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ABSTRACT
Several spectral radii formulas for infinite bounded non-negative
matrices in max algebra are obtained. We also prove some Per-
ron–Frobenius type results for suchmatrices. In particular, we obtain
results on block triangular forms, which are similar to results on
Frobenius normal formof n × nmatrices. Some continuity results are
also established.
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1. Introduction

The algebraic system max algebra and its isomorphic versions (max-plus algebra, tropical
algebra) provide an attractive way of describing a class of non-linear problems appear-
ing for instance in manufacturing and transportation scheduling, information technology,
discrete event-dynamic systems, combinatorial optimization, mathematical physics, DNA
analysis, etc. (see e.g. [1–9] and the references cited there). Max algebra’s usefulness arises
from the fact that these non-linear problems become linear when described in the max
algebra language. Moreover, max algebra techniques were used to solve certain linear alge-
bra and graph theoretical problems (see e.g. [10–12]). In particular, tropical polynomial
methods improved the accuracy of the numerical computation of the eigenvalues of a
matrix polynomial (see e.g. [13–17] and the references cited there).

The max algebra consists of the set of non-negative numbers with sum a ⊕ b =
max{a, b} and the standard product ab, where a, b ≥ 0. The operations between matrices
and vectors in max algebra are defined by analogy with the usual linear algebra.
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The eigenproblem in max algebra and its isomorphic versions (and the eigenproblem
for more general maps) has already received a lot of attention (see e.g. [2,4,7,18–22] and
the references cited there). The results can be applied in different contexts, for instance in
optimal control problems (here the max eigenvectors correspond to stationary solutions
of the dynamic programming equations and the max eigenvalues correspond to the max-
imal ergodic rewards per time unit), in the study of discrete event systems, in statistical
mechanics, in the study of delay systems, etc. (see e.g. [18,19,21] and the references cited
there).

Also infinite dimensional extensions of spectral theory in max algebra (and more
general settings) have already received substantial attention (see e.g. [18,20–30] and the
references cited there). In this article, we continue this investigation by focusing on infinite
bounded non-negative matrices and their spectral properties in max algebra. The article is
organized in the following way.

In Section 2, we recall some definitions and results from [27,28], which are relevant in
the rest of the article. In Section 3, we prove several spectral radii formulas for infinite
bounded non-negative matrices in max algebra and prove some Perron–Frobenius type
results for such matrices. In Section 4, we prove results on block triangular forms which
are similar to results on Frobenius normal form of n × n non-negative matrices [2,4,7,19].
We conclude the article with some continuity results in Section 5. The main results of this
article are Theorems 3.1, 3.4, 3.6, 3.8, 3.12, and 4.4.

2. Preliminaries

In the first part of this section, we recall some facts on n × n matrices in max algebra. A
matrixA = [Aij]ni,j=1 is non-negative ifAij ≥ 0 for all i, j ∈ {1, 2, . . . , n}. LetRn×n be the set
of all n × n realmatrices andR

n×n
+ the set of all n × nnon-negativematrices. The entries of

amatrix are also denoted by aij, ai,j orAi,j. The product of non-negativematricesA andB in
max algebra is denoted byA ⊗ B, where (A ⊗ B)ij = maxk=1,...,n AikBkj and the sumA ⊕ B
inmax algebra is defined by (A ⊕ B)ij = max{Aij,Bij}. The notationA2⊗ meansA ⊗ A, and
Ak⊗ denotes the kth max power of A. If x = (xi)i=1,...,n is a non-negative vector, then the
notation A ⊗ x means (A ⊗ x)i = maxj=1,...,n Aijxj. The usual associative and distributive
laws hold in this algebra.

The role of the spectral radius of A ∈ R
n×n
+ in max algebra is played by the maximum

cycle geometric mean r(A), which is defined by

r(A) = max
{
(Ai1ik · · ·Ai3i2Ai2i1)

1/k : k ∈ N and i1, . . . , ik ∈ {1, . . . , n}
}

(1)

and equal to

r(A) = max
{
(Ai1ik · · ·Ai3i2Ai2i1)

1/k : k ≤ n and i1, . . . , ik ∈ {1, . . . , n} mutually distinct
}
.

A digraph G(A) = (N(A),E(A)) associated to A ∈ R
n×n
+ is defined by setting N(A) =

{1, . . . , n} and letting (i, j) ∈ E(A) whenever Aij > 0. When this digraph contains at least
one cycle, one distinguishes critical cycles, where the maximum in (1) is attained. A graph
with just one node and no edges will be called trivial. A bit unusually, but in consistency
with [4,19,31], a matrix A ∈ R

n×n
+ is called irreducible if G(A) is trivial (A is 1 × 1 zero
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matrix) or strongly connected (for each i, j ∈ N(A), i �= j there is a path in G(A) that starts
in i and ends in j).

There are many different descriptions of the maximum cycle geometric mean r(A) (see
e.g. [4,12,32–34] and the references cited there). It is known that r(A) is the largest max
eigenvalue of A, i.e. r(A) is the largest λ ≥ 0 for which there exists x ∈ R

n+, x �= 0 with
A ⊗ x = λx.

Moreover, if A is irreducible, then r(A) is the unique max eigenvalue and every max
eigenvector is positive (see e.g. [2, Theorem 2], [1,4,35]). Also, the max version of the
Gelfand formula holds for any A ∈ R

n×n
+ , i.e.

r(A) = lim
m→∞ ‖Am

⊗‖1/m (2)

for an arbitrary vector norm ‖ · ‖ on Rn×n (see e.g. [34] and the references cited there).
Next we turn our attention to infinite matrices in max algebra. An infinite (entrywise)

non-negative matrix A = (aij)∞i,j=1 = (ai,j)∞i,j=1 is called bounded if

‖A‖ = sup{aij : i, j ∈ N} < ∞.

Let R
∞×∞
+ denote the set of all infinite bounded non-negative matrices and let l∞+ be the

positive cone of all non-negative bounded sequences (xi)i∈N. For A,B ∈ R
∞×∞
+ and x ∈

l∞+ we denote by ⊕ and ⊗ the sum and the product in max algebra, respectively, i.e. for
i, j ∈ N let

(A ⊕ B)ij = max{aij, bij}, (A ⊗ B)ij = sup
k∈N

aikbkj, (A ⊗ x)i = sup
j∈N

aijxj.

Let Ak⊗ denote the kth power in max algebra. Let us point out that ⊗ here does not denote
the tensor product.

Let {e1, e2, . . .} be the standard basis in �∞+ . Then

‖A‖ = sup
j∈N

‖A ⊗ ej‖ = sup
‖x‖=1,x∈l∞+

‖A ⊗ x‖ = sup
x∈l∞+ ,x �=0

‖A ⊗ x‖
‖x‖

and ‖A ⊗ B‖ ≤ ‖A‖ · ‖B‖, where ‖x‖ = supi∈N
|xi| for x ∈ l∞.

For i0, i1, i2, . . . , ik ∈ N let

A(ik, . . . , i0) =
k−1∏
t=0

ait+1it .

For each i, j ∈ N we have

(Ak
⊗)ij = sup{A(i, ik−1, . . . , i1, j) : i1, . . . , ik−1 ∈ N}. (3)

It follows that

‖Ak
⊗‖ = sup{A(ik, . . . , i0) : i0, . . . , ik ∈ N}.

It is easy to see that

‖Ak+j
⊗ ‖ ≤ ‖Ak

⊗‖ · ‖Aj
⊗‖

for all k, j ∈ N. It is well known that this implies that the sequence ‖Ak⊗‖1/k is convergent
and its limit is equal to the infimum. The limit is called the spectral radius in max algebra
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(the Bonsall cone spectral radius of the map gA : x �→ A ⊗ x on the cone l∞+ ) and denoted
by r(A). Observe that the map gA : l∞+ → l∞+ is Lipschitz with the Lipschitz constant ‖A‖.
For some theory on Bonsall’s cone spectral radius see e.g. [21,26–29].

For x ∈ �∞+ let rx(A) = lim supk→∞ ‖Ak⊗ ⊗ x‖1/k be the local spectral radius of A at x
in max algebra. It is easy to see (and known) that r(A) = ry(A)where y = (1, 1, 1, . . .). The
approximate point spectrum σap(A) in max algebra is defined as the set of all t ≥ 0 such
that

inf{‖A ⊗ x − tx‖ : x ∈ l∞+ , ‖x‖ = 1} = 0.

The point spectrumσp(A) inmax algebra is defined as the set all t ≥ 0 such thatA ⊗ x = tx
for some x ∈ l∞+ , x �= 0. Clearly σp(A) ⊂ σap(A).

Letm(A) = supj rej(A) be the upper standard spectral radius ofA (the supremumof local
spectral radii at standard vectors ej) and so m(A) ≤ r(A). Let s(A) = inf{‖A ⊗ x‖ : x ∈
l∞+ , ‖x‖ = 1} be the minimummodulus of A and let d(A) = limn→∞ s(An⊗)1/n be the lower
spectral radius of A (see [28]). The following result was proved in [27, Corollaries 2 and 3],
[28, Proposition 3.1, Theorem 3.5 and Example 4.13].

Theorem 2.1: Let A be an infinite bounded non-negative matrix. Then

(i) [m(A), r(A)] ⊂ σap(A) ⊂ [d(A), r(A)],
(ii) rx(A) ∈ σap(A) for all x ∈ �∞+ , x �= 0,
(iii) d(A) = min{t : t ∈ σap(A)} and r(A) = max{t : t ∈ σap(A)}.

Remark 2.1: (i) It is known that in generalm(A) �= r(A) and σap(A) may not be convex
(see [27, Example 7] and [28, Example 3.2]).

(ii) For an n × n non-negative matrix A it is known that

σap(A) = σp(A) = {t : there exists j ∈ {1, . . . , n}, t = rej(A)}

and also that the above does not hold for A ∈ R
∞×∞
+ [27, Remark 3].

Denote further by μ(A) the supremum cycle geometric mean (or cycle radius) of A, i.e.

μ(A) = sup
{(

A(i1, ik, . . . , i2, i1)1/k : k ∈ N, i1, . . . , ik ∈ N

}
. (4)

Clearly μ(A) ≤ r(A). By (3) it follows that

μ(A) = sup
{
(Ak

⊗)
1/k
ii : k, i ∈ N

}
. (5)

Furthermore, one can assume that the vertices i1, . . . , ik in the definition of μ(A) are
mutually distinct.

Recall that for finite matrices A ∈ R
n×n
+ we have r(A) = μ(A). Moreover, in this case

μ(A) = max
{(

A(i1, ik, . . . , i2, i1)1/k : k ≤ n, 1 ≤ i1, . . . , ik ≤ n are mutually distinct
}
.

For infinite matrices the equality μ(A) = r(A) is no longer true in general.
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Example 2.2: Let A ∈ R
∞×∞
+ be defined by ai,i+1 = 1 for all i ∈ N and aij = 0 otherwise

(backward shift). It is easy to see that μ(A) = m(A) = 0 and r(A) = 1.

The following example shows that the supremum in the definition of μ(A) may not be
attained.

Example 2.3: Let A ∈ R
∞×∞
+ be defined by aii = i

i+1 for all i ∈ N and aij = 0 otherwise.
Then μ(A) = r(A) = 1 but the supremum in (4) is not attained.

3. Spectral radii formulas for infinite matrices in max algebra

For k ∈ N and A ∈ R
∞×∞
+ write

ck(A) = sup
{
A(ik, . . . , i0) : i0, . . . , ik ∈ N mutually distinct

}

and r′(A) denote the upper simple path geometric mean radius, i.e.

r′(A) = lim sup
k→∞

ck(A)1/k. (6)

Theorem 3.1: For A ∈ R
∞×∞
+ we have

r(A) = max{μ(A), r′(A)}. (7)

Proof: Clearly r(A) ≥ max{μ(A), r′(A)}.
Suppose that r(A) > μ(A). If μ(A) = 0 then ck(A) = ‖Ak⊗‖ for all k ∈ N and so the

statement is trivial.
Suppose that μ(A) > 0. Without loss of generality we may assume that μ(A) = 1 and

r(A) > μ(A) = 1.
Let n0 ∈ N and 0 < ε < r(A) − 1. Then there exists n ≥ n0 and i0, . . . , in ∈ N such that

A(in, . . . , i1, i0) > (r(A) − ε)n > ‖A‖n0 . Omit all cycles in the path i0, i1, . . . , in.We obtain
mutually distinct j0, . . . , jk such that A(jk, . . . , j1, j0) ≥ A(in, . . . , i1, i0) > (r(A) − ε)n >

‖A‖n0 . Hence n ≥ k ≥ n0 and

ck(A) ≥ (r(A) − ε)n ≥ (r(A) − ε)k.

Hence lim supk→∞ ck(A)1/k ≥ r(A) − ε. Since ε > 0 was arbitrary, we have r′(A) =
lim supk→∞ ck(A)1/k ≥ r(A). So r(A) = max{μ(A), r′(A)}. �

Let A ∈ R
∞×∞
+ , A = (aij)∞i,j=1. Letme(A) = lim supj→∞ rej(A).

For n ∈ N let Pn : �∞+ → �∞+ be the canonical projection defined by Pn(x1, x2, . . .) =
(0, . . . , 0︸ ︷︷ ︸

n

, xn+1, . . .).

Let ress(A) = limn→∞ r(PnAPn) = infn∈N r(PnAPn). Observe that in this particular
case the classical linear algebra product PnAPn coincides with the max algebra product
Pn ⊗ A ⊗ Pn.

We have

r(A) = lim
k→∞

sup
{
A(ik, . . . , i0)1/k : i0, . . . , ik ∈ N

}
,



1540 V. MÜLLER AND A. PEPERKO

rej(A) = lim sup
k→∞

sup
{
A(ik, . . . , i1, j)1/k : i1, . . . , ik ∈ N

}
,

ress(A) = lim
n→∞ lim

k→∞
sup

{
{A(ik, . . . , i0)1/k : i0, . . . , ik ≥ n + 1

}
.

Clearly

me(A) ≤ m(A) ≤ r(A)

and

ress(A) ≤ r(A).

Next we show that in generalme(A) ≤ ress(A) is not true.

Example 3.2: Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2

2
3

3
4

· · ·
1
2

0 0 0 · · ·
2
3

0 0 0 · · ·
3
4

0 0 0 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly ress(A) = 0 since P1AP1 = 0. However, rej(A) = 1 for all j ≥ 2. Indeed, r(A) ≤
‖A‖ = 1 and for j ≥ 2 we have

A(1, n, 1, n . . . , n, 1︸ ︷︷ ︸
k

, j) =
(
n − 1
n

)2k
· j − 1

j

for all k, n ∈ N. So

rej(A) ≥ lim sup
k→∞

‖A2k+1
⊗ ej‖1/(2k+1) ≥ n − 1

n
.

Since n ∈ N was arbitrary, rej(A) = 1. So me(A) = m(A) = μ(A) = r(A) = 1, while
ress(A) = 0.

The following example shows that it may happen that μ(A) > me(A).

Example 3.3: Let A = (aij)∞i,j=1, where aii = 1
i for all i ∈ N and aij = 0 otherwise. Then

rej(A) = 1
j for all j ∈ N and some(A) = 0. Also r′(A) = ress(A) = 0, but μ(A) = m(A) =

r(A) = 1.

Theorem 3.4: Let A ∈ R
∞×∞
+ . Then μ(A) ≤ m(A) and r′(A) ≤ ress(A). Consequently,

r(A) = max{ress(A),m(A)}. (8)
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Proof: Let i1, . . . , ik ∈ N. We have

rei1 (A) ≥ lim sup
n→∞

‖Ankei1‖1/nk

≥ lim sup
n→∞

(
A
(
i1, ik, . . . , i1, . . . , ik, . . . , i1︸ ︷︷ ︸

n

))1/nk = A(i1, ik, . . . , i2, i1)1/k.

Hencem(A) ≥ μ(A).
To show that r′(A) ≤ ress(A) we assume on the contrary that ress(A) < r′(A). Without

loss of generality wemay assume that ‖A‖ = 1. So there exists k ∈ N such that r(PkAPk) <

r′(A). Choose 0 < ε <
r′(A)−r(PkAPk)

2 . Find n0 ∈ N such that ‖(PkAPk)n‖ ≤ (r(PkAPk) +
ε)n for all n ≥ n0.

Find i0, i1, . . . , iN ∈ N mutually distinct for a suitable sufficiently largeN ∈ N such that

A(iN , . . . , i0) ≥ (r′(A) − ε)N

(such i0, i1, . . . , iN and N exist by (6)). Let

S = {j : 0 ≤ j ≤ N, ij ≤ k}.

Clearly card S ≤ k. We have

A(iN , . . . , i0) = B · C,
where

B =
∏

{aij+1,ij : 0 ≤ j ≤ N, {ij, ij+1} ∩ S �= ∅} ≤ ‖A‖2k = 1

and

C =
∏

{aij+1,ij : 0 ≤ j ≤ N, {ij, ij+1} ∩ S = ∅}.
Then C decomposes into at most card S + 1 ≤ k + 1 disjoint paths whose elements lie
outside {1, . . . , k}.

If j0, j1, . . . , jm are mutually distinct elements outside {1, . . . , k} then

A(jm, . . . , j0) ≤ ‖A‖m = 1 (ifm < n0) and

A(jm, . . . , j0) ≤ (r(PkAPk) + ε)m (ifm ≥ n0).

Thus

C ≤ (r(PkAPk) + ε)N−(k+1)n0−2k.

Hence

r′(A) − ε ≤ (BC)1/N ≤ (r(PkAPk) + ε)1−N−1(k+1)n0−2N−1k → r(PkAPk) + ε

as N → ∞. Since ε > 0 was arbitrary, we have r′(A) ≤ r(PkAPk), a contradiction.
So max{ress(A),m(A)} ≥ max{r′(A),μ(A)} = r(A) by Theorem 3.1. The reverse

inequality is clear. �
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Remark 3.1: By Theorems 3.1 and 3.4 it follows that for A ∈ R
∞×∞
+ we also have

r(A) = max{r′(A),m(A)} = max{ress(A),μ(A)}. (9)

Suppose that r(A) �= 0. For j ∈ N write

c(ej) = sup
{
A(j, ik−1, . . . , i1, j)

r(A)k
: k ∈ N, i1, . . . , ik−1 ∈ N

}

(with no exponent 1/k here).

Lemma 3.5: Let A ∈ R
∞×∞
+ , r(A) �= 0, r(P1AP1) < 1 and c(e1) < 1. Then r(A) < 1.

Proof: Suppose on the contrary that r(A) ≥ 1. Without loss of generality we may assume
that r(A) = 1. Let b ∈ (0, 1) satisfy r(P1AP1) < b and c(e1) < b. Since r(P1AP1) < b, there
existsm0 ∈ N such that

A(im, . . . , i0) ≤ bm (m ≥ m0; i0, . . . , im ≥ 2).

We have ress(A) ≤ r(P1AP1) < b. So μ(A) = r(A) = 1 by Remark 3.1.
Let k ≥ m0 + 2 satisfy ‖A‖2bk/2−2 < 1 and choosemutually distinct i0, i1, . . . , ik−1 ∈ N

such that A(i0, ik−1, . . . , i1, i0)1/k > b1/2.
If 1 /∈ {i0, . . . , ik−1} then r(P1AP1) ≥ A(i0, ik−1, . . . , i0)1/k > b1/2 ≥ b, a contradiction.
Let 1 ∈ {i0, . . . , ik−1}. Without loss of generality we may assume that i0 = 1. Then

bk/2 < A(i0, ik−1, . . . , i0) ≤ ‖A‖2 · ‖(P1AP1)k−2‖ ≤ ‖A‖2 · bk−2.

So 1 < bk/2−2‖A‖2, a contradiction. �

Under the assumption ress(A) < r(A) we prove additional results.

Theorem 3.6: Let A ∈ R
∞×∞
+ and ress(A) < r(A). Then there exists i0 ∈ N with rei0 (A) =

μ(A) = r(A). In particular, m(A) = r(A) = μ(A).

Proof: Without loss of generality we may assume that r(A) = 1.
Since ress(A) < 1, there existsn ∈ Nwith r(PnAPn) < 1. By Lemma3.5, there exists i0 ≤

n with c(ei0) = 1. Indeed, if c(ei) < 1 for all 1 ≤ i ≤ n, then Lemma 3.5 gives inductively
r(Pn−1APn−1) < 1, r(Pn−2APn−2) < 1, . . . , r(P1AP1) < 1, r(A) < 1, a contradiction.

Let i0 ≤ n satisfy c(ei0) = 1. So for each ε ∈ (0, 1) there exist kε ∈ N and i1, . . . , ikε−1 ∈
N with A(i0, ikε−1, . . . , i1, i0) > 1 − ε. So

min{rei0 (A),μ(A)} ≥ (1 − ε)1/kε ≥ 1 − ε.

Since ε ∈ (0, 1)was arbitrary, rei0 (A) = 1 = μ(A). Hencem(A) = μ(A) = r(A) = 1. �

Lemma 3.7: If A ∈ R
∞×∞
+ such that ress(A) < r(A) = 1, then supn ‖An⊗‖ < ∞.
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Proof: Since ress(A) < 1, there exist n0 ∈ N andm0 ∈ N such that

A(im, . . . , i0) < 1 (m ≥ m0; i0, . . . , im > n0).

In particular,

C := sup{A(im, . . . , i0) : m ∈ N, i1, . . . , im−1 > n0} < ∞.

We have

sup
k∈N

‖Ak
⊗‖ = sup{A(ik, . . . , i0) : k ∈ N, i0, . . . , ik ∈ N}.

Since μ(A) = r(A) = 1, we can omit in the path (ik, . . . , i0) all cycles and assume with-
out loss of generality that the indices i0, . . . , ik are mutually distinct. Let S = {j : ij ≤ n0}.
Clearly card S ≤ n0. So S divides the path i0, . . . , ik into at most n0 + 1 sub-paths with
vertices outside the set {1, . . . , n0}. So

A(ik, . . . , i0) ≤ ‖A‖2n0Cn0+1

and consequently supk∈N
‖Ak⊗‖ < ∞. �

Theorem 3.8: Let A ∈ R
∞×∞
+ and ress(A) < r(A). Then r(A) ∈ σp(A).

Proof: Without loss of generality wemay assume that r(A) = 1. By Lemma 3.5, there exist
n ∈ N and i0 ≤ nwith c(ei0) = 1. Set x = ⊕∞

j=0 A
j ⊗ ei0 . By Lemma 3.7, x ∈ �∞+ . We have

A ⊗ x =
∞⊕
j=1

Aj ⊗ ei0 ≤ x.

On the other hand, x = (A ⊗ x) ⊕ ei0 . Since c(ei0) = 1, for each ε > 0 there exist
kε ∈ N and i1, . . . , ikε−1 ∈ N with A(i0, ikε−1, . . . , i1, i0) > 1 − ε. Hence A ⊗ x ≥ Akε ⊗
ei0 ≥ (1 − ε)ei0 . Since ε > 0 was arbitrary, A ⊗ x ≥ ei0 and A ⊗ x = x. Hence r(A) ∈
σp(A). �

Remark 3.2: There are several closely related results to Theorem 3.8 in the literature ([21,
Theorem 3.4], [26, Theorem 4.4] and [27, Theorem 3.14]; see also [26, Conjecture 4.1]).
At the moment, it is not clear if Theorem 3.8 is a special case of some of these results (in
particular, it is not clear what is the relation between ress(A) and the essential spectral radii
studied there). In any case, our proof of Theorem 3.8 is more elementary than the proofs
of ([21, Theorem 3.4], [26, Theorem 4.4] and [27, Theorem 3.14]).

The assumption ress(A) < r(A) is necessary for the conclusion of Theorem 3.8 as the
following example shows.

Example 3.9: Let ai,i−1 = 1 for all i ∈ N, i ≥ 2 and ai,j = 0 otherwise (A is a forward shift).
Then r(A) = ress(A) = r′(A) = m(A) = me(A) = 1, μ(A) = 0 and 1 is not in σp(A) = ∅.

We conclude this section with some additional results on irreducible matrices. The
weighted directed graphD(A) associated with A ∈ R

∞×∞
+ has the vertex set N and edges
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(i, j) from a vertex i to a vertex jwith weight aij if and only if aij > 0. A matrix A ∈ R
∞×∞
+

is called irreducible if and only if D(A) strongly connected (for each i, j ∈ N, i �= j, there
exists a path from i to j inD(A)). Equivalently, A ∈ R

∞×∞
+ is irreducible if and only if for

each (i, j) ∈ N × N there exists k = k(i, j) such that (Ak⊗)ij > 0. A matrix A ∈ R
∞×∞
+ is

called reducible if it is not irreducible. Equivalently, A ∈ R
∞×∞
+ is reducible if and only if

there exists a non-empty setM ⊂ N,M �= N, such that aij = 0 for all (i, j) ∈ M × (N \ M).
Obviously, μ(A) > 0 if A is irreducible. We say that x ∈ l∞+ is strictly positive (and we

denote x>0) if xi > 0 for all i ∈ N. The following result generalizes a well known finite
dimensional result to the infinite dimensional case (see also [18]).

Proposition 3.10: Let A ∈ R
∞×∞
+ be irreducible. If λ ∈ σp(A) and A ⊗ x = λx, x ∈ l∞+ ,

x �= 0, then x>0 and λ ∈ [μ(A), r(A)].

Proof: Clearly λ = rx(A) ≤ r(A). Choose i such that xi > 0. Then for each m ∈ N there
exists k = k(m, i) such that (Ak⊗)mi > 0 and so

λkxm = (Ak
⊗ ⊗ x)m ≥ (Ak

⊗)mixi > 0.

Thus λ > 0 and xm > 0 and so x>0. Also for eachm, n ∈ N we have

λnxm = (An
⊗ ⊗ x)m ≥ (An

⊗)mmxm

and so λ ≥ (An⊗)
1/n
mm, which implies λ ≥ μ(A) by (5). This completes the proof. �

Example 3.11: Let 0 < ε < 1. LetA = (aij)∞i,j=1 ∈ R
∞×∞
+ be defined by a1,j = εj, aj+1,j =

1 (j ∈ N) and ai,j = 0 otherwise. It is easy to see that A is irreducible, r(A) = 1 and
μ(A) = ε �= r(A).

The following result can be considered as a max algebra version of the classical
Jentzsch–Perron theorem for (linear) kernel (integral) operators.

Theorem3.12: Let A ∈ R
∞×∞
+ be irreducible and let ress(A) < r(A). Then σp(A) = {r(A)}

and each max eigenvector of A is strictly positive.

Proof: By Theorem 3.8 we know that r(A) ∈ σp(A). By Remark 3.1, r(A) = μ(A) and so
σp(A) = {r(A)} and each max eigenvector ofA is strictly positive by Proposition 3.10. �

Remark 3.3: The assumption ress(A) < r(A) cannot be omitted in Theorem 3.12. If A ∈
R

∞×∞
+ is the matrix from Example 3.11, then A is irreducible, ress(A) = r(A) = 1 and

1 /∈ σp(A).

Example 3.13: Let A be the matrix from Example 3.2. Then each max eigenvector of A is
of the form x ∈ l∞+ , xn = n−1

n x1 for all n ≥ 2 and x1 > 0.
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4. Block triangular forms

In this section, we prove that under suitable conditions a matrix A ∈ R
∞×∞
+ is permu-

tationally equivalent to a matrix in a block triangular form (i.e. there exists an infinite
permutation matrix P such that PAPT = P ⊗ A ⊗ PT is a matrix in a suitable block
triangular form).

As in [27,28] a subset C of l∞+ is called a cone (with vertex 0) if tC ⊂ C for all t ≥ 0,
where tC = {tx : x ∈ C}. A cone C ⊂ l∞+ is called a max cone if for every pair x, y ∈ C also
x ⊕ y ∈ C. A cone C is called invariant for A if A ⊗ x ∈ C for all x ∈ C (i.e. if gA(C) ⊂ C).
For a set S ⊂ l∞+ we denote by span⊕S the max cone generated by S, i.e. span⊕S is the set of
all x ∈ l∞+ for which there exist k = k(x) ∈ N, s1, . . . , sk ∈ S and λ1, . . . , λk ≥ 0 such that
x = λ1s1 ⊕ · · · ⊕ λksk.

First we state a simple observation.

Lemma 4.1: Let A = (aij)∞i,j=1 ∈ R
∞×∞
+ . Let i, j ∈ N and aji > 0. Then rei(A) ≥ rej(A).

Consequently, span⊕{ek : rek(A) ≤ a} is a max cone invariant for A for every a ∈ R+.

Lemma 4.2: Let A ∈ R
∞×∞
+ satisfy me(A) < m(A). Then there exists a finite non-empty

set F ⊂ N such that in the decomposition N = F ∪ (N \ F) the matrix A is permutationally
equivalent to a matrix in the form

[
A11 0
A21 A22

]
,

where m(A) = m(A11) = rej(A) for all j ∈ F and me(A22) = me(A), ress(A22) = ress(A),
m(A22) < m(A) and r(A22) = max{m(A22), ress(A)}.

Proof: Without loss of generality we may assume thatm(A) = 1.
Then there exists i0 such that rei0 (A) = 1, since me(A) < m(A) = 1. Let F = {j :

rej(A) = 1}. Since me(A) < m(A) = 1, F is a finite set. It is easy to see that A has the
required form in the decomposition N = F ∪ (N \ F). �

A better decomposition can be obtained if we assume also that ress(A) < r(A).

Lemma 4.3: Let A ∈ R
∞×∞
+ satisfy ress(A) < r(A) and me(A) < m(A). Then there exists

a finite non-empty set F ⊂ N such that in the decomposition N = F ∪ (N \ F) the matrix A
is permutationally equivalent to a matrix in the form

[
A11 0
A21 A22

]
,

where r(A11) = r(A) = μ(A11) = m(A) = m(A11) = rej(A) for all j ∈ F.Moreover, r(A) ∈
σp(A) and the supremum (maximum) in the definition of μ(A11) is attained.

Proof: Without loss of generality we may assume that r(A) = 1.
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Let [ A11 0
A21 A22

] be the decomposition obtained in Lemma 4.2. Let ε > 0 satisfym(A22) +
ε < m(A) = 1. We have μ(A) = m(A) = r(A) = 1 by Theorem 3.4 and Remark 3.1, so
there exists k ∈ N and i0, . . . , ik−1 ∈ N such that

A(i0, ik−1, . . . , i1, i0)1/k > 1 − ε.

Clearly reij (A) = rei0 (A) > 1 − ε > m(A22) for all j = 0, . . . , k − 1. So i0, . . . , ik−1 ∈ F
andμ(A11) > 1 − ε. Since ε > 0was arbitrary and since F is a finite set, we haveμ(A11) =
1.

By Theorem 3.8, r(A) ∈ σp(A), which completes the proof. �

Theorem4.4: Let A ∈ R
∞×∞
+ satisfyme(A) < m(A). Then there exists a sequence (finite or

infinite) of finite non-empty disjoint sets F1, F2, . . . ⊂ N and a sequence of numbers (mk) sat-
isfying m(A) = m1 > m2 > . . . such that in the decomposition N = F1 ∪ F2 ∪ · · · ∪ (N \⋃

Fj) the matrix A is permutationally equivalent to a matrix in the form

⎡
⎢⎢⎢⎢⎢⎣

A11 0 0 · · · 0
∗ A22 0 · · · 0
∗ ∗ A33 · · · 0
...

. . .
...

∗ ∗ ∗ · · · A∞,∞

⎤
⎥⎥⎥⎥⎥⎦ , (10)

where rej(A) = m(Akk) = mk for all j ∈ Fk. If the sequence (mk) is finite, then me(A) =
m(A∞,∞). If the sequence (mk) is infinite, then me(A) = limk→∞ mk.

If, in addition, ress(A) < r(A) then there exists a decomposition with the above properties
such that

r(Akk) = μ(Akk) = mk

for all k that satisfy mk > ress(A). Moreover, for such k the supremum (maximum) in the
definition of μ(Akk) is attained.

Proof: The decomposition is obtained using Lemma 4.2, inductively.
Let r(A) > ress(A),mk > ress(A) and let

A′ =

⎡
⎢⎢⎢⎢⎢⎣

Akk 0 0 · · · 0
∗ Ak+1,k+1 0 · · · 0
∗ ∗ Ak+2,k+2 · · · 0
...

. . .
...

∗ ∗ ∗ · · · A∞,∞

⎤
⎥⎥⎥⎥⎥⎦ .

Then r(A′) = max{mk, ress(A)} = mk > ress(A) = ress(A′) and by Theorem 3.6 we have
r(A′) = m(A′) = mk > me(A) = me(A′). So the statement follows from Lemma 4.3. �

Let A ∈ R
∞×∞
+ satisfy me(A) < m(A). Without loss of generality (otherwise apply a

suitable permutational equivalence) we assume that A has the form (10). Each Akk (for
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k < ∞) can be transformed by simultaneous permutations of the rows and columns to a
Frobenius normal form (FNF) (see e.g. [4,19,31,36,37] and the references cited there)

⎡
⎢⎢⎢⎢⎣

A[k]
lk

0 0 . . . 0
∗ A[k]

lk−1 0 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . A[k]
1

⎤
⎥⎥⎥⎥⎦ ,

whereA[k]
1 , . . . ,A[k]

lk
are irreducible square sub-matrices ofAkk. This gives a (permutation-

ally equivalent) form of a matrix A denoted by
⎡
⎢⎢⎢⎢⎢⎢⎣

B1 0 0 . . . 0
∗ B2 0 . . . 0
...

... B3
... 0

...
...

...
. . . 0

∗ ∗ ∗ . . . A∞,∞

⎤
⎥⎥⎥⎥⎥⎥⎦
, (11)

where all Bk are finite dimensional irreducible matrices. In general, the diagonal blocks of
the above form are determined uniquely (up to a simultaneous permutation of their rows
and columns), however their order is not determined uniquely.

Let me(A) < m(A) and let A be a matrix in the form (11). Next we define the reduced
digraph R(A) = (NR(A),ER(A)). Here the matrices B1,B2, . . . ,A∞,∞ from (11) corre-
spond to the (possible infinite) set NR(A) of sets of nodes N1,N2, . . . ,N∞ of the strongly
connected components of a digraph G(A) = (N(A),E(A)). Note that in (11) an edge from
a node of Nμ to a node of Nν in G(A) may exist only if μ ≥ ν. The set ER(A) equals

{(μ, ν) : there exist k ∈ Nμ and j ∈ Nν such that akj > 0}.

By a class of A we mean a node μ (or also the corresponding set Nμ) of the reduced graph
R(A). Class μ accesses class ν, denoted by μ → ν, if μ = ν or if there exists a μ − ν path
inR(A) (a path that starts in μ and ends in ν). A node j of G(A) is accessed by a class μ,
denoted by μ → j, if j belongs to a class ν such that μ → ν.

The following result, that describes rej(A) via the access relation under the additional
condition ress(A) < rej(A), follows from Theorem 4.4.

Corollary 4.5: Let A ∈ R
∞×∞
+ such that me(A) < m(A) and ress(A) < r(A) and let A,

B1,B2, . . . ,A∞,∞ be from (11) and j ∈ N. If rej(A) > ress(A), then

rej(A) = max{r(Bμ) : μ → j}.

Remark 4.1: The cycle time vector χ(A) of A ∈ R
∞×∞
+ (see [38] for the n × n case) is a

vector in l∞+ with entries

[χ(A)]j = lim sup
k→∞

(Ak
⊗ ⊗ y)1/kj
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where y = 1, the unit (column) vector. It is not hard to check that [χ(AT)]j = rej(A), where
AT denotes the transposedmatrix. Indeed, ‖Ak⊗ ⊗ ej‖ = yT ⊗ Ak⊗ ⊗ ej = eTj ⊗ (AT)k⊗ ⊗ y
and so

rej(A) = lim sup
k→∞

‖Ak
⊗ ⊗ ej‖1/k = lim sup

k→∞
(eTj ⊗ (AT)k⊗ ⊗ y)1/k

= lim sup
k→∞

((AT)k⊗ ⊗ y)1/kj = [χ(AT)]j.

5. Continuity properties

We consider the metric on R
∞×∞
+ induced by ‖ · ‖, i.e.

d(A,B) = ‖A − B‖ = sup{|aij − bij| : i, j ∈ N}.

Proposition 5.1: The function A �→ r(A) is upper semi-continuous on (R∞×∞
+ , d).

Proof: Let A,B ∈ R
∞×∞
+ and k ∈ N. We have

(Ak
⊗)j,i = sup{A(ik, ik−1, . . . , i1, i0) : i0 = i, ik = j}

and

(Bk⊗)j,i = sup{B(ik, ik−1, . . . , i1, i0) : i0 = i, ik = j}.

Let i0 = i, ik = j and i1, . . . , ik−1 ∈ N. Then

∣∣A(ik, . . . , i0) − B(ik, . . . , i0)
∣∣ = ∣∣aik,ik−1 · · · ai1,i0 − bik,ik−1 · · · bi1,i0

∣∣
≤ ∣∣aik,ik−1 · · · ai2,i1(ai1,i0 − bi1,i0)

∣∣ + ∣∣aik,ik−1 · · · ai3,i2(ai2,i1 − bi2,i1)bi1,i0
∣∣

+ · · · + ∣∣(aik,ik−1 − bik,ik−1)bik−1,ik−2 · · · bi1,i0
∣∣ ≤ k‖A − B‖max{‖A‖k−1, ‖B‖k−1}.

So ‖Ak⊗ − Bk⊗‖ ≤ k‖A − B‖max{‖A‖k−1, ‖B‖k−1} and the mapping A �→ Ak⊗ is continu-
ous. So the function A �→ ‖Ak⊗‖1/k is continuous and therefore the function A �→ r(A) =
infk ‖Ak⊗‖1/k is upper semi-continuous. �

In general the Bonsall cone spectral radius is discontinuous (see also [24]). This is shown
by the following example, which is based on the classical example of Kakutani.

Example 5.2: For k ∈ N, k = 2j · l with l odd we write wk = 2−j.
Define A ∈ R

∞×∞
+ by Ai,i+1 = wi and Ai,j = 0 if j �= i + 1.

Form ∈ N define Am ∈ R
∞×∞
+ by (Am)i,j = wi if j = i+ 1 and wi ≥ 2−m, (Am)i,j = 0

otherwise.
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Clearly ‖A − Am‖ → 0. For eachm ∈ N we have (Am)2
m+1

⊗ = 0, and so r(Am) = 0 for
allm. Furthermore,

‖A2m
⊗ ‖ =

2m∏
i=1

wi = 12
m−1 · 2−2m−2 · 2−2·2m−3 · · · 2−(m−1) · 2−2m .

So

‖A2m
⊗ ‖1/2m =

m−1∏
j=1

(
1
2j

)2−j−1

·
(

1
2m

)1/2m

= 2− ∑m−1
j=1 j2−j−1 ·

(
1
2m

)1/2m

→ 2−∑∞
j=1 j·2−j−1 = 2−1.

Hence r(A) = limm→∞ ‖A2m⊗ ‖1/2m = 1
2 �= 0.

Remark 5.1: Note that in the above examplewehaveA1 ≤ A2 ≤ · · · , so the spectral radius
is discontinuous even for monotone sequences. So the infinite dimensional generalization
to our setting of [39, Proposition 3.7(ii)] is not valid.

The following results extends [39, Proposition 3.7(i)] to the infinite dimensional setting.

Proposition 5.3: The function A �→ σap(A) is upper semi-continuous on (R∞×∞
+ , d).

Proof: Let t ≥ 0 and t /∈ σap(A). So there exists δ > 0 such that ‖A ⊗ x − tx‖ ≥ δ for all
x ∈ l∞+ , ‖x‖ = 1. If ‖B − A‖ < δ/2, then

‖B ⊗ x − tx‖ ≥ ‖A ⊗ x − tx‖ − ‖A ⊗ x − B ⊗ x‖ ≥ δ/2

for all unit vectors x ∈ l∞+ . So t /∈ σap(B) and the mapping B �→ σap(B) is upper semi-
continuous. �

Remarks 5.1: (i) Propositions 5.1 and 5.3 remain valid (with similar proofs) for Bon-
sall’s cone spectral radius and approximate point spectrum of positively homoge-
neous bounded maps A on a positive cone of a normed vector lattice. For necessary
definitions we refer the reader to e.g. [27] or [28].

(ii) Example 5.2 shows that in general the approximate point spectrum σap(·) is not
continuous. For a simpler example for finite matrices see e.g. also [39, Example 3.6].

It is interesting that μ(·) behaves in the opposite way than r(·).
Proposition 5.4: The function A �→ μ(A) is lower semi-continuous on (R∞×∞

+ , d).

Proof: Let A,An ∈ R
∞×∞
+ such that An → A.

If μ(A) = 0 then clearly 0 = μ(A) ≤ lim infn→∞ μ(An).
Let μ(A) > 0 and ε ∈ (0,μ(A)). Find a cycle such that A(i1, ik, . . . , i2, i1) ≥ (μ(A) −

ε)k. Then

μ(An) ≥ An(i1, ik, . . . , i2, i1)1/k → A(i1, ik, . . . , i2, i1)1/k ≥ μ(A) − ε.

So lim infn→∞ μ(An) ≥ μ(A) and the functionA �→ μ(A) is lower semi-continuous. �
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The following example shows that the functionA �→ μ(A) is in general not continuous.

Example 5.5: Let A ∈ R
∞×∞
+ be defined by Ai,j = δi,j+1 (the Kronecker symbol), i.e. A is

the forward shift. Let Bk = A + Ek, where (Ek)1,k = k−1 and (Ek)i,j = 0 otherwise. Then
μ(A) = 0, Bk → A and μ(Bk) = 1

k1/k → 1 as k → ∞.

The following result follows from Propositions 5.1 and 5.4.

Corollary 5.6: Let A ∈ R
∞×∞
+ satisfy μ(A) = r(A). Then the functions r(·) and μ(·) are

continuous at A.

Proof: Let An → A. We have

r(A) ≥ lim sup
n→∞

r(An)

by the upper semi-continuity of r(·). Furthermore,

r(A) = μ(A) ≤ lim inf
n→∞ μ(An) ≤ lim inf

n→∞ r(An)

by the lower semi-continuity of the function μ(·). Hence r(An) → r(A) whenever An →
A.

The continuity of μ(·) at A is proved in a similar manner. �

By Corollary 5.6 and Theorem 3.6 the following result follows.

Corollary 5.7: Let A ∈ R
∞×∞
+ and ress(A) < r(A). Then the functions r(·) and μ(·) are

continuous at A.

Definition 5.8: Let (X, d) be a metric space. A mapping f : X → R is called Hölder
continuous (of order α > 0) if there exists a constant C ≥ 0 such that the inequality

|f (x) − f (y)| ≤ Cd(x, y)α (12)

holds for all x, y ∈ X. The map f is called locally Hölder continuous (of order α) if for each
z ∈ X there exist ε > 0 and C ≥ 0 (which may depend on z) such that (12) holds for all
x, y ∈ B(z, ε), whereB(z, ε) denotes the closed ball inXwith the centre z and the radius ε. If
f is locally Hölder continuous of order α = 1, then it is called locally Lipschitz continuous.

Remark 5.2: It was proved in the proof of Proposition 5.1 that for eachA,B ∈ R
∞×∞
+ and

k ∈ N we have

‖Ak
⊗ − Bk⊗‖ ≤ k‖A − B‖ · max{‖A‖k−1, ‖B‖k−1}.

Thus for each k ∈ N the map A �→ Ak⊗ is locally Lipschitz continuous and thus also the
map A �→ ‖Ak⊗‖ is locally Lipschitz continuous, since

|‖Ak
⊗‖ − ‖Bk⊗‖| ≤ ‖Ak

⊗ − Bk⊗‖ ≤ k‖A − B‖ · max{‖A‖k−1, ‖B‖k−1}.

Thus the map A �→ ‖Ak⊗‖1/k is locally Hölder continuous of order 1
k .
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However, the following example shows that the mapping r(·) is in general not locally
Lipschitz continuous on the set {A ∈ R

∞×∞
+ : r(A) = μ(A)}.

Example 5.9: LetA = 0 ∈ R
∞×∞
+ . Then r(A) = μ(A) = 0. For n ∈ N and ε > ε′ > 0 let

Bn,ε and Cn,ε,ε′ be given by

(Bn,ε)i,i+1 = ε (i < n)

(Bn,ε)i,j = 0 (otherwise)

(Cn,ε,ε′)i,i+1 = ε (i < n)

(Cn,ε,ε′)n,1 = ε′

(Cn,ε,ε′)i,j = 0 (otherwise).

Then ‖A − Bn,ε‖ = ‖A − Cn,ε,ε′‖ = ε and ‖Bn,ε − Cn,ε,ε′‖ = ε′ for all n, ε, ε′. Moreover,
r(Bn,ε) = 0 and r(Cn,ε,ε′) = (εn−1ε′)1/n → ε as n → ∞. So for all L>0 and ε > 0 there
exist B, C with ‖A − B‖ ≤ ε, ‖A − C‖ ≤ ε and |r(B) − r(C)| > L‖B − C‖.

In contrast to the finite dimensional case [6, Proposition 5.2(ii)], r(·) is in general
not locally Hölder continuous of any order α > 0 (and thus it is not locally Lipschitz
continuous) even on the set {A ∈ R

∞×∞
+ : r(A) = μ(A) > 0}.

Example 5.10: Let α > 0. Set n1 = 1. For each k ≥ 2 find nk such that

(1 + k−1)
nk−1
nk k

−2
αnk > 1 + 1

2k
.

Let X be a Banach lattice isomorphic to �∞ with the standard basis ei,j = χ{(i,j)}(i ∈ N, 1 ≤
j ≤ ni). Define A : X+ → X+ by A ⊗ e1,1 = e1,1,

A ⊗ ei,j =
(
1 + 1

i

)
ei,j+1 (i ≥ 2, 1 ≤ j < ni)

A ⊗ ei,ni = 0.

Then r(A) = μ(A) = 1.
For k ≥ 2 define Bk by

Bk ⊗ e1,1 = e1,1,

Bk ⊗ ei,j =
(
1 + 1

i

)
ei,j+1 (i ≥ 2, 1 ≤ j < ni),

Bk ⊗ ei,ni = k
−2
α ei,1 (i ≥ 2).

Then ‖A − Bk‖ = k−2/α for all k. Moreover,

lim
k→∞

|r(Bk) − r(A)|
‖Bk − A‖α

= lim
k→∞

k2
(

(1 + k−1)
nk−1
nk k−2/(αnk) − 1

)
≥ lim

k→∞
k2 · 1

2k
= ∞.

So the function r(·) is not locally Hölder continuous of order α.
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Remark 5.3: The following weaker statement than local Hölder continuity of A �→ μ(A)

on the set {A ∈ R∞×∞
+ : μ(A) > 0} holds (and a related statement holds also for the map

A �→ r(A)).Let μ(B) > 0. If μ(B) > ε > 0 and μ(A) > 0, then

μ(B) − ε ≤ μ(A) + k1/k‖A − B‖1/k · max{‖A‖ k−1
k , ‖B‖ k−1

k } (13)

for some k ∈ N.
Indeed, there exists a cycle such that B(i1, ik, . . . , i2, i1) ≥ (μ(B) − ε)k. It follows from

the proof of Proposition 5.1 that

(μ(B) − ε)k ≤ B(i1, ik, . . . , i2, i1)

≤ A(i1, ik, . . . , i2, i1) + k‖A − B‖ · max{‖A‖k−1, ‖B‖k−1}
and so

μ(B) − ε ≤
(
A(i1, ik, . . . , i2, i1) + k‖A − B‖ · max{‖A‖k−1, ‖B‖k−1}

)1/k
≤ A(i1, ik, . . . , i2, i1)1/k + k1/k‖A − B‖1/k · max

{
‖A‖ k−1

k , ‖B‖ k−1
k

}

≤ μ(A) + k1/k‖A − B‖1/k · max
{
‖A‖ k−1

k , ‖B‖ k−1
k

}
.

Similarly, it can be proved that if μ(A) > 0 and μ(B) > ε > 0, then

μ(B) + ε ≥ μ(A) − k1/k‖A − B‖1/k · max
{
‖A‖ k−1

k , ‖B‖ k−1
k

}
(14)

for some k ∈ N.
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