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a b s t r a c t

The mutual-visibility problem in a graph G asks for the cardi-
nality of a largest set of vertices S ⊆ V (G) so that for any two
vertices x, y ∈ S there is a shortest x, y-path P so that all internal
vertices of P are not in S. This is also said as x, y are visible with
respect to S, or S-visible for short. Variations of this problem
are known, based on the extension of the visibility property of
vertices that are in and/or outside S. Such variations are called
total, outer and dual mutual-visibility problems. This work is
focused on studying the corresponding four visibility parameters
in graphs of diameter two, throughout showing bounds and/or
closed formulae for these parameters.

The mutual-visibility problem in the Cartesian product of
two complete graphs is equivalent to (an instance of) the cel-
ebrated Zarankiewicz’s problem. Here we study the dual and
outer mutual-visibility problem for the Cartesian product of two
complete graphs and all the mutual-visibility problems for the
direct product of such graphs as well. We also study all the
mutual-visibility problems for the line graphs of complete and
complete bipartite graphs. As a consequence of this study, we
present several relationships between the mentioned problems
and some instances of the classical Turán problem. Moreover, we
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study the visibility problems for cographs and several non-trivial
diameter-two graphs of minimum size.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The mutual-visibility problem in graphs has recently appeared in [15], and has remarkably
ttracted the attention of several investigations, which can be seen in the series of articles [3,5–
2,25,33]. Some reasons of such interest might come from the following facts.

• The problem has some origin in a computer science application related to situations arising
in a framework of mobile entities in a network. That is, nodes of a network having some
‘‘mutual-visibility’’ properties can be seen as entities of a network requiring to communicate
between themselves in a somehow confidential or private way. Namely, satisfying that for any
exchanged information there should be a channel which does not pass through other entities.
For some of these applied researches see for instance [1,2,6,14,30].

• A close relationship that exists between the mutual-visibility problem and the general position
problem [26,35], which is also a distance related topic of high interest in the last recent
years [20–22,24,29,34,37], see also [23,27] for the edge version of the general position problem
in graphs.

• The connections that have appeared between the mutual-visibility problem with some classical
topics in combinatorics. For instance, while studying the mutual-visibility problem in the
Cartesian product of complete graphs, it has been noted that solving such a problem turns out
to be equivalent to solve an instance of the well-known Zarankiewicz’s problem (see [11]).
Relatively similar to this, while considering the lower version of this problem, a closed
relationship with a classical Bollobás-Wessel theorem was proved (see [3]). (The lower version
of the problem is to find a smallest maximal mutual-visibility set of a graph.) Also, for the case
of the total variant of the mutual-visibility, and the same families of graphs, it has been noted
that it can be reformulated as a Turán-type problem on hypergraphs (see [5]).

• The standard mutual-visibility problem can be (and sometimes even needs to be) modified
in several directions in order to consider different visibility situations. For instance, while
studying the mutual-visibility problem in general Cartesian product graphs (see [11]), the
notion of independent mutual-visibility was naturally required, thus defined, and their first
basic properties identified. In the article [12], a total version of the mutual-visibility problem
was needed, in order to study the strong product of graphs. This total notion was also a
first step into the work [10], where this total version was further studied, together with
two ‘‘partially’’ total ones that were introduced in order to close all the possible ‘‘visibility’’
situations that might exist between the vertices of a graph.

In a formal way, given a connected graph G and a set of vertices X ⊆ V (G), two vertices
x, y ∈ V (G) are called to be X-visible if there is a shortest x, y-path (also called geodesic) whose
interior vertices do not belong to X . With this idea in mind, for a given set X ⊆ V (G) of a connected
graph G, the following definitions are known from [10].

• Mutual-visibility set: if any two vertices of X are X-visible.
• Outer mutual-visibility set: if any two vertices x, y ∈ X and any two vertices x ∈ X and y ∈ X

are X-visible.
• Dual mutual-visibility set: if any two vertices x, y ∈ X and any two vertices x, y ∈ X are

X-visible.
• Total mutual-visibility set: if any two vertices x, y ∈ V (G) are X-visible.
2
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Regarding such graph structures, the following parameters are defined as the cardinalities of the
largest (respectively) mutual-visibility sets from the above ones.

mutual-visibility number µ(G) dual mutual-visibility number µd(G)
outer mutual-visibility number µo(G) total mutual-visibility number µt(G)

If τ ∈ {µ, µd, µo, µt}, then we say that X ⊆ V (G) in a τ -set if |X | = τ (G).
In the present investigation, we are focused on giving some contributions on these four mutual-

visibility parameters on graphs of diameter two. Some motivations for this specific study are coming
from already established results on such class of graphs. For instance, as already mentioned, the
mutual-visibility problem in the Cartesian product of complete graphs is proved to be equivalent to
solve an instance of the well-known Zarankiewicz’s problem (see [11]), and such Cartesian products
are of diameter two. In this sense, we continue this research direction on graphs of diameter two,
which will indeed show that this problem, and the related variations, remain challenging while
considering diameter-two graphs in general.

In the remaining of this section we give some preliminary terminologies and notations that shall
be used throughout our exposition. In Section 2 we consider the Cartesian and direct products of
complete graphs. Specifically, we give formulas for the dual and outer mutual-visibility numbers of
the Cartesian product, which fulfills the existing gap for the visibility numbers of such graphs. These
results allow us, among other things, to answer negatively a question in the literature regarding the
relationship between the mutual-visibility number and the outer mutual-visibility number. We also
compute all the mutual-visibility numbers of the direct product of complete graphs, showing that
all of them achieve the same value. Section 3 focuses on the line graphs of complete and complete
bipartite graphs. Through this study, we give several relationships between the mutual-visibility
problems and some instances of the classical Turán problem. Among them, we for instance show
that the mutual-visibility number of the line graph of complete graphs equals the number of edges
of the Turán graph T (n, 3), and that the total mutual-visibility number of such graphs equals the
number of edges of the Turán related graph ex(n; C4). Connections between the mutual-visibility
problem on the line graphs of complete bipartite graphs and the Zarankiewicz’s problem are also
given in Section 3. Next, in Section 4 we consider the class of cographs, by studying those graphs
G that have values in their mutual-visibility numbers equal to at least the order of G minus one.
Section 5 is focused on non-trivial diameter-two graphs of minimum size. That is, we compute the
values of the mutual-visibility parameters of the graphs belonging to this class. Finally, Section 6
gives some concluding remarks together with some future research lines that can be of interest as
a continuation of this work.

1.1. Preliminaries

All graphs considered in this paper are finite and simple. The distance dG(u, v) between vertices
u and v of a graph G is the length of a shortest u, v-path. The degree of a vertex v in G is denoted
as degG(v). The girth, g(G), of a graph G is the length of a shortest cycle of G. If G is a forest, then
we set g(G) = ∞. For an integer k ≥ 1, we shall write [k] = {1, . . . , k}. The order and the size of G
will be respectively denoted by n(G) and m(G). A vertex of G is universal if it is adjacent to all the
other vertices of G.

The Cartesian product G□H and the direct product G×H of graphs G and H both have the vertex
set V (G)× V (H). In G□H , vertices (g, h) and (g ′, h′) are adjacent if either g = g ′ and hh′

∈ E(H), or
h = h′ and gg ′

∈ E(G). In G×H , vertices (g, h) and (g ′, h′) are adjacent if gg ′
∈ E(G) and hh′

∈ E(H).
In each of the two products, if h ∈ V (H), then the set of vertices {(g, h) : g ∈ V (G)} forms a G-layer
which is denoted by Gh. For a given g ∈ V (G), the H-layer gH is defined analogously. Note that
in G□H , layers induce subgraphs isomorphic to G resp. H , while in G × H layers induce edgeless
graphs.

The union G ∪ H of G and H is the graph with vertex set V (G ∪ H) = V (G) ∪ V (H) and edge set
(G∪H) = E(G)∪E(H). The join G+H of G and H is the graph with vertex set V (G+H) = V (G)∪V (H)
nd edge set E(G + H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.
A cograph is a graph which contains no induced path on four vertices. Cographs can be

characterized in many different ways, see [13]. For instance, cographs are precisely the graphs that

can be obtained from K1 by means of a sequence of disjoint unions and joins of graphs.
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2. Products of two complete graphs

In this section we consider the four invariants of interest on Cartesian and direct products of two
omplete graphs. The invariants µ and µt were already considered, here we add formulas for µd
nd µo. Using these results we are able to answer in negative the question from [10], on whether

µ(G) ≤ 2µo(G) holds for any graph G. We also prove the formula for the four invariants for the
direct product of complete graphs.

In [11] it is proved that if m, n ≥ 2, then µ(Km □ Kn) = z(m, n; 2, 2), where z(m, n; 2, 2) is the
maximum number of 1s that an m × n binary matrix can have, provided that it contains no 2 × 2
ubmatrix of 1s. To determine z(m, n; 2, 2) is a notorious open (instance of) Zarankiewicz’s problem.
When n is sufficiently large, the value z(n, n; 2, 2) can be bounded as follows [4,17]:

n3/2
− n4/3

≤ z(n, n; 2, 2) ≤
1
2
n(1 +

√
4n − 3),

hich demonstrates that the growth is faster than linear.
For the total mutual-visibility number it was proved in [33] that if n,m ≥ 2, then

µt(Kn □ Km) = max{n,m}.

For the dual and the outer mutual-visibility number, we have the following related respective
results.

Theorem 2.1. If n,m ≥ 3, then

(i) µd(Kn □ Km) = n + m − 1,
(ii) µo(Kn □ Km) = n + m − 2.

Proof. Let V (Kk) = [k], so that V (Kn □ Km) = {(i, j) : i ∈ [n], j ∈ [m]}. For the rest of the proof set
G = Kn □ Km.

(i) It is straightforward to check that the set {(i, 1) : i ∈ [n]} ∪ {(1, j) : j ∈ [m]} is a dual
mutual-visibility set of cardinality n + m − 1, thus µd(G) ≥ n + m − 1.

To prove the reverse inequality, suppose for a purpose of contradiction that there exists a dual
mutual-visibility set X of G of cardinality at least n + m. Let x = (i, j) be an arbitrary vertex from
X . Since the union of the two layers containing x contains n + m − 1 vertices, there exists a vertex
′
= (i′, j′) ∈ X , where i ̸= i′ and j ̸= j′. By the symmetry of G we may without loss of generality

assume that x′
= (i+ 1, j+ 1). (Here and later below, indices are computed modulo n and m in the

ense that n + 1 = 1.) As X is a dual mutual-visibility set, at least one of the vertices (i + 1, j) or
i, j+ 1) must belong to X , for otherwise they are not X-visible. We may without loss of generality
ssume that y = (i+1, j) ∈ X . Then (i, j+1) /∈ X , for otherwise x and x′ are not X-visible. In Fig. 1(a)

the situation so far is schematically presented, where we use the convention that the vertices from
X are shown in black, and the vertices not from X in white.

Consider now the vertex y = (i + 1, j). By the above argument used for x, there exists a vertex
z ∈ X which does not lie in the union of the two layers containing y. Assume first that z = (i, j′′),
where j′′ ̸= j. Then clearly we also have j′′ ̸= j+ 1. Now we must have (i+ 1, j′′) ̸∈ X , for otherwise
y and z are not X-visible. But then the two vertices (i + 1, j′′) and (i, j + 1) do not belong to X and
are not X-visible, a contradiction. This situation is shown in Fig. 1(b).

If z = (i′′, j + 1), then by symmetry, we also arrive to a contradiction.
Assume now that z = (i′′, j′′), where i′′ ̸= i, i + 1 and j′′ ̸= j, j + 1. Considering the vertices

z = (i′′, j′′) ∈ X and x′
= (i + 1, j + 1) ∈ X , we see that one of (i′′, j + 1) and (i + 1, j′′) belongs to

X; for otherwise we get a contradiction, since these two vertices would not be X-visible. Suppose
that (i′′, j+ 1) ∈ X , see Fig. 1(c). Consider the vertices x = (i, j) ∈ X , (i′′, j+ 1) ∈ X , and (i, j+ 1) /∈ X
to realize that (i′′, j) ∈ X . But then (i′′, j) and x′ are not X-visible. This implies that (i′′, j + 1) /∈ X ,
and consequently (i + 1, j′′) ∈ X , see Fig. 1(d). Now (i, j′′) /∈ X , for otherwise (i, j′′) and y are not
X-visible. Similarly, (i′′, j) /∈ X , otherwise it is not X-visible with (i + 1, j), see Fig. 1(d) again. But
now the vertices (i, j′′) /∈ X and (i′′, j) /∈ X , are not X-visible. This final contradiction implies that
µ (G) ≤ n + m − 1 which proves (i).
d
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Fig. 1. Cases from the proof of Theorem 2.1(i).

(ii) It is straightforward to verify that the set {(i, 1) : 2 ≤ i ≤ n} ∪ {(1, j) : 2 ≤ j ≤ m} is an
uter mutual-visibility set of cardinality n + m − 2, thus µo(G) ≥ n + m − 2.
Let X be an arbitrary outer mutual-visibility set of G. We may assume without loss of generality

hat (1, 1) /∈ X . Let x = (i, j) be an arbitrary vertex of X . Then in one of the layers (Kn)j and i(Km),
he vertex x is the only vertex from X . Indeed, if we would have (i, j′) ∈ X , j′ ̸= j, and (i′, j) ∈ X ,
i′ ̸= i, then no matter whether (i′, j′) lies in X or not, the vertices x and (i′, j′) are not X-visible.
We are now going to assign to each vertex x ∈ X a unique variable as follows. If x = (i, 1) ∈ X ,
then assign to x the variable ai and if x = (1, j) ∈ X , then assign to x the variable bj. In addition, if
i, j ≥ 2 and x = (i, j) ∈ X , then in the case that X ∩ V ((Kn)j) = {x}, we assign to x the variable bj,
and if X ∩ V (i(Km)) = {x}, then we assign to x a variable ai. Note that if, say, (i, 1) ∈ X and (i, j) ∈ X ,
j ̸= 1, then (i, 1) is assigned ai and (i, j) is assigned bj. Since to each vertex of X we assign a different
variable and, having in mind that (1, 1) /∈ X , the variables used are a2, . . . , an and b2, . . . , bm, we
have |X | ≤ n + m − 2. We conclude that µo(G) ≤ n + m − 2. □

By Theorem 2.1 and the discussion before it, as soon as n and m are not small, we have

µt(Kn □ Km) < µo(Kn □ Km) < µd(Kn □ Km) < µ(Kn □ Km) . (1)

In [10] a question was posed whether µ(G) ≤ 2µo(G) is true in general. We can now answer this
question in negative because µ (K □ K ) = 2n − 2 and µ(K □ K ) ≥ n3/2

− n4/3.
o n n n n
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We now turn our attention to the direct product of complete graphs and prove the following
esult.

heorem 2.2. If n,m ≥ 5, then µt(Kn × Km) = µ(Kn × Km) = nm − 4.

roof. Let V (Kk) = [k], so that V (Kn × Km) = {(i, j) : i ∈ [n], j ∈ [m]}. Set G = Kn × Km for the rest
f the proof.
We claim first that µ(G) ≤ nm − 4. Suppose on the contrary that there exists a larger mutual-

isibility set X . Since a subset of a mutual-visibility set is a mutual-visibility set, we may assume
that |X | = nm−3. Let V (G)\X = {x, y, z}. By the symmetry of G, it suffices to consider the following
four cases.

Suppose that x = (i, j), y = (i′, j′), z = (i′′, j′′), where |{i, i′, i′′}| = 3 and |{j, j′, j′′}| = 3. In this
case we see that the vertices (i′, j) and (i′, j′′) belong to X but are not X-visible. Hence this case is
not possible.

In the second case, suppose that x = (i, j), y = (i′, j), z = (i′, j′), where i ̸= i′ and j ̸= j′. Now we
infer that the vertices (i − 1, j) and (i − 1, j′) belong to X but are not X-visible.

In the third case, suppose that x = (i, j), y = (i, j′), z = (i′, j′′), where i ̸= i′ and |{j, j′, j′′}| = 3.
Now consider the vertices (i′, j) and (i′, j′) which both belong to X but are not X-visible.

In the last case, suppose that x = (i, j), y = (i′, j), z = (i′′, j), where |{i, i′, i′′}| = 3. Now consider
two vertices (k, j) and (k′, j), where k and k′ are selected in such a way that |{i, i′, i′′, k, k′

}| = 5.
(Such values k and k′ exist since we have assumed that n,m ≥ 5.) But now the vertices (k, j) and
(k′, j) belong to X , and they are not X-visible.

We can conclude that no matter how the set X lies in G, it cannot form a mutual-visibility set.
This proves that µ(G) ≤ nm − 4.

Let Y = {(1, 1), (2, 2), (3, 3), (4, 4)} and let X = V (G) \ Y . We claim that X is a total mutual-
visibility set of G. Let x = (i, j) and y = (i′, j′) be arbitrary vertices of G. Assume first that x, y ∈ X .
If i ̸= i′ and j ̸= j′, then xy ∈ E(G) and there is nothing to prove. Otherwise, i = i′ or j = j′. Assume
without loss of generality that i = i′ and let k ∈ [4] be such that k ̸= i, j, j′. Then (i, j)(k, k) ∈ E(G)
and (k, k)(i, j′) ∈ E(G), hence x and y are X-visible. We proceed similarly in the case when x ∈ X
and y ∈ Y . Finally, if x, y ∈ Y , then xy ∈ E(G). We have thus demonstrated that X is a total
mutual-visibility set of G.

By the above, µt(G) ≥ mn − 4. Combining this inequality with the earlier proved inequality
µ(G) ≤ nm − 4, we have

nm − 4 ≤ µt(G) ≤ µ(G) ≤ nm − 4,

hence the equality holds everywhere and we are done. □

Corollary 2.3. If n,m ≥ 5, then

µt(Kn × Km) = µo(Kn × Km) = µd(Kn × Km) = µ(Kn × Km).

Proof. Combine Theorem 2.2 with the facts following directly from definitions that for any graph
G we have µt(G) ≤ µo(G) ≤ µ(G) and µt(G) ≤ µd(G) ≤ µ(G), cf. [10]. □

Note that Corollary 2.3 is in sharp contrast to (1).

3. Line graphs

Given a graph G, the line graph L(G) of G has vertex set V (L(G)) = {euv : uv ∈ E(G)}, and two
vertices euv, eu′v′ are adjacent in L(G) if and only if the edges uv, u′v′ are incident in G. From now
on, given a set of edges F ⊆ E(G), we set SF = {euv ∈ V (L(G)) : uv ∈ F}. Also, by GF we represent
the subgraph of G whose edges are those ones in F and vertices are those from the edges of F .

In this section we focus on the line graphs of complete graphs and of complete bipartite graphs.
Notice that if n ≥ 4, then diam(L(Kn)) = 2, and if m, n ≥ 2, then diam(L(Km,n)) = 2. More generally,
if diam(G) ≤ 2, then diam(L(G)) ≤ 3. We begin with a characterization of mutual-visibility sets in

line graphs L(G) for graphs G with diam(G) = 2.
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Lemma 3.1. Let G be a graph of diameter 2 and F ⊆ E(G). Then SF ⊆ V (L(G)) is a mutual-visibility
et of L(G) if and only if for any two independent edges uv, u′v′

∈ F one of the following conditions is
atisfied.

(i) There is an edge xy /∈ F incident with both uv and u′v′, or
(ii) dL(G)(euv, eu′v′ ) = 3 and there is a vertex z ∈ V (G) adjacent to (without loss of generality) u and

u′ in G, such that uz, u′z /∈ F .

roof. (⇒) Assume SF is a mutual-visibility set of L(G), and let uv, u′v′
∈ F be two independent

dges. Since diam(G) = 2, we have dL(G)(euv, eu′v′ ) ∈ {2, 3}. If dL(G)(euv, eu′v′ ) = 2, then because SF is
mutual-visibility set, there exists a vertex exy /∈ SF such that euv, exy, eu′v′ is a geodesic. Thus, (i)
olds as xy is incident to uv and to u′v′. If dL(G)(euv, eu′v′ ) = 3, then there must be a vertex z ∈ V (G)
djacent to (without loss of generality) u and u′ in G. Clearly, since SF is a mutual-visibility set, there
ust be such vertex z with euz, eu′z /∈ SF , hence (ii) holds.
(⇐) We need to show that any two vertices euv, eu′v′ ∈ SF are SF -visible in L(G). There is nothing

o prove if euveu′v′ ∈ E(L(G)). Assume that dL(G)(euv, eu′v′ ) = 2. Then (ii) does not apply, hence
y (i) there is an edge xy incident with both uv, u′v′ such that exy /∈ SF . Thus, euv, exy, eu′v′ is a
eodesic whose internal vertices are not in SF , and so, euv, eu′v′ ∈ SF are SF -visible. Assume next
hat dL(G)(euv, eu′v′ ) = 3. Then (ii) applies, so that there is a vertex z ∈ V (G) adjacent to u and u′

n G, such that euz, eu′z /∈ SF . Hence, euv, euz, eu′z, eu′v′ is a geodesic in L(G) whose interior vertices
re not in SF . Hence euv, eu′v′ are SF -visible in L(G) in this case as well. Since diam(L(G)) ≤ 3 we are
one. □

Lemma 3.1 reduces the verification whether a set of vertices of L(G), where diam(G) ≤ 2, is
mutual-visibility set to the search for the set of edges of largest cardinality in G satisfying the
onditions of the lemma. This can be interpreted as an instance of a Turán-type problem. The first
triking example of this claim is the following result. For its statement recall that the Turán graph
(n, r) is a complete r-partite graph of order n in which sizes of the r parts are as equal as possible.

heorem 3.2. Let n ≥ 3 be an integer and F ⊆ E(Kn). Then SF ⊆ V (L(Kn)) is a µ-set of L(Kn) if and
nly if (Kn)F ∼= T (n, 3).

roof. For n = 3 we have L(K3) = K3 and the assertion is clear. Suppose in the rest that n ≥ 4.
hen diam(L(Kn)) = 2 and thus Lemma 3.1 implies that if SF is a mutual-visibility set of L(Kn), then
or any two independent edges uv, u′v′

∈ F there is an edge xy incident with both uv, u′v′ such that
y /∈ F . This can be equivalently reformulated by saying that SF is a mutual-visibility set of L(Kn) if
nd only if (Kn)F does not contain a K4. Turán’s theorem (see [36, Theorem 11.1.3]) completes the
rgument. □

Since the Turán graph T (n, r) has (1−
1
r + o(1)) n2

2 edges, we deduce the following consequence
of Theorem 3.2.

Corollary 3.3. If n ≥ 3, then µ(L(Kn)) = ( 23 + o(1)) n2
2 .

Now, with respect to the remaining mutual-visibility parameters of the graph L(Kn), we note the
ollowing facts. If F is a set of edges of Kn, then the corresponding set SF in L(Kn) has the (total,
uter or dual) mutual-visibility properties based on the existence of certain structures obtained
rom pairs of not incident edges from E(Kn), F , or E(Kn) \ F . Recall that a pair of not incident edges
v, u′v′

∈ E(Kn) are SF -visible in L(Kn) whenever there is an edge xy /∈ F such that (without loss of
generality) x = u and y = u′. These facts, the definitions of (total, outer or dual) mutual-visibility
sets and the structure of L(Kn) allow to readily observe the following result, whose proof is rather
simple and left to the reader.

Lemma 3.4. Let n ≥ 3 be an integer and let F ⊆ E(Kn). Then,

(i) SF is a total mutual-visibility set of L(Kn) if and only if for any two not incident edges uv, u′v′
∈

E(K ) the subgraph induced by u, v, u′, v′ has at least one edge not in F different from uv and u′v′.
n

7
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(ii) SF is a dual mutual-visibility set of L(Kn) if and only if

– for any two not incident edges uv, u′v′
∈ E(Kn) \ F the subgraph induced by u, v, u′, v′ has

at least one edge not in F different from uv and u′v′, and
– for any two not incident edges xy, x′y′

∈ F the subgraph induced by x, y, x′, y′ has at least
one edge not in F different from xy and x′y′.

(iii) SF is an outer mutual-visibility set of L(Kn) if and only if

– for any two not incident edges uv, u′v′ with uv ∈ E(Kn) \ F and u′v′
∈ F the subgraph

induced by u, v, u′, v′ has at least one edge not in F different from uv and u′v′, and
– for any two not incident edges xy, x′y′

∈ F the subgraph induced by x, y, x′, y′ has at least
one edge not in F different from xy and x′y′.

By using Lemma 3.4, we can give the following conclusions on the (total, outer or dual)
mutual-visibility number of L(Kn).

Proposition 3.5. For any integer n ≥ 3, µt(L(Kn)) ≥ n − 1 +
⌊ n−1

2

⌋
.

roof. Let w ∈ V (Kn) and let A = {vw ∈ E(Kn) : v ∈ V (Kn) \ {w}}. Also, let G′ be the complete
graph induced by V (Kn) \ {w}, and let M be a maximum matching in G′. Now, consider the set of
edges F = A ∪ M of Kn. Observe that SF satisfies the properties of Lemma 3.4(i). Thus SF is a total
mutual-visibility set of L(Kn), and the bound follows since |SF | = n − 1 +

⌊ n−1
2

⌋
. □

By using a computer we have checked that the bound of Proposition 3.5 is tight for n ∈

{4, 5, 6, 7}. On the other hand, the equality does not hold in general. For instance, the set
{01, 12, 23, 34, 45, 56, 67, 78, 89, 90, 04, 19, 26, 38, 57, 79} of vertices of L(K10), or equivalently,
edges of K10, where we have taken V (K10) = {0, 1, . . . , 9}, is a total mutual-visibility set of L(K10)
f cardinality 16. However, Proposition 3.5 only yields µt(L(K10)) ≥ 13.
The total mutual-visibility number of L(Kn) has an interesting relation with the extension of the

urán problem to forbidden generic graphs.

efinition 3.6 ([36, Page 479]). The Turán number of a graph H , written ex(n;H), is the maximum
umber of edges in an n vertex graph not containing H .

heorem 3.7. For any integer n ≥ 3, µt(L(Kn)) = ex(n; C4).

roof. By Lemma 3.4(i), given a set F ⊆ E(G), the set SF is a total mutual-visibility set of L(Kn) if
nd only if for any two not incident edges uv, u′v′

∈ E(Kn), the subgraph induced by u, v, u′, v′ has
t least one edge not in F different from uv and u′v′. Consider any four vertices u, v, u′, v′ of Kn.
hey induce a graph G′

= K4 with three pairs of not incident edges. Since for each pair at least one
dge (not belonging to the pair) is not in F , it holds that at least two incident edges of G′ are not
n F . Equivalently, this happens if and only if the edges of F in G′ does not form a cycle C4. Hence,
n order to find a µt-set in L(Kn) we need to find a largest set of edges of Kn that does not induce
ny C4. By definition, its size is ex(n; C4). □

orollary 3.8. For any large enough integer n, 1
2 (n

3/2
− n4/3) ≤ µt(L(Kn)) ≤

1
4n(1 +

√
4n − 3).

Proof. Given Theorem 3.7 on the equivalence of µt(L(Kn)) and ex(n; C4), the upper bound was first
roved by Reiman in [31]. The lower bound (and a rediscovery of the upper bound) can be found
n [4,17]. □

We next proceed with finding similar results as the above ones for the other two remaining
utual-visibility parameters (outer and dual).
Theorems 3.2 and 3.7 provide us with a way to calculate the values of µ(L(Kn)) and µt(L(Kn)).

hey are based on the analysis of forbidden subgraphs for (K ) where S is a mutual-visibility or
n F F

8
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Fig. 2. Forbidden induced subgraphs for (Kn)F , where F is such that SF is a (outer, dual, total) mutual-visibility set of
L(Kn).

a total mutual-visibility sets of L(Kn), respectively. By using Lemma 3.4, an analysis of the induced
forbidden subgraphs of (Kn)F for the (dual, outer, total) mutual-visibility set SF of L(Kn) shows that
nly three forbidden graphs are involved: K4, K−

4 , and C4 (see Fig. 2). As proved in Theorem 3.2,
K4 is the only forbidden subgraph of (Kn)F for any mutual-visibility sets SF of L(Kn). As for the total
mutual-visibility, all the three induced graphs are forbidden, but, since C4 is a subgraph of both
K4 and K−

4 , it is sufficient to forbid only this graph, and then µt(L(Kn)) = ex(n, C4), as stated by
heorem 3.7.
Similarly, for the outer mutual-visibility, the induced forbidden subgraphs are K4 and K−

4 , and
ince K−

4 is a subgraph of K4, we have the following result.

heorem 3.9. For any integer n ≥ 3, µo(L(Kn)) = ex(n; K−

4 ).

Based on this relationship above, and using the next known result, we are able to give the exact
alue of µo(L(Kn)).

heorem 3.10 ([32, Theorem 1(a)]). If F has chromatic number k and a critical edge, and n is large
nough, then ex(n, F ) = |E(T (n, k − 1))|. Moreover, T (n, k − 1) is the unique extremal graph.

Since the graph K−

4 has chromatic number 3 and a critical edge, we deduce that the edges of Kn
hat form an outer mutual-visibility set of the largest cardinality in L(Kn), together with the vertices
n such edges, form a graph isomorphic to the Turán graph T (n, 2). Recall that T (n, 2) is the bipartite
raph of order n with partite sets of cardinality ⌈n/2⌉ or ⌊n/2⌋. Thus, the following result holds.

orollary 3.11. For any large enough integer n, µo(L(Kn)) = ⌈
n
2⌉ · ⌊

n
2⌋.

Now, for the dual mutual-visibility, the two induced forbidden subgraphs are K4 and C4. Then
he following result holds.

heorem 3.12. Let F ⊆ E(Kn). Then SF ⊆ V (L(Kn)) is a dual mutual-visibility set of L(Kn) if and only
f (Kn)F is a (K4, C4)-free graph.

In contrast with the cases which appear along with standard, total and outer mutual-visibility
ets, there is a lack (to the best of our knowledge) of results concerning the largest number of edges
n a (K4, C4)-free graph of order n. This made that the result above for the dual mutual-visibility sets
oes not lead to a bound or formulae for the dual mutual-visibility number of L(K ). By computer
n

9
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checking, we only know that for n ∈ [10] the largest graphs have 0, 1, 3, 5, 7, 10, 12, 15, 18, 21
edges, respectively. On the positive side, this means that it is worthy of considering studying this
problem independently.

We next continue with the line graphs of a complete bipartite graph Km,n, m, n ≥ 2. Then we
ecall that Palmer [28] proved that the line graph of a connected graph G is a nontrivial Cartesian
roduct if and only if G = Kn,m, n,m ≥ 2, see [19, Proposition 1.2]. So, L(Km,n) ∼= Km □ Kn. It is already
nown from [11] that µ(Km □ Kn) = z(m, n; 2, 2), where z(m, n; 2, 2) is the Zarankiewicz number,
hat can also be seen as the maximum number of edges in a complete bipartite graph Km,n that has
o 4-cycle. We now state that the same conclusion can be also obtained by using Lemma 3.1. The
roof of it runs along the lines of the proof of Theorem 3.2, and thus it is left to the reader.

heorem 3.13. Let n,m ≥ 2 and F ⊆ E(Km,n). Then SF ⊆ V (L(Km,n)) is a µ-set of L(Km,n) if and only
f SF is a largest set of vertices of L(Km,n) such that (Km,n)F contains no 4-cycle.

The following consequence of Theorem 3.13 then follows from the above-mentioned observa-
ions from [11].

orollary 3.14. For any two integers n,m ≥ 2, µ(L(Km,n)) = z(m, n; 2, 2).

We close this section by again using the fact that the line graph of a complete bipartite graph
n,m is isomorphic to Kn □ Km. Hence, a result from [33], and Theorem 2.1 lead to the following
onsequence.

orollary 3.15. For any two integers n,m ≥ 2, µt(L(Km,n)) = max{n,m}, µd(L(Km,n)) = n + m − 1,
nd µo(L(Km,n)) = n + m − 2.

. Visibility in cographs

In this section, we consider the mutual-visibility in cographs. In the main result we prove that
f G is a cograph, then either µ(G) = µt(G) (= µo(G) = µd(G)), or µ(G) = µd(G) = n(G) − 1 and
t(G) = µo(G) = n(G) − 2. For this, several additional definitions are required.
A cograph is a graph all of whose connected induced subgraphs have diameter at most 2.

oreover, each cograph can also be built up from a single vertex by adding a sequence of twins.
wo vertices u and v of G are false twins if NG(u) = NG(v) and are true twins if NG[u] = NG[v], where
G(u) is the open neighborhood of u and NG[u] = NG(u) ∪ {u}. We say that u and v are twins it they
re either false twins or true twins. Given a graph G and v ∈ V (G), G − v denotes the subgraph of
induced by V (G) \ {v}. A graph G such that µ(G) = µt(G) is called a (µ, µt)-graph.
We start by recalling the following characterizations from [12,15].

emma 4.1 ([15, Lemma 4.8]). Given a graph G, then µ(G) ≥ n(G) − 1 if and only if there exists a
ertex v adjacent to each vertex u such that degG−v(u) < n(G) − 2.

In [12], any vertex v of G fulfilling the condition in the above lemma was called enabling.

roposition 4.2 ([12, Proposition 3.5]). A cograph G is a (µ, µt)-graph if and only if it has a universal
ertex or no enabling vertices.

The following definition aims to reformulate the previous characterizations in terms of graph
tructure.

efinition 4.3. A big-µ graph is any graph G defined as G = (K1 ∪ Kt )+H , where K1, Kt , and H are
hree distinct graphs such that t ≥ 0 (i.e., Kt can be an empty graph).

From this definition, it follows that each non-trivial clique is a big-µ graph (it is sufficient to take
t empty and H as a clique). Consequently, observe that if G is a big-µ graph, then µ(G) = n(G)
hen Kt is empty and H isomorphic to a clique, and µ(G) = n(G) − 1 otherwise. This observation
xplains the term big-µ.
The two characterizations recalled above will be reformulated by using the following lemma.
10
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Lemma 4.4. Let G be an arbitrary graph. Then G is a big-µ graph if and only if G has a vertex v

djacent to each vertex u such that degG−v(u) < n(G) − 2.

roof. (⇒) Assume that G is a big-µ graph. That is, there exists three distinct graphs K1, Kt , and H
uch that G = (K1 ∪ Kt )+H . Let v be the vertex forming the graph K1. Since the vertices u of H are
the only vertices such that degG−v(u) < n(G) − 2, and since v is adjacent to all of them, the thesis
follows.

(⇐) Assume now G has a vertex v adjacent to each vertex u such that degG−v(u) < n(G)− 2. To
how that G is a big-µ graph, take K1 formed by v, G′ as the graph induced by NG(v), and G′′ as the
raph induced by V (G) \ NG[v]. Let u′′ be a vertex of G′′. Since u′′ is not adjacent to v in G, it holds
hat degG−v(u′′) ≥ n(G) − 1. This implies that G′′ is a clique, and there exists an edge in G between
ach pair of vertices u′

∈ V (G′) and u′′
∈ V (G′′). Hence, we deduce that G = (K1 ∪ G′′) + G′, where

′ is an arbitrary graph and G′′ is a clique. □

orollary 4.5. Let G be an arbitrary graph. Then µ(G) ≥ n(G) − 1 if and only if G is a big-µ graph.

roof. This is an immediate consequence of Lemmas 4.1 and 4.4. □

orollary 4.6. Let G be a cograph. Then µ(G) > µt(G) if and only if G is a big-µ graph G = (K1∪Kt )+H
ith no universal vertices.

roof. (⇒) From Proposition 4.2 we have µ(G) > µt(G) if and only if G has an enabling vertex v

nd G has no universal vertices. By Lemma 4.4, we have that G = (K1 ∪ Kt ) + H is a big-µ graph.
(⇐) As G = (K1 ∪ Kt ) + H has no universal vertices, G is not a clique and then µ(G) < n(G).

ence, by Corollary 4.5, µ(G) = n(G)− 1. We claim that µt(G) < n(G)− 1. Assume, on the contrary,
hat µt(G) = n(G) − 1. Let S be a µt-set of G and let u be the only vertex of V (G) not in S and let
be the only vertex in K1. Since G has no universal vertices we deduce, (1) Kt is not empty and

2) H has at least two not adjacent vertices x and y. Then, by (1), u cannot be v, otherwise u is
ot in mutual-visibility with any vertex in Kt . Moreover, u cannot be a vertex of Kt , otherwise u
s not in mutual-visibility with v. By (2), u cannot be a vertex of H , otherwise x and y are not in
utual-visibility. Hence µt(G) < n(G) − 1. □

This corollary implies that the smallest cograph G which is not a (µ, µt)-graph corresponds to
he cycle C4 = (K1 ∪Kt )+H , with t = 1 and H = K1 ∪K1. If v is the vertex forming K1, h1, h2 are the
ertices forming H , and k is the unique vertex of Kt , it can be observed that each cograph which is
ot a (µ, µt)-graph can be obtained from this initial cycle by applying no split operations to v, any
ossible split operation to h1 and h2 and only true-twin operations to k.
In [15] it is shown that µ(G) ≥ n(G) − 2 for each cograph G, and that the exact value of µ(G)

an be computed in polynomial time. The following statement extends the analysis to the other
isibility parameters.

heorem 4.7. If G is a cograph, then either µ(G) = µt(G), or µ(G) = µd(G) = n(G) − 1 and
t(G) = µo(G) = n(G) − 2.

roof. If µ(G) ̸= µt(G) then, by Corollary 4.6, G is a big-µ cograph G = (K1 ∪ Kt ) + H without
niversal vertices. By the proof of the same corollary, we have µ(G) = n(G) − 1. Concerning
d(G) = n(G) − 1, it easily follows by observing that V (G) \ {u}, where u is the unique vertex
f K1, is a dual mutual-visibility set of G.
By using again the proof of Corollary 4.6, we have µt(G) < n(G) − 1. Notice that the same

rguments can be used to show that µo(G) < n(G) − 1 also holds. Hence, to conclude the proof, it
s sufficient to show there exists a total mutual-visibility set of G with n(G) − 2 elements. To this
nd, let S = V (G) \ {u, v} where u is the unique vertex of K1 and v is a vertex in H . Let us show

that S is a total mutual-visibility set of G. The vertices in S are in mutual-visibility, since any two of
hem are adjacent or they are adjacent vertices of u. The vertices u and v are adjacent. Vertex u is in
11
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mutual-visibility with all the vertices in S, as u is adjacent to them or in mutual-visibility through
vertex v. Analogously, vertex v is in mutual-visibility with all the vertices in S as v is adjacent
to them or in mutual-visibility through vertex u. Then, S is a total mutual-visibility set of G with
(G) − 2 vertices. □

A well-known superclass of cographs is that formed by distance-hereditary graphs. In fact, these
raphs can be generated by using true twins, false twins, and pendant vertices. Concerning the
roblem of characterizing all the distance-hereditary graphs G in which µ(G) > µt(G), we conjecture
hat the following holds:

onjecture 4.8. If G is a distance-hereditary graph but not a big-µ cograph without universal vertices,
hen µ(G) = µt(G).

We must remark that this conjecture is also supported by numerous computer-assisted simula-
ions.

. Non-trivial diameter-two graphs of minimum size

Let G be a diameter-two graph with no universal vertex. Then Erdős and Rényi proved that
m(G) ≥ 2n(G) − 5. More than two decades later, Henning and Southey characterized the graphs
which achieve the bound. In this section we determine µ, µo, µd, and µt for these extremal
iameter-two graphs.
Let us restate the mentioned classical result of Erdős and Rényi on the minimum size of a

iameter-two graph with no universal vertex.

heorem 5.1 ([16, Theorem 3 and discussion at page 633]). If G is a diameter-two graph with no
niversal vertex, then m(G) ≥ 2n(G) − 5.

We will also use the following auxiliary result, which could find other uses.

emma 5.2. If G is a connected graph of order at least 3 and with g(G) ≥ 5, then an outer
utual-visibility set is an independent set.

roof. Let X be an outer mutual-visibility set of G and suppose that X contains vertices x and y
uch that xy ∈ E(G). Since G has at least three vertices and is connected, we may assume that z is
neighbor of y different from x. As g(G) ≥ 5, we must have z ∈ X , for otherwise x ∈ X and z /∈ X
re not X-visible. But then x, z ∈ X are not X-visible, a contradiction. □

Let P be the Petersen graph and note that P attains the bound of Theorem 5.1. It is already
nown that µ(P) = 6, see [11], and that µt(P) = 0, see [33]. By a case analysis, we also get that
d(P) = 0. On the other hand, Lemma 5.2 implies that µo(P) ≤ 4, and it can be easily checked that
n independent set of P of cardinality 4 is an outer mutual-visibility set. In summary,

µt(P) = µd(P) = 0, µo(P) = 4, µ(P) = 6.

Let G7 (cf. Fig. 3) be the graph obtained from the cycle C3 by adding a pendant edge to each
ertex of the cycle and then adding a new vertex and joining it to the three degree-one vertices.
n [18], the following family G of graphs has been defined:

(i) G contains C5, G7, and the Petersen graph; and
(ii) G is closed under degree-two vertex duplication (cf. Fig. 3).

The graphs that achieve equality in the bound of Theorem 5.1 are characterized as follows.

heorem 5.3 ([18, Theorem 1]). If G is a diameter-two graph of order n and size m with no universal
ertex, then m = 2n − 5 if and only if G ∈ G.
12
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In what follows, we compute τ (G) for each G ∈ G and for each τ ∈ {µ, µo, µd, µt}. To this aim,
enote by C (i,j)

5 the graph obtained from the cycle C5 with one vertex duplicated i ≥ 0 times, and
nother vertex duplicated j ≥ 0 times. For instance, in Fig. 3 the graphs C5 = C (0,0)

5 , C (2,0)
5 , and C (2,3)

5
are shown.

Lemma 5.4. If X is a mutual-visibility (resp. outer, dual, or total mutual-visibility) set of a graph G
and x ∈ X, then X \ {x} is a mutual-visibility (resp. outer, dual, or total mutual-visibility) set of G − x.

Proof. Let X be a mutual-visibility set. For any two vertices u, v in X \ {x}, there is at least one
hortest u, v-path P not passing through x. Then the removal of x from G does not destroy P in G−x.
ence, for the generality of u, v, the set X \ {x} is a mutual-visibility set of G. Similar arguments
ork for the outer, dual or total mutual-visibility cases. □

roposition 5.5. For integers i, j ≥ 0,

• µt(C
(i,j)
5 ) = i + j,

• µo(C
(i,j)
5 ) = µd(C

(i,j)
5 ) = i + j + 2,

• µ(C (i,j)
5 ) = i + j + 3.

Proof. In [10] it is shown that the four formulae are correct when i = j = 0. Notice, however, that
although it is µo(C

(0,0)
5 ) = µd(C

(0,0)
5 ) = 2, two vertices in a dual mutual-visibility set are adjacent,

whereas two vertices in an outer mutual-visibility are not. Fig. 4 shows a visibility set for each of
the four variants. In each case, it is clear that each time a degree-two vertex duplication is made, the
new vertex can be included in the visibility set and hence the corresponding parameter is increased
by one.

Concerning the optimality, consider now all the four cases of mutual-visibility sets for G = C (i,j)
5 .

We prove by induction that µt(G) = i + j, µo(G) = i + j + 2, µt(G) = i + j + 2, µt(G) = i + j + 3. As
already observed, the statement holds for the initial case in which i = j = 0. Assume it holds for
k = i+ j > 0 and consider the case G = C (i,j)

5 obtained with k+ 1 degree-two vertices duplications.
Assume, by contradiction, that there exists a µt-set (µo-set, µd-set, µ-set) X of G with |X | > n(G)−5
(|X | > n(G) − 3, |X | > n(G) − 3, |X | > n(G) − 2). Then we can consider any vertex v ∈ X and set
13
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Fig. 4. Variations of mutual-visibility sets in some graphs of the family G.

′
= X\{v} and G′

= G−v. By Lemma 5.4, X ′ is a total mutual-visibility (outer mutual-visibility, dual
mutual-visibility, mutual-visibility) set of G′, with a size larger than that assumed by induction. □

It is worth to remark that the case concerning µ(G) in Proposition 5.5 can be also proved by
simply observing that the mutual-visibility set of G, shown in Fig. 4, contains i + j + 3 = n(G) − 2
lements, and that Corollary 4.5 implies that this set is indeed a µ-set, since G is not a big-µ graph.
Similarly as above, denote by G(i,j,k)

7 the graph obtained from G7 when the three degree-two
ertices have been respectively duplicated i, j, and k times. For instance, Fig. 3 shows the graphs
7 = G(0,0,0)

7 and G(1,1,2)
7 .

roposition 5.6. For the graph G(i,j,k)
7 we have the following formulae:

• µt(G
(i,j,k)
7 ) = i + j + k,

• µo(G
(i,j,k)
7 ) = i + j + k + 3,

• µd(G
(i,j,k)
7 ) =

{
3; i + j + k = 0,
i + j + k + 2; i + j + k ≥ 1.

• µ(G(i,j,k)
7 ) = i + j + k + 4.

Proof. The statement can be proved by using the same inductive approach used in the proof of
Proposition 5.5. The correctness of the base cases can be easily verified thanks to the limited size of
the graph. We just remark that for the dual mutual-visibility case, when i = j = k = 0, the µd-set is
composed of the three vertices of the C3 cycle; when the first degree-two vertex duplication is made
(i.e., i = 1 and j = k = 0), a µd-set can be identified by selecting the two ‘‘twin’’ degree-two vertices
along with their adjacent vertex in the C3 cycle. Extending this graph further leads to identifying
the µd-set as represented in Fig. 4. □

6. Concluding remarks

In this paper we considered graphs of diameter two and their values for the (classic, total,
dual and outer) mutual-visibility parameters. We next comment some possible open questions that
might be of interest to continue exploring.

• The class of graphs of diameter two is very wide. We have studied here a few of them, but
some other non-trivial classes might be of interest as well. Among them, we remark the Kneser
14
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graph K (n, 2), which is indeed the complement of L(Kn), and the line graphs of complete
multipartite graphs (with at least three partite sets). For this latter ones, since we do not have
an exact solution for µ(L(Km,n)) (and it seems to be beyond the reach of existing methods), we
cannot, of course, expect an exact result for the mutual-visibility number of general complete
multipartite graphs. Suppose F ⊆ E(Kn1,...,nk ), k ≥ 3, n1, . . . , nk ≥ 2, is a µ-set of L(Kn1,...,nk ). As
diam(L(Kn1,...,nk )) = 2, we can again apply Lemma 3.1 to see that if uv, u′v′

∈ F are independent
edges, then there is an edge xy incident with both uv and u′v′ such that xy /∈ F . If the edges
uv and u′v′ are only between two of the multipartite sets, then in (Kn1,...,nk )F we have C4 as a
forbidden subgraph. If the edges uv and u′v′ lie in three multipartite sets, then in (Kn1,...,nk )F we
have K−

4 as a forbidden subgraph, while if the end vertices of uv and u′v′ lie in four multipartite
sets, then in (Kn1,...,nk )F we have K4 as a forbidden subgraph. However, all these facts are not
exactly related to each other, since the situations are somehow not comparable. Consequently,
it would be interest to continue the study of the (dual, outer, total) mutual-visibility number
of these line graphs.

• Theorem 2.1 completes the studies on the mutual-visibility variants of 2-dimensional Ham-
ming graphs (those of diameter two). For higher dimensions, the total version was studied
in [5], and the problem seems to be very challenging due to its connection with some Turán-
type problems in hypergraphs. This makes natural to consider the remaining variants (dual
and outer) for Hamming graphs of higher dimension.

• Based on the fact that finding the value of any of the studied mutual-visibility parameters of
graphs of diameter two seems to be a hard task, we consider the following question of interest.
Which is the computational complexity of computing the (outer, dual, total and classical)
mutual-visibility number of graphs of diameter two?

• In connection with Theorem 3.12, as we already mentioned, it seems there is a lack of results
concerning the largest number of edges in a (K4, C4)-free graph of order n. Based on this fact,
it might be of interest to separately study this problem from a combinatorial point of view.
A consequence of such study will clearly give some knowledge on the dual mutual-visibility
number of L(Kn).
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