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A B S T R A C T   

This article provides a comprehensive review and evaluation of the selective catalytic reduction (SCR) of ni
trogen oxides (NOX) using ammonia as a reducing agent in flue gases produced by the combustion of hydrogen or 
ammonia with air. Over the years, density functional theory calculations (DFT) have been used extensively to 
complement experimental results, with emphasis on understanding adsorption modes and reaction mechanisms. 
Recent advances in this field have led to a shift from non-periodic to more accurate periodic models. It has been 
shown that the SCR reactions mainly follow the Eley-Rideal mechanism, with NH2NO identified as the most 
important intermediate. Global kinetic and microkinetic models are widely used, but these models often overlook 
the crucial role of adsorption of water molecules on catalyst surfaces. Consequently, their utility is reduced under 
conditions of elevated water vapor concentrations. To address this limitation, numerical fluid dynamics simu
lations (CFD) have been introduced that include user-defined functions to model chemical deNOX reactions. In 
particular, the method CFD can also take into account the adsorption of relevant species at the active sites of the 
catalyst. We highlight a significant knowledge gap in the existing literature: the lack of consideration of the 
adsorption of water on catalyst surfaces during the selective catalytic reduction of NOX. Consequently, these 
models are inadequate for flue gases with high water vapor content produced during the combustion of hydrogen 
or ammonia. Addressing this shortcoming is critical to better understand and accurately predict the performance 
of SCR under different operating conditions.   

1. Introduction 

The transition to a carbon-neutral society requires the decarbon
ization of the high-temperature heating used in many sectors (e.g. pro
cess metallurgy) [1,2], which can only be achieved by using 
carbon-neutral (synthetic fuels and biofuels) or carbon-free fuels. Two 
of the most promising carbon-free fuels are hydrogen (H2) [3,4] and 
ammonia (NH3) [5,6]. These two fuels can be used for transportation 
and electricity generation: H2 has proven to be a fuel for internal com
bustion engines [7–10], as has a mixture of NH3 and H2 [11,12]; gas 
turbines can run on pure NH3 [13], its mixture with H2 [14] and on pure 
H2 [15]. None of the fuels, neither H2 nor NH3, emit carbon dioxide or 
carbon monoxide during its combustion. However, combustion with air 

produces NOX emissions (a mixture of nitrogen oxide (NO) and nitrogen 
dioxide (NO2) [16]; see Appendix A), which pose an environmental and 
health hazard. 

Among other things, NOX contributes to the formation of acid rain, 
which is responsible for the eutrophication of soils and water bodies and 
has negative effects on aquatic ecosystems as well as terrestrial vege
tation [17]. Although acidic nitrate/nitric acid particles have not been 
shown to have direct effects on the human health [18], NO and NO2 
gases irritate the respiratory tract and cause respiratory issues via 
inflammation and cell damage. This makes NOx one of the priority air 
pollutants for which limit values for the protection of the human health, 
vegetation and natural ecosystems are laid down in various directives (e. 
g. Directive 2008/50/EC on ambient air quality and cleaner air for 
Europe). Direct exposure to the more acutely toxic NO2 can lead to 
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respiratory inflammation and reduced lung function (e.g. asthma) and 
increase susceptibility to other respiratory infections already at low-ppm 
levels [19]. However, NOX is also harmful because of its indirect effects 
on the ecosystem, human health and climate. Photolysis of NO2 leads to 
the formation of toxic ozone in the lower atmosphere and, in combi
nation with volatile organic compounds (VOCs), to the formation of 
photochemical smog, which is particularly harmful to health [20], but 
also reduces visibility and contributes to climate change. Nitrogen oxide 
species in the atmosphere react with other air pollutants to form, for 
example, nitroaromatic and nitrated polyaromatic hydrocarbons 
(nitro-PAHs), which are highly toxic, carcinogenic and mutagenic to 
humans and other living organisms [21–23]. In particular, nitrated 
(poly)aromatic pollutants are also strong absorbers of the near UV ra
diation and visible light, which causes atmospheric heating and climate 
change [24]. 

Therefore, in addition to decarbonization, there is a global need to 
reduce the combustion emissions of NOX into the atmosphere, including 
emissions from the combustion of ammonia and/or hydrogen (with air), 
which can be achieved by selective catalytic reduction of nitrogen ox
ides (SCR deNOX). Alternative ways to reduce nitrogen oxide emissions 
include avoiding their formation during combustion through (i) oxyfuel 
combustion (combustion in a near-pure oxygen environment) [25,26], 
(ii) optimized burner design and proper combustion management [15, 
27,28] and (iii) catalytic combustion e.g. catalytic hydrogen combustion 
(CHC) [29]. Examples of alternative post-combustion reduction tech
nologies include (i) selective non-catalytic reduction (SNCR), which 
includes the injection of a reagent at high temperatures (between 850 
and 1175 ◦C) [30,31], (ii) NOX storage in lean NOX traps (LNT), which 
includes NOX reduction during the periods of rich exhaust gas conditions 
typically used with hydrocarbon fuels, e.g. diesel [32,33] and (iii) NOX 
removal by non-thermal plasma reduction (NTPRD), which necessitates 
electrical power source to operate [34,35]. However, these alternative 
NOX emission reduction methods involve high operating costs (oxyfuel 
combustion), require research and development (R&D) and investments 
for infrastructure modifications (optimized or catalytic combustion), or 
are not applicable to carbon-free fuels (LNT). 

1.1. Formation and selective catalytic reduction of nitrogen oxides 

During combustion, nitrogen from the air (or the fuel itself) can be 
converted into nitrogenous pollutants such as NO, NO2, N2O, NH3. The 

species formed and their ratios depend on the combustion conditions, e. 
g. temperature, air-to-fuel ratio, pressure, etc. N2O emissions are usually 
insignificant because N2O reacts rapidly with the H and OH radicals to 
form N2 or decomposes by itself in colder regions downstream of the 
flame [16]. On the other hand, the formation and decomposition pro
cesses of NOX during combustion are very complex. There are three 
different pathways of the NO formation: (i) oxidation of atmospheric 
nitrogen (with O, O2 and OH; the Zeldovich mechanism) - thermal NO, 
(ii) reactions of atmospheric nitrogen with hydrocarbon radicals (mainly 
HCN; described by Fenimore) - prompt NO and (iii) oxidation of nitro
gen bound in the fuel (with O2; Pershing and Wendt) - fuel NO [16]. NO2 
forms from NO, which usually occurs in the areas, where rapid cooling 
takes place (e.g. in the area where hot combustion gases mix with the 
inlet air [16]). Typically, NOX emissions in the combustion products 
consist of 90 vol% NO and 10 vol% NO2 [36]. 

SCR deNOX is a process of converting NOX from flue gases to nitrogen 
(N2) and water vapor using a reducing agent and a catalyst. The most 
commonly used reducing agents for the SCR deNOX process are NH3 and 
urea-water solution (UWS). Alternative reducing agents for SCR deNOX 
are: H2 [37], hydrocarbons, alcohols, carbon monoxide [38] and others. 
Since most of the research and development work is concentrated on 
SCR deNOX with ammonia (NH3-SCR deNOX), this paper focuses on 
these processes. 

There are three main SCR deNOX reactions with ammonia in a lean 
environment (excess oxygen during combustion, which is also present in 
a flue gas). 
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3
2
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The reaction (1.1) is usually referred to as the standard SCR reaction. 
The fastest and preferred SCR reaction is reaction (1.2). To promote 
reaction 1.2 (rapid SCR reaction), the molar ratio between NO and NO2 
should be close to one. Since NO usually predominates, this could be 
achieved by pre-oxidizing a portion of NO to NO2 (using a separate 
catalyst, e.g. diesel oxidation catalyst (DOC), or on the SCR deNOX 

Abbreviations 

3D three-dimensional 
CFD computational fluid dynamics 
CHA chabazite 
deNOX denitrification 
DFT density functional theory 
DOC diesel oxidation catalyst 
DRIFTS diffuse reflectance infrared Fourier transform spectroscopy 
EPR electron paramagnetic resonance 
ER Eley-Rideal mechanism 
ER equivalence ratio 
FTIR Fourier-transform infrared spectroscopy 
GGA generalized gradient approximation 
H2 molecular hydrogen 
H2O water 
IR infrared 
LDA local density approximation 
LH Langmuir-Hinshelwood mechanism 
LNT lean NOX traps 
MOFs metal-organic frameworks 

N2 molecular nitrogen 
N2O nitrous oxide 
NH3 ammonia 
nitro-PAHs nitroaromatic and nitrated polyaromatic hydrocarbons 
NO nitrogen oxide (nitric oxide) 
NO2 nitrogen dioxide 
NOX nitrogen oxides 
NTPRD non-thermal plasma reduction 
PMoA phosphomolybdic acid 
R&D research and development 
SCR selective catalytic reduction 
SNCR selective non-catalytic reduction 
SO2 sulfur dioxide 
UDF user-defined function 
UV ultraviolet 
UWS urea-water solution 
VOCs volatile organic compounds 
XPS X-ray photoelectron spectroscopy 
XAS X-ray absorption spectroscopy 
XRD X-ray diffraction 
ZSM zeolite Socony Mobil  
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catalyst itself [39]). The reaction 1.3 (NO2-SCR reaction) occurs when 
excess NO2 is present. NO2 can also react (reaction 1.4) to form N2O, 
which is an undesirable side reaction between ammonia and NO2 
because the resulting N2O has a greenhouse effect and depletes the 
stratospheric ozone layer [40]. 

NH3 +NO2 →
1
2

N2 +
1
2
N2O +

3
2
H2O (1.4) 

Insufficient mixing, excess ammonia, or a rapid release of the stored 
ammonia (through the catalyst) can cause ammonia emissions, which is 
known as an ammonia slip. This becomes a problem when high NOx 
conversions (>90%) are required. Therefore, ammonia slip catalysts 
(ASC) are commonly used in vehicle exhaust treatment systems to 
oxidize excess ammonia to harmless nitrogen and water vapor [40]. 

The presence of SO2 and/or water vapor in exhaust gases inhibits 
SCR deNOX processes due to the effect of SO2 and H2O poisoning [41, 
42]. Hydrogen and ammonia are sulfur-free and the deNOX catalysts are 
not poisoned by SO2. However, water vapor would be present in large 
quantities. Stoichiometric combustion of hydrogen and ammonia with 
air produces flue gases with 34.7 vol% and 31.1 vol% water vapor, 
respectively (Appendix B: Tables B.1 and B.2). Even if the equivalence 
ratio is increased to 1.25 (lean combustion), the combustion products 
would contain 28.8 vol% and 26.3 vol% water vapor, respectively. 

1.2. Water vapor inhibition effects on the NH3-SCR deNOX processes 

There are two main mechanisms of the H2O-induced inhibition of the 
NH3-SCR deNOX reactions and the corresponding catalyst poisoning. 
The first is hydroxylation of the catalyst surface in the presence of large 
amounts of water, which reduces the number of available active sites on 
the catalyst. This is an irreversible process during catalyst operation, as 
activity is only restored at dehydration temperatures above 350 ◦C. 
Moreover, the competing adsorption of H2O and NH3 decreases the 
adsorption capacity for NH3, which lowers the reaction rate and inhibits 
the deNOx process SCR [43]. 

Some authors [44,45] claim that the inhibition of SCR deNOX by 
water vapor is proportional to the water vapor content up to 5 vol% and 
then flattens out, as shown in Fig. 1. 

Yun and Kim [46], on the other hand, have predicted a significant 
reduction in the NH3-SCR deNOX performance of a commercial V2O5 
catalyst even at higher water vapor content, which is shown in Fig. 2. 
These discrepancies could originate from the differences in experimental 

conditions: simulated flue gas composition, composition and form 
(powder versus monolith) of a catalyst sample, pretreatment procedure 
of gases (e.g. preheating, mixing), sampling and characterization of 
gases and others. 

However, most authors tested catalysts only at low water vapor 
concentrations in flue gases, usually below 5 vol% [47] and occasionally 
up to 10 vol% in simulated flue gases [48]. Therefore, the effect of water 
vapor on the NOX conversion efficiency at high water content (>15 vol 
%) is currently unknown. 

On the other hand, water vapor may also have a promoting effect on 
NH3-SCR deNOX performance under certain conditions (at H2O contents 
below 5 vol%). It can inhibit N2O formation (enhanced N2 selectivity), 
catalyse the transition from Lewis acid sites to Brønsted acid sites and 
facilitate the production of SCR-reactive intermediates [49]. Both, the 
promoting and inhibiting effect of H2O coexist, and the overall effect 
depends on the water vapor concentration. 

1.3. Catalyst materials, characterization and measurement methods 

It is difficult to identify the best catalyst for a process as there is 
usually no single catalyst that gives optimal results under all operating 
conditions. Therefore, over the years, numerous catalytic materials have 
been investigated for their activity (and stability) in SCR deNOX. In the 
past, commercial SCR deNOx catalysts used to be based on noble metals, 
such as Rh, Pt and Pd on a metal oxide matrix support (CeO2, ZrO2, 
Al2O3 and others) [50]. Current catalytic materials are based on either 
(i) metal oxides of copper, nickel, iron, vanadium and other transition 
metals or on (ii) metal ion-exchanged zeolites, mainly Cu- and 
Fe-exchanged zeolites [51]. Recently, a patent has been published (WO 
2019/166267) using a zeolite-based material loaded with iron. Also, the 
commercial material REMEDIA® has been shown to remove dioxins and 
NOX [52]. In some cases, copper-loaded vanadia and TiO2 materials 
have also been used for NOx abatement [50,53,54]. In recent years, 
increased attention has been given to Mn-based materials [55–57], since 
several issues plague the vanadium-based catalyst. Since the materials 
require a higher operating temperature, they are installed up-stream of 
the exhaust. The latter leads to several issues, such as deactivation of the 
materials due to coke deposition, poisoning by SO2, etc. [58]. 

There are several material properties that determine the catalyst 
performance. These are usually input data for modelling and predictive 
studies and must be accurately selected and determined to obtain reli
able computational results. The number of active sites and their surface 

Fig. 1. Effect of water vapor on NO conversion over vanadia-based commercial 
catalyst (ZERONOX®, Katalysatorwerke HiJls GmbH; 0.4 g of catalyst at 
180–300 μm sieve fraction) at various temperatures. Adapted from Ref. [44]. 
Feed gas mixture: 10 vol% O2, 1000 ppm NO, 1000 ppm NH3, 0 to 7.5 vol% 
H2O, balance N2 at flow rate of 500 ml/min. Copyright © 1996 Published by 
Elsevier Ltd. 

Fig. 2. Influence of H2O content on the NOX conversion of a commercial V2O5 
catalyst (the sample with diameter and length of 1 inch including a 400/4 
[cpsi/mil] substrate coated with a vanadium-based washcoat). Adapted from 
Ref. [46]. The exhaust gas contained 2 vol% O2, 500 ppm NO and 500 ppm 
NH3, H2O concentration was varied; It was fed to the SCR catalyst at the space 
velocity of 20,000 h− 1. Copyright © 2012 Elsevier Ltd. 
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distribution are essential information for kinetic studies. However, any 
additional experimental information (e.g. the strength of reactant 
binding, different types of active sites) drastically improves the accuracy 
of the developed model. 

There are numerous characterization techniques that are ubiquitous 
in catalyst research, such as powder X-ray diffraction (XRD) and sorp
tion of probe molecules (e.g. N2, H2 and CO) [59–61]. These methods 
provide general information about the catalyst structure (crystallinity) 
and its surface, which is necessary for the development of a microkinetic 
model. A very useful complementary technique is chemisorption of re
actants, which can provide specific information about the active phase 
of the catalyst, including the binding strength of reactants and/or 
products. Competitive adsorption of potential spectator molecules of 
catalyst poisons is also an important approach, that can be used to 
evaluate the effect of a poison on catalyst activity [60,62,63]. The 
amount and the inferred nature of binding provide essential information 
about the poisoning effect, which is often a bottleneck in catalyst se
lection. In this regard, X-ray photoelectron spectroscopy (XPS) and 
diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) 
provide complementary information about the binding of molecules and 
their chemical environment, especially with respect to the oxidation 
state of the active site. Another very accurate technique that is not 
widely available is X-ray absorption spectroscopy (XAS). This technique 
can be used to study the active site at the atomic level, which in com
bination with DFT calculations can lead to improvements in determining 
the reaction mechanism [64]. 

There are many other analytical techniques used in the character
ization of catalysts, which have already been described in detail in 
another review [65]. We mention here only those most commonly used 
in SCR deNOx research and would like to emphasize that a combination 
of different characterization techniques and catalytic tests gives the 
most accurate results. In this context, a post-mortem catalyst analysis 
with Mössbauer spectroscopy combined with electron paramagnetic 
resonance (EPR) used by Grünert et al. [66], has shown that FeIII are the 
most active sites for NOx abatement. 

1.4. Outline of the paper 

This paper is a review of recent advances in the field of mechanistic 
modelling of SCR of NOX emissions from flue gases, with emphasis on 
the treatment of flue gases produced during the combustion of hydrogen 
or ammonia. The article consists of (i) an introduction explaining the 
problems associated with nitrogen oxide emissions and methods to 
reduce them, focusing on NH3-SCR deNOX and a description of typical 
catalyst materials, their characterization and methods to evaluate their 
performance, (ii) an overview of the SCR deNOX models at the atomistic 
scale, (iii) a description of global kinetic and microkinetic models, (iv) a 
description of SCR catalysis by computational fluid dynamics (CFD), (v) 
conclusions with a brief summary of the current state of research on the 
models and a future outlook. 

2. Atomistic-scale DFT modelling 

Due to the complexity of the reaction network in SCR deNOX re
actions, few first-principles reaction models have been established and 
investigated using DFT calculations. More often, a reaction mechanism 
is postulated and experimental data are fitted using microkinetic models 
that provide phenomenologically optimized kinetic parameters. DFT 
calculations are mostly used to support experimental data and are 
limited to adsorption energies, charge transfer and structural properties. 
The notorious problem remains model construction, which must be 
computationally tractable, yet physically meaningful. Conventional 
characterization methods, such as XRD, XPS, IR spectroscopy etc. are 
used to obtain information about the structure of the material, which is 
then used as input in modelling. 

Structure-activity relationships are highly sought after in the 

optimization of SCR catalysts. In this chapter, we give an overview of the 
few first-principles attempts to describe these reactions. Although there 
are several variants of DFT, computational feasibility and chemical ac
curacy have reduced the useful approaches to a handful. The generalized 
gradient approximation (GGA) is most commonly used because it is not 
much more costly than the local density approximation (LDA) but 
considerably more accurate. To account for d electrons of Ti and V, the 
Hubbard-like DFT+U approach is usually used. Hybrid-functional re
alizations of DFT are used only for single point calculations on pre- 
optimized structures due to their extreme computational costs, 
although they provide superior electronic properties, very accurate 
adsorption energies and reaction barriers. Even more expensive 
methods, such as coupled clusters, are used only to evaluate the accu
racy of different lower-level approaches on isolated species, such as on 
O––V(OH)3 and O––VSi7O12H7 [67]. In all cases, periodic calculations 
are preferred to describe heterogeneous catalysts with a repeating 
structure. Depending on the purpose of the DFT calculations, different 
quantities are calculated: (i) geometrical structures, (ii) electronic 
properties, (iii) adsorption strength, (iv) reaction kinetic parameters. 
Most simulations focus on (i) and (iii) and consider (ii) only indirectly, 
while (iv) is almost completely disregarded. 

2.1. Structure and electronic properties 

Although this is a prerequisite for any DFT calculation, in this section 
we explicitly list the works where the calculation of the structure and 
electronic properties is the most important insight offered by DFT. This 
is usually done to support FTIR, DRIFTS or Raman measurements, or to 
compare charge transfer and similar quantities with observed reaction 
performance. Therefore, these studies remain descriptive. 

2.1.1. Ceria-based catalysts 
Yan et al. [68] investigated Nb-modified SnO2–CeO2 catalysts and 

used DFT calculations to determine the charge distribution and partial 
electronic charge on the catalyst surfaces as well as the band structures. 
They also investigated the energy of oxygen vacancy formation. Simi
larly, Mu et al. used DFT to study the charge interaction between Fe and 
V in FeVO4 [69]. 

Nolan et al. focused on the electronic structure and molecular 
adsorption of NO2 and O2 on ceria with different oxygen oxidation 
numbers [70–72]. Joshi et al. further demonstrated the positive effect of 
tungsten doping [73]. 

2.1.2. TiO2-based catalysts 
To support the DRIFTS measurements, Huan et al. also calculated the 

adsorption of NO, NH3, NO2, O2 and N2 on TiO2(001) and TiO2(101) 
[74]. Experimental studies on Sm and Zr doping of MnOx-TiO2 catalysts 
were elaborated by Sun et al. [75] using DFT to calculate differential 
charge densities or deformation electron density and the density of 
states during adsorption [76]. For MnOx-FeOy nanocage catalysts, Yan 
et al. [77] used DFT only to evaluate the charge density transfer. 

Occasionally, DFT simulations are used in design studies, as shown 
by Peng [78], who calculated the electronic properties of differently 
doped TiO2 to evaluate its redox potential. Very rarely, authors use DFT 
models to explain Raman spectra, as Due-Hansen et al. did for 
vanadia-based catalysts on wolframated and sulphated zirconia [79]. 

2.2. Adsorption 

Historically, adsorption has been the most common DFT result, such 
as in the seminal work by Yin et al., in 1999 [80]. Nowadays, adsorption 
is most often evaluated to explain the experimental data characterizing a 
catalyst, to provide clues about the reaction mechanism and/or the in
termediates involved, or to study the catalyst poisoning. In general, 
authors calculate the adsorption energies, omitting entropy effects and 
foregoing the analysis of the Gibbs free energy of adsorption (except 

J. Voglar et al.                                                                                                                                                                                                                                   



Renewable and Sustainable Energy Reviews 186 (2023) 113666

5

when studying phase diagrams). Therefore, the adsorption energy cal
culations are used to make comparisons and show trends, but not to 
predict the catalyst coverage at different operating conditions. This is 
understandable since the exact catalyst surface area is often unknown or 
too variable to be suitable for DFT. 

2.2.1. Ceria-based catalysts 
Peng et al. [81] studied NH3 adsorption on differentially doped (Fe, 

Mn, La, Y) CeO2 catalysts and found that it improved with all dopants. 
The inherent limitations of modelling are perhaps best illustrated by 
Maitarad et al. [82], who used to CeO2(110) and Mn@CeO2(110) to 
describe the MnOx/Ce0.9Zr0.1O2 material while investigating NH3 
adsorption energies and oxygen vacancy formation energies. 

Sulfur poisoning of CeO2 was attributed to the formation of SOx 
surface species [83], which is also true for Mn-doped CeO2 [84]. In the 
latter case, the authors performed an extensive DFT study, including 
first-principles phase diagram calculation, which is rarely done, e.g. for 
Cu-SSZ-13 by Kerkeni et al. [85]. 

2.2.2. TiO2-based catalysts 
More extensive studies, such as that of Huang et al. [74] on 

TiO2(001) and TiO2(101), investigate the adsorption of several gases 
involved: NH3, NO, NO2, N2, O2. Except for NH3, all other gases were 
found to be purely physisorbed. 

Cheng et al. used DFT, to evaluate the adsorption energy of ammonia 
on Nb-promoted iron titanate and explain the results of DRIFTS [86]. 
Similarly, Liu et al. [87] investigated the adsorption of NH3 and NO on 
Fe2O3/TiO2{001} and Fe2O3/TiO2{101} and confirmed the superior 
activity of TiO2{001}, while Song et al. investigated monomeric vana
dium oxide supported anatase (TiO2) [88]. Since water desorption is 
often the rate-determining step, several studies focused exclusively on 
water adsorption, e.g. by Broclawik [89] on W-doped V2O9H8 clusters. 

One of the few deactivation studies using DFT [90] showed that 
arsenic-induced poisoning of a commercial catalyst (V2O5–WO3/TiO2) 
was due to the formation of unreactive As–OH groups. DFT was used to 
calculate adsorption energies and charge transfer. 

Conversely, Yu et al. [91] showed that SO2 has a positive effect on 
Pb-poisoned V2O5-WO3/TiO2, which they confirmed by calculating SO2 
and NH3 adsorption on the surface. Peng et al. studied NH3 adsorption 
on pristine TiO2, Mn-substituted TiO2 and K-doped TiO2 to evaluate the 
effects of poisoning [92] and discovered that it was due to the decrease 
in surface acidity, loss of reducibility and the enhancement of stable 
nitrite/nitrate species. Similarly, V2O5/TiO2 catalysts doped with MoO3 
and WO3 were tested for As poisoning [93]. 

2.2.3. Zeolite-based and other catalysts 
The adsorption and dissociation energies of NH3, including NO- and 

O2-assisted pathways, were calculated by Paolucci on Cu-SSZ-13 and 
compared with operando spectroscopy measurements [94]. The position 
and oxidation state of the Cu atom in SSZ-13 was then studied in more 
detail by Borfecchia et al. [95]. Cu-SSZ-13 has been investigated in 
countless DFT studies, but most of them involved structural calculations 
with non-periodic [96–105] or periodic models [106–109]. Similarly, 
MOFs can also act as catalysts, which led Zhang et al. to investigate the 
adsorption of the involved gases in Mn-MOF-74 [110]. 

Chen et al. described Co0.5Mn1Fe0.25Al0.75Ox-LDO as CoMn2O4 (311) 
when evaluating adsorption energies of NH3, NO and NO2 [111]. In 
PMoA clusters, co-adsorption interactions are important, as shown by 
Jia et al. [112]. 

Fan et al. [113] discovered new active sites for SCR on the (001) facet 
of α-Mn2O3, which is more active than the traditional (111) facet. DFT 
confirmed this is caused by charge redistribution on the surface, which 
facilitates the adsorption of NH3 on the (001)-Mn3-terminated surface. 
MnFeOx nanostructures, such as Dy-doped nanowires [114] or Nb- and 
Nd-doped nanobelts [115], are also active in SCR due to their strong 
adsorption of NH3, as shown by DFT calculations and charge difference 

analysis. 

2.3. Reaction mechanism 

Studies of the reaction mechanism are somewhat less common and 
are usually purely theoretical studies with little to no experimental 
support. The first study that explicitly investigated the reaction mech
anism by calculating transition states was done in 2003, when Anstrom 
et al. constructed a V4O16H12 cluster to simulate the V2O5(010) surface 
[116]. It was found that NH4 and NO react to form NH3NHO, convert to 
NH2NO by transferring two hydrogen atoms to the V––O groups and 
isomerise to various NH2NO species (NH2NO, trans-NH––NOH, 
cis-NH––NOH, cis-HN––NO-trans-H). The rate of the SCR reaction is 
determined by the formation of NH2NO and not its isomerization. Soyer 
et al. studied a similar mechanism on a V2O9H8 cluster representing 
V2O5(010) [117]. 

2.3.1. TiO2-based catalysts 
In 2005, Vittadini establised one of the first periodic models and 

described the reaction on TiO2(001) [118]. The study by Calatayud et al. 
is noteworthy because it calculated the whole mechanism on different 
vanadium oxide clusters and periodic models of vanadium-substituted 
TiO2(001), considered the reoxidation of the catalyst and compared 
the results with experiments [119]. 

Arnarson et al. [120] studied the reaction mechanism with DFT on 
VOx/TiO2(001) catalysts (Fig. 3), including the standard and the fast 
catalytic reduction reactions. In both cases, NH3 binds to a V5+ active 
site and reacts with NO. Both cycles (NO-activation and fast SCR) play 
an important role and have the same reduction part but differ in the 
active oxidant (NO2 or NO + O2). At low temperatures, the standard 
reaction rate of SCR is determined by the formation and desorption of 
H2O. The fast SCR reaction employs NO2 directly, making the conver
sion faster. At higher temperatures, the reaction rates are determined by 
the reduction, which is the same for both pathways. While Arnarson 
et al. used isolated V species on titanium dioxide, He et al. [121] showed 
that the use of polymeric vanadyl species improves the catalyst activity 
due to lower reaction barriers and a smaller number of reaction steps. In 
all cases, no higher level modelling was performed and only DFT was 
used to arrive at conclusions. In their seminal work, He et al. [121] 
showed experimentally and theoretically with full mechanistic evalua
tion that polymeric vanadyl species are superior to monomeric vanadyl 
species. 

On MnOx/TiO2, Wei et al. analyzed the three reaction steps: reaction 
at the Lewis acid site, reaction at the Brønsted acid site and regeneration 
(oxidation) of the catalyst [122], which are shown in Fig. 4. 

Yuan et al. constructed various V2O5-based catalytic surfaces and 
calculated three complete mechanisms: the Lewis acid mechanism, the 
Brønsted acid mechanism and the nitrite mechanism [123]. They 
confirmed that the latter two mechanisms compete with each other, 
while the Lewis acid mechanism does not match experimental obser
vations in terms of the reaction order. 

2.3.2. Zeolite-based catalysts and metal-organic frameworks 
On Fe-exchanged zeolites, Li and Li investigated the possible reaction 

mechanism for the rapid SCR reaction using DFT [124]. When investi
gating the reaction of NO and NO2 (bound as N2O3) with NH3 in (i) the 
gas phase and (ii) on zeolites and (iii) the decomposition of NH4NO2, the 
reaction barrier was calculated to be 22.5, 24.0 and 21.2 kcal/mol, 
respectively. Therefore, Chen et al. focused on oxygen dissociation via 
(NH3–Cu–NH3)+ in Cu- CHA [125], and calculated the phase diagram of 
Cu(NH3)x

+ in CHA as a function of NH3 pressure and temperature, as well 
as the thermodynamics and kinetics of O2 activation. Moreno-González 
calculated the entire reaction pathway on Cu-CHA [126] and found that 
the activation barriers in the direct oxidation of dimers are only 70 
kJ/mol. Barriers of over 2 eV were calculated for Cu-SAPO-18 [127]. 

Recently, metal-organic frameworks, such as manganese- or iron- 
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based BTCs (1,3,5-benzenetricarboxylate), have seen increased interest 
in mechanistic studies. Song et al. [128] showed computationally that 
on quasi-Mn-BTC, Eley-Rideal and Langmuir-Hinshelwood mechanisms 
compete. In the “fast reaction”, which proceeds via the LH mechanism, 
the N–H bond of NH3 is first cleaved off on a Lewis acid site. Upon a 

quick formation of NH2NO, its conversion of HNNOH is the 
rate-determining step with a barrier of 0.79 eV, which later decomposes 
to H2O and N2. In the “standard mechanism”, which follows the ER 
pathway, the rate determining steps are the formation of NH2NO from 
NH2 and gaseous NO (0.73 eV) and its conversion to HNNOH (0.79 eV). 

Fig. 3. A reaction mechanism of the SCR process on a VOx/TiO2 catalyst, as revealed by DFT calculations. Adapted from Ref. [121]. © 2017 Elsevier Inc.  

Fig. 4. NH3-SCR reaction path over MnOx/TiO2 catalyst discovered via DFT calculation. Adapted from Ref. [122]. © 2017 Elsevier B.V.  
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A similar competition of the two mechanisms was shown for 
Mn–Fe-BTC, as well [129]. 

2.3.3. Ceria-based and other oxide catalysts 
W-doped CeO2 was studied by Liu et al. [130], who calculated the 

entire reaction pathway. Using a simplified four-step catalytic cycle, the 
effect of W was shown to be beneficial. On MnCe1-xO2(111), a full 
mechanistic study revealed that NH2 forms after the N–H dissociation of 
ammonia, which then forms NH2NO upon adsorption of NO. Water 
desorption was identified as the rate determining step [131]. SO4

2− can 
promote the reaction, was shown by Zhang et al. [132], who calculated 
the reaction pathway of NH3 and NO in the presence of SO4

2--CeO2(111) 
sites. 

To investigate SCR on bifunctional Va-MnOx catalysts, Xin et al. 
[133] constructed Mn2O3(202) and Mn2V2O7(201) surfaces and inves
tigated the entire reaction pathway, including NH3 dissociation, the 
reaction with NO and N2O. They confirmed that NH2 plays a crucial role 
in the reaction. On Mn/γ-Al2O3, the calculated reaction rate determining 
barriers were 471.62, 281.25, and 341.55 kJ/mol [134]. 

A very thorough investigation of the SCR pathway on α-Fe2O3(012) 
was carried out by Gao et al. [135]. They investigated the standard 
NH3-SCR reaction and found that the reaction follows the NO activation 
mechanism, forming NH2NO and decomposing it into N2 and H2O. The 
first two are the rate-determining steps with barriers of 1.22 and 1.34 
eV. 

To recap, density functional theory calculations (DFT) were initially 
used to obtain the structures and electronic properties of the catalyst and 
the participating species. This included studying the adsorption of NH3, 
NO2, NO, O2, N2 and H2O. On most catalysts, only NH3 and H2O exhibit 
a strong adsorption, while the other gases physisorb weakly and thus 
participate in the reaction via the Eley-Rideal mechanism. Rarely, such 
computations are employed to construct phase diagrams or to under
stand different IR or Raman spectra. Mechanistic studies have become 
prominent in the last decade, revealing the rate-determining steps and 
different pathways. When the calculated barriers range from 20 to 30 
kcal/mol, the reactions are fast. In the NO activation mechanism, the 
formation of NH2NO is usually the rate determining step, which is fol
lowed by a quick decomposition regardless of the catalyst. 

3. Global kinetic and microkinetic modelling 

For the ammonia SCR deNOX reaction, most stationary kinetic 
models generally assume an Eley-Rideal (ER) mechanism, which implies 
the reaction between adsorbed NH3 and the gas phase NO. Moreover, 
the adsorption equilibrium of ammonia and water at the active sites is 
assumed (competitive adsorption). The expression for the reaction rate 
considering the equation for site balance is [45]: 

r =
kKNH3 CNH3 CNO

1 + KNH3 CNH3 + KH2OCH2O
(3.1)  

where r, k, Ki and Ci are the reaction rate, the intrinsic chemical rate 
constant, the adsorption equilibrium constant of species i and the gas 
phase concentration of species i, respectively. 

However, adsorption of water on the active sites is usually not 
considered in kinetic models (see Refs. [136–138]. 

The other type of kinetic models is based on the Langmuir- 
Hinshelwood (LH) mechanism, which assumes a bimolecular reaction 
involving two co-adsorbed molecules (e.g. NH3 and NO) on the surface. 
These kinetic models take into account the weak adsorption of the NO 
molecules on the catalyst surface, which occurs at low temperatures 
(<200 ◦C) [136]. 

3.1. Kinetic models of commercial V2O5–WO3–TiO2 catalysts 

Yun and Kim [46] used the global kinetic model including standard, 

fast, and NH3 oxidation reactions with the Langmuir-Hinshelwood (LH) 
mechanism to predict the conversion of NOX. The reactions and reaction 
rate expressions are summarized in Table 1. 

The terms in the denominators of the reaction rate expressions in 
Table 1 take into account the inhibitory effects of surface coverage of the 
species. 

The rate constants (k) and adsorption constants (K) both follow the 
Arrhenius-type expressions: 

ki = aie
− Ei
RT (3.2)  

Ki =Aie
− Ei
RT (3.3) 

The authors used the commercial one-dimensional BOOST (AVL) 
code, as part of the gas exchange and cycle simulation, with the opti
mized reaction constants [46]. 

Shin et al. [136] developed a kinetic model for the selective catalytic 
reduction of nitrogen oxides based on the Eley-Rideal (ER) mechanism, 
using the equation-based modelling tool gPROMS® ProcessBuilder®.It 
was employed to evaluate the kinetic model by extracting intrinsic ki
netic parameters from the experimental data collected in a conventional 
fixed-bed reactor. The modelling was performed considering all possible 
relevant catalytic reactions at SCR catalysts (Table 2), which can be 
classified into three groups: NOX reduction (reaction numbers 1–3), NH3 
oxidation (reaction numbers 4–7) and accompanying reactions (gas-
phase thermal reactions; reaction numbers 8–10). 

NH3 oxidation with lattice oxygen is expected to occur at relatively 
high temperatures. The model is a dual-site model: NO and NO2 were 
assumed to compete with O2 for the same adsorption site, while NH3 
adsorbes on a different site, as indicated by the rate expressions in 
Table 2. The reaction order with respect to O2 (n) was estimated for the 
additional homogeneous gas-phase reactions. 

The rate (k) and adsorption (K) constants were defined as: 

ki = ki,Tref e
− Ei

R

(

1
T−

1
Tref

)

(3.4)  

Ki =Ki,Tref e
− ΔHi

R

(

1
T−

1
Tref

)

(3.5)  

3.2. Kinetic models of commercial Fe-zeolite catalysts 

Metkar et al. [137] performed a comprehensive experimental and 
modelling study of the selective catalytic reduction of NOX with NH3 
over Fe-ZSM-5 and Cu-chabazite (CHA) catalysts; only the modelling of 
SCR of nitrogen oxides over the Fe-ZSM-5 catalyst is described here. 
They developed a global kinetic model for the NOX reduction reactions 
that occur during NH3-SCR. Their model assumes a first-order depen
dence on the reactants, with some exceptions e.g. for the standard SCR 
reaction. The advantage of this model is the smaller number of kinetic 
parameters, but it lacks a mechanistic sophistication. The chemical re
actions and their rate equations are listed in Table 3. 

The definition of the rate constants (equation (3.2)) is the same as in 
the model of Yun and Kim [46]. 

Ammonia was assumed to adsorb on sites S, which can be considered 
as Brønsted acid sites. A coverage dependent desorption activation en
ergy was assumed. The denominator in the rate expression for the 
standard SCR reaction (reaction number 4 in Table 3) explains the 
observed ammonia inhibition at lower temperatures. It is worth noting 
that several side reactions produce byproducts. One important byprod
uct is ammonium nitrate (NH4NO3), which is formed in the presence of 
excess NO2. The formation of ammonium nitrate is particularly impor
tant at lower temperatures (<250 ◦C). It is assumed that the active sites 
of the catalyst are either free or have adsorbed ammonia. The rate ex
pressions do not contain an explicit dependence on the concentrations of 
O2 and H2O. 
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3.3. Kinetic models of commercial Cu-zeolite catalysts 

Colombo et al. [138] developed a dynamic micro-kinetic model of 
the SCR deNOX reactions. The rate parameters were estimated from the 
transient kinetic runs. The dual-site kinetic scheme includes acidic sites 
(*) for NH3 adsorption and desorption (coverage is indicated by the 
symbol Theta) and sites associated with the Cu promoter of the zeolite 
catalyst (S-sites), where reaction steps (reaction numbers 2–8 in Table 4) 

involving nitrites/nitrates are expected (coverage is indicated with the 
symbol sigma). 

The kinetic mechanism in Table 4 explicitly accounts for the differ
ences in the formal oxidation state of nitrogen in both gaseous and 
surface NOX species. The oxidation state of the catalytic sites (S–OH) is 
assumed to be invariant because the strong oxidizing conditions asso
ciated with the presence of NO2 likely maintain the Cu-sites in their 
highest oxidation state. 

Additional global reactions were also included in the model to better 
describe the reaction system: ammonium nitrate formation, sublimation 
and decomposition to N2O (reactions 9–11 in Table 4), reversible NO 
oxidation to NO2 (reaction 12 in Table 4), and the slow SCR reaction 
(reaction 13 in Table 4). 

It should be noted that all kinetic runs reported in this study were 
performed in the absence of oxygen in the feed stream to avoid inter
ference with the standard SCR and the NO and ammonia oxidation 
reactions. 

Shibata et al. [139] developed a simple kinetic model for the stan
dard NH3-SCR reaction with Cu-ZSM-5 catalyst, considering only three 
reaction steps: NH3 adsorption (and desorption), NH3 oxidation and the 
standard SCR reaction. Their model was validated with the experimental 
results, which had not been considered in the estimation of the model. 

Global kinetic and microkinetic models of SCR deNOX processes are 
usually based either on the Eley-Rideal (ER) or on the Langmuir- 
Hinshelwood (LH) reaction mechanisms. The models usually consider 

Table 1 
Reactions and rate expressions in the global kinetic model of Yun and Kim [46].  

Number Reaction Rate expression 

1 4NH3 + 4NO+ O2 → 4N2 + 6H2O kCNH3 CNOCO2

T(1 + KNOCNO + KH2OCH2O)
2
(1 + KNH3 CNH3 )

2
(1 + KO2 CO2 )

2 

2 4NH3 + 2NO+ 2NO2 → 4N2 + 6H2O kCNH3 CNOCNO2

T(1 + KNOCNO + KH2OCH2O)
2
(1 + KNH3 CNH3 )

2 

3 4NH3 + 5O2 → 4NO+ 6H2O kCNH3 CNO2

T(1 + KNOCNO + KH2OCH2O)
2
(1 + KNH3 CNH3 )

2
(1 + KO2 CO2 )

2  

Symbols: T – temperature, A,a - pre-exponential factor, E - activation energy, R - universal gas constant. 

Table 2 
Reactions and rate expressions in the kinetic model of Shin et al. [136].  

Number Reaction Rate expression 

1 4NH3 + 4NO+

O2 → 4N2 + 6H2O 
kKNH3 PNH3 KO2 PO2 PNO

(1 + KNH3 PNH3 )(1 + KO2 PO2 + KNOPNO+KNO2 PNO2 )

2 6NO+ 4NH3 → 
5N2 + 6H2O 

kKNH3 PNH3 PNO

(1 + KNH3 PNH3 )

3 2NO2 + 4NH3 +

O2 →3N2 + 6H2O 
kKNH3 PNH3 KO2 PO2 PNO2

(1 + KNH3 PNH3 )(1 + KO2 PO2 + KNOPNO+KNO2 PNO2 )

4 4NH3 + 3O2→ 
2N2 + 6H2O 

kKNH3 PNH3 KO2 PO2

(1 + KNH3 PNH3 )(1 + KO2 PO2 + KNOPNO+KNO2 PNO2 )

5 4NH3 + 5O2→ 
4NO+ 6H2O 

kKNH3 PNH3 KO2 PO2

(1 + KNH3 PNH3 )(1 + KO2 PO2 + KNOPNO+KNO2 PNO2 )

6 2NH3 + 8NO → 
5N2O+ 3H2O 

kKNH3 PNH3 PNO

(1 + KNH3 PNH3 )

7 4NH3 + 4NO+

3O2→ 4N2O+

6H2O 

kKNH3 PNH3 KO2 PO2 PNO

(1 + KNH3 PNH3 )(1 + KO2 PO2 + KNOPNO+KNO2 PNO2 )

8 2NO+ O2 → 2NO2 

ki,Tref e

− Ei

R

(
1
T
−

1
Tref

)

CNO
2CO2

n 

9 4NH3 + 5O2 → 
4NO+ 6H2O ki,Tref e

− Ei

R

(
1
T
−

1
Tref

)

CNH3 CO2
n 

10 4NH3 + 3O2 → 
2N2 + 6H2O ki,Tref e

− Ei

R

(
1
T
−

1
Tref

)

CNH3 CO2
n  

Symbols: Pi - partial pressure of species i, Tref - reference temperature, ΔHi - 
adsorption enthalpy of species i. 

Table 3 
Reactions and rate expressions in the global kinetic model of Metkar et al. [137].  

Number Reaction Rate expression 

1 4NH3 + S ↔ NH3 ∼ S kfXNH3 θv − kbθNH3 

2 2NH3 ∼ S+ 1.5O2→ N2 + 3H2O+ 2S kfXO2 θNH3 

3 NO+ 0.5O2 ↔ NO2 kfXO2
0.5XNO − kbXNO2 

4 4NH3 ∼ S+ 4NO+ O2→ 4N2 + 6H2O+ 4S kfXNOθNH3

1 +
kf

kb
XNH3 

5 2NH3 ∼ S+ NO+ NO2→2N2 + 3H2O+ 2S kfXNOXNO2 θNH3 

6 4NH3 ∼ S+ 3NO2→3.5N2 + 6H2O+ 4S kfXNO2 θNH3 

7 2NH3 ∼ S+ 2NO2→ N2 + NH4NO3 + H2O+ 2S kfXNO2 θNH3 

8 NH4NO3→N2O+ 2H2O kfXNH4NO3 

9 2N2O→2N2 + O2 kfXN2 O 

10 2NH3 ∼ S+ 3N2O→ 4N2 + 3H2O+ 2S kfXN2 OθNH3 

Symbols: S - ammonia adsorption site, Θi - fractional coverage of sites S, Θv - 
fractional coverage of vacant sites S, Xi - mole fraction of species i, kf - intrinsic 
chemical rate constant of the forward reaction, kb - intrinsic chemical rate 
constant of the reverse reaction. 

Table 4 
Reactions and rate expressions in the micro-kinetic model of Colombo et al. 
[138].  

Number Reaction Rate expression 

1 NH3 ↔ NH3
* kfCNH3 θv − kbθNH3 

2 2NO2 + 2S ∼ OH ↔ S ∼ ONO+ S ∼

NO3 + H2O 
kf(CNO2 σv)

2
− kbσONOσNO3 

3 NO2 + S ∼ ONO ↔ NO+ S ∼ NO3 kfCNO2 σONO − kbCNOσNO3 

4 S ∼ NO3 +
1
2

H2O→NO2 +
1
4

O2 + S ∼

OH 

kσNO3 

5 S ∼ ONO+ NH3
*→N2 + H2O+ S ∼ OH kθNH3 σONO 

6 S ∼ NO3 +
2
3

NH3
*→S ∼ ONO+

1
3

N2 +

H2O 

kσNO3 θNH3 

7 S ∼ NO3 + NH3
* ↔ S ∼ NO3[NH3] kf θNH3 σNO3 − kbσNO3 [NH3 ]

8 S ∼ NO3[NH3]→N2O+ H2O+ S ∼ OH kσNO3 [NH3 ]

9 2NH3
* + 2NO2→NH4NO3

* + N2 + H2O kθNH3 CNO2
2

1+KNH4NO3 θNH4 NO3 

10 NH4NO3
*→[NH3 + HNO3]→NH4NO3 kθNH4NO3 

11 NH4NO3
*→N2O+ 2H2O kθNH4NO3 

12 NO+
1
2

O2 ↔ NO2 
{

k
[
CNO(PO2 )

0.5
−

CNO2

Keq− NO

]}(
PH2O

0.03

)θ 

13 3
2

NO+ NH3
*→

5
4

N2 +
3
2

H2O  kθNH3 CNO 

Symbols: * - acidic site, S - Cu promoter site, Θi - fractional coverage of sites *, σi - 
fractional coverage of S sites, Keq-NO - chemical equilibrium constant defined in 
Ref. [138]. 
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one or two types (dual-site models) of adsorption sites and from 3 up to 
13 reactions. Some of the studied kinetic models also predict the for
mation of intermediates in form of nitrites and/or nitrates (e.g. ammo
nium nitrate). However, most of kinetic models available in the 
literature do not account for the adsorption of water molecules on the 
active sites of SCR deNOX catalysts. 

4. CFD simulations 

The kinetic model of Shin et al. [136] (described in chapter 3.1.; 
Table 2) and the estimated parameters were summarized in the form of a 
user-defined function (UDF) used in a commercial computational fluid 
dynamics (CFD) package, ANSYS® Fluent®, to search for an optimized 
SCR monolith channel geometry. 

The 3D model of a channel for the SCR honeycomb catalyst had a 
length of 450 mm (Fig. 5), which is the commonly observed length of 
commercial SCR monoliths. To save computational time, accounting for 
the symmetry of the monolith cross-section, only a quarter of the 
monolith channel was modelled. 

The reaction kinetic parameters obtained from the fixed-bed exper
iments were converted into a surface reaction model, which was applied 
to the surface zones of the monolith catalyst of the CFD simulation. The 
gas-phase and the catalytic reaction rate equations were implemented as 
two UDFs written in C and dynamically linked to the ANSYS Fluent 
solver. 

The CFD calculations were performed with constant velocity inlet 
boundary conditions for the gas mixture. The outlet pressure was set to 
the atmospheric pressure. The catalyst wall was set to a constant reac
tion temperature. The Reynolds numbers of the flow were in the laminar 
range (500–800). 

Square and rectangular channel geometries (with different aspect 
ratios B/A) were tested for pressure drop and NO conversion (Fig. 7). 
The width of the channel is denoted by A, while the wall thickness C was 
kept at 0.7 mm (Fig. 6). 

The relative NO conversion and pressure drop on the ordinate axes of 
Fig. 7 were defined as the ratio of NO conversion and pressure drop of 
the rectangular channel to those of the square channel. As the aspect 
ratio of the rectangular channel is increased, both the pressure drop and 
NO conversion decrease, so there is a tradeoff between these the two 
factors in choosing the optimal size and geometry of the channel. The 
aspect ratios that are practical for commercial production are in the 
range of 1–5 [136]. 

Since rectangular channels have 90◦ angles at the corners, they can 
affect monolith performance by reducing chemical conversion, 
increasing pressure drop and increasing susceptibility to plugging and 
scaling (when particles are present in the flue gas stream). To mitigate 
these problems, an elongated hexagonal channel (with an angle of 120◦) 
was tested using the CFD methodology. With a channel width of 3.2 mm 
and an aspect ratio of 2.5, the elongated hexagonal channel exibited a 
3.5% lower pressure drop while maintaining the same degree of NO 
conversion. This can be explained by comparing the velocity field dis
tributions in the rectangular and hexagonal channels: the higher portion 
of the rectangular cross-section has lower velocities than its elongated 
hexagonal counterpart (under the same boundary conditions). The re
gions of low flow velocities of the rectangular channel are located near 

the catalyst surface, resulting in inefficient use of the channel space for 
catalytic reactions. 

The steady-state application of the NH3-SCR deNOX process in a coal- 
fired power plant was modelled considering only the standard SCR re
action and the reaction of ammonia oxidation, which were inserted into 
the UDF used with the CFD simulation in the ANSYS Fluent software 
package. The catalyst used was the commercial V2O5-WO3/TiO2 hon
eycomb catalyst. Zhou et al. [140] studied the instantaneous velocity 
distributions and ammonia slip in their 3D model of a SCR system and 
suggested some changes to the geometry of the elements of the system. 

There are not many articles published on the CFD simulations of the 
NH3-SCR deNOX process itself. On the other hand, there are many CFD 
studies [141–143] on the injection of urea-water solution (UWS) into 
SCR deNOX systems. Three-dimensional (3D) numerical simulations of 
vanadia monolith honeycomb catalysts can also be found in the litera
ture. Roduit et al. [144] used finite-element methods programmed in 
Matlab V to investigate the flow, mass transfer, and chemical reaction 
processes (Eley-Rideal (ER) mechanism for the standard SCR reaction 
and the NH3 oxidation side reaction) in a honeycomb catalyst to 
calculate the distribution of NO concentration in the catalyst wall. Zheng 
et al. [145] also developed a three-dimensional model combining the 
selective catalytic reduction (standard SCR reaction) of NO with 
ammonia and SO2 oxidation reactions over a monolithic honeycomb 
catalyst to investigate the effects of catalyst structure and operating 
parameters on NO reduction and SO2 oxidation. 

The CFD modelling approaches usually incorporate the SCR deNOX 
chemical reactions by the user-defined functions (UDFs) and couple 
them with the mass transport phenomena associated with fluid flow 
through the monolith catalyst channels. Most of the CFD modelling is 
done using commercial CFD software packages. The fluid flow condi
tions are typically in the laminar regime and at least with conventional 
channel designs there is a trade-off between the pressure drop and the 
NOX conversion performance. The literature on CFD modelling of NH3- 
SCR deNOX processes is scarce, while there are many CFD studies on the 
injection of urea-water solution (UWS) into SCR deNOX systems. 

Fig. 5. Schematic representation of the 3D model of the single monolith channel [136]. © 2019 Institution of Chemical Engineers. Published by Elsevier B.V.  

Fig. 6. The tested different monolith cross-sections with symbols (A, B and C) 
for their characteristic dimensions [136]. © 2019 Institution of Chemical En
gineers. Published by Elsevier B.V. 
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5. Conclusions 

With recent advances in computational methods and available 
computing power, periodic first-principles models are increasingly 
being used to gain additional insight into the reaction mechanism. 
However, most experimental studies still incorporate DFT consider
ations that are, at best, tentatively linked to the experiments. In most 
cases, DFT studies deal with adsorption of ammonia and other reactants 
and products. Comprehensive mechanistic studies that would offer 
promising insights into reaction mechanism and kinetics remain rela
tively rare. When they are performed, they are purely theoretical studies 
with little to no experimental support. This represents an important gap 
between the state of the art of computations and experimental work, 

offering a promising avenue for further research. Most importantly, 
reasonable structural models are essential for high quality and useful 
DFT calculations. Since the catalyst is an active and constantly changing 
system during the reaction, this is a daunting task. A naive way to solve 
this problem is to find an “average” catalyst structure and construct an 
atomistic approximation of the catalyst structure. While this provides 
useful results, it is not sufficient to provide a complete mechanistic 
description of a functioning catalyst. 

Nevertheless, the present studies are also useful for catalyst 
screening for targeted improvement. In the future, the increasing ac
curacy of DFT studies will allow them to be used for prediction, design 
and selection of active catalyst materials with desired properties. Here, 
the resistance to hydroxylation and water poisoning is the most pressing 
issue, as this has been repeatedly shown to be the rate-determining step 
in the reaction and thus acts as a bottleneck to the overall catalyst 
performance. 

Most kinetic models in the literature do not account for the adsorp
tion of water molecules on the catalysts. Therefore, it is not possible to 
predict the conversion performance of the catalysts at higher water 
vapor content using this group of models. In contrast, the global kinetic 
model of Yun and Kim [46] considered the adsorption of water vapor on 
the active sites of the commercial V2O5–WO3–TiO2 catalyst and showed 
a significant reduction of the performance in the lower temperature 
range of the catalyst even at a H2O content of 10 vol% in the feed gases. 

The CFD modelling approach usually considers chemical reactions 
within the user-defined function/s (UDF/s) and couples it/them with 
mass transport phenomena associated with the fluid flow through the 
catalyst, which is done in commercial CFD software packages (e.g. 
ANSYS Fluent). The development of the detailed CFD methodology 
could also model processes of adsorption and desorption of species (e.g. 
ammonia and water) on the catalyst. 

During the literature review, the authors identified a large knowl
edge gap on the topic of NH3-SCR deNOX from flue gases with high water 
vapor content (>15 vol%) produced after hydrogen or ammonia com
bustion. This gap has been identified in terms of both experimental re
sults and modelling. We see a great need for investigations of the SCR 
deNOX process of flue gases with high water content. 
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Appendix A. Properties of hydrogen and ammonia as fuels 

Hydrogen as a fuel has low minimum ignition energy (0.02 mJ), wide ignition limits (4.1–75% in air) and high flame propagation rate (sto
chiometric laminar flame velocity of 270 cm/s). Therefore, it could be more dangerous than gasoline or natural gas [146]. The adiabatic flame 
temperature of hydrogen is 2384 K (2111 ◦C). The average temperature and NOX emissions in an axisymmetric small burner were 1268 K and 562 
ppm, respectively. For conventional combustion of hydrogen, the predicted maximum NOX was 1961 ppm and the predicted maximum temperature 
was about 2325 K; therefore, local temperatures and NOX concentrations vary by site [147]. Hydrogen emits up to 5000 ppm of NOX [148]. 

Fig. 7. Performance comparison between a square and a rectangular channel 
with the same wall thickness (0.7 mm): (a) relative NO turnover and (b) relative 
pressure drop. Inlet boundary conditions: 1500 ppm NO,1500 ppm NH3, 0.5 vol 
% H2O, 13.5 vol% O2 and N2 equilibrium at 5 m/s and 350 ◦C. Adapted from 
Ref. [136]. © 2019 Institution of Chemical Engineers. Published by Elsevier 
B.V. 
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The combustion characteristics of ammonia are: high minimum ignition energy (8 mJ [149]), narrow ignition limits (16–25% by volume in air 
[150]), low flame propagation rate (laminar flame velocity of 7 cm/s [151]) and relatively low adiabatic flame temperature (lower than hydrogen; 
2050 K - 1777 ◦C [152]). Combustion of ammonia with air produces about 2645 ppm NOX with an equivalence ratio of 0.94 [153]. Plasma assisted 
combustion [153] and rich-lean staged combustion [154] can reduce NOX emissions from ammonia combustion. Ammonia emits up to 2750 ppm of 
NOX [148]. 

Some researchers also studied the combustion of mixtures of the two fuels. The combustion of hydrogen-ammonia mixtures was studied by [155] 
and [152]. 

Appendix B. Combustion reactions of hydrogen and ammonia and composition of their combustion products 

The heat of combustion of hydrogen under standard conditions is − 285.8 kJ/mol, while for ammonia it is − 382.8 kJ/mol. The energy density of 
hydrogen is 141.8 kJ/g or 11.68 kJ/dm3 (at 101325 Pa, 25 ◦C), while ammonia has values of 22.48 kJ/g and 15.65 kJ/dm3 (at 101325 Pa, 25 ◦C). 

H2 +
1
2

O2 + 1.881N2 → H2O + 1.881N2 (B.1)  

NH3 +
3
4
O2 + 2.821N2 →

3
2

H2O + 3.321N2 (B.2) 

Combustion products at various equivalence ratios (ER) are listed in Tables B1 and B.2. Note that the formation of nitrogen oxides during the 
combustion of hydrogen and ammonia is not considered here.  

Table B.1 
Composition of the combustion products after the combustion of hydrogen with air.  

ER H2 (vol%) H2O (vol%) O2 (vol%) N2 (vol%) 

0.75 10.4 31.1 0.0 58.5 
0.80 8.0 31.9 0.0 60.1 
0.85 5.8 32.7 0.0 61.5 
0.90 3.7 33.4 0.0 62.9 
0.95 1.8 34.1 0.0 64.1 
1.00 0.0 34.7 0.0 65.3 
1.05 0.0 33.3 0.8 65.8 
1.10 0.0 32.1 1.6 66.3 
1.15 0.0 30.9 2.3 66.8 
1.20 0.0 29.8 3.0 67.2 
1.25 0.0 28.8 3.6 67.6 

Symbols: ER - equivalence ratio.  

Table B.2 
Composition of the combustion products after the combustion of ammonia with air.  

ER NH3 (vol%) H2O (vol%) O2 (vol%) N2 (vol%) 

0.75 6.5 29.1 0.0 64.4 
0.80 4.9 29.6 0.0 65.5 
0.85 3.5 30.0 0.0 66.5 
0.90 2.3 30.4 0.0 67.3 
0.95 1.1 30.8 0.0 68.1 
1.00 0.0 31.1 0.0 68.9 
1.05 0.0 30.0 0.8 69.3 
1.10 0.0 29.0 1.4 69.6 
1.15 0.0 28.0 2.1 69.9 
1.20 0.0 27.1 2.7 70.2 
1.25 0.0 26.3 3.3 70.5 

Symbols: ER - equivalence ratio. 
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