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GAN-Based Semi-Supervised Training of LSTM
Nets for Intention Recognition in Cooperative Tasks

Matija Mavsar ¥, Jun Morimoto

Abstract—The accumulation of a sufficient amount of data for
training deep neural networks is a major hindrance in the ap-
plication of deep learning in robotics. Acquiring real-world data
requires considerable time and effort, yet it might still not capture
the full range of potential environmental variations. The generation
of new synthetic data based on existing training data has been
enabled with the development of generative adversarial networks
(GANSs). In this paper, we introduce a training methodology based
on GANSs that utilizes a recurrent, LSTM-based architecture for
intention recognition in robotics. The resulting networks predict
the intention of the observed human or robot based on input RGB
videos. They are trained in a semi-supervised manner, with the out-
put classification networks predicting one of possible labels for the
observed motion, while the recurrent generator networks produce
fake RGB videos that are leveraged in the training process. We show
that utilization of the generated data during the network training
process increases the accuracy and generality of motion classifi-
cation compared to using only real training data. The proposed
method can be applied to a variety of dynamic tasks and different
LSTM-based classification networks to supplement real data.

Index Terms—Deep learning methods, real-time action recog-
nition from video, human-robot collaboration.

I. INTRODUCTION

OOPERATION between humans and robots enables the
C realization of complex tasks and at the same time relieves
human workers of stressful and demanding labor. To ensure safe
and efficient cooperation, autonomous systems for supervision
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and control of collaborative workspaces are crucial. Detecting
and predicting human and robot motion during task performance
can provide vital information for optimizing collaborative be-
haviors. Furthermore, it is important to develop solutions that
can generalize across various applications, allowing for rapid
adaptation to specific tasks.

Recurrent neural networks (RNNs), specifically long short-
term memory (LSTM) networks [1], have proven useful in
predicting future states in dynamic processes, as they can process
sequential inputs by utilizing memory cells. Several methods for
predicting human and robot motion based on position measure-
ments or captured RGB(D) images have been proposed. They
enable quick robot motion adaptation and thus a more efficient
execution of collaborative tasks [2], [3]. However, ensuring
the robustness of neural networks in robotics is often chal-
lenging due to the limited availability of high-quality training
data.

In the field of machine vision, state-of-the-art networks for
object classification are typically trained on millions of diverse
samples. In robotics, data collection often needs to occur in
specific environments where robots perform their tasks, which
can be time-consuming and may require human intervention.
Additionally, these environments can change rapidly, necessitat-
ing the gathering of additional training data. While simulation
technologies and domain randomization can increase the amount
of data and improve performance to some extent [4], signifi-
cant differences between real and simulated data may persist.
Given these challenges, a method that can operate with smaller
amounts of data and still achieves successful motion prediction is
needed.

In this paper, we propose a method to maximize the utilization
of existing training data, consisting of input RGB videos and the
corresponding labels. In our previous work, we developed an ap-
proach for generating object handover behaviors using recurrent
neural networks [5], [6], where videos of the giver’s motion are
used as input to an LSTM network, which computes the neces-
sary receiver’s motion for a successful handover. The proposed
network can predict either the handover location [6] or complete
receiver trajectories [5]. To enhance this approach, we introduce
a semi-supervised recurrent neural network training technique
that employs a Generative Adversarial Network (GAN) with
LSTM layers. This architecture comprises a generator and a
discriminator, where the generator attempts to create fake RGB
videos with a distribution similar to the real data, in an attempt
to fool the discriminator. The discriminator can be any LSTM
classification network that takes sequences of RGB images as
input and categorizes the observed motion if the input is real, or
labels it as fake if its input is a generated video. The resulting
predictions can be used to control the motion of a robot in a
collaborative environment.
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A. Contributions

Our main contributions can be summarized as follows:

® A semi-supervised methodology for the augmentation of
training data that constructs synthetic videos and leverages
them in the training process of classification networks,
enabled by the use of a recurrent LSTM generator network.
The proposed generator network can be combined with
LSTM-based neural networks for intention prediction and
motion classification.

* Extensive experiments demonstrate that the proposed
GAN-based training approach enhances the performance
of different LSTM-based motion classification networks
compared to the same networks trained without the gener-
ative component.

The key benefit of our approach is that the networks trained
with it generalize significantly better to different variations in
the data than networks trained using conventional methods.
Therefore, our approach is apt for real-world applications where
data exhibits substantial variability, as demonstrated by realizing
a practical human-robot collaboration task.

II. RELATED WORK

Human-robot collaboration (HRC) has garnered extensive
attention in recent years due to the demands of service robot
applications in both home and industrial settings [7], where
robots must cooperate with humans to perform different tasks.
The key research goals include enhancing task performance,
facilitating robot learning through physical interaction, and en-
suring task fluency [8]. To improve cooperation and increase
control over the collaborative environment, interfaces for better
perception and motion prediction are required. For this reason,
intention recognition is an important aspect of HRC, enabling the
robot to recognize and predict human actions. Towards this end,
the estimation of human motion from video sources has been
investigated for many years [9]. Callens et al. [10] present an
approach that learns motion models to detect motion onset and
estimate intent. Some other approaches employ convolutional
neural networks [11]. While wearables and motion capture tech-
niques are increasingly common for activity recognition [12],
[13], they do require additional hardware. Recurrent neural
networks, especially LSTM nets, have found widespread use in
HRC for predicting future outcomes based on sequences of past
inputs. Methods for RNN-based activity recognition from input
videos have been developed [14], [15], and some approaches
use human skeleton motions as input to predict future poses [2],
[16].

Generative adversarial networks (GANs) were initially
designed for unsupervised learning, e.g. generation of photoreal-
isticimages as well as other types of data. In recent years their use
has extended to other areas, such as reinforcement learning [17]
and semi-supervised learning [18]. GANs in various forms have
also been used in the context of robotics and human-robot
collaboration, e.g. to predict optimal grasping strategy for a
receiver during a human-to-human object handover using unla-
beled data [19]. The generation of additional data is a common
use of GANs; some existing methods employ GANS to create
synthetic training data for detection and classification tasks [20],
while others generate unlabeled data and use it together with real
datain a semi-supervised learning pipeline [ 18], [21]. Exploiting
GANs for sequence generation has been addressed in [22],
where authors utilize LSTM-based generator and discriminator
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to obtain synthetic energy consumption training data, while
a number of regularization techniques for better training on
non-image data were presented in [23].

In our work, we aim to enhance an RGB video dataset
by applying GANs for the generation of additional synthetic
data in the form of image sequences. Several approaches were
developed in the past for unsupervised video generation with
GANS. In [24], videos of human faces are generated based on
desired condition vectors. In [25] and [26], recurrent layers
are added for unconditional video generation. These methods
train two discriminators that process individual frames and
entire videos, aiding the generator in creating both realistic
and temporally consistent images. Notably, the discriminator
in these approaches outputs either fake or real labels, whereas
our task requires classifying input observations into a limited
set of classes. For classification tasks, Dai et al. [27] have
shown that employing GANs in semi-supervised training leads
to higher accuracy. Interestingly, the generator tends to create
unrealistic images, which helps refine the decision boundary
between classes. Madani et al. [28] implement this approach
for X-ray image classification by modifying the discriminator
output layer to classify real data into corresponding real classes
and fake data into a separate class.

From our analysis of the state-of-the-art, we conclude that
RNNs and GANSs have indeed been utilized for motion recogni-
tion. However, they have not been combined for semi-supervised
training of motion classification networks. Drawing inspiration
from these methods, we propose a GAN-based architecture
for semi-supervised training of LSTM-based classification net-
works to predict human or robot intentions in the context of
human-robot collaboration.

III. SEMI-SUPERVISED INTENTION RECOGNITION

A. Generative Adversarial Networks

The concept of a generative adversarial network was first
introduced by Goodfellow et al. [29]. A GAN consists of two
networks that compete against each other: a generative network
G that attempts to generate data similar to the data from a
real dataset, and a discriminative network D that computes
the probability of a specific sample coming from the real data.
In probabilistic terms, a generative network should learn how
to map random noise vectors z € R from a fixed a priori
distribution p,(z) to the data vectors x, x = G(z,6,), where
0, are the parameters of the generative network. On the other
hand, a discriminative network with parameters § , computes
the probability D(z,0p) that a sample x comes from the real
data distribution pay, (X).

To train a GAN, we simultaneously optimize the parameters
of both networks: the generator should try to generate data
that the discriminator network recognizes as real data, while
the discriminator should correctly classify real and generated
data. The optimum is obtained when the discriminator network
cannot distinguish between the real and generated data [29],
i.e. PG = Pdaa and D(G(2z,0¢),0p) = 0.5. The training of the
GAN can therefore be described as the following minimax game
with value function V (G, D):

minmax V(D,G) = Exp,.,. [log D(x)]
0c 6p

+ Egp, log (1 = D(G(2)))]. (1)
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In our architecture, both the generator and the discriminator
network contain recurrent layers, while the discriminator output
layer is adapted to predict K + 1 classes. One of the classes
corresponds to the generated data, while the other K classes
correspond to a set of possible intentions of the observed human
or robot.

B. Recurrent Neural Networks

Recurrent neural networks can process sequential input data
and are therefore especially suitable for analysis of dynamic
processes, including robot and human motion. They consist of
memory cells that can store information dependant on inputs
from previous time steps. They are composed of a cell and
several gates, regulating the flow of information in and out of the
cell. In each time step, the current cell state c(¢) and hidden state
h(t) are fed back to the LSTM unit together with the next input.
In this way, each new network output depends on the results
from previous time steps.

C. Recurrent Generative Adversarial Networks

A typical classification network categorizes input data into
one of K classes by generating a probability distribution across
these classes. In supervised learning, the model is trained to
minimize cross-entropy between the actual and predicted labels.
In the context of GANSs, this approach can be extended to
semi-supervised learning by designating the generated synthetic
data as an extra class [27], [30]. We introduce a methodology
named RSS-GAN that employs Recurrent GANs to train LSTM-
based classification networks in a Semi-Supervised manner. The
proposed method features an LSTM generator network, enabling
generation of image sequences, and an LSTM discriminator
network, designed for intention classification from input videos.

The structure of the architecture is shown in Fig. 2. The input
to the recurrent generator G is a random noise vector z € R
from a priori noise distribution p.(z), which is first passed
through an LSTM layer. To generate a sequential output, the
input vector z is repeatedly passed through the LSTM layer
along with the cell state c(¢) and hidden state h(¢) from the
previous time step, with the initial states set to zero. If the
total length of the sequence is N, the resulting sequence of
hidden states after N time steps is then {h;}¥_,, which is passed
through deconvolutional, normalization and nonlinear layers.
This results in a sequence of RGB images I(t) € RW*H>3 of
width W and height H, i.e. {I;}Y,.

The recurrent discriminator D takes a sequence of RGB
images {I;}, of observed human or robot motion as input,
which can come either from a real distribution pgy,, i.e. from
the training dataset, or from the generator’s distribution pg,
representing generated “fake” data. The images are passed
through convolutional, LSTM and fully connected layers. The
discriminator output vector1 € REY 1= {1y, 1y,...,lx 1} is
additionally processed by a softmax layer to obtain a probability
distribution pp over K + 1 possible motion classes:

1

. et )
pD(y:Z|{I(t)}t):?1l7 22177K+17 (2)
k=1 €*
where y represents a motion class, i.e. y € {1,2,..., K + 1}.

As mentioned in Section III-A, class K + 1 denotes videos
presumed to be generated or fake, while other classes denote
possible intentions of the observed agent.

While the discriminator network in Fig. 2 is custom-designed,
we could replace it with any other LSTM recurrent neural
network designed for motion classification, enhanced with a
class that classifies fake videos. Besides the CNN-LSTM dis-
criminator network from Fig. 2, we evaluated our approach also
on an unidirectional LSTM network for action recognition [15]
that consists of pretrained ResNet-18 convolutional layers, fully
connected layers, and LSTM layers, with the output layer ex-
tended by the fake video class.

The following set of pairs containing image sequences and
the corresponding labels is needed for training the networks:

N" umirLx
(L2, e A3)

I, ; is the i-th image in the j-th training image sequence, N;
is the number of images in this training pair, 7, is the motion
class label for the j-th sequence and Num FEx is the number of
training pairs in the dataset.

D. RSS-GAN Training Method

In each training step, the discriminator and generator losses
are calculated and used to update the weights of the networks.
Note that we calculate the losses in each time step, i.e. every
time a new image in the image sequence is processed by the
networks. This is because in a real setting, we want to predict the
motion class of the observed agent as soon as possible, after only
a few images of motion are available. The prediction typically
becomes more accurate as a larger part of the executed motion
is processed.

The discriminator is trained to improve the classification
accuracy of motion videos by minimizing the cross-entropy
between the predicted class distribution and the actual class
label. We use both real videos and the image sequences generated
by network G to train the discriminator. The loss function for
the discriminator is given by [21]:

Lpn= —Emyr | ypualogpo (y{Li }y)]

—Emyr  ~pellogpp(y = K + 1{TL 1))
= LD,msup + LD,n,unsupa (4)

where Lp y, sup and Lp y, unsup are respectively the supervised

Lp s = By yropualog o (y{Li}ii,, y < K +1)]
(%)
and unsupervised loss

Lp nunsup=—Er,37 ~pue 108 [1=pp (Y{ L}y, y=K+1)]]
—Emyr e logpp(y = K + 1{L;};=y)]. (6)

In the supervised loss function Lp , s,p We evaluate the classi-
fication of real videos, while in the unsupervised loss function
L p nunsup We evaluate whether the generated videos were cor-
rectly labeled as fake and the real videos as not fake.

To train the generator, instead of directly maximizing the out-
put of the discriminator, we define a loss function that matches
the statistics of real and generated data [21]. Specifically, we
train the generator to match the expected values of real image
features and generated image features:

Lgn = ||E{Ii}?=1~pamf({1i 1)
- E{Ii}?zlfvpc (f({I%}ZL:I)sz (7
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Algorithm 1: RSS-GAN Training Procedure.

Initialization: Create a recurrent generator GG with
parameters 6 and a recurrent discriminator D with
parameters 0 p. Set the number of epochs to E. Set
number of generator update steps to ng.

1: for epoch = 1 to F do

2:  Sample noise z from p,.

3: Calculate a batch of image sequences from the

generator’s distribution, {I;}? ; ~ pq.

4: Sample a batch of image sequences and labels from

the real training data, {I;}_;, ¥ ~ Paata-

5:  Update discriminator weights 8, by backpropagating

loss Lp given by (8).

6: for step =1 to ng do
7:  Perform operations 2 and 3 to obtain {I;}]" ;~ pg.
8: Update generator weights 8 by backpropagating
loss L, given by (8).
9: end for
10: end for

11: return @, 0p

where f({I;}! ) denotes the output of an intermediate dis-
criminator layer (shown in Fig. 2). Note that the generation of
fake samples, calculation of loss and its backpropagation can
be repeated any number of times to optimize the performance
of the generator network. We denote the number of generator
update steps (before the discriminator is updated again) as ng
and describe its use in more detail in Algorithm 1.

Since the discriminator and generator loss are calculated for
each time step n, the total loss for an image sequence of length
N is given by

1 N
LD = N Z'YnLD,nv

n=1

1 N
Lo =+ ;%Lc,n, (8)

where Lp ,, and Lg,, are calculated using (5)—(7) for a time
step n and are weighted with ~,,,

1
- 1 + e 1’\‘]111 +0.5 "

Tn )

Here, parameter o adjusts weights at each time step, emphasiz-
ing later images where more information is available.

The RSS-GAN models and their training were implemented
using PyTorch library [31]. The learning rate was set to 10~%.
The training was stopped after 60 consecutive epochs of no loss
reduction on the validation dataset. The model weights with the
highest classification accuracy on the validation dataset were
used for evaluation on the test dataset. The training procedure is
summarized in Algorithm 1.

IV. EXPERIMENTS

We conducted a series of experiments to evaluate the perfor-
mance of the RSS-GAN training method. We assessed motion
prediction accuracy using two distinct datasets. In the first sce-
nario, a robot executed motions towards random goal poses.
The goal of the task was to predict the robot’s target area
based on its observed motions. In the second scenario, a human
worker placed a workpiece into one of the four designated slots.
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Fig. 1. Example of an experimental setup for a human-robot collaboration
task. The proposed approach can be used to supplement real training data for a
more dynamic and efficient performance during the assembly process.

Here, the objective was to predict the targeted slot based on the
observed human arm movement.

Examples of both robot and human input videos, along with
the goal areas for each motion class, can be seen in Fig. 3. We
compared the accuracy of classification networks trained using
our proposed approach — employing both real and generated
data — to the accuracy of the same networks trained solely with
real data, i.e., without the use of the GAN-based generator. We
evaluated the classification performance on robot data using
our custom-designed CNN-LSTM discriminator network (see
Fig. 2). Meanwhile, for the human videos, we tested both the cus-
tom CNN-LSTM and the LSTM-based network with ResNet-18
convolutional layers (ResNet-LSTM) proposed in [15].

A. Motion Data Acquisition

Robot motion data was acquired by executing 7198 motions,
defined as minimum jerk trajectories [32] with randomly se-
lected initial position, fixed initial orientation and randomly
selected end pose. The initial and final positions as well as
final orientations were confined to a fixed range of values. The
motions were recorded using an RGB camera. To distribute
motions into a discrete set of classes, the motion end area
was split into K = 4 subareas in the x-z plane and the videos
were labelled with y € {1,2, 3,4}, based on the subarea where
the robot motion has finished. This way we obtained 7198
video-label data pairs, which were split into training, validation
and test subsets of sizes 5879, 654 and 665, respectively. We
applied small random rotations to training images to imitate
variations of the camera view directions. Brightness, contrast
and saturation were randomly adjusted and Gaussian noise was
added to the acquired frames. All RGB frames were resized
to 128 x 128 pixels and the video streams were subsampled to
contain 8 frames.

We gathered human motion data in a human-robot collabo-
ration setting, as illustrated in Fig. 1. In this setting, both the
human and the robot share a workspace to place workpieces
into K = 4 slots. We recorded the human using an RGB camera,
while videos were labeled with y € {1, 2,3, 4}, depending on
the goal slot of each human motion. This way we obtained a
total of 1200 video-label data pairs. The gathered human data
was split into training, validation, and test subsets in two distinct
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videos of robot or human motion, while the discriminator network attempts to correctly classify videos from the real data distribution and label videos from the
generator’s distribution as fake. The discriminator therefore predicts a probability distribution across K real motion classes and one fake class, while the generator

attempts to generate images with features similar to real image features.

ways in order to statistically evaluate the neural network training
under varied conditions:

e Firstly, we created five separate sets of test data. We

achieved this by selecting five non-overlapping test subsets,
each containing 80 consecutive samples, from the last 400
data pairs. The remaining data was randomly distributed
between training and validation data.

e Secondly, 10 different train-validation-test splits were

made by designating the last 200 samples as the test subset.
The remaining data underwent 10 random train-validation
divisions.

Our rationale behind this regime was to assess the trained
networks using festing data from distinct recording sessions than
those from which the fraining/validation data originated. This
was crucial as we aimed to understand how well the networks
generalize to new data, especially given that human motion ex-
hibits significantly more variability than robot motion. Another
layer of variability arose from changes in clothing across record-
ing sessions. All training sets underwent same randomization
as the robot sets. Image sizes were adjusted depending on the
architecture employed.

B. Results With Robot Motion Data

To assess the performance of the training process using
our proposed RSS-GAN methodology, we first applied it to
train the custom-designed CNN-LSTM network on the robot
motion dataset. Throughout our experiments, we varied several
parameters, including the percentage of training data used, the
dimension M of the random noise vector z used as input to the
generator network, and the number of consecutive updates to the
generator’s weights, denoted as parameter n¢ in Algorithm 1.

We conducted some initial tests by varying values of ng
and M to evaluate their impact. A higher number of loops
ng improved the accuracy, likely because the generator pro-
duced higher quality training images. Similarly, the value of
M significantly influenced the accuracy, prompting us to test
two distinctly different values. Based on these initial findings,
we opted to train the proposed networks using combinations
of ng € {2,5} and M € {8,100}. We then evaluated these
architectures using the test dataset. We set the parameter o from
(9) to 7, ensuring the appropriately balanced weight distribution
between early and late time steps.

Classification accuracy was determined after processing each
frame in the input image sequences (example predictions are
illustrated in Fig. 3). Fig. 4 displays the average accuracy of
the networks in relation to the number of processed frames and
different hyperparameters. Training was conducted with varying
sizes of training datasets. The accuracy noticeably improves as
more frames are processed; with the RSS-GAN approach, when
utilizing 100% of the training data, it peaks at 85.7%. In contrast,
when trained solely on real data—without using the proposed
GAN-based training methodology—the accuracy reaches only
up to 82%.

The presented results show that the motion classification
accuracy improves when the generated datais used in the training
process along with the real data. The average accuracy was
higher in all cases, regardless of the percentage of data and hy-
perparameters used for training. The differences were, however,
not very large. This is probably because the variability in the
input images is low, which reduces the effect of additionally
generated data on generalization.

C. Results With Human Motion Data

In the experiment with human motion data, the variability of
the gathered data was much higher than in robot experiments,
both due to the variability of motion and variability of clothing.
As explained in Section I'V-A, the testing sets were formed in
such a way to test the generalization power of the networks, i.e.
the test data was collected in different data collection sessions
than the data used for training/validation. We used two different
series of datasets to statistically evaluate the performance of
the trained networks. Based on robot data results, we selected
the combination ng =2 and M = 100 to train our custom
CNN-LSTM network, since it has shown consistent perfor-
mance. When training the ResNet-LSTM, however, ng = 1
was used to reduce the training time. The results are shown in
Fig. 5.

Similarly to the robot data experiment, the performance of
LSTM-based networks increases as more data frames are pro-
cessed, either with or without employing the proposed RSS-
GAN training method. However, overall accuracy of the net-
works trained with RSS-GAN methodology is significantly
higher that the accuracy of networks trained without the gen-
erated data. The reason for this performance difference is that
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Fig. 3.

Predicted probability distributions across motion classes for example robot and human input videos. Red rectangles represent the goal areas for each class

of motion that the network must predict. As more camera frames are processed, the predicted probability of the correct class typically increases. Robot motion
prediction model was trained using parameters ng = 5, M = 8, while values ng = 2, M = 100 were used in the case of human data.
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were trained using 100%, 50%, 75%, and 25% of training data. Additionally, accuracy for models trained using real data only (i.e. without utilization of synthetic
generated data) is shown. A clear increase in classification accuracy can be observed with more processed frames for all models.

the GAN-generated data prepare the networks for variations
not present in the training data. Thus the networks trained with
RSS-GAN methodology generalize better.

The standard deviations plotted atop the accuracy bars indi-
cate that the results are statistically significant. Notably, once all
data frames are processed, networks trained with GANs exhibit
significantly greater accuracy compared to those trained without
GAN:S. It is worth noting that the mean accuracy of networks
trained using the RSS-GAN methodology surpasses the sum of
the mean accuracy and standard deviation of networks trained
without GANS.

D. Observations

We observe that the increase in classification accuracy is more
pronounced with human data than robot data. The main reason

for thisis that robot data is less diverse, with minimal background
changes and with motions following consistent trajectories.
Consequently, the data generated by GAN may not provide as
much novel information and has a smaller impact on network
performance. Additionally, we observed that accuracy was lower
for robot data compared to human data, possibly because robot
goal areas were less clearly defined, making it easier for the
network to misclassify motion, particularly with low-resolution
images.

Fig. 6 displays example synthetic videos generated during
training with the RSS-GAN approach. The generators for both
types of data output image sequences that resemble real data.
However, the images can clearly be recognized as fake. This is
in line with the findings in [27], where the authors show that the
generator distribution should not match the true data distribution
for good semi-supervised learning.
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Custom CNN-LSTM on 5 test splits
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Comparison of classification accuracy on human motion dataset with and without GAN utilization. We evaluated the performance of both our custom

discriminator network and of a previously proposed action recognition network ResNet-LSTM. The top row shows performance of the networks trained on 5
different sets of test data and randomly selected training/validation data. The bottom networks were trained on a single test set, while randomly varying the
training/validation data. The error intervals at the top of each bar show the standard deviation of the classification accuracy across the datasets. Image input sizes
were 128 x 128 when using our custom CNN-LSTM and 224 x 224 when using ResNet-LSTM.

Real

Generated

Generated

Fig. 6. Example of generated robot (top) and human (bottom) images, com-
pared to real images. It can be easily seen that they do not come from the real data
distribution. However the generated features still have the ability to positively
contribute to the training process. The presented images were generated using
models trained with ng =5, M = 8 and ng = 2, M = 100 on robot and
human data, respectively.

The ResNet-LSTM architecture trained on 5 splits of human
motion data was implemented in a real human-robot collabora-
tive assembly experiment and is presented in a video uploaded as
supplementary material. This experiment shows that the network
can predict the goal slot of human motion in a timely manner
and can be used to adapt the robot motion to prevent interference
with a human worker.

E. Benefits and Limitations

Our experiments with robot and human motion data are com-
plementary and show that the impact of the RSS-GAN training

approach on performance varies depending on the dataset. Based
on the results, we find that when the training dataset already
covers most of the potential variations, the expected performance
increases are relatively small. This is noticeable with the results
on robot data, where training videos have very little variations
and the robot motions are relatively consistent. On the other
hand, networks trained using the RSS-GAN approach exhibit
significantly improved generalization when faced with larger
differences between testing and training data, as is the case
with human data. This is supported by a notable increase in
classification accuracy observed in our experiments.

There are some inherent limitations to the generalization
capabilities of the trained networks. Our proposed method ex-
hibits best performance when the training and testing data are
coherently connected. When the variability of input videos is
extremely high, the variations become too broad, overwhelm-
ing the capacity of the RSS-GAN method to generate useful
synthetic data.

While the proposed approach can address some classification
performance issues, it is important to note that it cannot fully
resolve all of them. As discussed in Section IV-D, classifying
our robot motion dataset presents a challenge due to continuous
transitions between motion classes, making precise classifica-
tion at the class boundaries difficult. Unlike when dealing with
large variations in motion and lighting conditions, the RSS-GAN
training method is unable to produce data that effectively address
this specific issue.

V. CONCLUSION

In this letter, we introduce a recurrent generative adversarial
approach, termed RSS-GAN, to train intention prediction net-
works through semi-supervised learning. Leveraging recurrent
layers enables us to generate and process sequences of images,
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allowing for the prediction of an observed agent’s intention even
before the motion finishes. We demonstrated the applicability
of the proposed training approach on different LSTM-based
discriminator networks and evaluated it using two distinct types
of training data: robot motion and human motion videos. Our
findings illustrate that incorporating synthetically generated data
alongside real data enhances motion classification accuracy
of the LSTM-based networks, which makes their application
suitable for real-time human-robot collaborative tasks.

In our current training methodology, we have experimented
with various types of LSTM-based discriminators, maintaining
the generator’s design as depicted in Fig. 2. However, it is
worth noting that the generator network can also be modified,
as demonstrated in [26]. In our future work, we aim to explore
different LSTM-based generator networks to further improve
performance. Another potential research direction involve mov-
ing towards regression problems, where the goal is to predict the
final continuous pose of human or robot movement. This task
goes beyond merely classifying the motion into a predefined set
of goals.
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