{6,7,8,9\}$.
(b) There exists a γ_{r}-set of G that contains v.
(c) There exists a γ_{r}-set of G that does not contains v.
(d) $\gamma_{r \text {,ndom }}(G ; v) \leq \gamma_{r}(G)-1$.
(e) $\gamma_{r, \text { dom }}(G ; v) \leq \gamma_{r}(G)-1$, unless v is an open twin of R_{2}.
(f) If X consists of two vertices of degree 2 , then $\gamma_{r, \text { dom }}(G ; X) \leq \gamma_{r}(G)-1$.

Observation 2. Let $G \in \mathcal{B}_{\text {rdom }}$ and let $e=x y$ be an arbitrary edge of G. If G^{*} is obtained from G by subdividing the edge e resulting in a new vertex v^{*} of degree 2 (with neighbors x and y), then $\gamma_{r}\left(G^{*}\right) \leq \gamma_{r}(G)$. Furthermore, there exists a γ_{r}-set of G^{*} that contains v^{*} and contains neither x nor y.

Observation 3. Let $G \in \mathcal{B}_{\text {rdom }}$ and let $e=x y$ be an arbitrary edge of G. If G^{*} is obtained from G by subdividing the edge e twice, resulting in a path $x x_{1} y_{1} y$, then $\gamma_{r}\left(G^{*}\right) \leq \gamma_{r}(G)$. Furthermore, there exists a γ_{r}-set of G^{*} that contains x_{1} but not y_{1}.

Observation 4. Let $G \in \mathcal{B}_{\text {rdom }}$ and let $e=x y$ be an arbitrary edge of G. If G^{*} is obtained from G by subdividing the edge e three times resulting in a path $x v_{1} v_{2} v_{3} y$, then the following properties hold.
(a) $\gamma_{r, \text { dom }}\left(G^{*} ; v_{1}\right) \leq \gamma_{r}(G)$ and $\gamma_{r \text {,ndom }}\left(G^{*} ; v_{1}\right) \leq \gamma_{r}(G)$.
(b) If $G \in\left\{R_{4}, R_{5}, R_{9}\right\}$, then $\gamma_{r, \text { dom }}\left(G^{*} ; v_{2}\right) \leq \gamma_{r}(G)$.

Observation 5. Let $G \in \mathcal{B}_{\text {rdom }}$ and let $e=x y$ be an arbitrary edge of G. If G^{*} is obtained from G by subdividing the edge e four times resulting in a path $x v_{1} v_{2} v_{3} v_{4} y$, then there exists a RD-set S^{*} of G^{*} such that $S^{*} \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\left\{v_{1}, v_{4}\right\}$ and the following properties hold.
(a) If $G \notin\left\{R_{4}, R_{5}\right\}$, then $\left|S^{*}\right| \leq \gamma_{r}(G)+1$.
(b) If $G \in\left\{R_{4}, R_{5}\right\}$, then $\left|S^{*}\right| \leq \gamma_{r}(G)$.

Observation 6. Let $G \in \mathcal{B}_{\text {rdom }}$ and let $e=x y$ be an arbitrary edge of G. If G^{*} is obtained from G by subdividing the edge e four times resulting in a path $x v_{1} v_{2} v_{3} v_{4} y$, then there exists a RD-set S^{*} of G^{*} such that $\nu_{2} \in S^{*}$ and the following properties hold.
(a) If $G \neq R_{2}$ or if $G=R_{2}$ and neither x nor y is an open twin in G, then $\left|S^{*}\right| \leq \gamma_{r}(G)$.
(b) If $G=R_{2}$ and x or y is an open twin in G, then $\left|S^{*}\right| \leq \gamma_{r}(G)+1$.

4 | PRELIMINARY RESULT

In this section, we present a preliminary result that we will need when proving our main result.

Lemma 1. If G is a bipartite special subcubic graph with partite sets \mathcal{S} and \mathcal{L}, then $\gamma_{r}(G) \leq|\mathcal{L}|$.

Proof. Let G be a bipartite subcubic graph with partite sets \mathcal{S} and \mathcal{L}. Thus \mathcal{S} and \mathcal{L} are independent sets, and every vertex in \mathcal{S} has degree 2 with two neighbors in \mathcal{L} and every vertex in \mathcal{L} has degree 3 with three neighbors in \mathcal{S}. Let $s=|\mathcal{S}|$ and $\ell=|\mathcal{L}|$.

Let F be the graph with $V(F)=\mathcal{L}$, where two vertices are adjacent in F if and only if they have a common neighbor (that belongs to \mathcal{S}) in the graph G. Let \mathcal{L}_{1} be a maximal
independent set in F, and let $\mathcal{L}_{2}=\mathcal{L} \backslash \mathcal{L}_{1}$. Let $\ell_{1}=\left|\mathcal{L}_{1}\right|$ and let $\ell_{2}=\left|\mathcal{L}_{2}\right|$. Let \mathcal{S}_{1} be the set of vertices dominated by \mathcal{L}_{1} in the graph G, and let $\mathcal{S}_{2}=\mathcal{S} \backslash \mathcal{S}_{1}$. Possibly, $\mathcal{S}_{2}=\varnothing$.

If a vertex in \mathcal{S}_{1} has both its neighbors in \mathcal{L}_{1}, then the set \mathcal{L}_{1} would contain two adjacent vertices in F, contradicting the fact that \mathcal{L}_{1} is an independent set in F. Hence every vertex in \mathcal{S}_{1} is adjacent to exactly one vertex of \mathcal{L}_{1} and to exactly one vertex in \mathcal{L}_{2}. In particular, this implies that the subgraph $G\left[\mathcal{L}_{1} \cup \mathcal{S}_{1}\right]$ of G induced by the set $\mathcal{L}_{1} \cup \mathcal{S}_{1}$ consists of ℓ_{1} vertex disjoint copies of $K_{1,3}$ where the central vertex of each star belongs to \mathcal{L}_{1}.

By the maximality of the independent set \mathcal{L}_{1}, the set \mathcal{L}_{1} is a dominating set in F, implying that every vertex in \mathcal{L}_{2} must have at least one neighbor in G that belongs to the set \mathcal{S}_{1}, that is, the set \mathcal{S}_{1} dominates the set \mathcal{L}_{2} in G. Let $\mathcal{L}_{2 . i}$ be the set of vertices in \mathcal{L}_{2} that have exactly i neighbors in \mathcal{S}_{1} for $i \in[3]$. Further, let $\ell_{2 . i}=\mid \mathcal{L}_{2 . i} i$ for $i \in$ [3], and so $\ell_{2}=\ell_{2.1}+\ell_{2.2}+\ell_{2.3}$.

Since each vertex in \mathcal{S}_{1} has exactly one neighbor in \mathcal{L}_{2}, no two vertices in \mathcal{L}_{2} have a common neighbor in \mathcal{S}_{1}. For each vertex v in $\mathcal{L}_{2.3}$, we select an arbitrary neighbor v^{\prime} in \mathcal{S}_{1} and let $\mathcal{S}_{1.1}$ be the resulting subset of vertices in \mathcal{S}_{1}, that is,

$$
\mathcal{S}_{1.1}=\bigcup_{v \in \mathcal{L}_{2.3}}\left\{v^{\prime}\right\} .
$$

By our earlier observations, $\left|\mathcal{S}_{1.1}\right|=\ell_{2,3}$. Let $\mathcal{S}_{1.2}=\mathcal{S}_{1} \backslash \mathcal{S}_{1.1}$. Each vertex in $\mathcal{L}_{2.3}$ has one neighbor in $\mathcal{S}_{1.1}$ and two neighbors in $\mathcal{S}_{1.2}$, while each vertex in $\mathcal{L}_{2 . i}$ has i neighbors in $\mathcal{S}_{1.2}$ and $3-i$ neighbors in \mathcal{S}_{2} for $i \in\{1,2\}$. Each vertex in \mathcal{L}_{2} therefore has at least one neighbor in $\mathcal{S}_{1.2}$, and each vertex in $\mathcal{S}_{1.2}$ has exactly one neighbor in \mathcal{L}_{2}. Therefore, the subgraph of G induced by the set $\mathcal{S}_{1.2} \cup \mathcal{L}_{2}$ is isolate-free.

We now consider the set $D=\mathcal{L}_{1} \cup \mathcal{S}_{1.1} \cup \mathcal{S}_{2}$. By construction, $V(G) \backslash D=\mathcal{S}_{1.2} \cup \mathcal{L}_{2}$. As observed earlier, the subgraph of G induced by the set $\mathcal{S}_{1.2} \cup \mathcal{L}_{2}$ is isolate-free. Moreover, every vertex in $\mathcal{S}_{1.2}$ is dominated by the set $\mathcal{L}_{1} \subseteq D$ and every vertex of \mathcal{L}_{2} is dominated by the set $\mathcal{S}_{1.1} \cup S_{2} \subseteq D$. Hence, D is indeed an RD-set. It remains for us to show that $|D| \leq \ell$. Each vertex in \mathcal{S}_{2} has no neighbor in $\mathcal{L}_{1} \cup \mathcal{L}_{2.3}$, and therefore has both its neighbors in $\mathcal{L}_{2.1} \cup \mathcal{L}_{2.2}$. Counting edges between the set \mathcal{S}_{2} and the sets $\mathcal{L}_{2.1} \cup \mathcal{L}_{2.2}$, we, therefore, have $2\left|\mathcal{S}_{2}\right|=2 \ell_{2.1}+\ell_{2.2} \leq 2 \ell_{2.1}+2 \ell_{2.2}$, and so $\left|\mathcal{S}_{2}\right| \leq \ell_{2.1}+\ell_{2.2}$. Recall that $\left|\mathcal{S}_{1.1}\right|=\ell_{2,3}$. Hence, $|D|=\left|\mathcal{L}_{1}\right|+\left|\mathcal{S}_{2}\right|+\left|\mathcal{S}_{1.1}\right| \leq \ell_{1}+\left(\ell_{2.1}+\ell_{2.2}\right)+\ell_{2.3}=\ell_{1}+\ell_{2}=\ell$, as required. Therefore, $\gamma_{r}(G) \leq|D| \leq \ell$.

5 | PROOF OF KEY RESULT

In this section, we present proof of our key result, namely Theorem 3. Recall its statement.
Theorem 3. If G is a special subcubic graph, then $10 \gamma_{r}(G) \leq \mathrm{w}(G)$.
Proof. Suppose, to the contrary, that there exists a counterexample to the theorem. Among all counterexamples, let G be chosen to have a minimum order. Thus if G^{\prime} is a special subcubic graph of order less than $n(G)$, then G^{\prime} is not a counterexample, that is, $10 \gamma_{r}(G)>\mathrm{w}(G)$ and $10 \gamma_{r}\left(G^{\prime}\right) \leq \mathrm{w}\left(G^{\prime}\right)$ for all special subcubic graphs G^{\prime} with $n\left(G^{\prime}\right)<n(G)$. The restrained domination number of a graph is the sum of the restrained
domination numbers of its components. Hence by the minimality of G, the counterexample G is connected. For notational simplicity, we adopt the following notation throughout the proof. Let $n=n(G), n_{2}=n_{2}(G)$, and $n_{3}=n_{3}(G)$. If G^{\prime} is a special subcubic graph, then we let $n^{\prime}=n\left(G^{\prime}\right), n_{2}^{\prime}=n_{2}\left(G^{\prime}\right)$, and $n_{3}^{\prime}=n_{3}\left(G^{\prime}\right)$. Further, let k^{\prime} be the number of components of G^{\prime} that belong $\mathcal{B}_{\text {rdom }}$, and let r^{\prime} be the remaining components of G^{\prime}. If G^{\prime} is a connected graph, then we note that $k^{\prime}+r^{\prime}=1$. Since $\delta(G) \geq 2$, we note that $n \geq 3$. If $G \in \mathcal{B}_{\text {rdom }}$, then $10 \gamma_{r}(G)=\mathrm{w}(G)$, contradicting the fact that G is a counterexample. Hence, $G \notin \mathcal{B}_{\text {rdom }}$. If $n \in\{3,4,5\}$, then it is straightforward to check that $10 \gamma_{r}(G) \leq \mathrm{w}(G)$, a contradiction. Hence, $n \geq 6$. In what follows, we present a series of claims describing some structural properties of G, which culminate in the implication of its nonexistence.

Claim 1. $\Delta(G)=3$.

Proof. Suppose, to the contrary, that $\Delta(G)=2$, and so G is a cycle C_{n} (and $n \geq 6$). In this case, $\mathrm{w}(G)=5 n$ and $\gamma_{r}\left(C_{n}\right)=n-2\left\lfloor\frac{n}{3}\right\rfloor$. Thus if $n \equiv 0(\bmod 3)$, then $10 \gamma_{r}\left(C_{n}\right)=10 n / 3$. If $n \equiv 1(\bmod 3)$, then $n \geq 7$ and $10 \gamma_{r}\left(C_{n}\right)=10(n+2) / 3$. If $n \equiv 2(\bmod 3)$, then $n \geq 8$ and $10 \gamma_{r}\left(C_{n}\right)=10(n+4) / 3$. In all cases, $10 \gamma_{r}(G) \leq \mathrm{w}(G)$, a contradiction.

Claim 2. The graph G does not contain a path on five vertices with the internal vertices all of degree 2 in G and such that either the two ends of the path are not adjacent or the two ends are adjacent and both have degree 3 in G.

Proof. Suppose, to the contrary, that $P: u v_{1} v_{2} v_{3} w$ is a path in G, where $\operatorname{deg}_{G}\left(v_{i}\right)=2$ for $i \in[3]$ and if $u w$ is an edge, then $\operatorname{deg}_{G}(u)=\operatorname{deg}_{G}(w)=3$. Since $\delta(G)=2$ and $\Delta(G)=3$, we can choose the path P so that $\operatorname{deg}_{G}(u)=3$. Let G^{\prime} be the graph of order $n^{\prime}=n-3$ obtained from G by deleting the set of vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$. Further, if u and w are not adjacent, then we add the edge $u w$ to G^{\prime}. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $\{u, w\} \subseteq S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}\right\}$. If $u \in S^{\prime}$ and $w \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{3}\right\}$. If $u \notin S^{\prime}$ and $w \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}\right\}$. If $u \notin S^{\prime}$ and $w \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{2}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+1$.

Suppose that u and w are not adjacent in G. In this case, the edge $u w$ was added to G^{\prime}, implying that the degree of the vertices u and w remain unchanged. In particular, $\operatorname{deg}_{G^{\prime}}(u)=3$. The graph G^{\prime} is a connected special subcubic and is not a counterexample, and so $10 \gamma_{r}\left(G^{\prime}\right) \leq \mathrm{w}\left(G^{\prime}\right)$. Suppose that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. In this case, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+15$, and so $10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+1\right) \leq \mathrm{w}\left(G^{\prime}\right)+10<\mathrm{w}(G)$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. Thus, G is obtained from one of the graphs in $\mathcal{B}_{\text {rdom }}$ by subdividing the (added) edge $u w$ in G^{\prime} three times, where as observed earlier $\operatorname{deg}_{G^{\prime}}(u)=3\left(\right.$ and $\left.\operatorname{deg}_{G^{\prime}}(w) \in\{2,3\}\right)$. Since R_{1} has no vertex of degree 3 , we note that $G \neq R_{1}$. If $G^{\prime}=R_{2}$, then $\gamma_{r}(G) \leq 4$ and $\mathrm{w}(G)=43$. If $G^{\prime} \in\left\{R_{3}, R_{4}, R_{5}\right\}$, then $\gamma_{r}(G) \leq 5$ and $\mathrm{w}(G) \geq 51$. If $G^{\prime} \in\left\{R_{6}, R_{7}, R_{8}, R_{9}\right\}$, then $\gamma_{r}(G) \leq 6$ and $\mathrm{w}(G) \geq 64$. If $G^{\prime}=R_{10}$, then $\gamma_{r}(G) \leq 4$ and $\mathrm{w}(G)=44$. In all cases, $10 \gamma_{r}(G) \leq \mathrm{w}(G)$, a contradiction.

Hence, u and w are adjacent in G. As before, the graph G^{\prime} is a connected special subcubic graph and $10 \gamma_{r}\left(G^{\prime}\right) \leq \mathrm{w}\left(G^{\prime}\right)$. By supposition, both u and w have degree 3 in G, and therefore have degree 2 in G^{\prime}. Hence the weight of each of u and w decreases by 1 from weight 5 in G^{\prime} to weight 4 in G. If $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+15-2=\mathrm{w}\left(G^{\prime}\right)+13$, and so
$10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+1\right) \leq \mathrm{w}\left(G^{\prime}\right)+10<\mathrm{w}(G)$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. Thus, G is obtained from one of the graphs in $\mathcal{B}_{\text {rdom }}$ by adding an extra edge between two vertices of degree 2 in G^{\prime}, and then subdividing this added edge three times. Since none of R_{4}, R_{9}, and R_{10} has two adjacent vertices of degree 2, we note that $G^{\prime} \neq\left\{R_{4}, R_{9}, R_{10}\right\}$. If $G^{\prime}=R_{1}$, then $G=R_{3}$, while if $G^{\prime}=R_{5}$, then $G=R_{8}$. In both cases, $G \in \mathcal{B}_{\text {rdom }}$, a contradiction. If $G^{\prime}=R_{2}$, then $\gamma_{r}(G)=4$ and $\mathrm{w}(G)=41$. If $G^{\prime}=R_{3}$, then $\gamma_{r}(G)=5$ and $\mathrm{w}(G)=51$. If $G^{\prime} \in\left\{R_{6}, R_{7}, R_{8}\right\}$, then $\gamma_{r}(G)=6$ and $\mathrm{w}(G)=62$. In all cases, $10 \gamma_{r}(G) \leq \mathrm{w}(G)$, a contradiction.

As a consequence of Claim 2, we have the following structure of handles and linkages.
Claim 3. The following properties hold in the graph G.
(a) If G contains a k-handle, then $k \in\{3,4,5\}$.
(b) If G contains a k-linkage, then $k \in\{1,2\}$.

Claim 4. Let G be obtained from the disjoint union of a special subcubic graph G^{\prime} of order less than n and a graph H by adding at least one edge between H and G^{\prime}. If $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+p$ for some integer $p \geq 0$, then $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$.

Proof. Suppose that $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+p$ for some integer $p \geq 0$. Since G^{\prime} is not a counterexample, no component of G^{\prime} is a counterexample, implying by linearity that $10 \gamma_{r}\left(G^{\prime}\right) \leq \mathrm{w}\left(G^{\prime}\right)$. If $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+10 p$, then $10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+p\right) \leq \mathrm{w}\left(G^{\prime}\right)+$ $10 p \leq \mathrm{w}(G)$, a contradiction.

Claim 5. Let G be obtained from the disjoint union of a special subcubic graph G^{\prime} of order less than n and a graph H by adding at least one edge between H and G^{\prime}. If there exists a γ_{r}-set S_{H} of H such that every component of G^{\prime} in $\mathcal{B}_{\text {rdom }}$ has at least one neighbor that belongs to S_{H} in the graph G, then $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}$.

Proof. If $k^{\prime} \geq 1$, let $G_{1}, \ldots, G_{k^{\prime}}$ denote the component of G^{\prime} that belong to $\mathcal{B}_{\text {rdom }}$. By supposition, there exists a γ_{r}-set S_{H} of H such that the component G_{i} contains a vertex v_{i} that is adjacent to a vertex in S_{H} for all $i \in\left[k^{\prime}\right]$. By Observation 1(d), $\gamma_{r, \text { ndom }}\left(G_{i} ; v_{i}\right) \leq \gamma_{r}\left(G_{i}\right)-1$ for all $i \in\left[k^{\prime}\right]$. If G^{\prime} has $r^{\prime} \geq 1$ components that do not belong to $\mathcal{B}_{\text {rdom }}$, let $G_{k^{\prime}+1}, \ldots, G_{k^{\prime}+r^{\prime}}$ denote these components of G^{\prime}. Hence,

$$
\begin{aligned}
\gamma_{r}(G) & \leq\left|S_{H}\right|+\left(\sum_{i=1}^{k^{\prime}} \gamma_{r, \text { ndom }}\left(G_{i} ; v_{i}\right)\right)+\left(\sum_{i=k^{\prime}+1}^{k^{\prime}+r^{\prime}} \gamma_{r}\left(G_{i}\right)\right) \\
& \leq \gamma_{r}(H)+\left(\sum_{i=1}^{k^{\prime}+r^{\prime}} \gamma_{r}\left(G_{i}\right)\right)-k^{\prime} \\
& =\gamma_{r}(H)+\gamma_{r}\left(G^{\prime}\right)-k^{\prime} \\
& =\gamma_{r}\left(G^{\prime}\right)+p
\end{aligned}
$$

where $p=\gamma_{r}(H)-k^{\prime}$. By Claim 4, $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$.

Claim 6. There is no 3-handle in G.

Proof. Suppose that $C: \nu v_{1} v_{2} v$ is a 3-handle, where $\operatorname{deg}_{G}(v)=3$. Let v_{3} be the third neighbor of v. Suppose that $\operatorname{deg}_{G}\left(v_{3}\right)=3$. Let $G^{\prime}=G-V(C)$. We note that G^{\prime} is a connected special subcubic graph and $k^{\prime}+r^{\prime}=1$. Applying Claim 5 with $H=C$ and $S_{H}=\{v\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, where $p=\gamma_{r}(H)-k^{\prime}=1-k^{\prime}$. The weights of the vertices in G^{\prime} remain unchanged in G, except for v_{3} whose weight increases by 1 from weight 4 in G to weight 5 in G^{\prime}. Moreover, if $k^{\prime}=1$ (i.e., if $G^{\prime} \in \mathcal{B}_{\text {rdom }}$), then there is an additional weight increase of at most 5 for creating the component G^{\prime} that belongs to $\mathcal{B}_{\text {rdom }}$. Hence, $\mathrm{w}(G) \geq \mathrm{w}_{G}(V(C))+\left(\mathrm{w}\left(G^{\prime}\right)-6 k^{\prime}-r^{\prime}\right)=14+\left(\mathrm{w}\left(G^{\prime}\right)-6 k^{\prime}+\left(k^{\prime}-1\right)\right)$ $=14+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-1\right)=14+\left(\mathrm{w}\left(G^{\prime}\right)-5(1-p)-1\right)=\mathrm{w}\left(G^{\prime}\right)+5 p+8$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+5 p+8 \leq \mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $8<5 p$, implying that $p \geq 2$. However, $p=1-k^{\prime} \leq 1$, a contradiction.

Hence, $\operatorname{deg}_{G}\left(v_{3}\right)=2$. Let v_{4} be the neighbor of v_{3} different from v. Suppose that $\operatorname{deg}_{G}\left(v_{4}\right)=3$. Let $G^{\prime}=G-\left\{v, v_{1}, v_{2}, v_{3}\right\}$. Suppose that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, implying that $\mathrm{w}(G)=19+\left(\mathrm{w}\left(G^{\prime}\right)-1\right)=\mathrm{w}\left(G^{\prime}\right)+18$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v_{4} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}\right\}$, and if $v_{4} \notin S^{\prime}$, let $S=S^{\prime} \cup\{v\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+1$. Hence, $10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+1\right) \leq \mathrm{w}\left(G^{\prime}\right)+10=(\mathrm{w}(G)-18)+$ $10<\mathrm{w}(G)$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$, and so the graph G is determined. If v_{4} is an open twin of G^{\prime}, then $\gamma_{r}(G)=4$ and $\mathrm{w}(G)=46$, and so $10 \gamma_{r}(G)<\mathrm{w}(G)$, a contradiction. Hence, v_{4} is not an open twin of G^{\prime}. By Observation 1(e), $\gamma_{r}(G) \leq|\{v\}|+\gamma_{r, \text { dom }}\left(G^{\prime} ; v_{4}\right) \leq 1+\left(\gamma_{r}\left(G^{\prime}\right)-1\right)=\gamma_{r}\left(G^{\prime}\right)$, and so $10 \gamma_{r}(G) \leq 10 \gamma_{r}\left(G^{\prime}\right) \leq$ $\mathrm{w}\left(G^{\prime}\right)$. However, $\mathrm{w}(G) \geq 19+\left(\mathrm{w}\left(G^{\prime}\right)-6\right)=\mathrm{w}\left(G^{\prime}\right)+13$, a contradiction.

Hence, $\operatorname{deg}_{G}\left(v_{4}\right)=2$. Let v_{5} be the neighbor of v_{4} different from v_{3}. By Claim 3, we have $\operatorname{deg}_{G}\left(v_{5}\right)=3$. Let $Q=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and let $G^{\prime}=G-Q$. We note that G^{\prime} is a connected special subcubic graph and $k^{\prime}+r^{\prime}=1$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{4}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, where $p=\gamma_{r}(H)-k^{\prime}=2-k^{\prime}$. Hence, $\mathrm{w}(G) \geq \mathrm{w}_{G}(Q)+$ $\left(\mathrm{w}\left(G^{\prime}\right)-6 k^{\prime}-r^{\prime}\right)=24+\left(\mathrm{w}\left(G^{\prime}\right)-6 k^{\prime}+\left(k^{\prime}-1\right)\right)=24+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-1\right)=24+$
$\left(\mathrm{w}\left(G^{\prime}\right)-5(2-p)-1\right)=\mathrm{w}\left(G^{\prime}\right)+5 p+13$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+5 p+13 \leq \mathrm{w}(G)<$ $\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $13<5 p$, implying that $p \geq 3$. However, $p=2-k^{\prime} \leq 2$, a contradiction.

By Claim 6, there is no 3-handle.
Claim 7. There is no 4-handle in G.

Proof. Suppose that $C: v v_{1} v_{2} v_{3} v$ is a 4-handle, where $\operatorname{deg}_{G}(v)=3$. Let v_{4} be the neighbor of v not on C.

Claim 7.1. $\operatorname{deg}_{G}\left(v_{4}\right)=2$.
Proof. Suppose, to contrary, that $\operatorname{deg}_{G}\left(v_{4}\right)=3$. Let x and y be the two neighbors of v_{4} different from v_{3}. Suppose that x and y are both large vertices. Let $Q=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and let $G^{\prime}=G-Q$. We note that G^{\prime} has at most two components, and so $k^{\prime}+r^{\prime} \leq 2$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{2}, v_{4}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, where $p=\gamma_{r}(H)-k^{\prime}=2-k^{\prime}$. On the other hand, $\mathrm{w}(G) \geq 23+\left(\mathrm{w}\left(G^{\prime}\right)-6 k^{\prime}-r^{\prime}\right) \geq 23+$ $\left(\mathrm{w}\left(G^{\prime}\right)-6 k^{\prime}+\left(k^{\prime}-2\right)\right)=23+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-2\right)=23+\left(\mathrm{w}\left(G^{\prime}\right)-5(2-p)-2\right)$
$=\mathrm{w}\left(G^{\prime}\right)+5 p+11$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+5 p+11 \leq \mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $11<5 p$, implying that $p \geq 3$. However, $p=2-k^{\prime} \leq 2$, a contradiction.

Hence, at least one of x and y is a small vertex. Renaming vertices if necessary, we may assume that $\operatorname{deg}_{G}(x)=2$. Note that $\operatorname{deg}_{G}(y) \in\{2,3\}$. Suppose $x y \in E(G)$. Since there is no 3-handle, the vertex y is large. Let z be the neighbor of y, different from x and v_{4}. Let G^{\prime} be obtained from G by deleting x, y, and v_{4}, and adding the edge $v z$. The graph G^{\prime} is a connected special subcubic graph of order less than n. Since no graph in $\mathcal{B}_{\text {rdom }}$ contains a 4-handle, we note that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, implying that $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+13$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v \in S^{\prime}$, let $S=S^{\prime} \cup\{y\}$. If $v \notin S^{\prime}$ and $z \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{4}\right\}$. If $v \notin S^{\prime}$ and $z \notin S^{\prime}$, let $S=S^{\prime} \cup\{x\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$. Hence, $10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+1\right) \leq \mathrm{w}\left(G^{\prime}\right)+10=(\mathrm{w}(G)-13)+10<\mathrm{w}(G)$, a contradiction.

Hence, $x y \notin E(G)$. Let $Q=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and let G^{\prime} be obtained from $G-Q$ by adding the edge $x y$. The resulting graph G^{\prime} is a connected special subcubic graph of order less than n. Suppose $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. In this case, $\mathrm{w}(G)=23+\mathrm{w}\left(G^{\prime}\right)$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $x \in S^{\prime}$ or $y \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{4}\right\}$. If $x \notin S^{\prime}$ and $y \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v, v_{1}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$. Therefore, $10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+2\right) \leq \mathrm{w}\left(G^{\prime}\right)+20<\mathrm{w}(G)$, a contradiction.

Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. Let $G^{*}=G-V(C)$. We note that in this case, G^{*} is obtained from G^{\prime} by subdividing the edge $x y$ of G^{\prime}, where v_{4} is the resulting vertex of degree 2 in G^{*}. By Observation 2, $\gamma_{r}\left(G^{*}\right) \leq \gamma_{r}\left(G^{\prime}\right)$, and there exists a γ_{r}-set S^{*} of G^{*} that contains the vertex v_{4}. The set $S^{*} \cup\left\{v_{2}\right\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq 1+\left|S^{*}\right|=1+\gamma_{r}\left(G^{*}\right) \leq 1+\gamma_{r}\left(G^{\prime}\right)$. Hence, $\mathrm{w}(G)<10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+1\right) \leq \mathrm{w}\left(G^{\prime}\right)+10$. Moreover, noting that the degrees of the vertices in G^{\prime} are the same as their degrees in G, we have $\mathrm{w}(G) \geq 23+\left(\mathrm{w}\left(G^{\prime}\right)-5\right)=\mathrm{w}\left(G^{\prime}\right)+18$, a contradiction.

By Claim 7.1, we have $\operatorname{deg}_{G}\left(v_{4}\right)=2$. Let v_{5} be the neighbor of v_{4} different from v. Suppose that $\operatorname{deg}_{G}\left(v_{5}\right)=3$. Let $Q=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and let $G^{\prime}=G-Q$. The resulting graph G^{\prime} is a connected special subcubic graph of order less than n. We note that $k^{\prime}+r^{\prime}=1$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{2}, v_{4}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k=2-k$, implying $p \leq 2$. On the other hand, using the same calculations as in the earlier proofs, we have $\mathrm{w}(G) \geq 24+\left(\mathrm{w}\left(G^{\prime}\right)-6 k^{\prime}-r^{\prime}\right) \geq \mathrm{w}\left(G^{\prime}\right)+5 p+13$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+5 p+13 \leq \mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $13<5 p$, that is, $p \geq 3$. However, $p=2-k^{\prime} \leq 2$, a contradiction.

Hence, $\operatorname{deg}_{G}\left(v_{5}\right)=2$. Let v_{6} be the neighbor of v_{5} different from v_{4}. By Claim 3, $\operatorname{deg}_{G}\left(v_{6}\right)=3$. Let $Q=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and let $G^{\prime}=G-Q$. The resulting graph G^{\prime} is a connected special subcubic graph of order less than n. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v_{6} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v, v_{1}\right\}$. If $v_{6} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{2}, v_{4}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$. We note that $k^{\prime}+r^{\prime}=1$. Applying Claim 4 with $H=G[Q]$ and $p=2$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p=\mathrm{w}\left(G^{\prime}\right)+20$. However, $\mathrm{w}(G) \geq 29+\left(\mathrm{w}\left(G^{\prime}\right)-6 k^{\prime}-r^{\prime}\right) \geq 29+\mathrm{w}\left(G^{\prime}\right)-6\left(k^{\prime}+r^{\prime}\right)=29+\mathrm{w}\left(G^{\prime}\right)-6=\mathrm{w}\left(G^{\prime}\right)$ +23 , a contradiction. This completes the proof of Claim 7.

By Claim 7, there is no 4-handle.

Claim 8. There is no handle in G.

Proof. Suppose, to the contrary, that G contains a handle. By our earlier observations, it must be a 5 -handle. Let $C: v v_{1} v_{2} v_{3} v_{4} v$ be a 5 -handle, where $\operatorname{deg}_{G}(v)=3$. Let v_{5} be the third neighbor of v not on C.

Claim 8.1. $\operatorname{deg}_{G}\left(v_{5}\right)=2$.
Proof. Suppose, to the contrary, that $\operatorname{deg}_{G}\left(v_{5}\right)=3$. Let $G^{\prime}=G-V(C)$. The resulting graph G^{\prime} is a connected special subcubic graph of order less than n. Suppose that $G^{\prime} \in\left\{R_{1}, R_{4}, R_{5}\right\}$. If $G^{\prime}=R_{1}$, then $\gamma_{r}(G)=4$ and $\mathrm{w}(G)=48$. If $G^{\prime} \in\left\{R_{4}, R_{5}\right\}$, then $\gamma_{r}(G)=5$ and $\mathrm{w}(G)=59$. If $G^{\prime}=R_{9}$, then $\gamma_{r}(G)=4$ and $\mathrm{w}(G)=52$. In all cases, $10 \gamma_{r}(G) \leq \mathrm{w}(G)$, a contradiction. Hence, $G^{\prime} \notin\left\{R_{1}, R_{4}, R_{5}, R_{9}\right\}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v_{5} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{2}, v_{3}\right\}$. If $v_{5} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{4}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$. We note that $k^{\prime}+r^{\prime}=1$. Applying Claim 4 with $H=C$ and $p=2$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p=\mathrm{w}\left(G^{\prime}\right)+20$. Since $G^{\prime} \notin$ $\left\{R_{1}, R_{4}, R_{5}, R_{9}\right\}$, when reconstructing the graph G the contribution of the weight of G^{\prime} to the weight of G decreases by at most $3 k^{\prime}+r^{\prime}$. Thus, $\mathrm{w}(G) \geq 24+\left(\mathrm{w}\left(G^{\prime}\right)-3 k^{\prime}-r^{\prime}\right) \geq$ $24+\mathrm{w}\left(G^{\prime}\right)-3\left(k^{\prime}+r^{\prime}\right)=24+\mathrm{w}\left(G^{\prime}\right)-3=\mathrm{w}\left(G^{\prime}\right)+21$, a contradiction.

By Claim 8.1, we have $\operatorname{deg}_{G}\left(v_{5}\right)=2$. Let v_{6} be the neighbor of v_{5} different from v.
Claim 8.2. $\operatorname{deg}_{G}\left(v_{6}\right)=2$.
Proof. Suppose, to the contrary, that $\operatorname{deg}_{G}\left(v_{6}\right)=3$. Let x and y be the two neighbors of v_{6} different from v_{5}. Suppose that x and y are both large vertices. Let $Q=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and let $G^{\prime}=G-Q$. We note that G^{\prime} has at most two components, and so $k^{\prime}+r^{\prime} \leq 2$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{4}, v_{6}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}=3-k^{\prime}$. On the other hand, $\mathrm{w}(G) \geq 33+\left(\mathrm{w}\left(G^{\prime}\right)-6 k^{\prime}-r^{\prime}\right) \geq$ $33+\left(\mathrm{w}\left(G^{\prime}\right)-6 k^{\prime}+\left(k^{\prime}-2\right)\right)=33+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-2\right)=33+\left(\mathrm{w}\left(G^{\prime}\right)-5(3-p)-2\right)$ $=\mathrm{w}\left(G^{\prime}\right)+5 p+16$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+5 p+16 \leq \mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $16<5 p$, that is, $p \geq 4$. However, $p=3-k^{\prime} \leq 3$, a contradiction.

Hence at least one of x and y is a small vertex. Renaming vertices if necessary, we may assume that $\operatorname{deg}_{G}(x)=2$. Note that $\operatorname{deg}_{G}(y) \in\{2,3\}$. Suppose $x y \in E(G)$. Since there is no 3-handle, the vertex y is large. Let z be the neighbor of y different from x and v_{6}. Let G^{\prime} be obtained from G by deleting x, y and v_{6}, and adding the edge $v_{5} z$. The graph G^{\prime} is a connected special subcubic graph of order less than n. Since no graph in $\mathcal{B}_{\text {rdom }}$ contains a 5 -handle, we note that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, implying that $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+13$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v_{5} \in S^{\prime}$, let $S=S^{\prime} \cup\{y\}$. If $v_{5} \notin S^{\prime}$ and $z \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{6}\right\}$. If $v_{5} \notin S^{\prime}$ and $z \notin S^{\prime}$, let $S=S^{\prime} \cup\{x\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$. Hence, $10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+1\right) \leq w\left(G^{\prime}\right)+10=(\mathrm{w}(G)-13)+10<\mathrm{w}(G)$, a contradiction.

Hence, $x y \notin E(G)$. Let $Q=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and let G^{\prime} be obtained from $G-Q$ by adding the edge $x y$. The resulting graph G^{\prime} is a connected special subcubic graph of order less than n. Suppose $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. In this case, $\mathrm{w}(G)=33+\mathrm{w}\left(G^{\prime}\right)$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $x \in S^{\prime}$ or $y \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{4}, v_{6}\right\}$. If $x \notin S^{\prime}$ and $y \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{2}, v_{3}, v_{5}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+3=\gamma_{r}\left(G^{\prime}\right)+3$. Therefore, $10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+3\right) \leq \mathrm{w}\left(G^{\prime}\right)+30<\mathrm{w}(G)$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. Let $G^{*}=G-\left\{v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. We note that in this case, G^{*} is obtained from G^{\prime} by subdividing the edge $x y$ of G^{\prime} where ν_{6} is the resulting vertex of degree 2 in G^{*}. By

Observation 2, $\gamma_{r}\left(G^{*}\right) \leq \gamma_{r}\left(G^{\prime}\right)$ and there exists a γ_{r}-set S^{*} of G^{*} that contains the vertex v_{6}. The set $S^{*} \cup\left\{\nu_{1}, \nu_{4}\right\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq 2+\left|S^{*}\right|=2+\gamma_{r}\left(G^{*}\right) \leq \gamma_{r}\left(G^{\prime}\right)+2$. Hence, $\mathrm{w}(G)<10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+2\right) \leq \mathrm{w}\left(G^{\prime}\right)+20$. However noting that the degrees of the vertices in G^{\prime} are the same as their degrees in G, we have $\mathrm{w}(G) \geq 33+\left(\mathrm{w}\left(G^{\prime}\right)-5\right)=\mathrm{w}\left(G^{\prime}\right)+28$, a contradiction.

By Claim 8.2, we have $\operatorname{deg}_{G}\left(v_{6}\right)=2$. Let v_{7} be the neighbor of v_{6} different from v_{5}. By Claim 3, $\operatorname{deg}_{G}\left(v_{7}\right)=3$. Let $Q=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and let $G^{\prime}=G-Q$. The resulting graph G^{\prime} is a connected special subcubic graph of order less than n. We note that $k^{\prime}+r^{\prime}=1$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{4}, v_{6}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}=3-k^{\prime}$. On the other hand, $\mathrm{w}(G) \geq 33+$ $\left(\mathrm{w}\left(G^{\prime}\right)-6 k^{\prime}-r^{\prime}\right)=33+\left(\mathrm{w}\left(G^{\prime}\right)-6 k^{\prime}+\left(k^{\prime}-1\right)\right)=33+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-1\right)=33+$ $\left(\mathrm{w}\left(G^{\prime}\right)-5(3-p)-1\right)=\mathrm{w}\left(G^{\prime}\right)+15 p+17$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+15 p+17 \leq \mathrm{w}(G)<$ $\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $17<5 p$, that is, $p \geq 4$. However, $k^{\prime} \geq 0$ and $p=3-k^{\prime} \leq 3$, a contradiction. This completes the proof of Claim 8.

By Claim 8, there is no handle in G. In particular, the removal of a bridge cannot create a C_{5}-component. Recall that there is no k-linkage for any $k \geq 3$. Hence if $\delta(G)=2$, then every vertex of degree 2 in G belongs to a k-linkage for some $k \in\{1,2\}$.

Claim 9. If G contains a 2-linkage, then the two large vertices on the linkage are not adjacent.

Proof. Suppose, to the contrary, that G contains a 2-linkage $P: \nu v_{1} v_{2} u$ where u and v are adjacent. We note that $u, v \in \mathcal{L}$ and $v_{1}, v_{2} \in \mathcal{S}$.

Claim 9.1. The vertices u and v have no common neighbor.
Proof. Suppose that u and v have a common neighbor, v_{3}. Since $n \geq 6$, the vertex v_{3} is large. Let v_{4} be the neighbor of v_{3} not on P. Suppose that $\operatorname{deg}_{G}\left(v_{4}\right)=3$. Let $Q=\left\{v, v_{1}, v_{2}, v_{3}, u\right\}$ and let $G^{\prime}=G-Q$. The graph G^{\prime} is a connected special subcubic graph of order less than n. We note that $k^{\prime}+r^{\prime}=1$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{3}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}=2-k^{\prime}$. Since G has no handle, we note that $G^{\prime} \neq R_{1}$, implying that $\mathrm{w}(G) \geq 22+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-r^{\prime}\right)=22+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}+k^{\prime}-1\right)$ $=22+\left(\mathrm{w}\left(G^{\prime}\right)-4 k^{\prime}-1\right)=22+\left(\mathrm{w}\left(G^{\prime}\right)-4(2-p)-1\right) \geq \mathrm{w}\left(G^{\prime}\right)+4 p+13$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+4 p+13 \leq \mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $13<6 p$, that is, $p \geq 3$. However, $p=2-k^{\prime} \leq 2$, a contradiction.

Hence, $\operatorname{deg}_{G}\left(v_{4}\right)=2$. Let v_{5} be the neighbor of v_{4} different from v_{3}. Suppose that $\operatorname{deg}_{G}\left(v_{5}\right)=3$. Let $G^{\prime}=G-\left\{v, v_{1}, v_{2}, v_{3}, v_{4}, u\right\}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v_{5} \in S^{\prime}$, let $S=S^{\prime} \cup\{u, v\}$. If $v_{5} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{3}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$. Applying Claim 4 with $p=2$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p=\mathrm{w}\left(G^{\prime}\right)+20$. Recall that G has no handle, and so $G^{\prime} \neq R_{1}$. Therefore, $\mathrm{w}(G) \geq 27+\left(\mathrm{w}\left(G^{\prime}\right)-1-4\right)=\mathrm{w}\left(G^{\prime}\right)+22$, a contradiction.

Hence, $\operatorname{deg}_{G}\left(v_{5}\right)=2$. Let v_{6} be the neighbor of v_{5} different from v_{4}. By Claim 3, $\operatorname{deg}_{G}\left(v_{6}\right)=3$. Let $Q=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, u\right\}$ and let $G^{\prime}=G-Q$. The resulting graph G^{\prime} is a connected special subcubic graph of order less than n. We note that $k^{\prime}+r^{\prime}=1$. Applying

Claim 5 with $H=G[Q]$ and $S_{H}=\left\{u, v, v_{5}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}=3-k^{\prime}$. On the other hand, noting that $G^{\prime} \neq R_{1}$, we have $\mathrm{w}(G) \geq 32+$ $\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-r^{\prime}\right) \geq 32+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}+k^{\prime}-1\right)=32+\left(\mathrm{w}\left(G^{\prime}\right)-4 k^{\prime}-1\right)=32+$ $\left(\mathrm{w}\left(G^{\prime}\right)-4(3-p)-1\right)=\mathrm{w}\left(G^{\prime}\right)+4 p+19$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+4 p+19 \leq \mathrm{w}(G)<$ $\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $19<6 p$, that is, $p \geq 4$. However, $k^{\prime} \geq 0$ and $p=3-k^{\prime} \leq 3$, a contradiction.

By Claim 9.1, the vertices u and v have no common neighbor. Let v_{3} be the third neighbor of v not on P. Since u and v have no common neighbor, u and v_{3} are not adjacent. Let G^{\prime} be obtained from $G-\left\{v, v_{1}, v_{2}\right\}$ by adding the edge $u v_{3}$. The resulting graph G^{\prime} is a connected special subcubic graph of order less than n. Suppose that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. In this case, $\mathrm{w}(G)=14+\left(\mathrm{w}\left(G^{\prime}\right)-1\right)=\mathrm{w}\left(G^{\prime}\right)+13$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $u \in S^{\prime}$, let $S=S^{\prime} \cup\{v\}$. If $u \notin S^{\prime}$ and $v_{3} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{2}\right\}$. If $u \notin S^{\prime}$ and $v_{3} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{\nu_{1}\right\}$. In all cases S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$. Therefore, $\mathrm{w}(G)<10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+1\right) \leq \mathrm{w}\left(G^{\prime}\right)+10<\mathrm{w}(G)$, a contradiction.

Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. If $G^{\prime}=R_{1}$, then G would contain a 4 -linkage, a contradiction. If $G \in\left\{R_{4}, R_{5}\right\}$, then $\gamma_{r}(G)=4$ and $\mathrm{w}(G)=49$, and so $10 \gamma_{r}(G) \leq \mathrm{w}(G)$, a contradiction. Hence, $G^{\prime} \notin\left\{R_{1}, R_{4}, R_{5}\right\}$. Let $G^{*}=G-\left\{v_{1}, v_{2}\right\}$. Thus, G^{*} is obtained from G^{\prime} by subdividing the edge $u \nu_{3}$ of G^{\prime} where v is the resulting vertex of degree 2 in G^{*}. By Observation 2, $\gamma_{r}\left(G^{*}\right) \leq \gamma_{r}\left(G^{\prime}\right)$ and there exists a γ_{r}-set S^{*} of G^{*} that contains the vertex v and does not contain u or v_{3}. The set $S^{*} \cup\left\{v_{1}\right\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq 1+\left|S^{*}\right|=1+\gamma_{r}\left(G^{*}\right) \leq 1+\gamma_{r}\left(G^{\prime}\right)$. Hence, $\mathrm{w}(G)<10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+1\right)$ $\leq \mathrm{w}\left(G^{\prime}\right)+10$. We note that the degrees of the vertices in G^{\prime} are the same as their degrees in G, except for the vertex u which has degree 3 in G and degree 2 in G^{\prime}. As observed earlier, $G^{\prime} \notin\left\{R_{1}, R_{4}, R_{5}\right\}$, implying that $\mathrm{w}(G) \geq 14+\left(\mathrm{w}\left(G^{\prime}\right)-1-3\right)=\mathrm{w}\left(G^{\prime}\right)+10$, a contradiction. This completes the proof of Claim 9.

Claim 10. If G contains a 1-linkage, then the two large vertices on the linkage are not adjacent.

Proof. Suppose, to the contrary, that G contains a 1-linkage $P: v v_{1} u$ where u and v are adjacent. We note that $u, v \in \mathcal{L}$ and $v_{1} \in \mathcal{S}$.

Claim 10.1. The vertices u and v have no common neighbor.
Proof. Suppose that u and v have a common neighbor, v_{2}, and so $G\left[\left\{v, v_{1}, v_{2}, u\right\}\right]$ is a diamond. Since $n \geq 6$, the vertex v_{2} is large. Let v_{3} be the third neighbor of v_{2} not on P. Suppose that $\operatorname{deg}_{G}\left(v_{3}\right)=3$. Let $Q=\left\{v, v_{1}, v_{2}, u\right\}$ and let $G^{\prime}=G-Q$. The graph G^{\prime} is a connected special subcubic graph of order less than n. We note that $k^{\prime}+r^{\prime}=1$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the vertex v, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+1$. Thus, $\mathrm{w}(G)<10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+1\right) \leq \mathrm{w}\left(G^{\prime}\right)+10$. Since there is no handle in G, we note that $G^{\prime} \neq R_{1}$, implying that $\mathrm{w}(G) \geq 17+$ $\left(\mathrm{w}\left(G^{\prime}\right)-1-4\right)=\mathrm{w}\left(G^{\prime}\right)+12$, a contradiction.

Hence, $\operatorname{deg}_{G}\left(v_{3}\right)=2$. Let v_{4} be the neighbor of v_{3} different from v_{2}. Suppose that $\operatorname{deg}_{G}\left(v_{4}\right)=3$. Let $Q=\left\{v, v_{1}, v_{2}, v_{3}, u\right\}$ and let $G^{\prime}=G-Q$. The graph G^{\prime} is a connected special subcubic graph of order less than n different from R_{1}. We note that $k^{\prime}+r^{\prime}=1$.

Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{3}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}=2-k^{\prime}$. On the other hand, $\mathrm{w}(G) \geq 22+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-r^{\prime}\right)=$ $\mathrm{w}\left(G^{\prime}\right)+4 p+13$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+5 p+13 \leq \mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $13<5 p$, that is, $p \geq 3$. However, $p=2-k^{\prime} \leq 2$, a contradiction. Hence, $\operatorname{deg}_{G}\left(v_{4}\right)=2$. Let v_{5} be the neighbor of v_{4} different from v_{3}. By Claim 3, $\operatorname{deg}_{G}\left(v_{5}\right)=3$. Let $Q=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}, u\right\}$ and let $G^{\prime}=G-Q$. The resulting graph G^{\prime} is a connected special subcubic graph of order less than n. We note that $k^{\prime}+r^{\prime}=1$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v, v_{4}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}=2-k^{\prime}$. On the other hand noting that $G^{\prime} \neq R_{1}$, we have $\mathrm{w}(G) \geq 27+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-r^{\prime}\right) \geq \mathrm{w}\left(G^{\prime}\right)+4 p+18$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+4 p+18 \leq \mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $18<6 p$, that is, $p \geq 4$. However, $k^{\prime} \geq 0$ and $p=2-k^{\prime} \leq 2$, a contradiction.

By Claim 10.1, the vertices u and v have no common neighbor. Let v_{2} and u_{2} be the third neighbors of v and u, respectively, not on P. Since u and v have no common neighbor, $u_{1} \neq v_{2}$.

Claim 10.2. The vertices u_{2} and v_{2} are not adjacent.
Proof. Suppose that u_{2} and v_{2} are adjacent. Since $n \geq 6$, at least one of u_{2} and v_{2} is large. Renaming vertices if necessary, assume that $u_{2} \in \mathcal{L}$. Suppose that $v_{2} \in \mathcal{S}$ and $N\left(v_{2}\right)=\left\{v, u_{2}\right\}$. Let u_{3} be the neighbor of u_{2} different from u and v_{2}. Suppose that $u_{3} \in \mathcal{L}$. Let $Q=\left\{v, v_{1}, v_{2}, u, u_{2}\right\}$ and let $G^{\prime}=G-Q$. The graph G^{\prime} is a connected special subcubic graph of order less than n. We note that $k^{\prime}+r^{\prime}=1$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, u_{2}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}=2-k^{\prime}$. On the other hand, $\mathrm{w}(G) \geq 22+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-r^{\prime}\right)=\mathrm{w}\left(G^{\prime}\right)+4 p+13$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+4 p+13 \leq \mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $13<6 p$, that is, $p \geq 3$. However, $p=2-k^{\prime} \leq 2$, a contradiction. Hence, $u_{3} \in \mathcal{S}$. Let u_{4} be the neighbor of u_{3} different from u_{2}.

Suppose that $u_{4} \in \mathcal{L}$. Let $Q=\left\{v, v_{1}, v_{2}, u, u_{2}, u_{3}\right\}$ and let $G^{\prime}=G-Q$. The graph G^{\prime} is a connected special subcubic graph of order less than n. We note that $k^{\prime}+r^{\prime}=1$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v, u_{3}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}=2-k^{\prime}$. On the other hand, $\mathrm{w}(G) \geq 27+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-r^{\prime}\right)=$ $\mathrm{w}\left(G^{\prime}\right)+4 p+18$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+4 p+18 \leq \mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $18<6 p$, that is, $p \geq 4$. However, $p=2-k^{\prime} \leq 2$, a contradiction.

Hence, $u_{4} \in \mathcal{S}$. Let u_{5} be the neighbor of u_{4} different from u_{3}. By Claim $3, \operatorname{deg}_{G}\left(u_{3}\right)=3$. Let $Q=\left\{v, v_{1}, v_{2}, u, u_{2}, u_{3}, u_{4}\right\}$ and let $G^{\prime}=G-Q$. The resulting graph G^{\prime} is a connected special subcubic graph of order less than n. We note that $k^{\prime}+r^{\prime}=1$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $u_{5} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{u_{2}, v_{1}\right\}$. If $u_{5} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v, u_{3}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$. Applying Claim 4 with $p=2$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p=\mathrm{w}\left(G^{\prime}\right)+20$. However, $\mathrm{w}(G) \geq 32+\left(\mathrm{w}\left(G^{\prime}\right)-1-4\right)=$ $\mathrm{w}\left(G^{\prime}\right)+27$, a contradiction.

Hence, $v_{2} \in \mathcal{L}$. Recall that $u_{2} \in \mathcal{L}$. Let $Q=\left\{v, v_{1}, u\right\}$ and let $G^{\prime}=G-Q$. We note that $k^{\prime}+r^{\prime}=1$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\{\nu\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}=1-k^{\prime}$. Since there is no 3-linkage in G, we note that $\quad G^{\prime} \neq R_{1}, \quad$ implying that $\quad \mathrm{w}(G) \geq 13+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-r^{\prime}\right)=\mathrm{w}\left(G^{\prime}\right)+4 p+7$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+4 p+7 \leq \mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $7<6 p$, that is, $p \geq 2$. However, $p=1-k^{\prime} \leq 1$, a contradiction.

By Claim 10.2, the vertices u_{2} and v_{2} are not adjacent. Let G^{\prime} be obtained from $G-\left\{v, v_{1}, u\right\}$ by adding the edge $u_{2} v_{2}$. The resulting graph G^{\prime} is a connected special subcubic graph of order less than n. Suppose that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, implying that $\mathrm{w}(G)=13+\mathrm{w}\left(G^{\prime}\right)$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v_{2} \in S^{\prime}$, let $S=S^{\prime} \cup\{u\}$. If $v_{2} \notin S^{\prime}$ and $u_{2} \in S^{\prime}$, let $S=S^{\prime} \cup\{v\}$. If $u_{2} \notin S^{\prime}$ and $v_{2} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$. Therefore, $\quad \mathrm{w}(G)<10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+1\right) \leq$ $\mathrm{w}\left(G^{\prime}\right)+10=\mathrm{w}(G)-3<\mathrm{w}(G)$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\mathrm{rdom}}$. Let $G^{*}=G-v_{1}$. We note that in this case, G^{*} is obtained from G^{\prime} by subdividing the edge $u_{2} \nu_{3}$ of G^{\prime} twice where $v_{2} v u u_{2}$ is the resulting path in G^{*}. By Observation 3, $\gamma_{r}\left(G^{*}\right) \leq \gamma_{r}\left(G^{\prime}\right)$ and there exists a γ_{r}-set S^{*} of G^{*} that contains the vertex v and does not contain u. The set S^{*} is an RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{*}\right|=\gamma_{r}\left(G^{*}\right) \leq \gamma_{r}\left(G^{\prime}\right)$. Hence, $\quad \mathrm{w}(G)<10 \gamma_{r}(G) \leq 10 \gamma_{r}\left(G^{\prime}\right) \leq \mathrm{w}\left(G^{\prime}\right)$. However, $\mathrm{w}(G) \geq 13+\left(\mathrm{w}\left(G^{\prime}\right)-5\right)=\mathrm{w}\left(G^{\prime}\right)+9$, a contradiction. This completes the proof of Claim 10.

Recall that G has no handle. By Claim 10, no small vertex belongs to a triangle. We state this formally.

Claim 11. No small vertex belongs to a triangle.

Claim 12. Two large vertices cannot be the ends of two common 2-linkages.
Proof. Suppose, to the contrary, that there are two large vertices u and v that belong to two common 2-linkages $u v_{1} v_{2} v$ and $\nu v_{3} v_{4} u$ in G. Thus, $C: u v_{1} v_{2} v v_{3} v_{4} u$ is a 6-cycle in G, where $u, v \in \mathcal{L}$ and $v_{1}, v_{2}, v_{3}, v_{4} \in \mathcal{S}$.

Claim 12.1. The vertices u and v have no common neighbor.
Proof. Suppose that u and v have a common neighbor, v_{5}. If $v_{5} \in \mathcal{S}$, then the graph G is determined and $\gamma_{r}(G)=3$ and $\mathrm{w}(G)=33$, a contradiction. Hence, $\nu_{5} \in \mathcal{L}$. Let v_{6} be the neighbor of v_{5} different from u and v. Suppose that $v_{6} \in \mathcal{L}$. Let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and let $G^{\prime}=G-Q$. The graph G^{\prime} is a connected special subcubic graph of order less than n. We note that $k^{\prime}+r^{\prime}=1$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{3}, \nu_{5}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}=3-k^{\prime}$. On the other hand, $\mathrm{w}(G) \geq 32+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-r^{\prime}\right)=\mathrm{w}\left(G^{\prime}\right)+4 p+19$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+4 p+19 \leq$ $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $19<6 p$, that is, $p \geq 4$. However, $p=3-k^{\prime} \leq 3$, a contradiction.

Hence, $v_{6} \in \mathcal{S}$. Let v_{7} be the neighbor of v_{6} different from v_{5}. Suppose that $v_{7} \in \mathcal{L}$. Let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and let $G^{\prime}=G-Q$. The graph G^{\prime} is a connected special subcubic graph of order less than n. We note that $k^{\prime}+r^{\prime}=1$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{3}, v_{6}\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}=$ $3-k^{\prime}$. On the other hand, $\mathrm{w}(G) \geq 37+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-r^{\prime}\right)=\mathrm{w}\left(G^{\prime}\right)+4 p+24$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+4 p+24 \leq \mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $24<6 p$, that is, $p \geq 5$. However, $p=3-k^{\prime} \leq 3$, a contradiction.

Hence, $v_{7} \in \mathcal{S}$. Let v_{8} be the neighbor of v_{7} different from v_{6}. By Claim 3, $\operatorname{deg}_{G}\left(v_{8}\right)=3$. Let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$ and let $G^{\prime}=G-Q$. The graph G^{\prime} is a connected special subcubic graph of order less than n. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v_{8} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{3}, v_{5}\right\}$. If $v_{5} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{3}, v_{6}\right\}$. In both cases, S is an RD-set of G, and so
$\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+3=\gamma_{r}\left(G^{\prime}\right)+3$. Applying Claim 4 with $H=G[Q]$ and $p=3$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p=\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G) \geq 42+\left(\mathrm{w}\left(G^{\prime}\right)-1-4\right)=$ $\mathrm{w}\left(G^{\prime}\right)+37$, a contradiction.

By Claim 12.1, the vertices u and v have no common neighbor. Let x be the neighbor of u different from v_{1} and v_{4}, and let y be the neighbor of v different from v_{2} and v_{3}. Suppose that x and y are adjacent. If both x and y have degree 2 , then the graph G is determined and $\gamma_{r}(G)=2$ and $\mathrm{w}(G)=38$, a contradiction. Hence at least one of x and y are large. Renaming vertices if necessary, assume that y is large. An analogous proof as before shows that $x \in \mathcal{L}$. Let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and consider the graph $G^{\prime}=G-\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\{u, v\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$. Applying Claim 4 with $H=G[Q]$ and $p=2$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p=\mathrm{w}\left(G^{\prime}\right)+20$. However, $\mathrm{w}(G) \geq 28+\left(\mathrm{w}\left(G^{\prime}\right)-1-4\right)=$ $\mathrm{w}\left(G^{\prime}\right)+23$, a contradiction.

Hence, the vertices x and y are not adjacent. Let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$, and let G^{\prime} be obtained from $G^{\prime}=G-Q$ by adding the edge $x y$. The resulting graph G^{\prime} is a connected special subcubic graph of order less than n. Suppose that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, implying that $\mathrm{w}(G)=28+\mathrm{w}\left(G^{\prime}\right)$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it u and v or v_{1} and v_{3}, implying that $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$. Therefore, $\mathrm{w}(G)<10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+2\right) \leq \mathrm{w}\left(G^{\prime}\right)+20=\mathrm{w}(G)-8<\mathrm{w}(G)$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. Let $G^{*}=G-\left\{v_{3}, v_{4}\right\}$. Thus, G^{*} is obtained from G^{\prime} by subdividing the edge $x y$ of G^{\prime} four times where $x u v_{1} v_{2} v y$ is the resulting path in G^{*}. By Observation 5 , there exists a RD-set S^{*} of G^{*} such that $\left|S^{*}\right| \leq \gamma_{r}\left(G^{\prime}\right)+1$ and $S^{*} \cap\left\{u, v_{1}, v_{2}, v\right\}=\{u, v\}$. The set S^{*} is an RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{*}\right|=\gamma_{r}\left(G^{\prime}\right)+1$. Hence, $\mathrm{w}(G)<10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G^{\prime}\right)+1\right) \leq \mathrm{w}\left(G^{\prime}\right)+10$. Since G has no 3-linkage, we note that $G^{\prime} \neq R_{1}$, implying that $\mathrm{w}(G) \geq 28+\left(\mathrm{w}\left(G^{\prime}\right)-4\right)=\mathrm{w}\left(G^{\prime}\right)+24$, a contradiction. This completes the proof of Claim 12.

Claim 13. Two large vertices cannot be the ends of a common 1-linkage and a common 2-linkage.

Proof. Suppose, to the contrary, that there are two large vertices u and v such that $u v_{1} v_{2} v$ is a 2 -linkage and $u v_{3} v$ is a 1 -linkage in G. Thus, $C: u v_{1} v_{2} v v_{3} u$ is a 5 -cycle in G, where $u, v \in \mathcal{L}$ and $v_{1}, v_{2}, v_{3} \in \mathcal{S}$.

Claim 13.1. The vertex v_{3} is the only common neighbor of u and v.
Proof. Suppose that u and v have two common neighbors. Let v_{4} be the common neighbor of u and v different from v_{3}. If $v_{4} \in \mathcal{S}$, then $G=R_{2}$, a contradiction. Hence, $v_{4} \in \mathcal{L}$. Let v_{5} be the neighbor of v_{4} different from u and v.

Suppose that $v_{5} \in \mathcal{S}$. Let v_{6} be the neighbor of v_{5} different from v_{4}. If $v_{6} \in \mathcal{L}$, then let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and let $G^{\prime}=G-Q$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{3}, v_{5}\right\}$ we obtain a contradiction. Hence, $v_{6} \in \mathcal{S}$. Let v_{7} be the neighbor of v_{6} different from v_{5}. By Claim 3, we have $\operatorname{deg}_{G}\left(v_{7}\right)=3$. Let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and let $G^{\prime}=G-Q$. In this case, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, and applying Claim 4 with $H=G[Q]$ and $p=3$ we obtain a contradiction.

Hence, $v_{5} \in \mathcal{L}$. Let x and y be the two neighbors of v_{5} different from v_{4}. Suppose that x and y are not adjacent. Let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and let G^{\prime} be obtained from $G-Q$ by adding the edge $x y$. If $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, then $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, and applying Claim 4 with $H=G[Q]$ and $p=3$ we obtain a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. In this case, we let $Q^{*}=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and let $G^{*}=G-Q^{*}$. Thus, G^{*} is obtained from G^{\prime} by subdividing the edge $x y$ of G^{\prime}, where $x v_{5} y$ is the resulting path in G^{*}. Applying Observation 2, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. However since G contains no 6-handle, $G^{\prime} \neq R_{1}$, and so $\mathrm{w}(G) \geq 31+\left(\mathrm{w}\left(G^{\prime}\right)-4\right)=\mathrm{w}\left(G^{\prime}\right)+27$, a contradiction.

Hence, $x y \in E(G)$. Since there is no 3-handle in G, at least one of x and y is a large vertex. Hence by Claim $11, x \in \mathcal{L}$ and $y \in \mathcal{L}$. Let $w=v_{5}$, and so $G[\{w, x, y\}]$ is a triangle. Let x_{1} and y_{1} be the neighbors of x and y, respectively, different from w.

We show next that $x_{1} \neq y_{1}$. Suppose that $x_{1}=y_{1}$. Since no vertex of degree 2 belongs to a triangle, $x_{1} \in \mathcal{L}$. Let x_{2} be the neighbor of x_{1} different from x and y. If $x_{2} \in \mathcal{L}$, then we let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, w, x, y, x_{1}\right\}$ and $G^{\prime}=G-Q$, and applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v, v_{2}, v_{4}, x_{1}\right\}$ we obtain a contradiction. Hence, $x_{2} \in \mathcal{S}$. Let x_{3} be the neighbor of x_{2} different from x_{1}. If $x_{3} \in \mathcal{L}$, then we let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, w, x, y, x_{1}, x_{2}\right\}$ and $G^{\prime}=G-Q$. In this case, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, and applying Claim 4 with $H=G[Q]$ and $p=4$, we obtain a contradiction. Hence, $x_{3} \in \mathcal{S}$. Let x_{4} be the neighbor of x_{3} different from x_{2}. By Claim 3, $\operatorname{deg}_{G}\left(x_{4}\right)=3$. Thus, G contains the subgraph illustrated in Figure 3. We now let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, w, x, y, x_{1}, x_{2}, x_{3}\right\}$ and $G^{\prime}=G-Q$. In this case, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, and applying Claim 4 with $H=G[Q]$ and $p=4$, we obtain a contradiction.

Hence, $x_{1} \neq y_{1}$, and so G contains the subgraph illustrated in Figure 4. Suppose that $x_{1} \in \mathcal{L}$ and $y_{1} \in \mathcal{L}$. Let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, w, x, y\right\}$ and let $G^{\prime}=G-Q$. Let G_{x} and G_{y} be the components of G^{\prime}. Possibly, $G_{x}=G_{y}$, in which case G^{\prime} is connected. By our earlier observations, neither G_{x} nor G_{y} is an R_{1}-component. Applying Claim 4 with $H=G[Q]$ and $p=3$ we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. If at most one component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+33$, a contradiction. Hence, $G_{x} \neq G_{y}$ and both G_{x} and G_{y} belong to $\mathcal{B}_{\text {rdom }}$. If $G_{x} \notin\left\{R_{4}, R_{5}\right\}$, then $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+30$, a contradiction. Hence, $G_{x} \in\left\{R_{4}, R_{5}\right\}$. Analogously, $G_{y} \in\left\{R_{4}, R_{5}\right\}$. Let G_{w} be the component of $G-v_{4} w$ that contains v_{4}, and so $G_{w}=R_{2}$. We now take a NeRD-set of type-2 in G_{x}, and a NeRD-set of type-1 in each of G_{y} and G_{w}, and extend

FIGURE 3 A subgraph in the proof of Claim 13.1.

FIGURE 4 A subgraph in the proof of Claim 13.1.
these sets to an RD-set of G by adding to them the vertices w and y. By Observation 1 , $\gamma_{r}(G) \leq 2+\gamma_{r, \text { ndom }}\left(G_{w} ; w\right)+\gamma_{r, \text { dom }}\left(G_{x} ; x\right)+\gamma_{r, \text { ndom }}\left(G_{y} ; y\right) \leq 2+\left(\gamma_{r}\left(G_{w}\right)-1\right)+\left(\gamma_{r}\left(G_{x}\right)-1\right)+$ $\left(\gamma_{r}\left(G_{y}\right)-1\right)=\gamma_{r}\left(G_{w}\right)+\gamma_{r}\left(G_{x}\right)+\gamma_{r}\left(G_{y}\right)-1$. Thus, $\mathrm{w}(G)<10 \gamma_{r}(G) \leq \mathrm{w}\left(G_{w}\right)+\mathrm{w}\left(G_{x}\right)+$ $\mathrm{w}\left(G_{y}\right)-10$. However, $\mathrm{w}(G) \geq 12+\left(\mathrm{w}\left(G_{w}\right)-3\right)+\left(\mathrm{w}\left(G_{x}\right)-5\right)+\left(\mathrm{w}\left(G_{y}\right)-5\right)=$ $\mathrm{w}\left(G_{w}\right)+\mathrm{w}\left(G_{x}\right)+\mathrm{w}\left(G_{y}\right)-1$, a contradiction.

Hence, $x_{1} \in \mathcal{S}$ or $y_{1} \in \mathcal{S}$. Renaming vertices if necessary, we may assume that $x_{1} \in \mathcal{S}$. Suppose that $x_{1} y_{1} \in E(G)$. By Claim $9, y_{1} \in \mathcal{L}$. Let y_{2} be the neighbor of y_{1} different from x_{1} and y. Thus, G contains the subgraph illustrated in Figure 5. If $y_{2} \in \mathcal{L}$, then we let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, w, x, x_{1}, y, y_{1}\right\}$ and $G^{\prime}=G-Q$, and applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{3}, w, y_{1}\right\}$ we obtain a contradiction. Hence, $y_{2} \in \mathcal{S}$. Let y_{3} be the neighbor of y_{2} different from y_{1}. If $y_{3} \in \mathcal{L}$, then we let $Q=\left\{u, v, v_{1}, v_{2}\right.$, $\left.v_{3}, v_{4}, w, x, x_{1}, y, y_{1}, y_{2}\right\}$ and $G^{\prime}=G-Q$, and applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{3}, w, x_{1}, y_{2}\right\}$ we obtain a contradiction. Hence, $y_{3} \in \mathcal{S}$. Let y_{4} be the neighbor of y_{3} different from y_{2}. By Claim $3, y_{4} \in \mathcal{L}$. We now let $Q=\left\{u, v, v_{1}, v_{2}\right.$, $\left.v_{3}, v_{4}, w, x, x_{1}, y, y_{1}, y_{2}, y_{3}\right\}$ and let $G^{\prime}=G-Q$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{3}, w, x_{1}, y_{3}\right\}$, we obtain a contradiction.

Hence, $x_{1} y_{1} \notin E(G)$. Let z be the neighbor of x_{1} different from x. Suppose that $y_{1} z \notin E(G)$. In this case, let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, w, x, x_{1}, y\right\}$ and let G^{\prime} be obtained from $G-Q$ by adding the edge $y_{1} z$. If $G^{\prime} \notin \mathcal{B}_{\mathrm{rdom}}$, then $\mathrm{w}(G)=44+\mathrm{w}\left(G^{\prime}\right)$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, and so $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+40$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. Let $G^{*}=G-\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, w\right\}$, and so G^{*} is obtained from G^{\prime} by subdividing the edge $y_{1} z$ of G^{\prime} three times where $z x_{1} x y y_{1}$ is the resulting path in G^{*}. A NeRD-set of type-1 in G^{*} with respect to the vertex y can be extended to a RD-set by adding to it the set $\left\{v_{1}, v_{3}, w\right\}$, implying by Observation 4 that $\gamma_{r}(G) \leq \gamma_{r \text {,ndom }}\left(G^{*} ; y\right)+3 \leq \gamma_{r}\left(G^{\prime}\right)+3$, and so $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. Since $G^{\prime} \neq R_{1}$, we have $\mathrm{w}(G) \geq 44+\left(\mathrm{w}\left(G^{\prime}\right)-4\right)=\mathrm{w}(G)+40$, a contradiction.

Hence, $y_{1} z \in E(G)$. Thus G contains the subgraph illustrated in Figure 6, where $x_{1} \in \mathcal{S}$. Since there is no 3-linkage, $y_{1} \in \mathcal{L}$ or $z \in \mathcal{L}$. If $y_{1} \in \mathcal{L}$ and $z \in \mathcal{L}$, then we let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, w, x, x_{1}, y\right\}$ and $G^{\prime}=G-Q$, and applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{3}, w, x_{1}\right\}$ we obtain a contradiction. Hence, either $y_{1} \in \mathcal{S}$ and $z \in \mathcal{L}$ or $y_{1} \in \mathcal{L}$ and $z \in \mathcal{S}$.

FIGURE 5 A subgraph in the proof of Claim 13.1.

FIGURE 6 A subgraph in the proof of Claim 13.1.

Suppose that $y_{1} \in \mathcal{S}$ and $z \in \mathcal{L}$. Let z_{1} be the neighbor of z different from x_{1} and y_{1}. If G^{\prime} is obtained from $G-\left\{w, x, x_{1}, y, y_{1}, z\right\}$ by adding the edge $v_{4} z_{1}$, then $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, and so $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. Since the graph G^{\prime} contains a bridge, we note that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, implying that $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+26$, a contradiction. Hence, $y_{1} \in \mathcal{L}$ and $z \in \mathcal{S}$. Let y_{2} be the neighbor of y_{1} different from y and z. If G^{\prime} is obtained from $G-\left\{w, x, x_{1}, y, y_{1}, z\right\}$ by adding the edge $v_{4} y_{2}$, then $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, and so $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. Since $G^{\prime} \notin \mathcal{B}_{\mathrm{rdom}}$, we have $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+26$, a contradiction. This completes the proof of Claim 13.1.

By Claim 13.1, the vertex v_{3} is the only common neighbor of u and v. Let x be the neighbor of u different from v_{1} and v_{3}, and let y be the neighbor of v different from v_{2} and v_{3}.

Claim 13.2. The vertices x and y are not adjacent.
Proof. Suppose that x and y are adjacent. By Claim 12, at least one of x and y is large. Renaming vertices if necessary, we assume that $y \in \mathcal{L}$. Let y_{1} be neighbor of y different from x and v.

Suppose that $x \in \mathcal{S}$. If $y_{1} \in \mathcal{L}$, then we let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, x, y\right\}$ and $G^{\prime}=G-Q$. The graph G^{\prime} is a connected subcubic graph. We note that $k^{\prime}+r^{\prime}=1$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{1}, v_{3}, y\right\}$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$ where $p=\gamma_{r}(H)-k^{\prime}=$ $3-k^{\prime}$. On the other hand, $\mathrm{w}(G) \geq 32+\left(\mathrm{w}\left(G^{\prime}\right)-5 k^{\prime}-r^{\prime}\right)=\mathrm{w}\left(G^{\prime}\right)+4 p+19$. Therefore, $\mathrm{w}\left(G^{\prime}\right)+4 p+19 \leq \mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10 p$, and so $19<6 p$, that is, $p \geq 4$. However, $p=3-k^{\prime} \leq 3$, a contradiction. Hence, $y_{1} \in \mathcal{S}$. Let y_{2} be the neighbor of y_{1} different from y. If $y_{2} \in \mathcal{L}$, then let $G^{\prime}=G-\left\{u, v, v_{1}, v_{2}, v_{3}, x, y, y_{1}\right\}$. In this case, $\quad \gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<10 \gamma_{r}(G) \leq \mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G) \geq 37-\left(\mathrm{w}\left(G^{\prime}\right)-1-4\right) \geq \mathrm{w}\left(G^{\prime}\right)+32$, a contradiction. Hence, $y_{2} \in \mathcal{S}$. Let y_{3} be the neighbor of y_{2} different from y_{1}. By Claim 3, $y_{3} \in \mathcal{L}$. In this case, let $Q=\left\{u, v, v_{1}, v_{2}, v_{3}, x, y, y_{1}, y_{2}\right\}$ and let $G^{\prime}=G-Q$. Applying Claim 5 with $H=G[Q]$ and $S_{H}=\left\{v_{2}, v_{3}, x, y_{2}\right\}$, we obtain a contradiction.

Hence, $x \in \mathcal{L}$. We now consider the graph $G^{\prime}=G-\left\{u, v, v_{1}, v_{2}, v_{3}\right\}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. In this case, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<10 \gamma_{r}(G) \leq \mathrm{w}\left(G^{\prime}\right)+20$. If $G \notin \mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G) \geq 23+\left(\mathrm{w}\left(G^{\prime}\right)-2\right)=\mathrm{w}\left(G^{\prime}\right)+21$, a contradiction. Hence, $G \in \mathcal{B}_{\text {rdom }}$. We note that x and y are adjacent vertices of degree 2 in G^{\prime}. Applying Observation 1(f) to the graph G^{\prime} with $X=\{x, y\}$, we have $\gamma_{r, \text { dom }}\left(G^{\prime} ; X\right) \leq \gamma_{r}\left(G^{\prime}\right)-1$. Let $S^{\prime \prime}$ be a minimum type-2 NeRD-set of G^{\prime} with respect to the set X. The set $S^{\prime \prime} \cup\left\{v_{1}, v_{3}\right\}$ is a RD-set of G, implying that $\gamma_{r}(G) \leq\left|S^{\prime \prime}\right|+2 \leq \gamma_{r}\left(G^{\prime}\right)+1$ and $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq 23+\left(\mathrm{w}\left(G^{\prime}\right)-2-4\right)=\mathrm{w}\left(G^{\prime}\right)+15$, a contradiction.

By Claim 13.2, the vertices x and y are not adjacent. Let G^{\prime} be obtained from $G-\left\{u, v, v_{1}, v_{2}, v_{3}\right\}$ by adding the edge $x y$. Suppose that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, implying that $\mathrm{w}(G) \geq 23+\mathrm{w}\left(G^{\prime}\right)$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $x \in S^{\prime}$, let $S=\left\{v, v_{2}\right\}$. If $x \notin S^{\prime}$ and $y \in S^{\prime}$, let $S=\left\{u, v_{1}\right\}$. If $x \notin S^{\prime}$ and $y \notin S^{\prime}$, let $S=\left\{v_{1}, v_{3}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|+2=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<10 \gamma_{r}(G) \leq \mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. Let $G^{*}=G-v_{3}$, and so G^{*} is obtained from G^{\prime} by subdividing the added edge $x y$ four times resulting in the path $x u v_{1} v_{2} v y$.

Suppose that $G^{\prime} \neq R_{2}$ or $G^{\prime}=R_{2}$ and neither x nor y is an open twin in G^{\prime}. In this case, by Observation 6(a) there exists an RD-set S^{*} of G^{*} such that $v_{2} \in S^{*}$ and $\left|S^{*}\right| \leq \gamma_{r}(G)$. The set
$S^{*} \cup\left\{v_{3}\right\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{*}\right|+1 \leq \gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<10 \gamma_{r}(G) \leq \mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq 23+\left(\mathrm{w}\left(G^{\prime}\right)-4\right)=\mathrm{w}\left(G^{\prime}\right)+19$, a contradiction. Hence, $G^{\prime}=R_{2}$ and x or y is an open twin in G. In this case, by Observation 6(b) there exists an RD-set S^{*} of G^{*} such that $v_{2} \in S^{*}$ and $\left|S^{*}\right| \leq \gamma_{r}(G)+1$. The set $S^{*} \cup\left\{v_{3}\right\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{*}\right|+1 \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. However since $G^{\prime}=R_{2}$, in this case $\mathrm{w}(G) \geq 23+\left(\mathrm{w}\left(G^{\prime}\right)-2\right)=$ $\mathrm{w}\left(G^{\prime}\right)+21$, a contradiction. This completes the proof of Claim 13.

Claim 14. The removal of a bridge joining two large vertices cannot create a component that belongs to $\mathcal{B}_{\text {rdom }}$.

Proof. Let $e=x y$ be a bridge in G joining two adjacent large vertices x and y. Let G_{x} and G_{y} be the components of $G-e$ containing x and y, respectively. We note that both G_{x} and G_{y} are connected special subcubic graphs. Suppose, to the contrary, that at least one of G_{x} and G_{y} belongs to $\mathcal{B}_{\text {rdom }}$. Renaming components if necessary, we may assume that $G_{y} \in \mathcal{B}_{\text {rdom }}$.

Suppose that $G_{x} \in \mathcal{B}_{\text {rdom }}$. Since there is no handle in G, we note that $G_{x} \neq R_{1}$ and $G_{y} \neq R_{1}$. Therefore, $\mathrm{w}(G) \geq\left(\mathrm{w}\left(G_{x}\right)-1-4\right)+\left(\mathrm{w}\left(G_{y}\right)-1-4\right)=\mathrm{w}\left(G_{x}\right)+\mathrm{w}\left(G_{y}\right)-10$. By Observation $1(\mathrm{~b})$ there exists a γ_{r}-set S_{x} of G_{x} that contains x. A type-1 NeRD-set of G_{y} with respect to the vertex y can be extended to a RD-set of G by adding to it the set S_{x}. Hence by Observation $1(\mathrm{~d}), \gamma_{r}(G) \leq \gamma_{r}\left(G_{x}\right)+\gamma_{r, \text { ndom }}(G ; y) \leq \gamma_{r}\left(G_{x}\right)+\gamma_{r}\left(G_{y}\right)-1$. Hence, $10 \gamma_{r}(G) \leq 10\left(\gamma_{r}\left(G_{x}\right)+\gamma_{r}\left(G_{y}\right)-1\right) \leq \mathrm{w}\left(G_{x}\right)+\mathrm{w}\left(G_{y}\right)-10 \leq \mathrm{w}(G)$, a contradiction.

Hence, $G_{x} \notin \mathcal{B}_{\text {rdom }}$. By Claim 13 if $G_{y}=R_{2}$, then the vertex y cannot be one of the two open twins in R_{2}. Let S_{x} be a γ_{r}-set of G_{x}. If $x \in S_{x}$, then let S_{y} be a minimum type-1 NeRD-set of G_{y} with respect to the vertex y. In this case, the set $S_{x} \cup S_{y}$ is an RD-set of G, implying by Observation 1(d) that $\gamma_{r}(G) \leq\left|S_{x}\right|+\left|S_{y}\right| \leq \gamma_{r}\left(G_{x}\right)+\gamma_{r, \text { ndom }}(G ; y) \leq \gamma_{r}\left(G_{x}\right)+\gamma_{r}\left(G_{y}\right)-1$. If $x \notin S_{x}$, then let S_{y} is a minimum type-2 NeRD-set of G_{y} with respect to the vertex y. In this case, the set $S_{x} \cup S_{y}$ is an RD-set of G, implying by Observation 1(e) that $\gamma_{r}(G) \leq\left|S_{x}\right|+\left|S_{y}\right| \leq \gamma_{r}\left(G_{x}\right)+\gamma_{r \text { dom }}(G ; y) \leq \gamma_{r}\left(G_{x}\right)+\gamma_{r}\left(G_{y}\right)-1$. In both cases, $\gamma_{r}(G) \leq \gamma_{r}\left(G_{x}\right)+\gamma_{r}\left(G_{y}\right)-1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G_{x}\right)+\mathrm{w}\left(G_{y}\right)-10$. However, $\mathrm{w}(G) \geq\left(\mathrm{w}\left(G_{x}\right)-1\right)+\left(\mathrm{w}\left(G_{y}\right)-1-4\right)=\mathrm{w}\left(G_{x}\right)+\mathrm{w}\left(G_{y}\right)-6$, a contradiction.

Claim 15. The removal of the two small vertices on a 2 -linkage cannot create a component that belongs to $\mathcal{B}_{\text {rdom }}$.

Proof. Let $P: \nu v_{1} v_{2} u$ be a 2-linkage, and so $u, v \in \mathcal{L}$ and $v_{1}, v_{2} \in \mathcal{S}$. By Claim 9, $u v \notin E(G)$. Suppose, to the contrary, that $G^{\prime}=G-\left\{v_{1}, v_{2}\right\}$ creates a component that belongs to $\mathcal{B}_{\text {rdom }}$. Let G_{u} and G_{v} be the components of $G-e$ containing u and v, respectively, where we may assume renaming vertices, if necessary, that $G_{\nu} \in \mathcal{B}_{\text {rdom }}$. Suppose that $G_{u}=G_{v}$, and so the graph G^{\prime} is connected. In this case, let S_{v} be a minimum type-1 NeRD-set of G_{v} with respect to the vertex v. The set $S_{v} \cup\left\{v_{1}\right\}$ is an RD-set of G, implying by Observation 1 that $\gamma_{r}(G) \leq 1+\gamma_{r, \text { ndom }}(G ; v) \leq \gamma_{r}\left(G_{v}\right)$. Hence, $\mathrm{w}(G)<10 \gamma_{r}(G) \leq \mathrm{w}\left(G_{\nu}\right)$. However, $\mathrm{w}(G)=10+\left(\mathrm{w}\left(G_{\nu}\right)-2-4\right)=\mathrm{w}\left(G_{\nu}\right)+4, \quad \mathrm{a}$ contradiction. Hence, $G_{u} \neq G_{v}$, and so G^{\prime} is disconnected with two components G_{u} and G_{v}.

Let S_{u} be a γ_{r}-set of G_{v}. Suppose that $u \in S_{u}$. In this case, the set S_{u} can be extended to an RD-set of G by adding to it a γ_{r}-set of G_{v} that contains v, which exists by Observation 1(d), implying that $\gamma_{r}(G) \leq \gamma_{r}\left(G_{u}\right)+\gamma_{r}\left(G_{v}\right)$. Suppose that $u \notin S_{u}$. By Observation 1(d),
$\gamma_{r, \text { ndom }}\left(G_{v} ; v\right) \leq \gamma_{r}\left(G_{v}\right)-1$. In this case, the set S_{u} can be extended to an RD-set of G by adding to it the vertex v_{2} and a minimum type-1 NeRD-set of G_{v} with respect to the vertex v, implying that $\gamma_{r}(G) \leq\left|S_{u}\right|+1+\gamma_{r, \text { ndom }}\left(G_{v} ; v\right) \leq \gamma_{r}\left(G_{u}\right)+\gamma_{r}\left(G_{v}\right)$. Thus in both cases, $\gamma_{r}(G) \leq \gamma_{r}\left(G_{u}\right)+\gamma_{r}\left(G_{v}\right)$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G_{u}\right)+\mathrm{w}\left(G_{v}\right)$. However, $\mathrm{w}(G) \geq 10$ $+\left(\mathrm{w}\left(G_{u}\right)-1-4\right)+\left(\mathrm{w}\left(G_{v}\right)-1-4\right)=\mathrm{w}\left(G_{u}\right)+\mathrm{w}\left(G_{v}\right)$, a contradiction.

Claim 16. The removal of the small vertex on a 1-linkage cannot create a component that belongs to $\mathcal{B}_{\text {rdom }}$.

Proof. Let $P: \nu v_{1} u$ be a 1-linkage, and so $u, v \in \mathcal{L}$ and $v_{1} \in \mathcal{S}$. By Claim 9, $u v \notin E(G)$. Suppose, to the contrary, that $G^{\prime}=G-v_{1}$ creates a component that belongs to $\mathcal{B}_{\text {rdom }}$. Let G_{u} and G_{v} be the components of $G-v_{1}$ containing u and v, respectively, where we may assume renaming vertices if necessary, that $G_{v} \in \mathcal{B}_{\text {rdom }}$. Let u_{1} and u_{2} be the two neighbors of u different from v_{1}. Let S_{v}^{1} be a minimum type-1 NeRD-set of G_{v} with respect to the vertex v. By Observation $1(\mathrm{~d}),\left|S_{v}^{1}\right|=\gamma_{r, \text { ndom }}\left(G_{v} ; v\right) \leq \gamma_{r}\left(G_{v}\right)-1$. Let S_{v}^{2} be a minimum type-2 NeRD-set of G_{v} with respect to the vertex v. By Claim 13, if $G_{v}=R_{2}$, then the vertex v is not one of the open twins in G_{v}, implying by Observation 1(e) that $\left|S_{v}^{2}\right|=\gamma_{r, \text { dom }}\left(G_{v} ; v\right) \leq \gamma_{r}\left(G_{v}\right)-1$.

Suppose that $u_{1} u_{2} \in E(G)$. By Claim 11, $u_{1}, u_{2} \in \mathcal{L}$. Let $Q=V\left(G_{v}\right) \cup\left\{u, v_{1}\right\}$ and let $G^{\prime}=G-Q$. Suppose that $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. In this case, let S^{\prime} be a minimum type-1 NeRD-set of G^{\prime} with respect to the vertex u_{1}. By Observation $1(\mathrm{~d}),\left|S^{\prime}\right| \leq \gamma_{r \text {,ndom }}\left(G^{\prime} ; u_{1}\right) \leq \gamma_{r}\left(G^{\prime}\right)-1$. The set $S^{\prime} \cup\{u\} \cup S_{v}^{2}$ is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{\prime}\right|+1+\left|S_{v}^{2}\right| \leq\left(\gamma_{r}\left(G^{\prime}\right)-1\right)+$ $1+\left(\gamma_{r}\left(G_{v}\right)-1\right)=\gamma_{r}\left(G^{\prime}\right)+\gamma_{r}\left(G_{v}\right)-1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+\mathrm{w}\left(G_{v}\right)-10$. However, $\quad \mathrm{w}(G) \geq 9+\left(\mathrm{w}\left(G^{\prime}\right)-2-4\right)+\left(\mathrm{w}\left(G_{v}\right)-1-4\right)=\mathrm{w}\left(G^{\prime}\right)+\mathrm{w}\left(G_{v}\right)-2, \quad$ a contradiction. Hence, $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Thus, $\mathrm{w}(G) \geq 9+\left(\mathrm{w}\left(G^{\prime}\right)-2\right)+\left(\mathrm{w}\left(G_{v}\right)-1-4\right)=$ $\mathrm{w}\left(G^{\prime}\right)+\mathrm{w}\left(G_{v}\right)+2$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $S_{v}^{2} \cup\{u\}$, implying that $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+\left|S_{v}^{2}\right|+1 \leq \gamma_{r}\left(G^{\prime}\right)+\left(\gamma_{r}\left(G_{v}\right)-1\right)+1=$ $\gamma_{r}\left(G^{\prime}\right)+\gamma_{r}\left(G_{v}\right)$. Thus, $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+\mathrm{w}\left(G_{v}\right) \leq \mathrm{w}(G)-2<\mathrm{w}(G)$, a contradiction.

Hence, $u_{1} u_{2} \notin E(G)$. Let $Q=V\left(G_{v}\right) \cup\left\{u, v_{1}\right\}$ and let G^{\prime} be obtained from $G-Q$ by adding the edge $u_{1} u_{2}$. The resulting graph G^{\prime} is a connected subcubic graph. Suppose that $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. In this case, let $Q^{*}=Q \backslash\{u\}$, and let $G^{*}=G-Q^{*}$, and so G^{*} is obtained from G^{\prime} by subdividing the added edge $u_{1} u_{2}$ where u is the resulting new vertex of degree 2 in G^{*}. By Observation $2, \gamma_{r}\left(G^{*}\right) \leq \gamma_{r}\left(G^{\prime}\right)$ and there exists a γ_{r}-set S^{*} of G^{*} that contains u. The set $S^{*} \cup S_{v}^{2}$ is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{*}\right|+\left|S_{v}^{2}\right| \leq \gamma_{r}\left(G^{\prime}\right)+\gamma_{r}\left(G_{v}\right)-1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+\mathrm{w}\left(G_{v}\right)-10$. However, $\mathrm{w}(G) \geq 9+\left(\mathrm{w}\left(G^{\prime}\right)-4\right)+$ $\left(\mathrm{w}\left(G_{\nu}\right)-1-4\right)=\mathrm{w}\left(G^{\prime}\right)+\mathrm{w}\left(G_{\nu}\right), \quad$ a contradiction. Hence, $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Thus, $\mathrm{w}(G) \geq 9+\mathrm{w}\left(G^{\prime}\right)+\left(\mathrm{w}\left(G_{v}\right)-1-4\right)=\mathrm{w}\left(G^{\prime}\right)+\mathrm{w}\left(G_{v}\right)+4$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If at least one of u_{1} and u_{2} belongs to S^{\prime}, let $S=S^{\prime} \cup\{u\} \cup S_{v}^{2}$. If $u_{1} \notin S^{\prime}$ and $u_{2} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}\right\} \cup S_{v}^{1}$. In both cases, S is an RD-set of G and $|S| \leq\left|S^{\prime}\right|+1+$ $\gamma_{r}\left(G_{v}\right)-1=\gamma_{r}\left(G^{\prime}\right)+\gamma_{r}\left(G_{v}\right)$. Thus, $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+\mathrm{w}\left(G_{v}\right) \leq \mathrm{w}(G)-4<\mathrm{w}(G)$, a contradiction.

By our earlier observations, every edge of G either joins two large vertices or belongs to a 2 -linkage or belongs to a 1 -linkage. Hence as an immediate consequence of Claims 14, 15, and 16 , we have the following property of the graph G.

Claim 17. The removal of a bridge cannot create a component that belongs to $\mathcal{B}_{\text {rdom }}$.
As a consequence of Claim 17, we have the following claim.
Claim 18. The graph G does not contain R_{10} as a subgraph.
Proof. Suppose, to the contrary, that R^{\prime} is a subgraph of G, where $R^{\prime}=R_{10}$. Let v be small vertex (of degree 2) in R^{\prime}. Since $G \notin \mathcal{B}_{\text {rdom }}$, we note that $R^{\prime} \neq G$, implying that v is a large vertex in G. Let v^{\prime} be the vertex adjacent to v that does not belong to R^{\prime}. The edge $v v^{\prime}$ is a bridge of G whose removal creates a R_{10}-component, contradicting Claim 17.

We are now in a position to prove that there is no 2-linkage in G.
Claim 19. There is no 2-linkage in G.
Proof. Suppose, to the contrary, that G contains a 2 -linkage. Let $P: u \nu_{1} v_{2} v$ be a 2 linkage, where x and y are the two neighbors of v not on P.

Claim 19.1. At least one of $u x$ and $u y$ is not an edge.
Proof. Suppose, to the contrary, that u is adjacent to both x and y. By Claim 13, $x, y \in \mathcal{L}$. If $x y$ is an edge, then the graph G is determined and $\gamma_{r}(G)=2$ and $\mathrm{w}(G)=26$, a contradiction. Hence, $x y$ is not an edge. Let x_{1} and y_{1} be the neighbors of x and y, and let $G^{\prime}=G-\left\{u, v_{1}, v_{2}\right\}$. Suppose $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. In this case, $x v y$ is a path in G^{\prime} where x, v, and y all have degree 2 in G^{\prime}, implying that $G^{\prime} \in\left\{R_{1}, R_{3}, R_{8}\right\}$. If $G^{\prime}=R_{1}$, then $G=R_{5}$, a contradiction. If $G^{\prime}=R_{3}$, then G could contain a 3-linkage, a contradiction. If $G^{\prime}=R_{8}$, then G is determined and $\gamma_{r}(G) \leq 6$ and $\mathrm{w}(G)=60$, a contradiction. Hence, $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, implying that $\mathrm{w}(G)=14+\left(\mathrm{w}\left(G^{\prime}\right)-3\right)=\mathrm{w}\left(G^{\prime}\right)+11$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v \notin S$, then either $x \in S^{\prime}$ and $y \notin S^{\prime}$ or $x \notin S^{\prime}$ and $y \in S^{\prime}$. In this case, we let $S=S^{\prime} \cup\left\{v_{2}\right\}$. If $v \in S^{\prime}$ and neither x not y belongs to S^{\prime}, then we let $S=S^{\prime} \cup\{u\}$. If $v \in S^{\prime}$ and at least one of x and y belongs to S^{\prime}, then we let $S=S^{\prime} \cup\left\{v_{2}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$, and so $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. This contradicts our earlier observation that $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+11$.

Claim 19.2. Neither $u x$ nor $u y$ is an edge.
Proof. Suppose, to the contrary, that u is adjacent to exactly one of x and y. We may assume that $u y$ is an edge. By Claim 13, $y \in \mathcal{L}$. By Claim 19.1, $u x$ is not an edge. Let G^{\prime} be obtained from $G-\left\{v, v_{1}, v_{2}\right\}$ by adding the edge $u x$. The graph G^{\prime} is a connected special subcubic graph of order less than n. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $u \in S$, then let $S=S^{\prime} \cup\{v\}$. If $u \notin S^{\prime}$ and $x \in S^{\prime}$, then we let $S=S^{\prime} \cup\left\{v_{1}\right\}$. If $u \notin S^{\prime}$ and $x \notin S^{\prime}$, then we let $S=S^{\prime} \cup\left\{v_{2}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$, and so $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. If $G^{\prime} \notin\left\{R_{1}, R_{4}, R_{5}\right\}$, then $\mathrm{w}(G) \geq 14+\left(\mathrm{w}\left(G^{\prime}\right)-1-3\right)=\mathrm{w}\left(G^{\prime}\right)+10$, a contradiction. Hence, $G^{\prime} \in\left\{R_{1}, R_{4}, R_{5}\right\}$. Since u is a vertex of degree 3 in G^{\prime}, we note that $G^{\prime} \neq R_{1}$. If $G^{\prime}=R_{4}$, then $G=R_{7}$, a contradiction. If $G^{\prime}=R_{5}$, then $G=R_{6}$, a contradiction.

By Claim 19.2, the vertex u is adjacent to neither x nor y. Renaming vertices if necessary, we may assume that $\operatorname{deg}_{G}(x) \leq \operatorname{deg}_{G}(y)$.

Claim 19.3. $x, y \in \mathcal{S}$.
Proof. Suppose that $y \in \mathcal{L}$. Let G^{\prime} be obtained from $G-\left\{v, v_{1}, v_{2}\right\}$ by adding the edge $u x$. As in the proof of Claim 19.2, $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. If no component of G^{\prime} belongs to $\mathcal{B}_{\mathrm{rdom}}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+13$, a contradiction. Hence, at least one component in G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Suppose that G^{\prime} is connected. Since u is a vertex of degree 3 in G^{\prime}, we note that $G^{\prime} \neq R_{1}$. If $G^{\prime} \in\left\{R_{4}, R_{5}\right\}$, then the graph G is determined and in all cases, $\gamma_{r}(G)=4$ and $\mathrm{w}(G)=49$, a contradiction. Hence, $G \notin\left\{R_{1}, R_{4}, R_{5}\right\}$, implying that $\mathrm{w}(G) \geq 14+\left(\mathrm{w}\left(G^{\prime}\right)-1-3\right)=\mathrm{w}\left(G^{\prime}\right)+10$, a contradiction.

Hence, G^{\prime} is disconnected with two components. Let G_{x} be the component of G^{\prime} containing the vertices u and x, and let G_{y} be the component containing the vertex y. Both G_{x} and G_{y} are connected special subcubic graphs. Further, we note that the edge $v y$ is a bridge in G, implying by Claim 17 that $G_{y} \notin \mathcal{B}_{\text {rdom }}$ and therefore $G_{x} \in \mathcal{B}_{\text {rdom }}$. Let G_{ν} be the component of $G-v y$ that contains the vertex v. Thus, G_{v} is obtained from the graph G^{\prime} by subdividing the edge $u x$ three times, resulting in the path $u v_{1} v_{2} v x$.

Let S_{v}^{1} be a minimum type- 1 NeRD-set of G_{v} with respect to the vertex v, and let S_{v}^{2} be a minimum type-2 NeRD-set of G_{v} with respect to the vertex v. By Observation 4, $\left|S_{v}^{1}\right|=\gamma_{r, \text { ndom }}\left(G^{*} ; v_{1}\right) \leq \gamma_{r}\left(G^{\prime}\right)$ and $\left|S_{v}^{2}\right|=\gamma_{r, \text { dom }}\left(G^{*} ; v_{1}\right) \leq \gamma_{r}\left(G^{\prime}\right)$. Let S_{y} be a γ_{r}-set of G_{y}. If $y \in S_{y}$, let $S=S_{y} \cup S_{v}^{1}$. If $y \notin S_{y}$, let $S=S_{y} \cup S_{v}^{2}$. In both cases, S is an RD-set of G, implying that $\gamma_{r}(G) \leq \gamma_{r}\left(G_{y}\right)+\gamma_{r}\left(G^{\prime}\right)$, and so $\mathrm{w}(G)<\mathrm{w}\left(G_{y}\right)+\mathrm{w}\left(G^{\prime}\right)$. However, $\mathrm{w}(G) \geq 14+\left(\mathrm{w}\left(G^{\prime}\right)-4\right)+\left(\mathrm{w}\left(G_{y}\right)-1\right)=\mathrm{w}\left(G_{y}\right)+\mathrm{w}\left(G^{\prime}\right)+9$, a contradiction. Hence, $y \in \mathcal{S}$. By our choice of the vertex x, this implies that $x \in \mathcal{S}$.

By Claim 19.3, $x \in \mathcal{S}$ and $y \in \mathcal{S}$. Thus, all three neighbors of v are small vertices. Interchanging the roles of u and v, analogous arguments show that all three neighbors of u are small vertices. Recall that $u x \notin E(G)$ and $u y \notin E(G)$, and so u and v do not have a common neighbor. By Claim 11, no small vertex belongs to a triangle, implying that $x y \notin E(G)$. Let x_{1} and y_{1} be the neighbors of x and y, respectively, different from v. Possibly, $x_{1}=y_{1}$.

Claim 19.4. $\quad x_{1} \neq y_{1}$.
Proof. Suppose, to the contrary, that $x_{1}=y_{1}$. In this case, we let $z=x_{1}$. Since G has no handle, $z \in \mathcal{L}$. Thus, $C: v x z y v$ is a 4 -cycle in G, where $v, z \in \mathcal{L}$ and $x, y \in \mathcal{S}$. Let z_{1} be the neighbor of z different from x and y. Since all three neighbors of u belong to \mathcal{S}, we note that $u z \notin E(G)$. Thus, $u \neq z_{1}$. Let G^{\prime} be obtained from $G-\left\{v, v_{2}, x, y, z\right\}$ by adding the edge $v_{1} z_{1}$. The resulting graph G^{\prime} is a connected subcubic graph.

Suppose that $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. Let $G^{*}=G-y$, that is, G^{*} is obtained from G^{\prime} by subdividing the added edge $v_{1} z_{1}$ four times resulting in the path $v_{1} v_{2} v x z z_{1}$. By Observation 5, there exists a RD-set S^{*} of G^{*} such that $\left|S^{*}\right| \leq \gamma_{r}\left(G^{\prime}\right)+1$ and $S^{*} \cap\left\{v_{2}, v, x, z\right\}=\left\{v_{2}, z\right\}$. The set S^{*} is an RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{*}\right|=\gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. Noting that $G^{\prime} \neq R_{1}$ and the degrees of the vertices in G^{\prime} are the same as their degrees in G, we have $\mathrm{w}(G) \geq 23+\left(\mathrm{w}\left(G^{\prime}\right)-4\right)=\mathrm{w}\left(G^{\prime}\right)+19$, a
contradiction. Hence, $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, implying that $\mathrm{w}(G)=22+\mathrm{w}\left(G^{\prime}\right)$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If at least one of v_{1} and z_{1} belongs to S^{\prime}, let $S=S^{\prime} \cup\left\{v_{2}, z\right\}$. If $u_{1} \notin S^{\prime}$ and $z_{1} \notin S^{\prime}$, let $S=S^{\prime} \cup\{v, x\}$. In both cases, S is an RD-set of G and $|S| \leq\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$. Thus, $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$, a contradiction.

By Claim 19.4, $x_{1} \neq y_{1}$. By Claim 12 if $x_{1} \in \mathcal{S}$, then $u x_{1} \notin E(G)$ and if $y_{1} \in \mathcal{S}$, then $u y_{1} \notin E(G)$.

Claim 19.5. $\quad x_{1} y_{1} \in E(G)$.
Proof. Suppose that $x_{1} y_{1} \notin E(G)$. Let G^{\prime} be obtained from $G-\left\{v, v_{1}, v_{2}, x, y\right\}$ by adding the edge $x_{1} y_{1}$. The resulting graph G^{\prime} is a subcubic graph. We note that either G^{\prime} is connected or has two components. Let $G_{x y}$ be the component of G^{\prime} containing the added edge $x_{1} y_{1}$. If G^{\prime} is disconnected, then let G_{u} be the second component of G^{\prime} which necessarily contains the vertex u. In this case, the edge $u \nu_{1}$ is a bridge in G, implying by Claim 17 that $G_{u} \notin \mathcal{B}_{\text {rdom }}$. Therefore, the component $G_{x y}$ is the only possible component of G^{\prime} that belongs to $\mathcal{B}_{\text {rdom }}$.

Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $x_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, y\right\}$. If $x_{1} \notin S^{\prime}$ and $y_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, x\right\}$. If $x_{1} \notin S^{\prime}, y_{1} \notin S^{\prime}$ and $u \in S^{\prime}$, let $S=S^{\prime} \cup\{v\}$. If $x_{1} \notin S^{\prime}, y_{1} \notin S^{\prime}$ and $u \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v, v_{2}\right\}$. In all cases, S is an RD-set of G and $|S| \leq\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$. Thus, $\mathrm{w}(G)<10 \gamma_{r}(G) \leq \mathrm{w}\left(G^{\prime}\right)+20$. If G^{\prime} has no component in $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G) \geq 24+\left(\mathrm{w}\left(G^{\prime}\right)-1\right)=\mathrm{w}\left(G^{\prime}\right)+23$, a contradiction. Hence by our earlier observations, G^{\prime} has exactly one component in $\mathcal{B}_{\text {rdom }}$, namely the component $G_{x y}$. By our earlier properties of the graph G, we note that $G_{x y} \neq R_{1}$. If $G_{x y} \notin\left\{R_{4}, R_{5}\right\}$, then $\mathrm{w}(G) \geq 24+\left(\mathrm{w}\left(G^{\prime}\right)-1-3\right)=\mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, $G_{x y} \in\left\{R_{4}, R_{5}\right\}$, implying that $\mathrm{w}(G)=24+\left(\mathrm{w}\left(G^{\prime}\right)-1-4\right)=\mathrm{w}\left(G^{\prime}\right)-19$.

If G^{\prime} is connected, then $G^{\prime}=G_{x y}$ and we let $G^{*}=G-\left\{v_{1}, v_{2}\right\}$. If G^{\prime} is disconnected, then G^{\prime} consists of the two components G_{u} and $G_{x y}$ and we let $G^{*}=G-\left(V\left(G_{u}\right) \cup\left\{v_{1}, v_{2}\right\}\right)$. In both cases, G^{*} is the graph obtained from $G_{x y}$ by subdividing the added edge $x_{1} y_{1}$ three times resulting in the path $x_{1} x v y y_{1}$. Recall that $G_{x y} \in\left\{R_{4}, R_{5}\right\}$. Applying Observation 4 we have $\gamma_{r, \text { dom }}\left(G^{*} ; v\right) \leq \gamma_{r}\left(G_{x y}\right)$. Thus, there exists a type-2 NeRD-set S^{*} in G^{*} with respect to the vertex v such that $\left|S^{*}\right| \leq \gamma_{r}\left(G_{x y}\right)$. If G^{\prime} is connected, then let $S=S^{*}$, and note that in this case, $|S| \leq \gamma_{r, \text { dom }}\left(G^{*} ; v\right) \leq \gamma_{r}\left(G_{x y}\right)=\gamma_{r}\left(G^{\prime}\right)$. If G^{\prime} is disconnected, let $S=S^{*} \cup S_{u}$ where S_{u} is a $\gamma_{r}-$ set of G_{u}, and note that in this case, $|S| \leq \gamma_{r, \mathrm{dom}}\left(G^{*} ; v\right)+\gamma_{r}\left(G_{u}\right) \leq \gamma_{r}\left(G_{x y}+\gamma_{r}\left(G_{u}\right)=\gamma_{r}\left(G^{\prime}\right)\right.$. In both cases, $|S| \leq \gamma_{r}\left(G^{\prime}\right)$. Further, in both cases $S \cup\left\{v_{1}\right\}$ is a RD-set of G, implying that $\gamma_{r}(G) \leq|S|+1 \leq \gamma_{r}\left(G^{\prime}\right)+1$. Hence, $\mathrm{w}(G)<10 \gamma_{r}(G) \leq \mathrm{w}\left(G^{\prime}\right)+10$, a contradiction.

By Claim 19.5, $x_{1} y_{1} \in E(G)$. Since G has no handle, at least one of x_{1} and y_{1} is large. If exactly one of x_{1} and y_{1} is large, then we would contradict Claim 13. Hence, $x_{1} \in \mathcal{L}$ and $y_{1} \in \mathcal{L}$. Let $G^{\prime}=G-\left\{v, v_{1}, v_{2}, x, y\right\}$. The resulting graph G^{\prime} is a special subcubic graph. Let $G_{x y}$ be the component of G^{\prime} containing the edge $x_{1} y_{1}$, and let G_{u} be the component of G^{\prime} containing the vertex u. If G^{\prime} is connected, then $G_{u}=G_{x y}$. If G^{\prime} is disconnected, then $G_{x y}$ and G_{u} are the two components of G^{\prime}. Further, in this case, $u \nu_{1}$ is a bridge in G, implying by Claim 17 that $G_{u} \notin \mathcal{B}_{\text {rdom }}$. Therefore, the component $G_{x y}$ is the only possible component of G^{\prime} that belongs to $\mathcal{B}_{\text {rdom }}$.

Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $\left\{u, x_{1}, y_{1}\right\} \subseteq S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{2}\right\}$. If $S^{\prime} \cap\left\{u, x_{1}, y_{1}\right\}=\left\{u, y_{1}\right\}$, let $S=S^{\prime} \cup\left\{v_{1}, x\right\}$. If $S^{\prime} \cap\left\{u, x_{1}, y_{1}\right\}=\left\{u, y_{1}\right\}$, let $S=S^{\prime} \cup\left\{v_{1}, y\right\}$. If $S^{\prime} \cap\left\{u, x_{1}, y_{1}\right\}=\{u\}$,
let $S=S^{\prime} \cup\{v\}$. If $S^{\prime} \cap\left\{u, x_{1}, y_{1}\right\}=\left\{x_{1}, y_{1}\right\}$, let $S=S^{\prime} \cup\left\{v_{2}\right\}$. If $S^{\prime} \cap\left\{u, x_{1}, y_{1}\right\}=\left\{x_{1}\right\}$, let $S=S^{\prime} \cup\left\{v_{2}, y\right\}$. If $S^{\prime} \cap\left\{u, x_{1}, y_{1}\right\}=\left\{y_{1}\right\}$, let $S=S^{\prime} \cup\left\{v_{2}, x\right\}$. If $S^{\prime} \cap\left\{u, x_{1}, y_{1}\right\}=\varnothing$, let $S=S^{\prime} \cup\left\{v, v_{2}\right\}$. In all cases, S is an RD-set of G and $|S| \leq\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$. Thus, $\mathrm{w}(G)<10 \gamma_{r}(G) \leq \mathrm{w}\left(G^{\prime}\right)+20$.

If $G_{x y} \notin \mathcal{B}_{\text {rdom }}$ or if $G_{x y} \in \mathcal{B}_{\text {rdom, }, 1}$, then $\mathrm{w}(G) \geq 24+\left(\mathrm{w}\left(G^{\prime}\right)-3-1\right)=\mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, $G_{x y} \in\left\{R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{9}\right\}$. We note that x_{1} and y_{1} are adjacent vertices of degree 2 in $G_{x y}$, implying that $G_{x y} \notin\left\{R_{4}, R_{9}\right\}$. If $G_{x y}=R_{1}$, then necessarily $G^{\prime}=G_{x y}$ and the graph G is determined. In this case, $\gamma_{r}(G)=4$ and $\mathrm{w}(G)=46$, a contradiction. Hence, $G_{x y} \neq R_{1}$. If $G_{x y}=R_{3}$, then since G has no 3-linkage, $G^{\prime}=G_{x y}$ and the graph G is determined. In this case, $\gamma_{r}(G)=5$ and $\mathrm{w}(G)=59$, a contradiction. Hence, $G_{x y} \neq R_{3}$. Therefore, $G_{x y} \in\left\{R_{2}, R_{5}\right\}$. By our earlier observations, the vertex u is adjacent to neither x_{1} nor y_{1}. Further, we note that the vertex u and its two neighbors in G^{\prime}, as well as x_{1} and y_{1}, all have degree 2 in G^{\prime}. Moreover, $x_{1} y_{1}$ in an edge. These properties implies that G^{\prime} is disconnected. Thus, G^{\prime} has two components, namely $G_{x y}$ and G_{u}. As observed earlier, $G_{u} \notin \mathcal{B}_{\text {rdom }}$. Let x_{2} and y_{2} be the neighbors of x_{1} and y_{1}, respectively, in $G_{x y}$.

Suppose that $G_{x y}=R_{2}$. We note that x_{2} and y_{2} are the two large vertices in R_{2}. Let z_{1} and z_{2} be the two common neighbors of x_{2} and y_{2} in $G_{x y}$. Thus, the graph in Figure 7 is a subgraph of G. Let S_{u} be a γ_{r}-set of G_{u}. If $u \in S_{u}$, let $S=\left\{v, x, y_{2}, z_{1}\right\}$. If $u \notin S_{u}$, let $S=\left\{v_{2}, x_{1}, x_{2}, y_{1}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq\left|S_{u}\right|+4=\gamma_{r}\left(G_{u}\right)+4$. Hence, $\mathrm{w}(G)<\mathrm{w}\left(G_{u}\right)+40$. However, $\mathrm{w}(G)=50+\left(\mathrm{w}\left(G_{u}\right)-1\right)=\mathrm{w}\left(G_{u}\right)+49, \quad \mathrm{a}$ contradiction.

Hence, $G_{x y} \neq R_{2}$, and so $G_{x y}=R_{5}$. Let x_{3} and y_{3} be the two common neighbors of x_{2} and y_{2} in $G_{x y}$, and let x_{4} and y_{4} be the remaining vertices in $G_{x y}$, where $x_{3} x_{4} y_{4} y_{3}$ is a path. Thus, the graph in Figure 8 is a subgraph of G. Let S_{u} be a γ_{r}-set of G_{u}, and let $S=S_{u} \cup\left\{v_{1}, x, y, x_{3}, y_{3}\right\}$. The set S is an RD-set of G, and so $\gamma_{r}(G) \leq\left|S_{u}\right|+5=\gamma_{r}\left(G_{u}\right)+5$. Hence, $\mathrm{w}(G)<\mathrm{w}\left(G_{u}\right)+50$. However, $\mathrm{w}(G)=58+\left(\mathrm{w}\left(G_{u}\right)-1\right)=\mathrm{w}\left(G_{u}\right)+57$, a contradiction. This completes the proof of Claim 19.

FIGURE 7 A subgraph in the proof of Claim 19 when $G_{x y}=R_{2}$.

FIGURE 8 A subgraph in the proof of Claim 19 when $G_{x y}=R_{5}$.

By Claim 19, there is no 2-linkage in G. By our earlier observations, every vertex of degree 2 in G, if any, therefore belongs to a 1-linkage.

Claim 20. Two large vertices cannot be the ends of two common 1-linkages.
Proof. Suppose, to the contrary, that there are two large vertices u and v such that $u v_{1} v$ and $v v_{2} u$ are 1 -linkages in G. Thus, $C: u v_{1} v v_{2} u$ is a 4-cycle in G, where $u, v \in \mathcal{L}$ and $v_{1}, v_{2} \in \mathcal{S}$.

Claim 20.1. The vertices v_{1} and v_{2} are the only two common neighbors of u and v.
Proof. Suppose that u and v have a third common neighbor v_{3}. If $v_{3} \in \mathcal{S}$, then $\gamma_{r}(G)=2$ and $\mathrm{w}(G)=23$, a contradiction. Hence, $v_{3} \in \mathcal{L}$. Let v_{4} be the neighbor of v_{3} different from u and v. if $v_{4} \in \mathcal{L}$, then let $G^{\prime}=G-\left\{u, v, v_{1}, v_{2}, v_{3}\right\}$. By Claim $17, G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it v and ν_{1}, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. However, $\mathrm{w}(G)=22+\left(\mathrm{w}\left(G^{\prime}\right)-1\right)=\mathrm{w}\left(G^{\prime}\right)+21$, a contradiction. Hence, $v_{4} \in \mathcal{S}$. Let v_{5} be the neighbor of v_{4} different from v_{3}. If $v_{5} \in \mathcal{L}$, then let $G^{\prime}=G-\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$. By Claim $17, G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v_{5} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v, v_{1}\right\}$. If $v_{5} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v, v_{3}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. However, $\mathrm{w}(G)=27+\left(\mathrm{w}\left(G^{\prime}\right)-1\right)=\mathrm{w}\left(G^{\prime}\right)+26$, a contradiction. Hence, $v_{5} \in \mathcal{S}$. Let v_{6} be the neighbor of v_{5} different from v_{4}. By Claim $3, v_{6} \in \mathcal{L}$. In this case, let $G^{\prime}=G-\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. By Claim 17, $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD -set of G by adding to it $\left\{v, v_{1}, v_{5}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=32+\left(\mathrm{w}\left(G^{\prime}\right)-1\right)=\mathrm{w}\left(G^{\prime}\right)+31$, a contradiction.

By Claim 20.1, the vertices v_{1} and v_{2} are the only two common neighbors of u and v. Let x be the neighbor of u different from v_{1} and v_{2}, and let y be the neighbor of v different from v_{1} and v_{2}.

Claim 20.2. The vertices x and y are not adjacent.
Proof. Suppose that x and y are adjacent. If $x \in \mathcal{S}$ and $y \in \mathcal{S}$, then $G=R_{2}$, a contradiction. Hence at least one of x and y are large. Renaming vertices if necessary, assume that $y \in \mathcal{L}$. Let y_{1} be neighbor of y different from x and v. If $x \in \mathcal{S}$, then the edge $y y_{1}$ is a bridge whose removal creates an R_{2}-component, contradicting Claim 17. Hence, $x \in \mathcal{L}$. Let x_{1} be neighbor of x different from u and y.

Suppose that $x_{1} \neq y_{1}$. In this case, let G^{\prime} be obtained from $G^{\prime}-\left\{u, v, v_{1}, v_{2}, y\right\}$ by adding the edge $x y_{1}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $x \in S^{\prime}$, let $S=S^{\prime} \cup\{v, y\}$. If $x \notin S^{\prime}$ and $y_{1} \in S$, let $S=S^{\prime} \cup\left\{u, v_{1}\right\}$. If $x \notin S^{\prime}$ and $y_{1} \notin S$, let $S=S^{\prime} \cup\left\{v, v_{1}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If $G^{\prime} \notin \mathcal{B}_{\mathrm{rdom}}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+21$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. Let $G^{*}=G-v_{2}$, that is, G^{*} is obtained from G^{\prime} by subdividing the edge $x y_{1}$ four times resulting in the path $x u v_{1} v y y_{1}$. By Observation 5 , there exists an RD-set S^{*} of G^{*} such that $S^{*} \cap\left\{u, v_{1}, v, y\right\}=\{u, y\}$
and $\left|S^{*}\right| \leq \gamma_{r}\left(G^{\prime}\right)+1$. The set S^{*} is an RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{*}\right| \leq \gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \leq 22+\left(\mathrm{w}\left(G^{\prime}\right)-1-4\right)=\mathrm{w}\left(G^{\prime}\right)+17$, a contradiction.

Hence, $x_{1}=y_{1}$. In this case, we let $z=x_{1}$. Since no small vertex belongs to a triangle, we note that $z \in \mathcal{L}$. Let z_{1} be the neighbor of z different from x and y. If $z_{1} \in \mathcal{L}$, then we let $G^{\prime}=G-\left\{u, v, v_{1}, v_{2}, x, y, z\right\}$. By Claim 17 , we note that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Since $\gamma_{r}(G) \leq$ $\gamma_{r}\left(G^{\prime}\right)+2$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. However, $\mathrm{w}(G)=30+\left(\mathrm{w}\left(G^{\prime}\right)-1\right)=$ $\mathrm{w}\left(G^{\prime}\right)+29$, a contradiction. Hence, $z_{1} \in \mathcal{S}$. Let z_{2} be the neighbor of z_{1} different from z. Since every vertex of degree 2 belongs to a 1 -linkage, we note that $z_{2} \in \mathcal{L}$. We now let $G^{\prime}=G-\left\{u, v, v_{1}, v_{2}, x, y, z, z_{1}\right\}$. By Claim 17, we note that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Since $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=35+\left(\mathrm{w}\left(G^{\prime}\right)-1\right)=$ $\mathrm{w}\left(G^{\prime}\right)+34$, a contradiction.

By Claim 20.2, the vertices x and y are not adjacent.
Claim 20.3. $x \in \mathcal{L}$ and $y \in \mathcal{L}$.
Proof. Suppose that at least one of x and y is small. Renaming vertices if necessary, we may assume that $x \in \mathcal{S}$. Let z be the neighbor of x different from u. Necessarily, $z \in \mathcal{L}$. Suppose that $y z \notin E(G)$. In this case, let G^{\prime} be the connected subcubic graph obtained from $G-\left\{u, v, v_{1}, v_{2}, x\right\}$ by adding the edge $y z$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If at least one of z and y belongs to S^{\prime}, let $S=S^{\prime} \cup\{v, x\}$. If $z \notin S^{\prime}$ and $y \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{u, v_{1}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$. Thus, $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If $G^{\prime} \notin\left\{R_{1}, R_{4}, R_{5}\right\}$, then $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, $G^{\prime} \in\left\{R_{1}, R_{4}, R_{5}\right\}$. Since every vertex of degree 2 in G belongs to a 1-linkage, $G^{\prime} \notin\left\{R_{1}, R_{5}\right\}$, and so $G^{\prime}=R_{4}$. Let $G^{*}=G-v_{2}$, and so G^{*} is obtained from G^{\prime} by subdividing the added edge $y z$ four times resulting in the path $z x u v_{1} v y$. By Observation 5 , there exists an RD-set S^{*} of G^{*} such that $S^{*} \cap\left\{x, u, v_{1}, v\right\}=\{x, v\}$ and $\left|S^{*}\right| \leq \gamma_{r}(G)$. The set S^{*} is an RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{*}\right| \leq \gamma_{r}\left(G^{\prime}\right)$, implying that $\mathrm{w}(G)<10 \gamma_{r}\left(G^{\prime}\right) \leq \mathrm{w}\left(G^{\prime}\right)$. However, $w(G)=\mathrm{w}\left(G^{\prime}\right)+19$, a contradiction. Hence, $y z \in E(G)$. Recall that $x \in \mathcal{S}$ and $z \in \mathcal{L}$.

Suppose that $y \in \mathcal{L}$. In this case, let $G^{\prime}=G-\left\{u, v, v_{1}, v_{2}, x\right\}$. We note that $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+21$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. A type-1 NeRD-set of G^{\prime} with respect to the vertex y can be extended to an RD-set of G by adding to it the set $\{v, x\}$. Therefore by Observation $1, \gamma_{r}(G) \leq \gamma_{r, \text { ndom }}\left(G^{\prime} ; y\right)+2 \leq\left(\gamma_{r}(G)-1\right)+2=\gamma_{r}(G)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+17$, a contradiction. Hence, $y \in \mathcal{S}$. Let z_{1} be the neighbor of z different from x and y.

If $z_{1} \in \mathcal{L}$, then let $G^{\prime}=G-\left\{u, v, v_{1}, v_{2}, x, y, z\right\}$. By Claim 17, $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. We note that $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+31$, a contradiction. Hence, $z_{1} \in \mathcal{S}$. Let z_{2} be the neighbor of z_{1} different from z. Necessarily, $z_{2} \in \mathcal{L}$. We now let $G^{\prime}=G-\left\{u, v, v_{1}, v_{2}, x, y, z, z_{1}\right\}$. By Claim 17, $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{v, x, z_{1}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+36$, a contradiction.

By Claim 20.3, $x \in \mathcal{L}$ and $y \in \mathcal{L}$. Recall that x and y are not adjacent. Let x_{1} and x_{2} be the two neighbors of x different from u.

Claim 20.4. $\quad x_{1} x_{2} \in E(G)$.
Proof. Suppose that $x_{1} x_{2} \notin E(G)$. Let G^{\prime} be the subcubic graph obtained from $G-\left\{u, v, v_{1}, v_{2}, x\right\}$ by adding the edge $x_{1} x_{2}$. Let G_{x} be the component of G^{\prime} containing the added edge $x_{1} x_{2}$. If G^{\prime} is disconnected, then let G_{y} be the second component of G^{\prime} which necessarily contains the vertex y. In this case, the edge $v y$ is a bridge in G, implying by Claim 17 that $G_{y} \notin \mathcal{B}_{\text {rdom }}$. Therefore, the component G_{x} is the only possible component of G^{\prime} that belongs to $\mathcal{B}_{\text {rdom }}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If at least one of x_{1} and x_{2} belongs to S^{\prime}, let $S=S^{\prime} \cup\{v, x\}$. If $x_{1} \notin S^{\prime}$ and $x_{2} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{u, v_{1}\right\}$. In both cases, S is an RD-set of G, and so $\quad \gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If $G_{x} \notin \mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+21$, a contradiction. Hence, $G_{x} \in \mathcal{B}_{\text {rdom }}$. Our earlier properties of the graph G imply that $G_{x} \neq R_{1}$. Let G^{*} be obtained from G_{x} by subdividing the added edge $x_{1} x_{2}$ resulting in the path $x_{1} x x_{2}$. Applying Observation 2 , there exists a γ_{r}-set S^{*} of G^{*} such that $x \in S^{*}$ and $\left|S^{*}\right|=\gamma_{r}\left(G^{*}\right) \leq \gamma_{r}\left(G_{x}\right)$. If G^{\prime} is connected, then let $S=S^{*} \cup\{v\}$. In this case, $|S| \leq\left|S^{*}\right|+1 \leq \gamma_{r}\left(G_{x}\right)+1=\gamma_{r}\left(G^{\prime}\right)+1$. If G^{\prime} is disconnected, let $S=S^{*} \cup S_{y} \cup\{v\}$, where S_{y} is a γ_{r}-set of G_{y}. In this case, $|S| \leq\left|S^{*}\right|+\left|S_{y}\right|+1 \leq$ $\gamma_{r}\left(G_{x}\right)+\gamma_{r}\left(G_{y}\right)+1=\gamma_{r}\left(G^{\prime}\right)+1$. In both cases, S is an RD-set of G and $|S| \leq \gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)-17$, a contradiction.

We now return to the proof of Claim 20. By Claim 20.4, $x_{1} x_{2} \in E(G)$. Since no vertex of degree 2 belongs to a triangle in G, we note that $x_{1}, x_{2} \in \mathcal{L}$. Recall that $y \in \mathcal{L}$. If y is adjacent to both x_{1} and x_{2}, then the graph G is determined and $\gamma_{r}(G)=2$ and $\mathrm{w}(G)=34$, a contradiction. Hence renaming vertices if necessary, we may assume that $x_{1} y \notin E(G)$. Let G^{\prime} be the connected subcubic graph obtained from $G-\left\{u, v, v_{1}, v_{2}, x\right\}$ by adding the edge $x_{1} y$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If at least one of x_{1} and y belongs to S^{\prime}, let $S=S^{\prime} \cup\{v, x\}$. If $x_{1} \notin S^{\prime}$ and $y \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{u, v_{1}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+21$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\mathrm{rdom}}$. Let $G^{*}=G-v_{2}$, that is, G^{*} is obtained from G^{\prime} by subdividing the edge $x_{1} y$ four times resulting in the path $x_{1} x u v_{1} v y$. By Observation 5, there exists an RD-set S^{*} of G^{*} such that $S^{*} \cap\left\{x, u, v_{1}, v\right\}=\{x, v\}$ and $\left|S^{*}\right| \leq \gamma_{r}\left(G^{\prime}\right)+1$. The set S^{*} is an RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{*}\right| \leq \gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+17$, a contradiction. This completes the proof of Claim 20.

By Claim 20, there is no 4-cycle in G that contains two small (nonadjacent) vertices.
Claim 21. No small vertex in G belongs to a 4-cycle.
Proof. Suppose, to the contrary, that there is a vertex $v \in \mathcal{S}$ that belongs to a 4-cycle $C: \nu v_{1} v_{2} v_{3} v$. By our earlier observations, $v_{i} \in \mathcal{L}$ for $i \in[3]$. Let u_{i} be the neighbor of v_{i} that does not belong to C for $i \in[3]$.

Claim 21.1. $u_{1} \in \mathcal{L}$ and $u_{3} \in \mathcal{L}$.

Proof. Suppose that at least one of u_{1} and u_{3} is small. Renaming vertices if necessary, we may assume that $u_{1} \in \mathcal{S}$. Since no small vertex belongs to a triangle, $u_{1} v_{2} \notin E(G)$. Since no 4 -cycle contains two small vertices, $u_{1} v_{3} \notin E(G)$. Let u be the neighbor of u_{1} different from v_{1}. By our earlier observations, $u \in \mathcal{L}$ and $u \notin\left\{v_{2}, v_{3}\right\}$. If u is adjacent to both v_{2} and ν_{3}, then the graph G is determined and $\gamma_{r}(G)=2$ and $\mathrm{w}(G)=26$, a contradiction. Hence, u is not adjacent to at least one of v_{2} and v_{3}.

Suppose that $u \nu_{3} \notin E(G)$. In this case, let G^{\prime} be the connected subcubic graph obtained from $G-\left\{v, v_{1}, u_{1}\right\}$ by adding the edge $u v_{3}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $u \in S^{\prime}$, let $S=S^{\prime} \cup\{v\}$. If $u \notin S^{\prime}$ and $v_{3} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{u_{1}\right\}$. If $u \notin S^{\prime}$ and $v_{3} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. If $G^{\prime} \notin\left\{R_{1}, R_{4}, R_{5}\right\}$, then $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+10$, a contradiction. Hence, $G^{\prime} \in\left\{R_{1}, R_{4}, R_{5}\right\}$. We note that u and v_{3} are adjacent vertices of degree 3 in G^{\prime}, and so $G^{\prime} \neq R_{1}$. Since there is no 2-linkage in G, we note that $G^{\prime} \neq R_{5}$. Hence, $G^{\prime}=R_{4}$. The graph G is now determined and satisfies $\gamma_{r}(G)=4$ or $\mathrm{w}(G)=49$, a contradiction.

Hence, $u v_{3} \in E(G)$, that is, $u=u_{3}$. We now let $G^{\prime}=G-\left\{v, v_{1}, u_{1}\right\}$. The graph G^{\prime} is a connected subcubic graph. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $u \in S^{\prime}$, let $S=S^{\prime} \cup\{v\}$. If $u \notin S^{\prime}$ and $v_{3} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{u_{1}\right\}$. If $u \notin S^{\prime}$ and $v_{3} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}\right\}$. In all cases, S is an RDset of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. If $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$ or if $G^{\prime} \in \mathcal{B}_{\text {rdom }, 1}$, then $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+10$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom, } i}$ for some $i \in\{2,3,4,5\}$. Since $u v_{3} v_{2}$ is a path in G^{\prime}, and u, v_{3}, and v_{2} all have degree 2 in G^{\prime}, either $G^{\prime}=R_{1}$ or $G^{\prime}=R_{3}$. If $G^{\prime}=R_{1}$, then G would contain a 2-linkage, and if $G^{\prime}=R_{3}$, then G would contain a 3-linkage. Both cases produce a contradiction.

By Claim 21.1, $u_{1} \in \mathcal{L}$ and $u_{3} \in \mathcal{L}$. If $u_{1}=u_{2}=u_{3}$, then the graph G is determined and $\gamma_{r}(G)=2$ and $\mathrm{w}(G)=21$, a contradiction. Renaming vertices if necessary, we may assume that $u_{2} \neq u_{3}$. In this case, let G^{\prime} be the subcubic graph obtained from $G-\left\{v, v_{1}, v_{2}\right\}$ by adding the edge $u_{2} v_{3}$. Let G_{1} be the component of G^{\prime} containing the vertex u_{1} and let G_{2} be the component of G^{\prime} containing the added edge $u_{2} v_{3}$. If G^{\prime} is connected, then $G^{\prime}=G_{1}=G_{2}$. If disconnected, then the edge $u_{1} v_{1}$ is a bridge in G, implying by Claim 17 that $G_{1} \notin \mathcal{B}_{\text {rdom }}$. Therefore, the component G_{2} is the only possible component of G^{\prime} that belongs to $\mathcal{B}_{\text {rdom }}$.

Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $u_{2} \in S^{\prime}$, let $S=S^{\prime} \cup\{\nu\}$. If $u_{2} \notin S^{\prime}$ and $\nu_{3} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{2}\right\}$. If $u_{2} \notin S^{\prime}$ and $v_{3} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. By our earlier properties of the graph G, we note that $G_{2} \neq R_{1}$. If $G_{2} \notin\left\{R_{4}, R_{5}, R_{9}\right\}$, then $\mathrm{w}(G) \geq \mathrm{w}(G)+10$, a contradiction. Hence, $G_{2} \in\left\{R_{4}, R_{5}, R_{9}\right\}$. If G^{\prime} is connected, then the graph G is determined and either $G_{2} \in\left\{R_{4}, R_{5}\right\}$, in which case $\gamma_{r}(G) \leq 4$ and $\mathrm{w}(G)=47$, or $G_{2}=R_{9}$, in which case $\gamma_{r}(G) \leq 5$ and $\mathrm{w}(G)=58$. In both cases, we have a contradiction. Hence, G^{\prime} is disconnected.

Since every small vertex in G belongs to a 1-linkage, the case $G_{2}=R_{5}$ cannot occur, and so $G_{2} \in\left\{R_{4}, R_{9}\right\}$. Let G_{v} be the component of $G-v_{1} u_{1}$ that contains the vertex v. Thus, G_{ν} is obtained from G_{2} by subdividing the added edge $u_{2} \nu_{3}$ three times resulting in the path $u_{2} v_{2} v_{1} \nu v_{3}$ and adding the edge $v_{2} v_{3}$. If $G_{2}=R_{4}$, then $\gamma_{r}\left(G_{v}\right) \leq 4$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G_{1}\right)+\gamma_{r}\left(G_{v}\right) \leq \gamma_{r}\left(G_{1}\right)+4$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G_{1}\right)+40$. However in this case, $\mathrm{w}(G)=\mathrm{w}\left(G_{1}\right)+47$, a contradiction. If $G_{2}=R_{9}$, then $\gamma_{r}\left(G_{v}\right) \leq 5$, and so
$\gamma_{r}(G) \leq \gamma_{r}\left(G_{1}\right)+\gamma_{r}\left(G_{v}\right) \leq \gamma_{r}\left(G_{1}\right)+5$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G_{1}\right)+50$. However in this case, $\mathrm{w}(G)=\mathrm{w}\left(G_{1}\right)+58$, a contradiction. This completes the proof of Claim 21.

Recall that no small vertex belongs to a triangle. By Claim 21, no small vertex in G belongs to a 4 -cycle. Hence every cycle that contains a small vertex in G has at least five vertices.

Claim 22. No large vertex has two small neighbors and one large neighbor.
Proof. Suppose, to the contrary, that $v \in \mathcal{L}$ and $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$ where $v_{1}, v_{2} \in \mathcal{S}$ and $v_{3} \in \mathcal{L}$. Let u_{1} and u_{2} be the neighbors of v_{1} and v_{2}, respectively, different from v. Since no vertex of degree 2 belongs to a triangle or a 4-cycle, $\left\{u_{1}, u_{2}\right\} \cap N(v)=\varnothing$. Further, $u_{1} v_{1}$ and $u_{2} v_{2}$ are the only edges between $\left\{u_{1}, u_{2}\right\}$ and $N(v)$. Let u_{3} and w_{3} be the neighbors of v_{3} different from ν_{3}. The graph illustrated in Figure 9 is a subgraph of G.

Let $G=G-\left\{v, v_{1}, v_{2}\right\}$. The graph G^{\prime} is a subcubic graph with at most three components. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $u_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{2}\right\}$. If $u_{1} \notin S^{\prime}$ and $u_{2} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}\right\}$. If $u_{1} \notin S^{\prime}$ and $u_{2} \notin S^{\prime}$, let $S=S^{\prime} \cup\{v\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. If no component belongs to $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+11$, a contradiction. Hence at least one component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Let H be such a component of G^{\prime}. Possibly, $G^{\prime}=H$. Since the removal of a bridge cannot create a component that belongs to $\mathcal{B}_{\text {rdom }}$, the component H necessarily contains at least two vertices from the set $\left\{u_{1}, u_{2}, v_{3}\right\}$. We note that each of u_{1}, u_{2}, and v_{3} has degree 2 in G^{\prime}. Thus, at least one of u_{1} and u_{2} belong to the component H.

Suppose that exactly one of u_{1} and u_{2} belong to H. Let G^{*} be obtained from G^{\prime} by adding the edge $u_{1} u_{2}$. The resulting graph G^{*} is a connected subcubic graph that contains a bridge, namely the added edge $u_{1} u_{2}$. Since no graph in $\mathcal{B}_{\text {rdom }}$ contains a bridge, $G^{*} \notin \mathcal{B}_{\text {rdom }}$. Let S^{*} be a γ_{r}-set of G^{*}. If $u_{1} \in S^{*}$, let $S=S^{*} \cup\left\{v_{2}\right\}$. If $u_{1} \notin S^{*}$ and $u_{2} \in S^{*}$, let $S=S^{*} \cup\left\{v_{1}\right\}$. If $u_{1} \notin S^{*}$ and $u_{2} \notin S^{*}$, let $S=S^{*} \cup\{\nu\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{*}\right|+1=\gamma_{r}\left(G^{*}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{*}\right)+10$. However, since $G^{*} \notin \mathcal{B}_{\text {rdom }}$, we have $\mathrm{w}(G)=\mathrm{w}\left(G^{*}\right)+13$, a contradiction. Hence, $\left\{u_{1}, u_{2}\right\} \subset V(H)$.

Let $X=\left\{u_{1}, u_{2}\right\}$, and so $X \subset V(H)$. As observed earlier, u_{1} and u_{2} have degree 2 in G^{\prime}. Let S_{H} be a minimum type-2 NeRD-set in H with respect to the set X. By Observation 1(f), we have $\left|S_{H}\right|=\gamma_{r, \text { dom }}(H ; X) \leq \gamma_{r}(H)-1$. Suppose that $G^{\prime}=H$. In this case, the set $S_{H}^{*}=S_{H} \cup\{\nu\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S_{H}^{*}\right|+1 \leq\left(\gamma_{r}(H)-1\right)+1=\gamma_{r}\left(G^{\prime}\right)$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+7$, a contradiction. Hence, $G^{\prime} \neq H$. Let G_{3} be the component of G^{\prime} containing the vertex ν_{3}, and so $G^{\prime}=H \cup G_{3}$. We note that the removal of the bridge $\nu \nu_{3}$ creates the component G_{3}, implying that $G_{3} \notin \mathcal{B}_{\text {rdom }}$. Let S_{3} be a γ_{r}-set of G_{3}. In this case, the set $S_{H}^{*}=S_{H} \cup S_{3} \cup\{\nu\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S_{H}^{*}\right|+\left|S_{3}\right|+1 \leq\left(\gamma_{r}(H)-1\right)+\gamma_{r}\left(G_{3}\right)+1=\gamma_{r}\left(G^{\prime}\right)$. Therefore, $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)$.

FIGURE 9 A subgraph in the proof of Claim 22.

However, $\mathrm{w}(G) \geq 14+(\mathrm{w}(H)-2-4)+\left(\mathrm{w}\left(G_{3}\right)-1\right)=\left(\mathrm{w}(H)+\mathrm{w}\left(G_{3}\right)\right)+7=\mathrm{w}\left(G^{\prime}\right)+7$, a contradiction. This completes the proof of Claim 22.

By Claim 22, no large vertex has two small neighbors and one large neighbor. Hence if a large vertex has a small neighbor, then it has either one small neighbor or three small neighbors.

Claim 23. No large vertex has exactly one small neighbor.

Proof. Suppose, to the contrary, that $v \in \mathcal{L}$ has exactly one small neighbor. Let $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$, where $v_{1} \in \mathcal{S}$ and $v_{2}, v_{3} \in \mathcal{L}$. Let u be the neighbor of v_{1} different from v. Necessarily, $u \in \mathcal{L}$. Let u_{1} and u_{2} be the two neighbors of u different from v_{1}. Since no vertex of degree 2 belongs to a 3 -cycle or 4 -cycle, the vertices $u_{1}, u_{2}, v_{2}, v_{3}$ are pairwise distinct.

Claim 23.1. $\left\{u_{1}, u_{2}\right\} \subset \mathcal{S}$.

Proof. Suppose, to the contrary, that at least one of u_{1} and u_{2} is large. By Claim 22 this implies that both u_{1} and u_{2} are large. Let $G^{\prime}=G-\left\{u, v, v_{1}\right\}$. Suppose that G^{\prime} contains a component F such that $F \in \mathcal{B}_{\text {rdom }}$. Since the removal of a bridge cannot create a component that belongs to $\mathcal{B}_{\text {rdom }}$, the component F contains at least two vertices from the set $\left\{u_{1}, u_{2}, v_{2}, v_{3}\right\}$.

Suppose that F contains a vertex from both $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{2}, v_{3}\right\}$. By symmetry, and renaming vertices if necessary, we may assume that $\left\{u_{2}, v_{3}\right\} \subset V(F)$. We note that both u_{2} and ν_{3} have degree 2 in F. Applying Observation 1(f) to the graph F with $X=\left\{u_{2}, v_{3}\right\}$, we have $\gamma_{r, \text { dom }}(F ; X) \leq \gamma_{r}(F)-1$. Let S_{F} be a minimum type-2 NeRD-set of F with respect to the set X, and so $\left|S_{F}\right|=\gamma_{r \text { dom }}(F ; X) \leq \gamma_{r}(F)-1$.

Suppose that F is the only component of G^{\prime} that belongs to $\mathcal{B}_{\text {rdom }}$. If G^{\prime} is connected, then the set $S_{F} \cup\left\{v_{1}\right\}$ is an RD-set of G. If G^{\prime} is disconnected, then the set $S_{F} \cup\left\{v_{1}\right\}$ can be extended to an RD-set by adding to it a γ_{r}-set from the component(s) of G^{\prime} different from F. In both cases, we infer that $\gamma_{r}(G) \leq 1+\left(\gamma_{r}\left(G^{\prime}\right)-1\right)=\gamma_{r}\left(G^{\prime}\right)$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)$. Since G^{\prime} has exactly one component that belongs to $\mathcal{B}_{\mathrm{rdom}}$, we have $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+4$, a contradiction. Hence, the graph G^{\prime} contains a component H, different from F, that belongs to $\mathcal{B}_{\text {rdom }}$. In this case, $\left\{u_{1}, \nu_{2}\right\} \subset V(H)$ and, analogously as with the component F, there exists a minimum type-2 NeRD-set of H with respect to the set $\left\{u_{1}, v_{2}\right\}$ satisfying $\left|S_{H}\right| \leq \gamma_{r}(H)-1$. The set $S_{F} \cup S_{H} \cup\left\{v_{1}\right\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq 1+\left|S_{F}\right|+\left|S_{H}\right| \leq 1+\left(\gamma_{r}(F)-1\right)+\left(\gamma_{r}(H)-1\right)=\gamma_{r}\left(G^{\prime}\right)-1$, noting that $G^{\prime}=F \cup H$. This implies that $\mathrm{w}(G) \leq \mathrm{w}\left(G^{\prime}\right)-10$. However, $\mathrm{w}(G) \geq 13+$ $\left(\mathrm{w}\left(G^{\prime}\right)-4-5-5\right)=\mathrm{w}\left(G^{\prime}\right)-1$, a contradiction. Hence, if the graph G^{\prime} contains a component C in $\mathcal{B}_{\text {rdom }}$, then either $\left\{u_{1}, u_{2}\right\} \subseteq V(C)$ and $\left\{v_{2}, v_{3}\right\} \cap V(C)=\varnothing$ or $\left\{v_{2}, v_{3}\right\} \subseteq V(C)$ and $\left\{u_{1}, u_{2}\right\} \cap V(C)=\varnothing$. If all edges are present between $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{2}, v_{3}\right\}$, then $G=R_{10}$, a contradiction. Hence renaming vertices if necessary, we may assume that $u_{1} v_{2} \notin E(G)$.

Let $G^{\prime \prime}$ be the graph obtained from G^{\prime} by adding the edge $u_{1} v_{2}$. The resulting graph G^{\prime} is a subcubic graph with at most three components. Let G_{1} be the component of G^{\prime} containing the added edge $u_{1} v_{2}$, and let G_{2} and G_{3} be the components of G^{\prime} containing ν_{3} and u_{2}, respectively. If G^{\prime} is connected, then $G_{1}=G_{2}=G_{3}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If
$u_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\{v\}$. If $u_{1} \notin S^{\prime}$ and $v_{2} \in S^{\prime}$, let $S=S^{\prime} \cup\{u\}$. If $u_{1} \notin S^{\prime}$ and $v_{2} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. If no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+11$, a contradiction. Hence at least one component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Let H be such a component of G. If $H \neq G_{1}$, then since the removal of a bridge in G cannot create a component in $\mathcal{B}_{\text {rdom }}$, this implies that $\left\{u_{2}, v_{3}\right\} \subset V(H)$ and $\left\{u_{1}, v_{2}\right\} \cap V(H)=\varnothing$. However, such a component H is a component in G^{\prime}, contradicting our earlier properties of a component of G^{\prime} that belongs to $\mathcal{B}_{\text {rdom }}$. Hence, $H=G_{1}$ and H is the only component of G^{\prime} that belongs to $\mathcal{B}_{\text {rdom }}$.

Suppose that G^{\prime} is connected, and so $G^{\prime}=G_{1} \in \mathcal{B}_{\text {rdom }}$ and the graph G is determined. We note that the vertices u_{1} and v_{2} are adjacent vertices of degree 3 in G^{\prime}, and so $G^{\prime} \notin\left\{R_{1}, R_{2}\right\}$. Further, we note that u_{2} and ν_{3} have degree 2 in G^{\prime}. Reconstructing the graph G from $G^{\prime} \in \mathcal{B}_{\text {rdom }}$ it can be readily checked that $10 \gamma_{r}(G) \leq \mathrm{w}(G)$, a contradiction. Hence, G^{\prime} is disconnected, and so $G_{1} \neq G_{2}$ or $G_{1} \neq G_{3}$. By symmetry and renaming vertices if necessary, we may assume that $G_{1} \neq G_{3}$. Let G_{u} be obtained from G_{1} by subdividing the added edge $u_{1} v_{2}$ of G_{1} three times resulting path in the path $u_{1} u v_{1} v v_{2}$. Let S_{u}^{1} be a minimum type-1 NeRD-set of G_{u} with respect to the vertex u, and let S_{v}^{2} be a minimum type-2 NeRD-set of G_{u} with respect to the vertex u. By Observation 4, $\left|S_{u}^{1}\right|=\gamma_{r, \text { ndom }}\left(G_{u} ; u\right) \leq \gamma_{r}\left(G_{1}\right)$ and $\left|S_{u}^{1}\right|=\gamma_{r, \text { dom }}\left(G_{u} ; u\right) \leq \gamma_{r}\left(G_{1}\right)$. Recall that $G_{1} \neq G_{3}$. Let S_{3} be a γ_{r}-set of G_{3}. If $u_{2} \in S_{3}$, then let $S=S_{u}^{1} \cup S_{3}$, while if $u_{2} \notin S_{3}$, then let $S=S_{u}^{2} \cup S_{3}$. In both cases, $|S| \leq \gamma_{r}\left(G_{1}\right)+\gamma_{r}\left(G_{3}\right)$.

If $G_{2}=G_{1}$ or $G_{2}=G_{3}$, then $\gamma\left(G^{\prime}\right)=\gamma_{r}\left(G_{1}\right)+\gamma_{r}\left(G_{3}\right)$ and S is a RD-set of G. If $G_{2} \neq G_{1}$ or $G_{2} \neq G_{3}$, then $\gamma\left(G^{\prime}\right)=\gamma_{r}\left(G_{1}\right)+\gamma_{r}\left(G_{2}\right)+\gamma_{r}\left(G_{3}\right)$ and S can be extended to a RD-set of G by adding to it a γ_{r}-set of G_{2}. In both cases, we have that $\gamma_{r}(G) \leq|S| \leq \gamma_{r}\left(G^{\prime}\right)$, and we infer that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)$. As observed earlier, G_{1} is the only component of G^{\prime} that belongs to $\mathcal{B}_{\text {rdom }}$. Hence, $\mathrm{w}(G) \geq 13+\left(\mathrm{w}\left(G^{\prime}\right)-2-4\right)=\mathrm{w}\left(G^{\prime}\right)+7$, a contradiction.

By Claim 23.1, $u_{1} \in \mathcal{S}$ and $u_{2} \in \mathcal{S}$.
Claim 23.2. There is no edge between $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{2}, v_{3}\right\}$.
Proof. Suppose that there is an edge between $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{2}, v_{3}\right\}$. Renaming vertices if necessary, we may assume that $u_{1} v_{2} \in E(G)$. Since no small vertex belongs to a 4 -cycle, we note that $u_{2} v_{2} \notin E(G)$. Suppose that $u_{2} v_{3} \in E(G)$. If $v_{2} v_{3} \in E(G)$, then the graph G is determined and $\gamma_{r}(G)=3$ and $\mathrm{w}(G)=31$, a contradiction. Hence, $v_{2} v_{3} \notin E(G)$. In this case, let G^{\prime} be the connected subcubic graph obtained from $G-\left\{u, v, v_{1}, u_{1}, u_{2}\right\}$ by adding the edge $v_{2} v_{3}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v_{2} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{u_{2}, v\right\}$. If $v_{2} \notin S^{\prime}$ and $v_{3} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v, u_{1}\right\}$. If $v_{2} \notin S^{\prime}$ and $v_{3} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{u, v_{1}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. We note that v_{2} and v_{3} are adjacent vertices of degree 2 in G^{\prime}. By our earlier properties of the graph G, we infer that $G^{\prime} \notin\left\{R_{1}, R_{4}, R_{5}\right\}$. Let G^{*} be obtained from G^{\prime} by subdividing the edge $v_{2} v_{3}$ four times resulting in the path $v_{2} u_{1} u v_{1} \nu v_{3}$. By Observation 6(a), there exists an RD-set S^{*} in G^{*} such that $v_{1} \in S^{*}$ and $\left|S^{*}\right| \leq \gamma_{r}\left(G^{\prime}\right)$. The set $S^{*} \cup\left\{u_{2}\right\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{*}\right|+1 \leq \gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq \mathrm{w}(G)+18$, a contradiction. Hence, $u_{2} v_{3} \notin E(G)$. Let x be the neighbor of u_{2} different from u. By our earlier observations, $x \in \mathcal{L}$ and $x \notin\left\{v_{2}, v_{3}\right\}$.

We show next that $x v_{2} \in E(G)$. Suppose, to the contrary, that $x v_{2} \notin E(G)$. In this case, let G^{\prime} be the subcubic graph obtained from $G-\left\{u, v, v_{1}, u_{1}, u_{2}\right\}$ by adding the edge $x v_{2}$. Let G_{x} be the component containing the added edge $x v_{2}$, and let G_{3} be the component containing the vertex v_{3}. If G^{\prime} is connected, then $G_{x}=G_{3}$. If G^{\prime} is disconnected, then it has two components, G_{x} and G_{3}. In this case, since the removal of a bridge cannot create a component in $\mathcal{B}_{\text {rdom }}$, we note that $G_{3} \notin \mathcal{B}_{\text {rdom }}$.

Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v_{2} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{u_{2}, v\right\}$. If $v_{2} \notin S^{\prime}$ and $x \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v, u_{1}\right\}$. If $v_{2} \notin S^{\prime}$ and $x \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{u, v_{1}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. We note that v_{2} and x are adjacent vertices of degree 2 and degree 3 , respectively, in G_{x}. In particular, $G_{x} \neq R_{1}$. If $G_{x}=R_{5}$, then $G^{\prime}=G_{x}$, and the graph G is determined and $\gamma_{r}(G) \leq 5$ and $\mathrm{w}(G)=57$, a contradiction. Hence, $G_{x} \neq R_{5}$.

Suppose that $G_{x}=R_{4}$. If $G^{\prime}=G_{x}$, then the graph G is determined and $\gamma_{r}(G) \leq 5$ and $\mathrm{w}(G)=57$, a contradiction. Hence, G^{\prime} is disconnected. In this case, let G_{v} be the component of $G-v v_{3}$ that contains the vertex v. We infer from the structure of the graph G_{v} (using the structure of G_{x}) that a γ_{r}-set of G_{3} can be extended to an RD-set of G by adding to it five vertices from G_{v}, and so $\gamma_{r}(G) \leq 5+\gamma_{r}\left(G_{3}\right)$. This implies that $\mathrm{w}(G)<\mathrm{w}\left(G_{3}\right)+50$. However, $\mathrm{w}(G)=\mathrm{w}\left(G_{3}\right)+56$, a contradiction. Hence, $G_{x} \neq R_{4}$.

Suppose that $G_{x}=R_{9}$. If $G^{\prime}=G_{x}$, then the graph G is determined and $\gamma_{r}(G) \leq 6$ and $\mathrm{w}(G)=60$, a contradiction. Hence, G^{\prime} is disconnected. In this case, let G_{v} be the component of $G-v v_{3}$ that contains the vertex v. We infer from the structure of the graph G_{v} (using the structure of G_{x}) that a γ_{r}-set of G_{3} can be extended to an RD-set of G by adding to it six vertices from G_{v}, and so $\gamma_{r}(G) \leq 6+\gamma_{r}\left(G_{3}\right)$. This implies that $\mathrm{w}(G)<\mathrm{w}\left(G_{3}\right)+60$. However, $\mathrm{w}(G)=\mathrm{w}\left(G_{3}\right)+60$, a contradiction. Hence, $G_{x} \neq R_{9}$.

Hence, $G_{x} \notin\left\{R_{1}, R_{4}, R_{5}, R_{9}\right\}$. Recall that if $G_{3} \neq G_{x}$, then $G_{3} \notin \mathcal{B}_{\text {rdom }}$. Thus there is at most one bad component in G^{\prime}, and such a component does not belong to $\left\{R_{1}, R_{4}, R_{5}, R_{9}\right\}$. Hence, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, $x v_{2} \in E(G)$. The graph G therefore contains the subgraph shown in Figure 10A. Let C be the cycle $v v_{1} u u_{1} v_{2} v$, and let G^{\prime} be the connected special subcubic graph obtained from $G-V(C)$ by adding the edge $u_{2} v_{3}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $u_{2} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v, v_{2}\right\}$. If $u_{2} \notin S^{\prime}$ and $v_{3} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{u, u_{1}\right\}$. If $u_{2} \notin S^{\prime}$ and $v_{3} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{2}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+21$, a contradiction. Hence, $G^{\prime} \in \mathcal{B}_{\text {rdom }}$. We note that $P: x u_{2} v_{3}$ is a path in G^{\prime} where the vertices x, u_{2} and v_{3} have degrees 2,2 , and 3 , respectively in G^{\prime}. Our earlier properties of the graph G, together with the existence of the path P in G^{\prime}, imply that $G^{\prime}=R_{7}$. Reconstructing the graph G from G^{\prime} now yields the graph shown in Figure 10B that satisfies $\gamma_{r}(G)=6$ and $\mathrm{w}(G)=70$, a contradiction. (The six shaded vertices, e.g., shown in Figure 10B form a γ_{r}-set in G.) This completes the proof of Claim 23.2.

Let x and y be the neighbors of u_{1} and u_{2}, respectively, different from u. By Claim 23.2, there is no edge between $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{2}, v_{3}\right\}$, implying that $\{x, y\} \cap\left\{v_{2}, v_{3}\right\}=\varnothing$. Hence, the graph illustrated in Figure 11 is a subgraph of G, where possibly edges between $\{x, y\}$ and $\left\{v_{2}, v_{3}\right\}$ may exist. By our earlier observations, $\left\{v_{1}, u_{1}, u_{2}\right\} \subseteq \mathcal{S}$ and $\left\{u, v, v_{2}, v_{3}, x, y\right\} \subseteq \mathcal{L}$.

Claim 23.3. $x y \notin E(G)$.

FIGURE 10 (A) A subgraphs in the proof of Claim 23.2. (B) The graph G in the proof of Claim 23.2.

FIGURE 11 A subgraph in the proof of Claim 23.

Proof. Suppose that $x y \in E(G)$. Thus, $C: x u_{1} u u_{2} y x$ is a 5-cycle in G. Let x_{1} and y_{1} be the neighbors of x and y, respectively, that do not belong to the 5 -cycle C. (Possibly, $x_{1}=y_{1}$.) By Claim 22, $x_{1}, y_{1} \in \mathcal{L}$. Let G^{\prime} be the special subcubic graph obtained from $G-V(C)$ by adding the edge $v_{1} x_{1}$. Let G_{x} be the component of G^{\prime} containing the added edge $v_{1} x_{1}$, and let G_{y} be the component of G^{\prime} containing y_{1}. If G^{\prime} is connected, then $G_{x}=G_{y}$. If G^{\prime} is disconnected, then G^{\prime} has two components, G_{x} and G_{y}. In this case, since the removal of a bridge cannot create a component in $\mathcal{B}_{\text {rdom }}$, we note that $G_{y} \notin \mathcal{B}_{\text {rdom }}$.

Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $x_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{u, u_{2}\right\}$. If $x_{1} \notin S^{\prime}$ and $v_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\{x, y\}$. If $x_{1} \notin S^{\prime}$ and $v_{1} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{u_{1}, y\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If $G_{x} \notin \mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=w\left(G^{\prime}\right)+21$, a contradiction. Hence, $G_{x} \in \mathcal{B}_{\text {rdom }}$. Let G_{x}^{*} be the component of $G-\left\{u_{2}, y\right\}$ that contains the vertex x. Thus, G_{x}^{*} is obtained from the graph G_{x} by subdividing the added edge $v_{1} x_{1}$ three times resulting in the path $v_{1} u u_{1} x x_{1}$. Let S_{x}^{*} be a minimum type-2 NeRD-set of G_{x}^{*} with respect to the vertex x. Thus the set S_{x}^{*} is a dominating set in G_{x}^{*}. Further, $x \notin S_{x}^{*}$ and the vertex x is the only possible vertex in G_{x}^{*} with all its neighbors in S_{x}^{*}. By Observation 4, we have $\left|S_{x}^{*}\right|=\gamma_{r \text { dom }}\left(G_{x}^{*} ; x\right) \leq \gamma_{r}\left(G_{x}\right)$. Let $S^{*}=S_{x}^{*} \cup\left\{u_{2}\right\}$. If G^{\prime} is connected, then $\gamma_{r}\left(G_{x}\right)=\gamma_{r}\left(G^{\prime}\right)$ and S^{*} is an RD-set of G. In this case, $\gamma_{r}(G) \leq\left|S^{*}\right|=\left|S_{x}^{*}\right|+1 \leq \gamma_{r}\left(G^{\prime}\right)+1$. If G^{\prime} is disconnected, then $G_{x} \neq G_{y}$ and $S^{*} \cup S_{y}$ is an RD-set of G, where S_{y} is a γ_{r}-set of G_{y}. In this case, $\gamma_{r}(G) \leq\left|S^{*}\right|+\left|S_{y}\right|=\left|S_{x}^{*}\right|+1+\left|S_{y}\right| \leq \gamma_{r}\left(G_{x}\right)+1+\gamma_{r}\left(G_{y}\right)=\gamma_{r}\left(G^{\prime}\right)+1$. In both cases, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+17$, a contradiction.

We now return to the proof of Claim 23. By Claim 23.3, the vertices x and y are not adjacent in G. Let G^{\prime} be the special subcubic graph obtained from $G-\left\{u, u_{1}, u_{2}, v, v_{1}\right\}$ by adding the edge $x y$. Let G_{x} be the component of G^{\prime} containing the added edge $x y$, and let G_{2} and G_{3} be the components of G^{\prime} containing v_{2} and v_{3}, respectively. If G^{\prime} is connected, then $G_{x}=G_{2}=G_{3}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $x \in S^{\prime}$, let $S=S^{\prime} \cup\left\{u_{2}, v\right\}$. If $x \notin S^{\prime}$ and $y \in S^{\prime}$, let $S=S^{\prime} \cup\left\{u_{1}, v\right\}$. If $x \notin S^{\prime}, y \notin S^{\prime}$ and $v_{2} \in S$, let $S=S^{\prime} \cup\{u\}$. If $x \notin S^{\prime}, y \notin S^{\prime}$
and $v_{2} \notin S$, let $S=S^{\prime} \cup\left\{u, v_{1}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S| \leq\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+21$, a contradiction. Hence, there is a component in G^{\prime} that belongs to $\mathcal{B}_{\text {rdom }}$.

Suppose that G_{2} or G_{3} is different from G_{x} and belongs to $\mathcal{B}_{\text {rdom }}$. Renaming vertices if necessary, by symmetry, we may assume that $G_{2} \neq G_{x}$ and $G_{2} \in \mathcal{B}_{\text {rdom }}$. Since the removal of a bridge cannot create a component in $\mathcal{B}_{\text {rdom }}$, we infer that $G_{2}=G_{3}$. Further, both v_{2} and v_{3} have degree 2 in G_{2}. Applying Observation 1(f) to the graph G_{2} with $X=\left\{v_{2}, v_{3}\right\}$, we have $\gamma_{r, \text { dom }}\left(G_{2} ; X\right) \leq \gamma_{r}\left(G_{2}\right)-1$. Let S^{*} be a minimum type-2 NeRD-set of G_{2} with respect to the set X. Let S_{x} be a γ_{r}-set of G_{x}. If $x \in S_{x}$, let $S=S_{x} \cup S^{*} \cup\left\{u_{2}, v_{1}\right\}$. If $x \notin S_{x}$ and $y \in S_{x}$, let $S=S_{x} \cup S^{*} \cup\left\{u_{1}, v_{1}\right\}$. If $x \notin S_{x}$ and $y \notin S_{x}$, let $S=S_{x} \cup S^{*} \cup\left\{u, v_{1}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq\left|S_{x}\right|+\left|S^{*}\right|+2 \leq \gamma_{r}\left(G_{x}\right)+\left(\gamma_{r}\left(G_{2}\right)-1\right)+2=\gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+13$, a contradiction. Hence if $G_{2} \neq G_{x}$, then $G_{2} \notin \mathcal{B}_{\text {rdom }}$, and if $G_{3} \neq G_{x}$, then $G_{3} \notin \mathcal{B}_{\text {rdom }}$.

Since there is a component in G^{\prime} that belongs to $\mathcal{B}_{\text {rdom }}$, we infer that G_{x} is the only such component of G^{\prime}. If $G_{x} \in \mathcal{B}_{\mathrm{rdom}, 1}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, $G_{x} \notin\left\{R_{6}, R_{7}, R_{8}\right\}$. We note that x and y are adjacent vertices of degree 3 in G_{x}, implying that $G_{x} \neq\left\{R_{1}, R_{2}\right\}$. If $G_{x}=R_{3}$, then our properties of the graph G imply that G^{\prime} is connected and v_{2} and v_{3} are the vertices of degree 2 in R_{3} that have no degree 3 neighbor. In this case, the graph G is determined and $\gamma_{r}(G)=4$ and $\mathrm{w}(G)=59$, a contradiction. Hence, $G_{x} \neq R_{3}$, implying that $G_{x} \in\left\{R_{4}, R_{5}, R_{9}\right\}$.

Let G^{*} be obtained from G_{x} by subdividing the added edge $x y$ three times resulting in the path $x u_{1} u u_{2} y$. Applying Observation 4(b) we have $\gamma_{r, \text { dom }}\left(G^{*} ; u\right) \leq \gamma_{r}\left(G_{x}\right)$. Thus, there exists a type-2 NeRD-set S^{*} in G^{*} with respect to the vertex u such that $\left|S^{*}\right| \leq \gamma_{r}\left(G_{x}\right)$. The set S^{*} is a dominating set in G^{*}. Further, $u \notin S^{*}$ and the vertex u is the only possible vertex in G^{*} with all its neighbors in S^{*}. Let $S=S^{*} \cup\{v\}$. If G^{\prime} is connected, then $S^{*} \cup\{v\}$ is an RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{*}\right|+1 \leq \gamma_{r}\left(G_{x}\right)+1=\gamma_{r}\left(G^{\prime}\right)+1$. If G^{\prime} is disconnected, then every γ_{r}-set of $G^{\prime}-V\left(G_{x}\right)$ can be extended to an RD-set of G by adding to it the set $S^{*} \cup\{v\}$, implying once again that $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+1$. Hence in both cases we infer that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G)=w\left(G^{\prime}\right)+17$, a contradiction. This completes the proof of Claim 23.

Claim 24. The graph G is a cubic graph.
Proof. Suppose, to the contrary, that G contains a small vertex. By Claim 22, no large vertex has exactly two small neighbors. By Claim 23, no large vertex has exactly one small neighbor. Hence if a large vertex has a small neighbor, then all three of its neighbors are small. Thus the three neighbors of every large vertex are either all small or all large. Since G is connected and contains at least one small vertex, this implies that G is a bipartite subcubic graph with partite sets \mathcal{S} and \mathcal{L}. Thus, by Lemma $1, \gamma_{r}(G) \leq|\mathcal{L}|$, and so $\mathrm{w}(G)<10 \gamma_{r}(G) \leq 10|\mathcal{L}|$. However in this case, $3|\mathcal{L}|=2|\mathcal{S}|$, and so $\mathrm{w}(G)=5|\mathcal{S}|+4|\mathcal{L}|=$ $\left.5 \times \frac{3}{2}|\mathcal{L}|+4|\mathcal{L}|>10 \right\rvert\, \mathcal{L}$, a contradiction.

By Claim 24, G is a (connected) cubic graph. Recall by Claim 18 that R_{10} is not a subgraph of G. We note that R_{9} contains three small vertices, and every graph in $\mathcal{B}_{\text {rdom }} \backslash\left\{R_{9}, R_{10}\right\}$ contains at least four small vertices. Our earlier observations therefore yield the following properties of graph G.

Claim 25. If E^{\prime} is a k-edge-cut in G and G^{\prime} is a component of $G-E^{\prime}$ that belongs to $\mathcal{B}_{\text {rdom }}$, then $k \geq 3$ and the following properties hold.
(a) If $k=3$, then $G^{\prime}=R_{9}$.
(b) If $k=4$, then $G^{\prime} \in\left\{R_{2}, R_{4}, R_{5}, R_{9}\right\}$.
(c) If $k=5$, then $G^{\prime} \in\left\{R_{1}, R_{6}, R_{7}, R_{8}\right\}$.

Claim 26. If $G^{\prime} \in \mathcal{B}_{\text {rdom }}$ is a special subcubic component of $G-S$ where $S \subset V(G)$, then G^{\prime} contains at least three vertices of degree 2.

Claim 27. The graph G contains no diamond.
Proof. Suppose, to the contrary, that G contains a diamond D, where $V(D)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and where $v_{1} v_{2}$ is the missing edge in D. Let u_{i} be the neighbor of v_{i} not in D for $i \in[2]$. Suppose that $u_{1}=u_{2}$. Let u be the neighbor of u_{1} different from v_{1} and v_{2}, and let $G^{\prime}=G-\left(V(D) \cup\left\{u, u_{1}\right\}\right)$. The graph G^{\prime} is a special subcubic graph that contains exactly two small vertices, and so by Claim 26 no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{v_{3}, u\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}(G)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. However, $\mathrm{w}(G)=\mathrm{w}(G)+22$, a contradiction. Hence, $u_{1} \neq u_{2}$. In this case, let $G^{\prime}=G-V(D)$. The graph G^{\prime} is a special subcubic graph that contains exactly two small vertices, and so no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the vertex ν_{3}, and so $\gamma_{r}(G) \leq \gamma_{r}(G)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. In this case, $\mathrm{w}(G)=\mathrm{w}(G)+14$, a contradiction.

Claim 28. The graph G contains no triangle.

Proof. Suppose, to the contrary, that T is a triangle in G where $V(T)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Let x_{i} be the third neighbor of v_{i} that does not belong to T for $i \in$ [3]. By Claim 27, the graph G contains no diamond, and so the vertices x_{1}, x_{2} and x_{3} are pairwise distinct. Let $X=\left\{x_{1}, x_{2}, x_{3}\right\}$. Suppose that $G[X]$ contains a vertex of degree 2 . Renaming vertices if necessary, we may assume that $\left\{x_{1} x_{2}, x_{2} x_{3}\right\} \subset E(G)$. If $x_{1} x_{3} \in E(G)$, then G is the 3-prism $C_{3} \square K_{2}$, and so $\gamma_{r}(G)=2$ and $\mathrm{w}(G)=24$, a contradiction. Hence, $x_{1} x_{3} \notin E(G)$. Let y_{i} be the neighbor of x_{i} different from x_{2} and v_{i} for $i \in\{1,3\}$. If $y_{1}=y_{3}$, then we let $Q=V(T) \cup X \cup\left\{y_{1}\right\}$ and $G^{\prime}=G-Q$. In this case, G^{\prime} is a special connected subcubic graph that contains exactly one small vertex, and so, by Claim $26, G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Since $\gamma_{r}(G) \leq \gamma_{r}(G)+2$, we have $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. However, $\mathrm{w}(G)=\mathrm{w}(G)+27$, a contradiction. Hence, $y_{1} \neq y_{3}$. We now let $Q=V(T) \cup X$ and $G^{\prime}=G-Q$. In this case, G^{\prime} is a special subcubic graph that contains exactly two small vertices, and so, by Claim 26, no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Once again $\gamma_{r}(G) \leq \gamma_{r}(G)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. However, $\mathrm{w}(G)=24+\left(\mathrm{w}\left(G^{\prime}\right)-2\right)=\mathrm{w}(G)+22$, a contradiction.

Hence, $G[X]$ contains no vertex of degree 2, implying that $G[X]$ contains at least one isolated vertex. By symmetry, we may assume that x_{1} is isolated in $G[X]$, that is, x_{1} is adjacent to neither x_{2} nor x_{3}. Let y_{1} and y_{2} be the two neighbors of x_{1} different from v_{1}. We now let $Q=V(T) \cup\left\{x_{1}\right\}$ and let $G^{\prime}=G-Q$. The graph G^{\prime} is a special subcubic graph. We note that $k^{\prime}+r^{\prime} \leq 4$.

Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $y_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{2}\right\}$. If $y_{1} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\left|S^{\prime}\right|+1=\gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. If no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+12$, a contradiction. Hence, G^{\prime} contains a component G_{1} that belongs to $\mathcal{B}_{\text {rdom }}$. By Claim 25, there is only one such component and $G_{1} \in\left\{R_{2}, R_{4}, R_{5}, R_{9}\right\}$. Thus, G_{1} contains at least three small vertices. Let $X_{1} \subset V\left(G_{1}\right) \cap\left\{y_{1}, y_{2}, x_{2}\right\}$ be chosen so that $\left|X_{1}\right|=2$. Let S_{1} be a minimum type-2 NeRD-set of G_{1} with respect to the set X_{1}. By Observation 1(f), $\left|S_{1}\right|=\gamma_{r, \text { dom }}\left(G_{1} ; X_{1}\right) \leq \gamma_{r}\left(G_{1}\right)-1$.

Suppose that $G_{1} \in\left\{R_{2}, R_{4}, R_{5}\right\}$. By Claim 25, $G^{\prime}=G_{1}$, and so $k^{\prime}=1$ and $r^{\prime}=0$. In this case, the set $S_{1} \cup\left\{v_{1}\right\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S_{1}\right|+1 \leq \gamma_{r}\left(G_{1}\right)=\gamma_{r}\left(G^{\prime}\right)$. Suppose that $G_{1}=R_{9}$, implying that $k^{\prime}=r^{\prime}=1$. In this case, we let G_{2} be the second component of G^{\prime}, and so $G_{2} \notin \mathcal{B}_{\text {rdom }}$. Let S_{2} be a γ_{r}-set of G_{2}. The set S_{2} can be extended to an RD-set of G by adding to it the set $S_{1} \cup\left\{v_{1}\right\}$, and so $\gamma_{r}(G) \leq\left|S_{1}\right|+1+\left|S_{2}\right| \leq \gamma_{r}\left(G_{1}\right)+\gamma_{r}\left(G_{2}\right)=\gamma_{r}\left(G^{\prime}\right)$. In both cases, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+8$, a contradiction.

Claim 29. The graph G contains no $K_{2,3}$ as a subgraph.
Proof. Suppose, to the contrary, that H is a subgraph of G, where $H \cong K_{2,3}$. Let X and Y be the partite sets of H where $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y=\left\{y_{1}, y_{2}\right\}$. Since G is triangle-free, the sets X and Y are independent. Let ν_{i} be the neighbor of x_{i} not in H for $i \in$ [3]. If $v_{1}=v_{2}=v_{3}$, then $G=K_{3,3}$. In this case, $\gamma_{r}(G)=2$ and $\mathrm{w}(G)=24$, a contradiction. Hence renaming vertices if necessary, we may assume that $v_{1} \neq v_{2}$.

Claim 29.1. The vertices v_{1}, v_{2}, v_{3} are pairwise distinct.
Proof. Suppose, to the contrary, that the vertices v_{1}, v_{2}, v_{3} are not pairwise distinct, and so $v_{1}=v_{3}$ or $v_{2}=v_{3}$. Renaming vertices if necessary, we may assume that $v_{2}=v_{3}$. Suppose that $v_{1} v_{2} \in E(G)$. In this case, let v denote the neighbor of v_{1} different from x_{1} and v_{2}. Thus, νv_{1} is a bridge in G. Let G^{\prime} be the component of $G-v v_{1}$ that contains the vertex v. By Claim 25, $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $v \in S^{\prime}$, let $S=\left\{y_{1}, x_{2}\right\}$. If $v \notin S^{\prime}$, let $S=\left\{x_{1}, v_{2}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. However, $\mathrm{w}(G)=w\left(G^{\prime}\right)+27$, a contradiction. Hence, $v_{1} v_{2} \notin E(G)$. We now let $G^{\prime}=G-\left(V(H) \cup\left\{v_{2}\right\}\right)$. The graph G^{\prime} is a special subcubic graph that contains exactly two small vertices. By Claim 25, no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{y_{1}, x_{2}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+22$, a contradiction.

By Claim 29.1, the vertices v_{1}, v_{2}, v_{3} are pairwise distinct.
Claim 29.2. The graph $G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]$ is isolate-free.
Proof. Suppose, to the contrary, that $G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]$ contains an isolated vertex. Renaming vertices if necessary, we may assume that the vertex v_{1} is adjacent to neither v_{2} nor v_{3}. Let $G^{\prime}=G-\left(V(H) \cup\left\{v_{1}\right\}\right)$. Thus, G^{\prime} is a special subcubic graph that contains exactly four small vertices. Let S^{\prime} be a γ_{r}-set of G^{\prime}. Let u_{1} and u_{2} be two neighbors
of v_{1} in G different from x_{1}. If $u_{1} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{x_{1}, y_{1}\right\}$. If $u_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{y_{1}, x_{2}\right\}$. In both cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, G^{\prime} contains a component G_{1} that belongs to $\mathcal{B}_{\text {rdom }}$. By Claim 25, there is only one such component and $G_{1} \in\left\{R_{2}, R_{4}, R_{5}, R_{9}\right\}$.

At least one of u_{1} and u_{2}, and at least one of v_{2} and v_{3} belong to G_{1}. Renaming vertices if necessary, we may assume that $\left\{u_{1}, \nu_{2}\right\} \subset V\left(G_{1}\right)$. Let S_{1} be a minimum type-2 NeRD-set of G_{1} with respect to the set $X_{1}=\left\{u_{1}, v_{2}\right\}$. By Observation $1(\mathrm{f}),\left|S_{1}\right|=\gamma_{r, \text { dom }}\left(G_{1} ; X_{1}\right) \leq \gamma_{r}\left(G_{1}\right)-1$. Suppose that $G_{1} \in\left\{R_{2}, R_{4}, R_{5}\right\}$. By Claim $25, G^{\prime}=G_{1}$, and so $k^{\prime}=1$ and $r^{\prime}=0$. In this case, the set $S_{1} \cup\left\{x_{1}, y_{1}\right\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S_{1}\right|+2 \leq \gamma_{r}\left(G_{1}\right)+1=\gamma_{r}\left(G^{\prime}\right)+1$. Suppose that $G_{1}=R_{9}$, implying that $k^{\prime}=r^{\prime}=1$. In this case, we let G_{2} be the second component of G^{\prime}, and so $G_{2} \notin \mathcal{B}_{\text {rdom }}$. Let S_{2} be a γ_{r}-set of G_{2}. The set S_{2} can be extended to an RD-set of G by adding to it the set $S_{1} \cup\left\{x_{1}, y_{1}\right\}$, and so $\gamma_{r}(G) \leq\left|S_{1}\right|+2+\left|S_{2}\right| \leq \gamma_{r}\left(G_{1}\right)+$ $\gamma_{r}\left(G_{2}\right)+1=\gamma_{r}\left(G^{\prime}\right)+1$. In both cases, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<$ $\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+16$, a contradiction.

By Claim 29.2, the graph $G\left[\left\{\nu_{1}, v_{2}, v_{3}\right\}\right]$ is isolate-free. Renaming vertices if necessary, we may assume that $v_{1} v_{2}$ and $v_{2} v_{3}$ are edges. Since G is triangle-free, we note that $v_{1} v_{3}$ is not an edge. Let u_{1} be the neighbor of v_{1} different from x_{1} and v_{2}, and let u_{3} be the neighbor of v_{3} different from x_{3} and v_{2}. Suppose that $u_{1} \neq u_{3}$. Hence, the graph illustrated in Figure 12A is a subgraph of G. In this case, let $Q=V(H) \cup\left\{v_{1}, v_{2}, v_{3}\right\}$ and let $G^{\prime}=G-Q$. We note that G^{\prime} is a special subcubic graph and is obtained by deleting the edges of a 2 -edge-cut in G. By Claim 25, no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{v_{2}, x_{2}, y_{2}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction.

Hence, $u_{1}=u_{3}$ and let us rename this common neighbor of v_{1} and v_{3} by u. Let w be the third neighbor of u different from v_{1} and v_{3}. Thus, the graph illustrated in Figure 12B is a subgraph of G. In this case, let $Q=V(H) \cup\left\{v_{1}, v_{2}, v_{3}, u\right\}$ and let $G^{\prime}=G-Q$. We note that G^{\prime} is a connected special subcubic graph and is obtained by deleting the cut-edge $u w$ in G. By Claim 25, $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{u, x_{2}, y_{2}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+35$, a contradiction. This completes the proof of Claim 29.

Claim 30. The graph G contains no domino as a subgraph.

FIGURE 12 Subgraphs in the proof of Claim 29. (A) $u_{1} \neq u_{3}$. (B) $u_{1}=u_{3}=u$.

Proof. Suppose, to the contrary, that G contains a domino F as a subgraph. Let $V(F)=\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$, where $v_{1} v_{2} \ldots v_{6} v_{1}$ is a 6 -cycle and $v_{2} v_{5}$ is an edge. Since G is triangle-free and $K_{2,3}$-free, we note that F is an induced subgraph of G. Let x_{i} be the neighbor of v_{i} that does not belong to F for $i \in\{1,3,4,6\}$. Since G is triangle-free, $x_{1} \neq x_{6}$ and $x_{3} \neq x_{4}$.

Claim 30.1. $x_{1} \neq x_{3}$ and $x_{4} \neq x_{6}$.
Proof. Suppose, to the contrary, that $x_{1}=x_{3}$ or $x_{4}=x_{6}$. Renaming vertices if necessary, we may assume by symmetry that $x_{1}=x_{3}$. Thus, x_{1} is a common neighbor of v_{1} and v_{3} different from v_{2}. Let us rename the vertex x_{1} by x for notational simplicity.

Suppose firstly that $x_{4}=x_{6}$, and so x_{4} is a common neighbor of v_{4} and v_{6} different from v_{5}. Let us rename the vertex x_{4} by y for notational simplicity. If $x y \in E(G)$, then the graph G is determined and $\gamma_{r}(G)=2$ and $\mathrm{w}(G)=32$, a contradiction. Hence, $x y \notin E(G)$. Let x_{1} and y_{1} be the neighbors of x and y, respectively, that do not belong to F. Suppose that $x_{1}=y_{1}$, and let us rename this common neighbor of x and y by w. Let z be the third neighbor of w different from x and y. In this case, let G^{\prime} be the component of $G-w z$ that contains the vertex z. We note that G^{\prime} is a connected special subcubic graph and the vertex z is the only vertex of degree 2 in G^{\prime}, and so $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{v_{1}, v_{4}, w\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+35$, a contradiction. Hence, $x_{1} \neq y_{1}$. In this case, we let $G^{\prime}=G-(V(F) \cup\{x, y\})$. We note that G^{\prime} is a special subcubic graph that contains exactly two vertices of degree 2. By Claim 25, no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{v_{1}, v_{4}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. However, $\mathrm{w}(G)=w\left(G^{\prime}\right)+30$, a contradiction.

Hence, $x_{4} \neq x_{6}$, that is, v_{5} is the only common neighbor of v_{4} and v_{6}. Since G is triangle-free, $x \neq x_{4}$ and $x \neq x_{6}$, that is, the vertices x, x_{4}, x_{6} are pairwise distinct. Suppose that x is adjacent to x_{4} or x_{6}. Renaming vertices if necessary, we may assume $x x_{6} \in E(G)$. Suppose that $x_{4} x_{6} \in E(G)$. In this case, let y be the neighbor of x_{4} different from v_{4} and x_{6}. Hence, the graph illustrated in Figure 13A is a subgraph of G. Let G^{\prime} be the component of $G-x_{4} y$ that contains the vertex y. We note that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{x, x_{4}, v_{5}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+35$, a contradiction. Hence, $x_{4} x_{6} \notin E(G)$. In this case, let w be the neighbor of x_{6} different from x and v_{6}. Hence, the graph illustrated in Figure 13B is a subgraph of G. We now let $G^{\prime}=G-\left(V(F) \cup\left\{x, x_{6}\right\}\right)$. The special subcubic graph G^{\prime} contains exactly two vertices of degree 2 , and so by Claim 25 no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can
(A)

(B)

(C)

FIGURE 13 Subgraphs in the proof of Claim 30.1. (A) $x_{4} x_{6} \in E(G)$. (B) $x_{4} x_{6} \notin E(G)$. (C) $x x_{6} \notin E(G)$.
be extended to an RD-set of G by adding to it the set $\left\{\nu_{1}, v_{4}, x_{6}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction.

Hence, x is adjacent to neither x_{4} nor x_{6}. In this case, let z be the neighbor of x different from v_{1} and v_{3}. Hence, the graph illustrated in Figure 13C is a subgraph of G (where the edge $x_{4} x_{6}$ may or may not exist). We now let $G^{\prime}=G-(V(F) \cup\{x\})$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{v_{1}, \nu_{4}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. Since G^{\prime} is obtained from G by deleting the edges in a 3-edge-cut, by Claim 25 either no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ or G^{\prime} is connected and $G^{\prime}=R_{9}$. Hence, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+22$, a contradiction.

Claim 30.2. $\quad x_{1} \neq x_{4}$ and $x_{3} \neq x_{6}$.
Proof. Suppose, to the contrary, that $x_{1}=x_{4}$ or $x_{3}=x_{6}$. Renaming vertices if necessary, we may assume by symmetry that $x_{1}=x_{4}$. Thus, x_{1} is a common neighbor of v_{1} and v_{4}. Let us rename the vertex x_{1} by x for notational simplicity. Suppose firstly that $x_{3}=x_{6}$, and so x_{3} is a common neighbor of v_{3} and v_{6}. Let us rename the vertex x_{3} by y for notational simplicity. If $x y \in E(G)$, then the graph G is determined and $\gamma_{r}(G)=3$ and $\mathrm{w}(G)=32$, a contradiction. Hence, $x y \notin E(G)$. Let x_{1} and y_{1} be the neighbors of x and y, respectively, that do not belong to F. Suppose that $x_{1}=y_{1}$, and let us rename this common neighbor of x and y by w. Let z be the third neighbor of w different from x and y. In this case, let G^{\prime} be the component of $G-w z$ that contains the vertex z, and so G^{\prime} is a connected special subcubic graph. Further, the vertex z is the only vertex of degree 2 in G^{\prime}, and so $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{v_{1}, v_{4}, y\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+35$, a contradiction. Hence, $x_{1} \neq y_{1}$. We now let $G^{\prime}=G-(V(F) \cup\{x, y\})$, and so G^{\prime} is a special subcubic graph that contains exactly two vertices of degree 2 . By Claim 25 , no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{x, y, v_{2}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction.

Hence, $x_{3} \neq x_{6}$, that is, the vertices x, x_{3}, x_{6} are pairwise distinct. Suppose that x is adjacent to neither x_{3} nor x_{6}. Let x^{\prime} be the neighbor of x different from v_{1} and v_{4}. In this case, we let $G^{\prime}=G-(V(F) \cup\{x\})$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $x^{\prime} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{3}, v_{6}\right\}$. If $x^{\prime} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{4}\right\}$. In both cases, the set S is an RD-set of G, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. Since G^{\prime} is obtained from G by deleting the edges in a 3-edge-cut, by Claim 25 either no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ or G^{\prime} is connected and $G^{\prime}=R_{9}$. Hence, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+22$, a contradiction. Thus, either $x x_{3} \in E(G)$ or $x x_{6} \in E(G)$.

Suppose that $x x_{3} \in E(G)$. If $x_{3} x_{6} \in E(G)$, then let y be the neighbor of x_{6} different from x_{3} and v_{6}, and let G^{\prime} be the component of $G-x_{6} y$ that contains the vertex y. Thus, $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{x_{6}, v_{1}, v_{4}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+35$, a contradiction. Hence, $x_{3} x_{6} \notin E(G)$. In this case, we let $G^{\prime}=G-\left(V(F) \cup\left\{x, x_{3}\right\}\right)$. The special subcubic graph G^{\prime} contains exactly two vertices of degree 2 , and so by Claim 25 no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{v_{3}, v_{6}, x_{3}\right\}$, and so
$\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction.

Hence, $x x_{3} \notin E(G)$, implying that $x x_{6} \in E(G)$. If $x_{3} x_{6} \in E(G)$, then let y be the neighbor of x_{3} different from v_{3} and x_{6}, and let G^{\prime} be the component of $G-x_{3} y$ that contains the vertex y. We note that $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{x_{3}, v_{1}, v_{4}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=w\left(G^{\prime}\right)+35$, a contradiction. Hence, $x_{3} x_{6} \notin E(G)$. In this case, we let $G^{\prime}=G-\left(V(F) \cup\left\{x, x_{6}\right\}\right)$. The special subcubic graph G^{\prime} contains exactly two vertices of degree 2 , and so by Claim 25 no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{v_{3}, v_{6}, x_{6}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction.

By Claim 30.1, $x_{1} \neq x_{3}$ and $x_{4} \neq x_{6}$. By Claim 30.2, $x_{1} \neq x_{4}$ and $x_{3} \neq x_{6}$. Thus the vertices $x_{1}, x_{3}, x_{4}, x_{6}$ are pairwise distinct. Let $G^{\prime}=G-V(F)$. The graph G^{\prime} is a special subcubic graph with exactly four vertices of degree 2 . Every γ_{r}-set of G^{\prime} can be extended to a RD-set of G by adding to it the set $\left\{v_{1}, v_{4}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, then $w(G)=\mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, G^{\prime} contains a component G_{1} that belongs to $\mathcal{B}_{\text {rdom }}$. By Claim 25 , there is only one such component and $G_{1} \in\left\{R_{2}, R_{4}, R_{5}, R_{9}\right\}$. Necessarily, G_{1} contains at least three vertices from the set $\left\{x_{1}, x_{3}, x_{4}, x_{6}\right\}$. In particular, $\left\{x_{1}, x_{4}\right\} \subset V\left(G_{1}\right)$ or $\left\{x_{3}, x_{6}\right\} \subset V\left(G_{1}\right)$. Renaming vertices if necessary, we may assume by symmetry that $\left\{x_{3}, x_{6}\right\} \subset V\left(G_{1}\right)$. Let S_{1} be a minimum type-2 NeRD-set of G_{1} with respect to the set $X_{1}=\left\{x_{3}, x_{6}\right\}$. We note that $X_{1} \cap S_{1}=\varnothing$. By Observation 1(f), $\left|S_{1}\right|=\gamma_{r, \text { dom }}\left(G_{1} ; X_{1}\right) \leq \gamma_{r}\left(G_{1}\right)-1$. If G^{\prime} is connected, then $G^{\prime}=G_{1}$ and the set $S_{1} \cup\left\{v_{1}, v_{4}\right\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S_{1}\right|+2 \leq\left(\gamma_{r}\left(G^{\prime}\right)-1\right)+2=\gamma_{r}\left(G^{\prime}\right)+1$. If G^{\prime} is disconnected, then let G_{2} be the component of G^{\prime} different from G_{1} which yields $G_{1}=R_{9}$. In this case, let S_{2} be a γ_{r}-set of G_{2} and note that the set $S_{1} \cup S_{2} \cup\left\{v_{1}, v_{4}\right\}$ is a RD-set of G, implying that $\gamma_{r}(G) \leq\left|S_{1}\right|+\left|S_{2}\right|+2 \leq\left(\gamma_{r}\left(G_{1}\right)-1\right)+\gamma_{r}\left(G_{2}\right)+2=\gamma_{r}\left(G^{\prime}\right)+1$. Thus in both cases, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+17$, a contradiction. This completes the proof of Claim 30.

By Claim 30, the graph G contains no domino as a subgraph.
Claim 31. If the graph G contains a 4-cycle C, then the subgraph of G induced by $V(C)$ and all neighbors in G of vertices in $V(C)$ is isomorphic to the corona $C \circ K_{1}$ of the 4-cycle C.

Proof. Suppose that G contains a 4 -cycle $C: v_{1} v_{2} v_{3} v_{4} v_{1} v_{4}$. Since G is triangle-free, the cycle C is an induced cycle. Let x_{i} be the neighbor of v_{i} that does not belong to C for $i \in[4]$. Since G has no triangle and no $K_{2,3}$-subgraph, the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ are pairwise distinct. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. To prove the claim, it suffices to show that the set X is independent. Suppose, to the contrary, that X is not an independent set. Since G contains no domino as a subgraph, $x_{i} x_{i+1} \notin E(G)$ for all $i \in[4]$, where indices are taken modulo 4. Hence, $x_{i} x_{i+2} \in E(G)$ for some $i \in[4]$, where indices are taken modulo 4. Renaming vertices if necessary, we may assume that $x_{1} x_{3} \in E(G)$. Let y_{1} be the third neighbor of x_{1} different from v_{1} and x_{3}, and let y_{3} be the third neighbor of x_{3} different from v_{3} and x_{1}. Since G is triangle-free, $y_{1} \neq y_{3}$. Further, since G contains no domino as a subgraph,
$\left\{y_{1}, y_{3}\right\} \cap\left\{x_{2}, x_{4}\right\}=\varnothing$. Thus, the vertices $x_{2}, x_{4}, y_{1}, y_{3}$ are pairwise distinct and the graph illustrated in Figure 14 is a subgraph of G. Let $G^{\prime}=G-\left(V(C) \cup\left\{x_{1}, x_{3}\right\}\right)$.

Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $y_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{3}, v_{4}\right\}$. If $y_{1} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, x_{3}\right\}$. In both cases, the set S is an RD-set of G, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=24+$ $\left(\mathrm{w}\left(G^{\prime}\right)-4\right)=\mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, G^{\prime} contains a component G_{1} that belongs to $\mathcal{B}_{\text {rdom }}$. By Claim 25, there is only one such component and $G_{1} \in\left\{R_{2}, R_{4}, R_{5}, R_{9}\right\}$. Necessarily, G_{1} contains at least three vertices from the set $\left\{x_{2}, x_{4}, y_{1}, y_{3}\right\}$. At least one of y_{1} and y_{3} belong to G_{1}. By symmetry, we may assume that $y_{1} \in V\left(G_{1}\right)$. Further, at least one of x_{2} and x_{4} belongs to G_{1}. By symmetry, we may assume that $x_{2} \in V\left(G_{1}\right)$.

Let S_{1} be a minimum type-2 NeRD-set of G_{1} with respect to the set $X_{1}=$ $\left\{y_{1}, x_{2}\right\} \subset V\left(G_{1}\right)$. We note that $X_{1} \cap S_{1}=\varnothing$. By Observation 1(f), $\left|S_{1}\right|=\gamma_{r, \text { dom }}\left(G_{1} ; X_{1}\right)$ $\leq \gamma_{r}\left(G_{1}\right)-1$. If G^{\prime} is connected, then $G^{\prime}=G_{1}$ and the set $S_{1} \cup\left\{v_{1}, x_{3}\right\}$ is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S_{1}\right|+2 \leq\left(\gamma_{r}\left(G^{\prime}\right)-1\right)+2=\gamma_{r}\left(G^{\prime}\right)+1$. If G^{\prime} is disconnected, then let G_{2} be the component of G^{\prime} different from G_{1}. In this case, let S_{2} be a γ_{r}-set of G_{2}. The set $S_{1} \cup S_{2} \cup\left\{\nu_{1}, x_{3}\right\}$ is a RD-set of G, implying that $\gamma_{r}(G) \leq\left|S_{1}\right|+\left|S_{2}\right|+2 \leq$ $\left(\gamma_{r}\left(G_{1}\right)-1\right)+\gamma_{r}\left(G_{2}\right)+2=\gamma_{r}\left(G^{\prime}\right)+1$. Thus in both cases, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+16$, a contradiction. Hence, the set X is an independent set.

Claim 32. If G contains a 4 -cycle $C: v_{1} v_{2} v_{3} v_{4} v_{1} v_{4}$ where x_{i} is the neighbor of v_{i} that does not belong to C for $i \in[4]$, then $\left|N\left(x_{i}\right) \cap N\left(x_{i+2}\right)\right| \leq 1$ for $i \in$ [2].

Proof. Let the cycle C and the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ be as in the statement of the claim. By Claim 31 and our earlier observations, the graph illustrated in Figure 15 is a subgraph of G where $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is an independent set. Suppose, to the contrary, that $\left|N\left(x_{i}\right) \cap N\left(x_{i+2}\right)\right|=2$ for some $i \in[2]$. By symmetry, we may assume that $\left|N\left(x_{1}\right) \cap N\left(x_{3}\right)\right|=2$. Let u and z be the two common neighbors of x_{1} and x_{3}. Since G is triangle-free, the vertices u and z are not adjacent. Let u^{\prime} and z^{\prime} be the third neighbors of u and z, respectively, different from x_{1} and x_{3}. Since G has no $K_{2,3}$-subgraph, we note that $u^{\prime} \neq z^{\prime}$.

FIGURE14 A subgraph in the proof of Claim 31.

FIGURE15 A subgraph in the proof of Claim 32.

Claim 32.1. $\left\{u^{\prime}, z^{\prime}\right\} \neq\left\{x_{2}, x_{4}\right\}$.
Proof. Suppose that $\left\{u^{\prime}, z^{\prime}\right\}=\left\{x_{2}, x_{4}\right\}$. Renaming vertices if necessary, we may assume by symmetry that $u^{\prime}=x_{2}$ and $z^{\prime}=x_{4}$. Suppose that x_{2} and x_{4} have a common neighbor x. Let y be the third neighbor of x. Let G^{\prime} be the component of $G-x y$ that contains the vertex y, and so G^{\prime} is a connected special subcubic graph that contains exactly one vertex of degree 2 . Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{x_{1}, x_{4}, v_{2}, v_{3}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+40$. Since $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$, we have $\mathrm{w}(G)=w\left(G^{\prime}\right)+43$, a contradiction. Hence, x_{2} and x_{4} have no common neighbor. Let y_{2} be the neighbor of x_{2} different from u and v_{2}, and let y_{4} be the neighbor of x_{4} different from z and v_{4}. By our earlier observations, $y_{2} \neq y_{4}$. If $y_{2} y_{4} \in E(G)$, then let $Q=V(C) \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{u, z, y_{2}, y_{4}\right\}$ and $G^{\prime}=G-Q$. Thus, G^{\prime} is a special subcubic graph with exactly two vertices of degree 2 , implying that no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{v_{2}, v_{3}, x_{1}, y_{4}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+40$. However, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+46$, a contradiction.

Hence, $\quad y_{2} y_{4} \notin E(G)$. We now let $Q=V(C) \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{u, z, y_{2}\right\}$ and $G^{\prime}=G-Q$. Thus, G^{\prime} is a special subcubic graph with exactly three vertices of degree 2, implying that either no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ or G^{\prime} is connected and $G^{\prime}=R_{9}$. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{\nu_{3}, \nu_{4}, x_{1}, y_{2}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+40$. If no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+41$, a contradiction. Hence, $G^{\prime}=G_{9}$. In this case the set $\left\{v_{3}, v_{4}, x_{1}, y_{2}\right\}$ can be extended to a RD-set of G by adding to it $\gamma_{r}\left(G^{\prime}\right)-1$ vertices from G^{\prime} applying Observation $1(\mathrm{~d})$ with respect to the vertex x_{4}, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. However since $G^{\prime}=G_{9}$, we have $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+38$, a contradiction.

Claim 32.2. $\left\{u^{\prime}, z^{\prime}\right\} \cap\left\{x_{2}, x_{4}\right\}=\varnothing$.
Proof. Suppose that $\left\{u^{\prime}, z^{\prime}\right\} \cap\left\{x_{2}, x_{4}\right\} \neq \varnothing$, implying by Claim 32.1 that $\left|\left\{u^{\prime}, z^{\prime}\right\} \cap\left\{x_{2}, x_{4}\right\}\right|=1$. Renaming vertices if necessary, we may assume by symmetry that $u^{\prime}=x_{2}$. Thus, $z^{\prime} \neq x_{4}$. Let v be the neighbor of u^{\prime} different from u and v_{2}. Since the set $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is independent, $v \neq x_{4}$. Since G contains no $K_{2,3}$ as a subgraph, $u^{\prime} \neq z^{\prime}$, that is, $v \neq z$. If $v \neq z^{\prime}$, then we let $Q=V(C) \cup\left\{x_{1}, x_{2}, x_{3}, u, z\right\}$ and let $G^{\prime}=G-Q$. Thus, G^{\prime} is a special subcubic graph with exactly three vertices of degree 2. Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{x_{1}, x_{2}, v_{3}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. Since either no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ or G^{\prime} is connected and $G^{\prime}=G_{9}$, we have $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction. Hence, $v=z^{\prime}$. If $v x_{4} \in E(G)$, then we let w be the neighbor of x_{4} different from v and v_{4}. Further we let $Q=V(C) \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}, u, v, z\right\}$ and $G^{\prime}=G-Q$. Thus, G^{\prime} is a connected special subcubic graph with exactly one vertex of degree 2 . Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{x_{1}, v, v_{3}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. Since $G^{\prime} \notin \mathcal{B}_{\mathrm{rdom}}$, we have $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+43$, a contradiction. Hence, $v x_{4} \notin E(G)$. We now let $Q=V(C) \cup\left\{x_{1}, x_{2}, x_{3}, u, v, z\right\}$ and $G^{\prime}=G-Q$. Thus, G^{\prime} is a special subcubic graph with exactly two vertices of degree 2 . Once again, every γ_{r}-set of G^{\prime} can be extended to a RD-set of G by adding to it the set $\left\{x_{1}, v, v_{3}\right\}$, and so
$\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$. Since no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, we have $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+38$, a contradiction.

By Claim 32.2, $\left\{u^{\prime}, z^{\prime}\right\} \cap\left\{x_{2}, x_{4}\right\}=\varnothing$. Let $Q=V(C) \cup\left\{x_{1}, x_{3}, u, z\right\}$ and let $G^{\prime}=G-Q$. Thus, G^{\prime} is a special subcubic graph with exactly four vertices of degree 2 . Every γ_{r}-set of G^{\prime} can be extended to an RD-set of G by adding to it the set $\left\{x_{1}, v_{3}\right\}$, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. Since at most one component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, we have $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+24$, a contradiction. This completes the proof of Claim 32.

Claim 33. If G contains a 4 -cycle $C: v_{1} v_{2} v_{3} v_{4} v_{1} v_{4}$ where x_{i} is the neighbor of v_{i} that does not belong to C for $i \in[4]$, then $N\left(x_{i}\right) \cap N\left(x_{i+2}\right)=\varnothing$ for $i \in$ [2].

Proof. Let the cycle C and the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ be as in the statement of the claim. Thus the graph illustrated in Figure 15 is a subgraph of G where $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is an independent set. Suppose, to the contrary, that $\left|N\left(x_{i}\right) \cap N\left(x_{i+2}\right)\right| \geq 1$ for some $i \in[2]$. By symmetry, we may assume that $\left|N\left(x_{1}\right) \cap N\left(x_{3}\right)\right| \geq 1$. By Claim 32 , $\left|N\left(x_{1}\right) \cap N\left(x_{3}\right)\right|=1$. Let z be the common neighbor of x_{1} and x_{3}, and let z^{\prime} be the third neighbor of z.

Claim 33.1. The vertex z is adjacent to neither x_{2} nor x_{4}.
Proof. Suppose, to the contrary, that the vertex z is adjacent to x_{2} or x_{4}, that is, $z^{\prime}=x_{2}$ or $z^{\prime}=x_{4}$. By symmetry, we may assume that $z^{\prime}=x_{4}$. Let $Q=V(C) \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}, z\right\}$. Let y_{i} be the neighbor of x_{i} not in Q for $i \in\{1,3,4\}$. Since the vertex z is the only common neighbor of x_{1} and x_{3}, we note that $y_{1} \neq y_{3}$.

Claim 33.1.1. The vertices y_{1}, y_{3}, y_{4} are pairwise distinct.
Proof. Suppose that the vertices y_{1}, y_{3}, y_{4} are not pairwise distinct. By symmetry, we may assume that $y_{1}=y_{4}$. Suppose firstly that $y_{1}=y_{3}=y_{4}$. In this case, let $Q^{\prime}=V(C) \cup\left\{x_{1}, x_{3}, x_{4}, y_{1}, z\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a connected special subcubic graph with exactly small vertex, and so $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+35$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction. Hence, the vertices y_{1} and y_{3} are distinct.

Let z_{1} be the neighbor of y_{1} different from x_{1} and x_{4}. Suppose that x_{2}, y_{3}, z_{1} are pairwise distinct. In this case, we let $Q^{\prime}=V(C) \cup\left\{x_{1}, x_{3}, x_{4}, y_{1}, z\right\}$ and $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a special subcubic graph with three small vertices, and so by Claim 25 either no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ or G^{\prime} is connected and $G^{\prime}=R_{9}$. Hence, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+30$. Moreover, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction. Hence, x_{2}, y_{3}, z_{1} are not pairwise distinct vertices. Since x_{2} and x_{3} are not adjacent, $x_{2} \neq y_{3}$. Hence either $z_{1}=x_{2}$ or $z_{1}=y_{3}$.

Suppose that $z_{1}=x_{2}$. In this case, let y_{2} be the neighbor of x_{2} different from v_{2} and y_{1}. If $y_{2} \neq y_{3}$, then let $Q^{\prime}=V(C) \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, z\right\}$ and $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a special subcubic graph with two small vertices, and so no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, whence $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+38$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30, \quad \mathrm{a}$ contradiction. If $y_{2}=y_{3}$, then in this case let $Q^{\prime}=V(C) \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, z\right\}$ and $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a connected special
subcubic graph with one small vertex, and so $G^{\prime} \notin \mathcal{B}_{\mathrm{rdom}}$ and $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+43$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+40$, a contradiction.

Hence, $z_{1}=y_{3}$. Suppose that $x_{2} y_{3} \in E(G)$. In this case, we let $Q^{\prime}=V(C) \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{3}, z\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a connected special subcubic graph with one small vertex, and so $G^{\prime} \notin \mathcal{B}_{\mathrm{rdom}}$ and $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+43$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+40$, a contradiction. Hence, $x_{2} y_{3} \notin E(G)$. In this case, we let $Q^{\prime}=V(C) \cup\left\{x_{1}, x_{3}, x_{4}, y_{1}, y_{3}, z\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a special subcubic graph with two small vertices, and so no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, yielding $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+38$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, a contradiction.

Claim 33.1.2. The vertex x_{2} is adjacent to at most one of y_{1} and y_{4}.
Proof. Suppose that x_{2} is adjacent to both y_{1} and y_{4}. In this case, we let $Q^{\prime}=V(C) \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{4}, z\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Suppose that G^{\prime} is a special subcubic graph, and so G^{\prime} contains exactly three small vertices. By Claim 25 either no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ or G^{\prime} is connected and $G^{\prime}=R_{9}$. If no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+41$, while if $G^{\prime}=R_{9}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+38$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction. Hence, G^{\prime} is not a special subcubic graph.

Let z_{1} and z_{4} be the neighbors of y_{1} and y_{4}, respectively, in G that do not belong to Q. Since G^{\prime} is not a special subcubic graph, the vertices y_{3}, z_{1}, z_{4} are not pairwise distinct. If y_{3} is adjacent to both y_{1} and y_{4}, then the graph G is determined and $\gamma_{r}(G)=3$ and $\mathrm{w}(G)=48$, a contradiction. If y_{3} is adjacent to exactly one of y_{1} and y_{4}, then by symmetry we may assume that $y_{3} y_{4}$ is an edge. In this case, we let $Q^{\prime}=V(C) \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{3}, y_{4}, z\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a special subcubic graph with two small vertices, and so no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+46$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction. Hence, y_{3} is adjacent to neither y_{1} nor y_{4}, that is, $y_{3} \neq z_{1}$ and $y_{3} \neq z_{4}$, implying that $z_{1}=z_{4}$.

If $z_{1} y_{3} \in E(G)$, then we let $Q^{\prime}=Q \cup\left\{y_{1}, y_{3}, y_{4}, z_{1}\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a special subcubic graph with one small vertex, and so $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+51$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+40$, a contradiction. If $z_{1} y_{3} \notin E(G)$, then let z^{\prime} be the neighbor of z_{1} different from y_{1} and y_{4}, and in this case let $Q^{\prime}=Q \cup\left\{y_{1}, y_{4}, z_{1}\right\}$ and $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a special subcubic graph with two small vertices, and so no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+46$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction.

By Claim 33.1.2, the vertex x_{2} is adjacent to at most one of y_{1} and y_{4}. By symmetry, we may assume that $x_{2} y_{1} \notin E(G)$. Let $Q^{\prime}=Q \backslash\left\{x_{2}\right\}$ and let G^{\prime} be obtained from $G-Q^{\prime}$ by adding the edge $x_{2} y_{1}$. Thus, G^{\prime} is a subcubic graph with exactly two small vertices, namely y_{3} and y_{4}, and so no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+30$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $x_{2} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{3}, v_{4}, x_{1}\right\}$. If $x_{2} \notin S^{\prime}$ and $y_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{2}, v_{3}, x_{4}\right\}$. If $x_{2} \notin S^{\prime}$ and $y_{1} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, x_{3}, x_{4}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction. This completes the proof of Claim 33.

Claim 34. The graph G has no 4-cycle.
Proof. Suppose, to the contrary, that G contains a 4-cycle $C: v_{1} v_{2} v_{3} v_{4} v_{1} v_{4}$. Let x_{i} be the neighbor of v_{i} that does not belong to C for $i \in[4]$. Thus the graph illustrated in Figure 15 is a subgraph of G where $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is an independent set. By Claim 33, $N\left(x_{i}\right) \cap N\left(x_{i+2}\right)=\varnothing$ for $i \in[2]$. Thus, x_{1} and x_{3} have no common neighbor, and x_{2} and x_{4} have no common neighbor. Let y_{i} and z_{i} be the two neighbors of x_{i} different from v_{i} for $i \in\{1,3\}$. By our earlier observations, the vertices $x_{2}, x_{4}, y_{1}, y_{3}, z_{1}, z_{3}$ are pairwise distinct.

If x_{2} is adjacent to both y_{3} and z_{3}, then $C^{\prime}: x_{2} y_{3} x_{3} z_{3} x_{2}$ is a 4-cycle. However, in this case the neighbors v_{2} and v_{3} of the vertices x_{2} and x_{3}, respectively, that do not belong to the cycle C^{\prime} are adjacent, contradicting Claim 31. Hence, the vertex x_{2} is not adjacent to at least one of y_{3} and z_{3}. Renaming vertices, if necessary, we may assume that x_{2} is not adjacent to y_{3}. Let $Q=V(C) \cup\left\{x_{1}, x_{3}\right\}$ and let G^{\prime} be obtained from $G-Q$ by adding the edge $x_{2} y_{3}$. The resulting graph G^{\prime} is a special subcubic that contains exactly four small vertices, namely $x_{4}, y_{1}, z_{1}, z_{3}$. Thus at most one component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$.

Let S^{\prime} be a γ_{r}-set of G^{\prime}, and let S be the set defined as follows. If $y_{3} \in S^{\prime}$ and $y_{1} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{2}\right\}$. If $y_{3} \in S^{\prime}$ and $y_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{2}, v_{4}\right\}$. If $y_{3} \notin S^{\prime}, x_{2} \in S^{\prime}$ and $y_{1} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, x_{3}\right\}$. If $y_{3} \notin S^{\prime}, x_{2} \in S^{\prime}$ and $y_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{4}, x_{3}\right\}$. If $x_{2} \notin S^{\prime}$ and $y_{3} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{x_{1}, v_{3}\right\}$. The resulting set S is an RD-set of G, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If G^{\prime} has no component in $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=24+\left(w\left(G^{\prime}\right)-4\right)=\mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, G^{\prime} contains a component G_{1} that belongs to $\mathcal{B}_{\text {rdom }}$. By Claim 25 , there is only one such component and $G_{1} \in\left\{R_{2}, R_{4}, R_{5}, R_{9}\right\}$.

Suppose that the added edge $x_{2} y_{3}$ belongs to G_{1}. In this case, G_{1} contains two adjacent vertices of degree 3 , and so $G_{1} \in\left\{R_{4}, R_{5}, R_{9}\right\}$. Let G_{1}^{*} be the graph obtained from G_{1} by subdividing the edge $x_{2} y_{3}$ three times resulting in the path $x_{2} v_{2} v_{3} x_{3} y_{3}$. Let S_{1}^{*} be a minimum type-2 NeRD-set of G_{1}^{*} with respect to the vertex v_{3}. By Observation 4(b), $\left|S_{1}^{*}\right|=\gamma_{r, \text { dom }}\left(G_{1}^{*} ; v_{3}\right) \leq \gamma_{r}\left(G_{1}\right)$. By our earlier observations, at least one of y_{1} and z_{1} belong to the graph G_{1}. Renaming vertices if necessary, we may assume that $y_{1} \in V\left(G_{1}\right)$. If $y_{1} \in S_{1}^{*}$, then let $S=S_{1}^{*} \cup\left\{v_{3}\right\}$. If $y_{1} \notin S_{1}^{*}$, then let $S=S_{1}^{*} \cup\left\{v_{1}\right\}$. If $G^{\prime}=G_{1}$, then the set S is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S_{1}^{*}\right|+1 \leq \gamma_{r}\left(G_{1}\right)+1=\gamma_{r}\left(G^{\prime}\right)+1$. If $G^{\prime} \neq G_{1}$, then $G_{1}=R_{9}$. In this case, G_{1} contains three vertices of degree 2 in G^{\prime}, and so G^{\prime} is disconnected and contains a second component G_{2}. Since G_{2} contains exactly one small vertex, the component G_{2} does not belong to $\mathcal{B}_{\text {rdom }}$. Every γ_{r}-set of G_{2} can be extended to an RD-set of G by adding to it the set S, and so in this case $\gamma_{r}(G) \leq|S|+\left|S_{2}\right|=\left|S_{1}^{*}\right|+1+\left|S_{2}\right| \leq\left(\gamma_{r}\left(G_{1}\right)+1\right)+\gamma_{r}\left(G_{2}\right)=\gamma_{r}\left(G^{\prime}\right)+1$. In both cases, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+16$, a contradiction.

Hence, the added edge $x_{2} y_{3}$ does not belong to G_{1}, implying that G^{\prime} is disconnected. Let $G_{2}=G^{\prime}-V\left(G_{1}\right)$. We note that G_{2} contains the added edge $x_{2} y_{3}$ and contains at most two components and contains at most one small vertex. Thus, no component of G_{2} belongs to $\mathcal{B}_{\text {rdom }}$. Let S_{2} be a γ_{r}-set of G_{2}. We note that $\gamma_{r}\left(G^{\prime}\right)=\gamma_{r}\left(G_{1}\right)+\gamma_{r}\left(G_{2}\right)$. Recall that G_{1} contains at least three vertices from the set $\left\{x_{4}, y_{1}, z_{1}, z_{3}\right\}$.

Suppose that $y_{3} \in S_{2}$ or $x_{2} \in S_{2}$. In this case, we let $X_{1} \subset V\left(G_{1}\right)$ such that $\left|X_{1}\right|=2$ and $X_{1} \subset\left\{x_{4}, y_{1}, z_{1}\right\}$ noting that at least two vertices in $\left\{x_{4}, y_{1}, z_{1}\right\}$ belong to the component G_{1}. Let S_{1} be a minimum type-2 NeRD-set of G_{1} with respect to the vertex X_{1}. By Observation
$1(\mathrm{f}),\left|S_{1}\right|=\gamma_{r \text { dom }}\left(G_{1} ; X_{1}\right) \leq \gamma_{r}\left(G_{1}\right)-1$. If $y_{3} \in S_{2}$, let $S^{*}=S_{1} \cup S_{2} \cup\left\{v_{1}, v_{2}\right\}$. If $y_{3} \notin S_{2}$ and $x_{2} \in S_{2}$, let $S^{*}=S_{1} \cup S_{2} \cup\left\{v_{1}, x_{3}\right\}$. Suppose that $y_{3} \notin S_{2}$ and $x_{2} \notin S_{2}$. At least one of y_{1} and z_{1} belong to the graph G_{1}. Renaming vertices if necessary, we may assume that $y_{1} \in V\left(G_{1}\right)$. In this case, we let S_{1} be a minimum type-1 NeRD-set of G_{1} with respect to the vertex y_{1}. By Observation $1(\mathrm{~d}), \quad\left|S_{1}\right|=\gamma_{r, \text { ndom }}\left(G_{1} ; y_{1}\right) \leq \gamma_{r}\left(G_{1}\right)-1$. Let $S^{*}=S_{1} \cup S_{2} \cup\left\{x_{1}, \nu_{3}\right\}$. In all cases, $\left|S_{1}\right| \leq \gamma_{r}\left(G_{1}\right)-1$ and the set S^{*} is a RD-set of G, and so $\gamma_{r}(G) \leq\left|S_{1}\right|+\left|S_{2}\right|+2 \leq\left(\gamma_{r}\left(G_{1}\right)-1\right)+\gamma_{r}\left(G_{2}\right)+2=\gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+16$, a contradiction. This completes the proof of Claim 34.

Claim 35. The graph G has no 5 -cycle.
Proof. Suppose to the contrary that G contains a 5 -cycle $C: v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$. Let x_{i} be the neighbor of v_{i} that does not belong to C for $i \in[5]$. Let $X=\left\{x_{1}, \ldots, x_{5}\right\}$ and let $Q=V(C) \cup X$.

Claim 35.1. Each vertex $x \in X$ has at least one neighbor in X.

Proof. Suppose, to the contrary, that there is a vertex in X with no neighbor in X. Renaming vertices if necessary that x_{1} has no neighbor in X. Let y_{1} and z_{1} be the two neighbors of x_{1} different from v_{1}. If x_{2} is adjacent to both y_{1} and z_{1}, then $x_{1} y_{1} x_{2} z_{1} x_{1}$ is a 4cycle in G, a contradiction. Hence we may assume that $x_{2} z_{1} \notin E(G)$. Let $Q^{\prime}=V(C) \cup\left\{x_{1}\right\}$ and let G^{\prime} be obtained from $G-Q^{\prime}$ by adding the edge $e=x_{2} z_{1}$. Thus, G^{\prime} is a special subcubic graph that contains exactly four small vertices. By Claim 25, at most one component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $x_{2} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{x_{1}, v_{4}\right\}$. If $x_{2} \notin S^{\prime}$ and $z_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{2}, v_{5}\right\}$. If $x_{2} \notin S^{\prime}$ and $z_{1} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{3}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq|S|+2=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$. If no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, G^{\prime} contains a component G_{1} that belongs to $\mathcal{B}_{\text {rdom }}$. By Claim 25, there is only one such component and $G_{1} \in\left\{R_{2}, R_{4}, R_{5}, R_{9}\right\}$. If $G_{1}=R_{2}$, then since G contains no 4 -cycle the added edge e belongs to G_{1}, implying that G_{1} contains two adjacent vertices of degree 3, a contradiction. Hence, $G_{1} \in\left\{R_{4}, R_{5}, R_{9}\right\}$.

Suppose that $e \in E\left(G_{1}\right)$. If $G_{1} \in\left\{R_{4}, R_{5}\right\}$, then the graph G is determined (in the sense that $\left.V(G)=V(C) \cup V\left(G_{1}\right)\right)$ and $\gamma_{r}(G) \leq 4$ and $\mathrm{w}(G)=56$, a contradiction. Hence, $G_{1}=R_{9}$. In this case, G^{\prime} is disconnected and contains two components. Let G_{2} be the second component of G^{\prime}, and so G_{2} contains exactly one small vertex and $G_{2} \notin \mathcal{B}_{\text {rdom }}$. Let G^{*} be the subgraph of G or order 17 induced by $V(C) \cup V\left(G_{1}\right)$. Every γ_{r}-set of G^{*} can be extended to an RD-set of G by adding to it a γ_{r}-set of G_{2}, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G_{2}\right)+\gamma_{r}\left(G^{*}\right) \leq \gamma_{r}\left(G_{2}\right)+6$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G_{2}\right)+60$. However, $\mathrm{w}(G)=17 \times 4+\left(\mathrm{w}\left(G_{2}\right)-1\right)=\mathrm{w}\left(G_{2}\right)+67$, a contradiction. Hence, $e \notin E\left(G_{1}\right)$. Let $G_{2}=G^{\prime}-V\left(G_{1}\right)$, and so $e \in E\left(G_{2}\right)$ and $\gamma_{r}\left(G^{\prime}\right)=\gamma_{r}\left(G_{1}\right)+\gamma_{r}\left(G_{2}\right)$. Since G_{1} contains at least three small vertices, the graph G_{2} contains at most one small vertex. Further, G_{2} has at most two components, and so no component of G_{2} belongs to $\mathcal{B}_{\text {rdom }}$. Let S_{2} be a γ_{r}-set of G_{2}. We now define an RD-set S in G as follows.

Suppose that $x_{2} \in S_{2}$. We note that at least one of x_{4} and y_{1} belongs to G_{1}. Let $v \in\left\{x_{4}, y_{1}\right\} \cap V\left(G_{1}\right)$. Let S_{1} be a minimum type-1 NeRD-set of G_{1} with respect to the vertex v. By Observation $1(\mathrm{~d}),\left|S_{1}\right|=\gamma_{r, \text { ndom }}\left(G_{1} ; v\right) \leq \gamma_{r}\left(G_{1}\right)-1$. Let $S=S_{1} \cup S_{2} \cup\left\{x_{1}, v_{4}\right\}$.

Suppose that $x_{2} \notin S_{2}$ and $z_{1} \in S_{2}$. We note that at least one of x_{3} and x_{4} belongs to G_{1}. Let $v \in\left\{x_{3}, x_{4}\right\} \cap V\left(G_{1}\right)$. Let S_{1} be a minimum type-2 NeRD-set of G_{1} with respect to the vertex v. By Observation $1(\mathrm{e}),\left|S_{1}\right|=\gamma_{r \text {,dom }}\left(G_{1} ; v\right) \leq \gamma_{r}\left(G_{1}\right)-1$. Let $S=S_{1} \cup S_{2} \cup\left\{v_{2}, v_{5}\right\}$.

Suppose that $x_{2} \notin S_{2}$ and $z_{1} \notin S_{2}$. We note that at least one of x_{4} and x_{5} belongs to G_{1}. Let $v \in\left\{x_{4}, x_{5}\right\} \cap V\left(G_{1}\right)$. Let S_{1} be a minimum type-2 NeRD-set of G_{1} with respect to the vertex v. By Observation $1(\mathrm{e}),\left|S_{1}\right|=\gamma_{r \text {,dom }}\left(G_{1} ; v\right) \leq \gamma_{r}\left(G_{1}\right)-1$. Let $S=S_{1} \cup S_{2} \cup\left\{v_{1}, v_{3}\right\}$.

In all cases, $\left|S_{1}\right| \leq \gamma_{r}\left(G_{1}\right)-1$ and the set S is an RD-set of G. Therefore, $\gamma_{r}(G) \leq\left|S_{1}\right|+\left|S_{2}\right|+2 \leq\left(\gamma_{r}\left(G_{1}\right)-1\right)+\gamma_{r}\left(G_{2}\right)+2=\gamma_{r}\left(G^{\prime}\right)+1$, implying that $\mathrm{w}(G)<$ $\mathrm{w}\left(G^{\prime}\right)+10$. However, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+16$, a contradiction.

By Claim 35.1, each vertex $x \in X$ has at least one neighbor in X. Hence, $G[X]$ contains at least three edges. Since G has no 4-cycles, we infer that $G[X]$ contains at most five edges. Using symmetry, we may assume without loss of generality that $\left\{x_{1} x_{4}, x_{2} x_{4}, x_{3} x_{5}\right\} \subset E(G)$ noting that G contains no 4 -cycles.

Claim 35.2. $G[X]$ contains at least four edges.
Proof. Suppose, to the contrary, that $G[X]$ contains exactly three edges. Let y_{i} be neighbor of x_{i} not in Q for $i \in\{1,2,3,5\}$. Since G has no 4 -cycles, we note that $y_{1} \neq y_{2}$, and since G has no triangles, we note that $y_{3} \neq y_{5}$. We show firstly that $y_{2} \neq y_{3}$. Suppose, to the contrary, that $y_{2}=y_{3}$, and let z be the third neighbor of y_{2}.

Suppose that $y_{1}=y_{5}$. Let z^{\prime} be the neighbor of y_{1} different from x_{1} and x_{5}. Suppose that $z=z^{\prime}$. In this case, let $Q^{\prime}=Q \cup\left\{y_{1}, y_{2}, z\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a connected special subcubic graph that contains exactly one small vertex, and so $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+51$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+5$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+50$, a contradiction. Hence, $z \neq z^{\prime}$. In this case, let $Q^{\prime}=Q \cup\left\{y_{1}, y_{2}\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a special subcubic graph that contains exactly two small vertices, and so no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+46$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, a contradiction.

Hence, $y_{1} \neq y_{5}$. Since G contain no 4 -cycle, $y_{2} y_{5} \notin E(G)$. Suppose that $y_{1} y_{2} \notin E(G)$, and so z is distinct from both y_{1} and y_{5}. In this case, let $Q^{\prime}=Q \cup\left\{y_{2}\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a special subcubic graph that contains exactly three small vertices, and so either no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ or G^{\prime} is connected and $G^{\prime}=R_{9}$. Therefore, $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+38$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction.

Hence, $y_{1} y_{2} \in E(G)$. If, in addition, $y_{1} y_{5} \in E(G)$, then let $Q^{\prime}=Q \cup\left\{y_{1}, y_{2}, y_{5}\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a connected special subcubic graph that contains exactly one small vertex and so $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+51$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+40$, a contradiction. On the other hand, if $y_{1} y_{2} \in E(G)$ and $y_{1} y_{5} \notin E(G)$, then let $Q^{\prime}=Q \cup\left\{y_{1}, y_{2}\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a special subcubic graph that contains two small vertices and so no component of G^{\prime} is in $\mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+46$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+40$, a contradiction. Hence, $y_{2} \neq y_{3}$.

We show next that $y_{2} \neq y_{5}$. Suppose, to the contrary, that $y_{2}=y_{5}$, and let z be the third neighbor of y_{2}. Suppose that $y_{1}=y_{3}$. Let z^{\prime} be the neighbor of y_{1} different from x_{1} and x_{3}. Suppose that $z=z^{\prime}$. In this case, let $Q^{\prime}=Q \cup\left\{y_{1}, y_{2}, z\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a connected special subcubic graph that contains exactly one small vertex, and so
$G^{\prime} \notin \mathcal{B}_{\mathrm{rdom}}$ and $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+51$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+5$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+50$, a contradiction. Hence, $z \neq z^{\prime}$. In this case, let $Q^{\prime}=Q \cup\left\{y_{1}, y_{2}\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a special subcubic graph that contains exactly two small vertices, and so no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+46$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, a contradiction.

Hence, $y_{1} \neq y_{3}$. Since G contains no 4 -cycle, vertex y_{2} is not adjacent to y_{3}, that is, $z \neq y_{3}$. Suppose that $z \neq y_{1}$. In this case, let $Q^{\prime}=Q \cup\left\{y_{2}\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a special subcubic graph that contains exactly three small vertices, and either no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ or G^{\prime} is connected and $G^{\prime}=R_{9}$. Thus, $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+38$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, a contradiction.

Hence, $z=y_{1}$, that is, $y_{1} y_{2} \in E(G)$. If, in addition, $y_{1} y_{3} \in E(G)$, then let $Q^{\prime}=Q \cup\left\{y_{1}, y_{2}, y_{3}\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a connected special subcubic graph that contains exactly one small vertex and so $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+51$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+40$, a contradiction. On the other hand, if $y_{1} y_{2} \in E(G)$ and $y_{1} y_{3} \notin E(G)$, then let $Q^{\prime}=Q \cup\left\{y_{1}, y_{2}\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a special subcubic graph that contains two small vertices and so no component of G^{\prime} is in $\mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+46$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+4$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+40$, a contradiction. Hence, $y_{2} \neq y_{5}$.

By our earlier observations, the vertices y_{1}, y_{2}, y_{3}, and y_{5} are pairwise distinct. Let $G^{\prime}=G-Q$. Thus, G^{\prime} is a special subcubic graph that contains exactly four small vertices. At most one component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+32$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction. This completes the proof of Claim 35.2.

By Claim 35.2, the graph $G[X]$ contains at least four edges. Hence at least one of $x_{1} x_{3}$ and $x_{2} x_{5}$ is an edge. By symmetry, we may assume that $x_{1} x_{3} \in E(G)$. If $x_{2} x_{5} \in E(G)$, then the graph G is determined and is isomorphic to the Petersen graph shown in Figure 1. In this case, $\gamma_{r}(G)=4$ and $\mathrm{w}(G)=40$, a contradiction. Hence, $x_{2} x_{5} \notin E(G)$. Let y_{i} be the neighbor of x_{i} not in Q for $i \in\{2,5\}$. Suppose that $y_{2}=y_{5}$. In this case, let $Q^{\prime}=Q \cup\left\{y_{2}\right\}$ and let $G^{\prime}=G-Q^{\prime}$. Thus, G^{\prime} is a connected special subcubic graph that contains exactly one small vertex, and so $G^{\prime} \notin \mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+41$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction. Hence, $y_{2} \neq y_{5}$. We now let $G^{\prime}=G-Q$. Thus, G^{\prime} is a special subcubic graph that contains exactly two small vertices, and so no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$ and $\mathrm{w}(G) \geq \mathrm{w}\left(G^{\prime}\right)+38$. However, $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+3$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+30$, a contradiction. This completes the proof of Claim 35.

Claim 36. The graph G has no 6 -cycle.
Proof. Suppose, to the contrary, that G contains a 6-cycle $C: v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$. Thus, G has girth equal to 6 . In particular, C is an induced cycle in G. Let x_{i} be the neighbor of v_{i} that does not belong to C for $i \in[6]$. The girth condition implies that $x_{i} \neq x_{j}$ for $1 \leq i<j \leq 6$. Let $X=\left\{x_{1}, \ldots, x_{6}\right\}$. The girth condition implies that the only possible edges in $G[X]$ are the edges $x_{1} x_{4}, x_{2} x_{5}$ and $x_{3} x_{6}$. Let G^{\prime} be the special subcubic graph obtained from $G-V(C)$ by adding the edge $x_{1} x_{2}$. Thus, G^{\prime} contains exactly four small vertices, namely $x_{3}, x_{4}, x_{5}, x_{6}$. By Claim 25 , at most one component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}. If $x_{1} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{2}, v_{5}\right\}$. If $x_{1} \notin S^{\prime}$ and $x_{2} \in S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{1}, v_{4}\right\}$. If $x_{1} \notin S^{\prime}$
and $x_{2} \notin S^{\prime}$, let $S=S^{\prime} \cup\left\{v_{3}, v_{6}\right\}$. In all cases, S is an RD-set of G, and so $\gamma_{r}(G) \leq\left|S^{\prime}\right|+2=\gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$.

If no component of G^{\prime} belongs to $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, G^{\prime} contains a component G_{1} that belongs to $\mathcal{B}_{\text {rdom }}$. By Claim 25, there is only one such component and $G_{1} \in\left\{R_{2}, R_{4}, R_{5}, R_{9}\right\}$. The set $X_{1}=\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}$ of small vertices in G_{1} is either independent or induces a graph that contains exactly one edge, namely the edge $x_{3} x_{6}$. Further, every cycle of length less than 6 in G_{1} must contain the added edge $x_{1} x_{2}$ since graph G contains no cycles of length 3,4 or 5 . If G_{1} contains the edge $x_{1} x_{2}$, then G_{1} contains two adjacent vertices of degree 3. From these properties of the graph G^{\prime} we infer that $G_{1} \notin\left\{R_{2}, R_{9}\right\}$. Since R_{5} contains two pairs of small vertices that are adjacent while the set X_{1} contains at most one pair of small vertices that are adjacent, $G_{1} \neq R_{5}$, implying that $G_{1}=R_{4}$ and $X_{1} \subset V\left(G_{1}\right)$. The structure of R_{4} implies that in this case, every small vertex in R_{4} is at distance 2 from two other small vertices. In particular, the vertex x_{4} is at distance 2 from at least one of x_{3} or x_{5} in G^{\prime}. If x_{3} and x_{4} are at distance 2 in G^{\prime} and w denotes their common neighbor in G^{\prime}, then $x_{4} v_{4} v_{3} x_{3} w x_{4}$ is a 5 -cycle in G. If x_{4} and x_{5} are at distance 2 in G^{\prime} and z denotes their common neighbor in G^{\prime}, then $x_{4} v_{4} v_{5} x_{5} z x_{4}$ is a 5 -cycle in G. In both cases, we contradict the girth at least 6 condition in G.

By Claim 36, the graph G has no 6 -cycle. Let u and v be adjacent vertices in G, and let $N(u)=\left\{u_{1}, u_{2}, v\right\}$ and $N(v)=\left\{u, v_{1}, v_{2}\right\}$. Further, let $N\left(u_{i}\right)=\left\{u, u_{i 1}, u_{i 2}\right\}$ and let $N\left(v_{i}\right)=\left\{v, v_{i 1}, v_{i 2}\right\}$ for $i \in[2]$. Thus, G contains the subgraph shown in Figure 16. Let $X=\left\{u_{11}, u_{12}, u_{21}, u_{22}, v_{11}, v_{12}, v_{21}, v_{22}\right\}$. Since the graph G has girth at least 7 , the set X is an independent set. The subgraph shown in Figure 16 is therefore an induced subgraph of G.

Let $Q=\left\{u, u_{1}, u_{2}, v, v_{1}, v_{2}\right\}$ and let G^{\prime} be obtained from $G-Q$ be adding the edges $e=u_{12} u_{21}$ and $f=v_{12} v_{21}$. Thus, G^{\prime} is a special subcubic graph that contains exactly four small vertices, namely the vertices in the set $X^{\prime}=\left\{u_{11}, u_{22}, v_{11}, v_{22}\right\}$. Let S^{\prime} be a γ_{r}-set of G^{\prime}, and let $S=S^{\prime} \cup\left\{u^{*}, v^{*}\right\}$ where the vertices u^{*} and v^{*} are defined as follows. If $u_{12} \in S^{\prime}$, let $u^{*}=u_{2}$. If $u_{12} \notin S^{\prime}$ and $u_{21} \in S^{\prime}$, let $u^{*}=u_{1}$. If $u_{12} \notin S^{\prime}$ and $u_{21} \notin S^{\prime}$, let $u^{*}=u$. If $v_{12} \in S^{\prime}$, let $v^{*}=v_{2}$. If $v_{12} \notin S^{\prime}$ and $v_{21} \in S^{\prime}$, let $v^{*}=v_{1}$. If $v_{12} \notin S^{\prime}$ and $v_{21} \notin S^{\prime}$, let $v^{*}=v$. The resulting set S is an RD-set of G, and so $\gamma_{r}(G) \leq \gamma_{r}\left(G^{\prime}\right)+2$, implying that $\mathrm{w}(G)<\mathrm{w}\left(G^{\prime}\right)+20$.

If G^{\prime} has no component in $\mathcal{B}_{\text {rdom }}$, then $\mathrm{w}(G)=\mathrm{w}\left(G^{\prime}\right)+20$, a contradiction. Hence, G^{\prime} contains a component G_{1} that belongs to $\mathcal{B}_{\text {rdom }}$. By Claim 25, there is only one such component and $G_{1} \in\left\{R_{2}, R_{4}, R_{5}, R_{9}\right\}$. Necessarily, G_{1} contains at least three vertices from the set X^{\prime}. As observed earlier, the set X is an independent set, and therefore so too is the subset X^{\prime} of X, implying that $G_{1} \notin\left\{R_{2}, R_{5}\right\}$. Every cycle of length less than 7 in G_{1} must contain at least one of the added edges e and f since the graph G has girth at least 7. If G_{1} contains the edge e or f, then both ends of the added edge have degree 3 in G_{1}. From these properties of the graph G^{\prime}, we deduce that if $G_{1}=R_{4}$, then $G^{\prime}=G_{1}$. But this would

FIGURE 16 A subgraph in the graph G.
imply that $G[X]=C_{8}$, contradicting our earlier observation that X is an independent set. Hence, $G_{1}=R_{9}$. In this case, both added edges e and f must belong to G_{1}. However, removing any two edges from R_{9} creates a graph which still contains a 5 -cycle. This implies that G itself contains a 5 -cycle, which is a contradiction. This final contradiction concludes the proof of Theorem 3.

6 | PROOF OF MAIN RESULT

In this section, we prove our main result, namely Theorem 2. As a consequence of key result, namely Theorem 3, we have the following upper bound on the restrained domination number of a cubic graph.

Theorem 5. If G is a cubic graph of order n, then $\gamma_{r}(G) \leq \frac{2}{5} n$.
Proof. Let G be a cubic graph of order n. Thus, $n_{2}(G)=0$ and $n_{3}(G)=n$. Since every graph in the family $\mathcal{B}_{\text {rdom }}$ contains a vertex of degree 2 , no component of G belongs to the family $\mathcal{B}_{\text {rdom }}$. The weight of G is therefore $\mathrm{w}(G)=4 n$. Hence by Theorem 3, $10 \gamma_{r}(G) \leq \mathrm{w}(G)=4 n$, or, equivalently, $\gamma_{r}(G) \leq \frac{2}{5} n$.

By Theorem 5, $c_{\text {rdom }} \leq \frac{2}{5}$. As observed earlier, the Petersen graph shows that $c_{\text {rdom }} \geq \frac{2}{5}$. Consequently, $c_{\text {rdom }}=\frac{2}{5}$, yielding the result of Theorem 2. We remark that a classical result in domination theory due to Blank [3] and McCuaig and Shepherd [22] states that if G is a connected graph of order $n \geq 8$ with $\delta(G) \geq 2$, then $\gamma(G) \leq \frac{2}{5} n$. Hence by Theorem 5 this $\frac{2}{5}$ bound for domination also holds for restrained domination if we replace the minimum degree at least 2 requirement with a 3-regularity condition.

ACKNOWLEDGMENTS

B.B. was supported in part by the Slovenian Research and Innovation agency (grants P1-0297, J12452, J1-3002, N1-0285, and J1-4008). Research of M.A.H. was supported in part by the South African National Research Foundation under grant numbers 129265 and 132588 and the University of Johannesburg.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

ORCID

Michael A. Henning (D) http://orcid.org/0000-0001-8185-067X

REFERENCES

1. S. E. Anderson and K. Kuenzel, Power domination in cubic graphs and cartesian products, Discrete Math. 345 (2022), Paper No. 113113.
2. G. Abrishami and M. A. Henning, An improved upper bound on the independent domination number in cubic graphs of girth at least six, Graphs Combin. 38 (2022), no. 2, Paper 50.
3. M. Blank, An estimate of the external stability number of a graph without suspended vertices. (Russian), Prikl Mat. i Programmirovanie. 10 (1973), 3-11, 149.
4. C. Brause and M. A. Henning, Independent domination in bipartite cubic graphs, Graphs Combin. 35 (2019), 881-919.
5. J. Cyman, M. Dettlaff, M. A. Henning, M. Lemańska and J. Raczek, Total domination versus domination in cubic graphs, Graphs Combin. 34 (2018), 261-276.
6. R. Davila and M. A. Henning, Total forcing versus total domination in cubic graphs, Appl. Math. Comput. 354 (2019), 385-395.
7. G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar, and L. Markus, Restrained domination in graphs, Discrete Math. 203 (1999), 61-69.
8. G. S. Domke, J. H. Hattingh, M. A. Henning, and L. Markus, Restrained domination in graphs with minimum degree two, J. Combin. Math. Combin. Comput. 35 (2000), 239-254.
9. P. Dorbec, M. A. Henning, M. Montassier, and J. Southey, Independent domination in cubic graphs, J. Graph Theory. 80 (2015), 329-349.
10. W. Goddard and M. A. Henning, A characterization of cubic graphs with paired-domination number three-fifths their order, Graphs Combin. 25 (2009), 675-692.
11. J. H. Hattingh and E. J. Joubert, Restrained domination in cubic graphs, J. Comb. Optim. 22 (2011), no. 2, 166-179.
12. J. H. Hattingh and E. J. Joubert, Restrained and total restrained domination in graphs, Topics in Domination in Graphs. Dev. Math., vol., 64, Springer, Cham, 2020, 129-150.
13. T. W. Haynes, S. T. Hedetniemi, and M. A. Henning (eds.), Topics in Domination in Graphs. Series: Developments in Mathematics, vol. 64, Springer, Cham, 2020. viii+536pp. https://doi.org/10.1007/978-3-030-51117-3
14. T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, Domination in Graphs: Core Concepts. Springer Monographs in Mathematics, Springer, Cham, 2023. xx+644pp. https://doi.org/10.1007/978-3-031-09496-5
15. T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, Domination in Graphs: Core Concepts. Series: Springer Monographs in Mathematics, Springer, Cham, 2022.
16. M. A. Henning, Graphs with large restrained domination number, Discrete Math. 197/198 (1999), 415-429.
17. M. A. Henning, Bounds on domination parameters in graphs: a brief survey, Discuss. Math. Graph Theory. 42 (2022), 665-708.
18. M. A. Henning and P. Kaemawichanurat, Semipaired domination in claw-free cubic graphs, Graphs Combin. 34 (2018), 819-844.
19. M. A. Henning, and A. Yeo, Total domination in graphs. Springer Monographs in Mathematics. Springer, New York, 2013. xiv+178pp.
20. A. V. Kostochka and B. Y. Stodolsky, A new bound on the domination number of connected cubic graphs, Sib. Èlektron. Mat. Izv. 6 (2009), 465-504.
21. D. Král, P. Škoda, and J. Volec, Domination number of cubic graphs with large girth, J. Graph Theory. 69 (2012), 131-142.
22. W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory. 13 (1989), 749-762.
23. S. O and D. B. West, Cubic graphs with large ratio of independent domination number to domination number, Graphs Combin. 32 (2016), 773-776.
24. D. Rautenbach and B. Reed, Domination in cubic graphs of large girth, Computational geometry and graph theory Lecture Notes in Comput. Sci. vol. 4535, Springer, Berlin, 2008.
25. B. A. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996), 277-295.
26. J. Southey and M. A. Henning, Domination versus independent domination in cubic graphs, Discrete Math. 313 (2013), 1212-1220.
27. B. Y. Stodolsky, On domination in 2-connected cubic graphs, Electron. J. Combin. 15 (2008), no. 1, note 38.

How to cite this article: B. Brešar, and M. A. Henning, Best possible upper bounds on the restrained domination number of cubic graphs, J. Graph Theory. 2024;106:763-815. https://doi.org/10.1002/jgt. 23095

[^0]: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

