
Swarm and Evolutionary Computation 87 (2024) 101534

A
2
n

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

A cross-benchmark examination of feature-based algorithm selector
generalization in single-objective numerical optimization
Gjorgjina Cenikj a,b,∗, Gašper Petelin a,b, Tome Eftimov a

a Computer Systems Department, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
b Jožef Stefan International Postgraduate School, Ljubljana, 1000, Slovenia

A R T I C L E I N F O

Keywords:
Algorithm selection
Multi-target regression
Generalization
Benchmarking

A B S T R A C T

The task of selecting the best optimization algorithm for a particular problem is known as algorithm selection
(AS). This involves training a model using landscape characteristics to predict algorithm performance, but
a key challenge remains: making AS models generalize effectively to new, untrained benchmark suites. This
study assesses AS models’ generalizability in single-objective numerical optimization across diverse benchmark
suites. Using Exploratory Landscape Analysis (ELA) and transformer-based (TransOpt) features, the research
investigates their individual and combined effectiveness in AS across four benchmarks: BBOB, AFFINE,
RANDOM, and ZIGZAG. AS models perform differently based on benchmark suite similarities in algorithm
performance distributions and single-best solvers. When suites align, these models underperform against a
baseline predicting mean algorithm performance; yet, they outperform the baseline when suites differ in
performance distributions and solvers. The AS models trained using the ELA landscape features are better
than the models trained using the TransOpt features on the BBOB and AFFINE benchmark suites, while the
opposite is true for the RANDOM benchmark suite. Ultimately, the study reveals challenges in accurately
capturing algorithm performance through problem landscape features (ELA or TransOpt), impacting AS model
applicability.
1. Introduction

The selection of the most appropriate optimization algorithm to
solve a given optimization problem instance, known as Algorithm
Selection (AS), is driven by the potential to capitalize on the varied
performance of different algorithms across sets of different problem
instances. AS involves selecting the most appropriate algorithm for a
given problem instance from a set of available algorithms. However, de-
termining the optimal algorithm for an unseen instance has been shown
to be a challenging task, which has garnered significant attention from
researchers in recent years [1,2].

Typically, the best algorithm for a given problem instance is found
by considering the properties of the problem instance, which are de-
scribed using some numerical vector representation, often referred to
as problem landscape features [3,4]. Machine Learning (ML) models
can use these features to learn the relationship between the problem
instances and the algorithm performance and to recommend the best
algorithm for a given problem instance.

The majority of works on the topic of AS in the field of single-
objective numerical optimization represent problem instances using
Exploratory Landscape Analysis (ELA) [5] features, which are a set of

∗ Correspondence to: Jamova Cesta 39, 1000 Ljubljana, Slovenia.
E-mail address: gjorgjina.cenikj@ijs.si (G. Cenikj).

mathematical and statistical features calculated on candidate solutions
sampled from the decision space of the problem instance. ELA features
are useful for characterizing optimization problems, but they also have
some limitations, such as being sensitive to the sample size and the sam-
pling method used to sample solutions from the decision space [6,7],
and not being invariant to transformations such as scaling and shifting
of the problem [7,8].

In most of the available studies [9,10], the AS is typically trained
and tested on the same benchmark suite. Due to the lack of a better
resource, the Black-box Optimization Benchmarking (BBOB) suite [11]
has extensively been used as both a training and testing benchmark,
with the generalizability of the performance of the AS rarely being
evaluated outside of this suite [9,12–15]. The BBOB benchmark suite
contains 24 problem classes, from which problem instances can be gen-
erated by applying a transformation (scaling/shifting) on the original
function representing the problem class.

An eye-opening study from 2022 [12] has shown that an AS model
trained on randomly generated functions [16] has a poor generalization
to the BBOB benchmark. This phenomenon may be owed to two factors,
which are not mutually exclusive. The first explanation is that the
vailable online 11 April 2024
210-6502/© 2024 The Authors. Published by Elsevier B.V. This is an open access
c/4.0/).

https://doi.org/10.1016/j.swevo.2024.101534
Received 1 December 2023; Received in revised form 6 February 2024; Accepted 6
article under the CC BY-NC license (http://creativecommons.org/licenses/by-

March 2024

https://www.elsevier.com/locate/swevo
https://www.elsevier.com/locate/swevo
mailto:gjorgjina.cenikj@ijs.si
https://doi.org/10.1016/j.swevo.2024.101534
https://doi.org/10.1016/j.swevo.2024.101534
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2024.101534&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
problem landscape feature values of the training and testing bench-
marks are too dissimilar, meaning that the test problem instances are
not well represented by the training data. In this regard, recent work
has focused on generating new problem instances, either via function
generators (random or controlled) [16,17], or through combining the
existing BBOB problem instances [18,19]. The second explanation for
the low generalization of AS models is that the ELA features fail to
capture some characteristics of the problem landscape that are relevant
for predicting algorithm performance. This has been observed in [9,15],
where some problem instances with similar ELA features did not have
similar algorithm performance. To address this issue, several research
works in the past few years have proposed the development of alterna-
tive representations of continuous problem instances [20–22], however,
as of yet, their utility for the AS task and the degree to which they
improve the generalizability of an AS model has not been evaluated.

Our contribution: In this work, we first aim to evaluate the gener-
alizability of an AS model across different benchmark suites using the
ELA features, as the most commonly used landscape features for single-
objective numerical optimization. Secondly, we aim to investigate the
degree to which the recently proposed landscape features based on
transformers (TransOpt) can complement the ELA features in this task.
Additionally, we aim to identify the reasons behind the lack of gen-
eralizability of AS models when applied to different benchmarks by
observing the distribution of feature values across the benchmarks, and
the degree to which similarity in problem representations is consistent
with similarity in algorithm performance.

For this purpose, we have trained and evaluated three combinations
of feature-based AS models that are different in the features used to de-
scribe the landscape characteristics of the problem instance (i.e., ELA,
TransOpt, ELA+TransOpt). In all cases, a Random Forest (RF) model
has been trained in a multi-target regression scenario predicting the
performance of four single-objective optimization algorithms: Differen-
tial Evolution (DE) [23], Genetic Algorithm (GA) [24], Particle Swarm
Optimization (PSO) [25], and Evolutionary Strategy (ES) [26]. To test
the generalizability of the AS models, four benchmark suites have been
utilized: BBOB [11], AFFINE [18], RANDOM [16], and ZIGZAG [17].
Our analysis is focused on the performance of the AS trained on one of
these benchmarks, and evaluated on the other ones.

Outline: The rest of the paper is organized as follows. In Section 2,
we present works that tackle a similar research topic, in Section 3 we
present the methodology and experimental setup. Section 4 presents
the results of the analysis. Finally, we conclude the paper and provide
directions for future work in Section 5.

Reproducibility: The code and the data for the experiments are
available at https://github.com/gjorgjinac/opt_generalization.

2. Related work

From the perspective of ML, the AS problem can be modeled us-
ing several approaches. A common approach is to formulate it as a
multi-class classification problem, where the goal is to select the best
algorithm for each problem instance from a given set of algorithms [10,
12]. Alternatively, the problem can be addressed using pairwise classi-
fication, where a classification model is built for each pair of algorithms
to determine which one is better [10,27]. Other possible scenarios are
regression, where the ML model estimates the performance of each
algorithm [9,10], or algorithm ranking, where the model orders the
algorithms based on a specific metric [15]. A benefit of using regression
models, also known as automated algorithm performance prediction,
over classification models for AS, is the ability to capture the magnitude
of performance differences between algorithms, as they predict nu-
merical performance values. In addition, classification-based methods
are only interested in predicting the best algorithm, disregarding the
performance of the other algorithms. A comparison between the above-
mentioned AS approaches has been already conducted on the BBOB
benchmark suite [10]. The results have shown that there are no big
2

performance differences in favor of a particular approach, however, this
can be also a case due to the design of the BBOB benchmark suite.

Based on the evaluation approaches used in AS studies, the follow-
ing categorization of evaluation approaches can be made based on how
the problem instances are distributed among the training and testing
sets:

• Instance-split evaluation, which involves training on some in-
stances from all of the problem classes, and testing on other
instances from each problem class. This evaluation approach
assumes that the test set contains similar instances to the training
set since instances of the same problem class are used both for
training and testing. This type of evaluation is possible only on the
BBOB benchmark suite, where the concepts of a problem instance
and problem class are defined. As such, this is the easiest evalu-
ation strategy since the problem instances used in the training
and testing phases are relatively similar in terms of features and
performance. This evaluation is commonly done in a leave-one-
instance-out fashion [10], where a single instance from a problem
class is included in the test set, however, multiple instances can
also been included.

• Problem-split evaluation, which involves removing entire prob-
lem classes (all of their problem instances) from the training set
and using them for testing the ML model. In this case, the ML
model may encounter problem instances in the testing set, which
are substantially different than the ones used for training, making
it a more challenging evaluation scenario. The most common type
of the problem-split evaluation in the community is the leave-one-
problem-out evaluation, where instances from a single problem
are used for testing. Such an evaluation has been explored for
performance prediction models on the BBOB and the benchmark
from the Congress on Evolutionary Computation (CEC) special
session [28] in [9,29]. In addition, in [9] it was pointed out
that when evaluation is done in a problem-split scenario, large
errors can be obtained when the AS model is applied to a new
problem instance which is not similar to any of the problem
instances in the training data. This happens when evaluation is
done on the BBOB or CEC benchmarks, since they are limited
in the number and diversity of problem instances, introducing
the need of including new benchmark suites in the experimental
setup.

• Evaluating the generalization across benchmarks - Rather
than evaluating the performance within one benchmark, this ap-
proach involves the training of an AS method on one benchmark,
and evaluating it on a completely different benchmark [12,14,
15].

In [15], it was observed that an AS trained on the BBOB bench-
mark has poor generalization to a set of interpolated numerical prob-
lems [30]. In this case, the AS is modeled as a ranking problem,
where the algorithm portfolio consists of 110 configurations of the
Differential Evolution (DE) algorithm. An analysis of the correlation
between distances in the feature space and distances in the performance
space showed that there is no correlation between the two, which goes
against the assumption that ELA features can be used for AS. We build
upon this work by including multiple benchmarks, different features for
training the AS model, and including a more extensive analysis.

In a recent study [12], all of the previously mentioned types of
evaluation have been applied for an AS model which is trained for
multi-class classification, where the ELA features are used to represent
problem instances. When the model is evaluated using the instance-
split evaluation strategy on the BBOB benchmark, a precision of 0.69
and a recall of 0.60 are observed. However, using the problem-split
evaluation, the precision score drops to 0.24, while the recall score
is 0.32. The authors also investigate the AS generalization across two
benchmarks by training the AS on a set of artificial functions and

testing on the BBOB benchmark. In this case, a precision of 0.13 and a

https://github.com/gjorgjinac/opt_generalization

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
recall of 0.14 are achieved, indicating no generalization of the model
performance across benchmarks. While the ultimate goal of this paper
is aligned with ours, the experimental setup is different in that in [12],
instead of a multi-class classification model we are training a multi-
target regression model to predict a score of algorithm performance
that is relative to the best and worst performing algorithms in the
algorithm portfolio. The advantage of our approach is that it takes into
account the fact that several algorithms may obtain similar results and
can quantify the degree to which one algorithm outperforms another.
In addition, our study considers a wider set of problem benchmarks
involving four benchmark suites (including one that was recently pro-
posed [18]). Finally, our study also aims to evaluate the performance
of the recently proposed transformer-based features for the AS task, in
contrast to [12], which is focused only on the ELA features.

3. Methodology

In this section, we first introduce the problem portfolios, i.e., the
set of benchmarks for training and evaluating the AS. We present the
algorithms included in the algorithm portfolio, as well as the perfor-
mance metric used to compare them. Subsequently, we explain the
features used to represent the problem instances. Finally, we present
the training of the ML model used for AS, as well as the metrics used
to evaluate it.

3.1. Problem portfolios

Next, the benchmark suites utilized in this study are explained in
more detail. These benchmarks were chosen because they had accessi-
ble implementations and they allow the creation of problem instances
of different dimensions. We need to note that for all benchmarks, the
dimension of the problem has been set at 3 and 10 (𝑑 = 3 and 𝑑 = 10),
where 𝑑 is the problem dimension.

BBOB Benchmark - The Black-box Optimization Benchmarking
(BBOB) [11,31] suite consists of 24 single-objective optimization prob-
lem classes. Multiple problem instances can be generated from the
original problem class by applying a transformation (for instance,
scaling or shifting). We use the first 100 problem instances from each
of the 24 problem classes from the BBOB benchmark, ending up with
2400 problem instances.

Affine Benchmark - The first five problem instances from the 24
BBOB problem classes have been used to generate affine recombi-
nations as proposed in [18]. The combinations have been done by
combining problem instances from different problem classes that have
the same instance ID. For example, the first instance of the first problem
class is combined with the first instances of the other 23 problem
classes. We need to highlight here that instances with different IDs
from different problem classes are not combined together. We do this
in order to limit the number of generated instances. The recombination
is performed with 𝛼 values of 0.25, 0.50, and 0.75 for all pairs of
problem instances. In this way, we obtain 8280 problem instances.
The affine transformations have been generated using the equation
suggested in [32], also presented below:

𝐹 (𝑃𝑖,𝑚, 𝑃𝑗,𝑛, 𝛼)(𝑥) =

exp(𝛼 𝑙𝑜𝑔(𝑃𝑖,𝑚(𝑥) − 𝑃𝑖,𝑚(𝑂𝑖,𝑚))+

(1 − 𝛼) 𝑙𝑜𝑔(𝑃𝑗,𝑛(𝑥 − 𝑂𝑖,𝑚 + 𝑂𝑗,𝑛) − 𝑃𝑗,𝑛(𝑂𝑗,𝑛))).

(1)

In this context, 𝑃𝑎,𝑏 denotes the 𝑏th instance of the problem within
the 𝑎th BBOB problem class. Meanwhile, 𝑂𝑎,𝑏 signifies the optimum
location for the function 𝑃𝑎,𝑏. The parameter 𝛼 illustrates the blend-
ing extent of the two functions. Every objective function formulated
through this equation possesses an optimal solution with an objective
value of zero (𝑃𝑎,𝑏(𝑂𝑎,𝑏) = 0.0).

Random Functions - We generate 10,000 random problem in-
stances using the random function generator proposed in [16]. The
3

generator constructs a tree representation by randomly combining
mathematical operands and operators from a predefined pool, where
each operand and operator has a specific probability of being selected.
We use the Python implementation of the random function generator,
which was originally implemented in Matlab and was re-implemented
in Python in [33]. Please note that there are substantial similarities
among some of the objective functions in this dataset. This arises from
the way function generation is carried out and is an inherent limitation
of the proposed generator.

ZIGZAG Benchmark - We generate 5000 random problem instances
by randomly initializing the parameters of the four zigzag functions
proposed in [17]. The 𝑘 parameter, controlling the period of the
objective function, is randomly sampled as an integer in the range
[0,30]. The 𝑚 parameter, controlling its amplitude, is sampled in the
range [0,1]. It has been shown that depending on the 𝑚, 𝑘, and 𝜆
parameters, the generator can create diverse enough objective functions
where some algorithms struggle to solve them while others do not.

The rationale for incorporating these benchmark suites is rooted in
the diverse needs of the optimization domain, which are designed for
different purposes. On the one hand, benchmarks containing carefully
designed problems for which we understand their high-level properties
and difficulty are better suited for understanding the strengths and
weaknesses of different algorithms by observing their behavior on
problems with different properties. The BBOB is designed with this goal
in mind, while the AFFINE, RANDOM, and ZIGZAG are not. However,
the training of an AS model (that involves ML) that will generalize to
real-world problems requires a large and diverse set of problems to
be used for its training. This introduces a need for a different type
of benchmark, which will provide a large coverage of the problem
space, with thousands of different problems. Manually designing such
a benchmark takes a lot of effort. To the best of our knowledge, there is
no benchmark containing real-world problems that are large enough to
satisfy the requirements of training an AS model, which is why people
are resorting to random problem generators.

3.2. Algorithm portfolio

The algorithm portfolio for performing AS consists of four optimiza-
tion algorithms Differential Evolution (DE) [23], Genetic Algorithm
(GA) [24], Particle Swarm Optimization (PSO) [25], and Evolutionary
Strategy (ES) [26]. The pymoo [34] python library is used to run them
on the problem instances from all of the benchmarks. The algorithms
are executed in a fixed-budget scenario with a population size of 10𝑑.
The performance of the algorithm is recorded at budgets of 10, 30, and
50 iterations. For a 10𝑑 problem, a budget of 50 iterations is equivalent
to a total of 5000 function evaluations (50 iterations with a population
size of 100). All algorithms use Latin Hypercube Sampling [35] to
construct the initial population. The rest of the configuration properties
of the algorithms are set to the default values provided in the pymoo
library, version 0.6.0. We perform ten executions of each algorithm
on all of the problem instances. The selected algorithm portfolio has
been done only for illustration purposes, however, in the future other
algorithms can also be involved. To show this, we have included addi-
tional experiments with a different portfolio of algorithms taken from
the Nevergrad python library (library established by META). In par-
ticular, we take into account the TwoPointsDE, RealSpacePSO, CMA,
MetaCMA, and DiagonalCMA algorithms. We include these experiments
in the supplementary materials due to the lack of space in the main
manuscript.

3.3. Algorithm performance metric

We use a fixed-budget scenario for evaluating the algorithms, mean-
ing that after some budget of algorithm iterations, we record the
best-found objective function value. Next, we calculate a relative per-
formance score. The reason for using a relative and not an absolute

score is that two of the involved benchmark suites (RANDOM and

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.

T
𝑎
s
p
a

T
s
W
t
c
d
o
t
e
s
m
b
a
i
t
s
d
t

o
a
c
o
t
i
g
b

3

a
t

3

f

o
b
c
c
t
c
t
r
1
t

3

g
a
o
h
c
1
i
s
o
T
i
t
t

3

p
s

Table 1
Example of the calculation of the algorithm performance metric for one problem
instance.

Run DE ES GA PSO

Objective value of best solution found (per run)

1 −15.10 −14.18 −14.95 −15.03
2 −15.09 −14.13 −14.37 −14.16
3 −15.12 −13.94 −14.89 −15.07

Normalized algorithm score (per run)

1 0.00 1.00 0.16 0.08
2 0.00 1.00 0.75 0.97
3 0.00 1.00 0.19 0.04

Final algorithm score (median across all runs)

0.00 1.00 0.19 0.08

ZIGZAG) do not have a defined optimum for the problem instances.
To explain the relative performance score that is further involved as
a target in the ML task, let us assume that 𝑦𝑎𝑟𝑝 is the best solution
(the lowest objective function value) found by algorithm 𝑎 in run 𝑟 for
problem instance 𝑝. The value 𝑦𝑎𝑟𝑝 is scaled by the range of the solutions
found by the other algorithms for the same problem instance and the
same initial population (same run). Denoting by 𝑏𝑟𝑝 and 𝑤𝑟𝑝 the best
and worst solution found for problem instance 𝑝 in run 𝑟 by any of
the set of algorithms, respectively, we obtain the scaled best objective
function value achieved by algorithm 𝑎 in run 𝑟 on problem instance 𝑝:

𝑠𝑎𝑟𝑝 =
𝑦𝑎𝑟𝑝 − 𝑏𝑟𝑝
𝑤𝑟𝑝 − 𝑏𝑟𝑝

. (2)

his score captures how much the best solution found by algorithm
in run 𝑟 was better than the other algorithms executed with the

ame initial population. We calculate the final value 𝑠𝑎𝑝, capturing the
erformance of algorithm 𝑎 on problem instance 𝑝 across all runs of the
lgorithm, by simply taking the median of all 𝑠𝑎𝑟𝑝.

To clarify and illustrate how the performance score is calculated,
able 1 demonstrates an example of how the algorithm performance
cores are calculated for a single problem instance and a single budget.
e should note that within the example, each algorithm is executed

hree times, so we have three runs, however, in reality, we are exe-
uting the algorithms ten times on each problem instance. The table is
ivided in three parts, each one showing a different step of the process
f calculating the algorithm performance metric. The first part of the
able shows the objective function values of the best solutions found by
ach algorithm after a fixed budget of function iterations. In the second
tep, these values are then normalized within each run, by performing a
in–max normalization column wise. This means that for each run, the

est algorithm obtains a score of 0, while the worst algorithm obtains
score of 1. In the example, the best algorithm is DE, and the worst

s ES. The final algorithm score is calculated by taking the median of
he normalized algorithms scores for all of the runs. Please note that in
ome cases where the algorithm performance is not very stable between
ifferent runs, it is possible to get final algorithm scores where none of
he algorithms have a score of 0 or 1.

We opt to use such a performance metric for several reasons: (1) As
pposed to using multi-class classification and predicting a single best
lgorithm, this approach captures the performance of all algorithms,
ircumventing the issue that a model is penalized for predicting one
ut of two algorithms with very similar performance. (2) In con-
rast with the ranking approach, where each algorithm is assigned an
nteger score based on its performance, our approach captures a fine-
rained difference in performance, allowing algorithms with similar
est-obtained values to have similar scores.

.4. Problem representations

In this subsection, we describe the calculation of the ELA features
nd the transformer features. We also consider the merged representa-
ions using both ELA and transformer features.
4

.4.1. ELA features
We compute ELA features from the following categories using the

lacco R library [36]: basic, disp, ela_distr, ela_level, ela_meta, ic, nbc, and
pca. In this way, we calculate a total of 93 features for each problem
instance. It is important to note that some of these features contain
missing values, which we remove before training the AS model. We cal-
culate the ELA features on a sample of the problem instances obtained
with Latin Hypercube Sampling in the range of [−5,5]𝑑 , exploring
sample sizes of 50𝑑 and 100𝑑, where 𝑑 is the problem dimension.

3.4.2. Transformer features
TransOpt features [21] are low-level problem landscape features

learned in a supervised manner by training a transformer architec-
ture [37] for BBOB problem classification. Given samples of a BBOB
problem instance, the transformer architecture is trained to predict
to which of the 24 BBOB problem classes the instance belongs to.
999 instances are used for each of the 24 problem classes. For each
problem instance, we generate samples of candidate solutions using
Latin Hypercube sampling in the range of [−5,5]𝑑 . Within the samples
f each problem instance, the objective function values are scaled to be
etween [0,1]. We label each sample with the corresponding problem
lass and use it as the target input to the transformer encoder. A
lassification head is added as the last transformer component, and
he entire architecture is trained to predict one of the 24 problem
lasses from the BBOB benchmarks. The representations generated in
he second-to-last layer, before the classification head, are used as
epresentations for the problem instance. These representations are
20-dimensional vectors. We calculate the transformer features using
he same samples as the ELA features to ensure a fair comparison.

.5. Model

We use a Random Forest (RF) model to perform multi-target re-
ression, where the model predicts the performance score of each
lgorithm. We chose the RF model because it has good performance
n tabular data [38] and it provides feature importance values that
elp with interpretability. The RF model is executed using the default
onfiguration parameters in the scikit-learn [39] Python library version
.2.2. We do not perform parameter tuning in order to evaluate the
mpact of the proposed features only, on a fixed model configuration. A
eparate RF model is trained for each algorithm execution budget, each
ne predicting the scores obtained by the algorithms after this budget.
o ensure the robustness of the results, the training of the RF model

s repeated 10 times. In each execution, an entire benchmark is used
o train the model, and the evaluation is carried out on the remaining
hree benchmarks.

.6. Algorithm selector evaluation metrics

Next, the evaluation metrics used to validate the AS will be ex-
lained in more detail. We have used two metrics: pairwise ranking
core and loss.

• Pairwise ranking score - The pairwise ranking score takes into
account on how many problem instances in the test set, the pairs
of algorithms are correctly ordered according to their score.

𝑃𝑅𝑆 = 2
|| | − 1| ||

∑

𝑎𝑖∈

∑

𝑎𝑗∈,𝑗>𝑖

∑

𝑝∈
𝑐(𝑎𝑗 , 𝑎𝑖, 𝑝) (3)

where 𝑃 is the set of all problems, 𝐴 is the set of all algorithms,
and

𝑐(𝑎𝑗 , 𝑎𝑖, 𝑝) =

{

1 if 𝑠𝑝(𝑎𝑖, 𝑎𝑗 , 𝑝) = 𝑠𝑔(𝑎𝑖, 𝑎𝑗 , 𝑝)
0 if 𝑠𝑝(𝑎𝑖, 𝑎𝑗 , 𝑝) ≠ 𝑠𝑔(𝑎𝑖, 𝑎𝑗 , 𝑝)

(4)

where the function 𝑠𝑝(𝑎𝑖, 𝑎𝑗 , 𝑝) yields −1, 0, or 1 based on whether
the predicted rank of algorithm 𝑎 is lower, equal, or higher than
𝑖

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
Table 2
An example of calculation of the pairwise ranking score and the loss for two problem instances.

Instance True scores Predicted scores Pairwise ranking score Loss

DE GA ES DE GA ES

0 0.00 1.00 0.30 0.00 0.20 0.30 0.66 1.00
1 0.05 0.20 1.00 0.40 0.00 0.07 0.33 0.85
the rank of algorithm 𝑎𝑗 , respectively, on problem 𝑝. Similarly,
the function 𝑠𝑔(𝑎𝑖, 𝑎𝑗 , 𝑝) also provides the values −1, 0, or 1, but
in this case, it considers the order of algorithms in relation to the
ground truth.
The equation calculates the pairwise ranking score by comparing
the predicted rank and the actual rank of every pair of algorithms
on every problem. If the predicted and actual rank are the same,
it adds one to the score. Then it divides the score by the total
number of possible comparisons. This gives us a fraction between
0 and 1 that tells us how often the predicted order of algorithms
is correct. A higher score means a better prediction.

• Loss - To capture the true performance of the algorithm predicted
to be the best by the algorithm selector, we calculate the loss of
the AS:

𝑙𝑜𝑠𝑠 = 1
||

∑

𝑝∈𝑃
1 − (𝑠𝑠𝑝 − 𝑠𝑏𝑝) (5)

where 𝑠𝑠𝑝 is the true score of the selected algorithm which was
predicted to have the best performance for problem instance 𝑝,
while 𝑠𝑏𝑝 is the score of the true best-performing algorithm on
problem instance 𝑝. This loss would get a value of one if the best
algorithm is correctly predicted to be the best for all problem
instances, i.e. if the AS model makes no errors. In other cases, the
loss will have a value between 0 and 1, depending on how much
the performance of the selected algorithm differs from the best-
performing one. The intuition behind this metric is that we want
to capture the loss in performance when we select an algorithm
other than the best-performing one. Additionally, the loss metric
is only interested in the algorithm that is predicted to be the best,
since we believe this is relevant for a practical application.
Both metrics capture different, complementary aspects of the AS
model performance, and we use both in order to have a more
extensive evaluation.
Table 2 demonstrates how the pairwise ranking score and the
loss are calculated for two problem instances and three algo-
rithms. For the first instance, the true best algorithm is DE with
a score of 0, and the model predicts it to be the best. The
loss score is 1, because the metric is simply ‘‘flipped’’ so we
are maximizing both scores. However, the order of the GA and
ES algorithms is incorrect for this instance. Since there are in
total three unique pairwise combinations of algorithms ((DE,GA),
(DE,ES) and (GA,ES)), and two of them are ordered properly, the
pairwise ranking score for the first instance is 2/3, i.e. 0.66. For
the second instance, the GA algorithm is predicted to be the best,
however, the true score of the GA algorithm is 0.2, and the true
best-performing algorithm is DE with a score of 0.05. If one were
to use the GA algorithm instead of the DE algorithm in practice,
the choice of GA over DE, would get a result that is 0.15 (0.2–
0.05) worse than if they were to use the true best algorithm.
The loss score in this case is 0.85 (1–0.15). The pairwise ranking
score is 0.33, because only the algorithms GA and ES are correctly
ordered.

4. Results

In this section, we first analyze the performance of the algorithms
across all of the benchmarks. We then evaluate the generalization of
the AS models, trained and evaluated on different benchmarks. Subse-
quently, we aim to identify the reasons behind the lack of generaliza-
tion between some benchmarks. Specifically, this involves comparing
5

the distributions of the feature values of the benchmarks, analyz-
ing the benchmarks’ coverage of the problem landscape, and analyz-
ing the alignment of the problem landscape features and algorithm
performance. Our analysis is divided in the following topics:

(i) Section 4.1 gives a short overview of the performance of the four
algorithms on the different benchmarks.

(ii) Section 4.2 presents the results of the AS performed with the
different types of features, focusing on identifying whether the feature-
based models (ELA and transformer) outperform a simple dummy
model, and comparing the results obtained with the ELA and trans-
former features.

(iii) Section 4.3 examines the distributions of feature values, to
identify if different ranges of feature values are responsible for the lack
of generalization which is sometimes observed when training the AS
model is done on one benchmark, but evaluated on another one.

(iv) To gain further insights into how similar one benchmark is to
another, Section 4.4 analyzes the benchmark’s coverage of the problem
landscape. More specifically, we perform a clustering of the problem
instances from all benchmarks and observe whether problem instances
from different benchmarks lie in the same clusters.

(v) Finally, Section 4.5 investigates the ability of both feature
types to capture algorithm performance. In particular, this is done by
analyzing whether problem instances with high similarity according to
landscape features have similar algorithm performance.

4.1. Analysis of the raw algorithm performance data

Fig. 1 depicts the mean scores of the algorithms obtained with a
different execution budget. Fig. 1(a) refers to the 3𝑑 problem instances,
while Fig. 1(b) refers to the 10𝑑 problem instances. Each subplot
contains the results for a different benchmark, each row refers to a
different algorithm, while each column refers to a different budget.
From the figures, we can see that the performance of the algorithms
on the BBOB and AFFINE benchmarks is very similar. The reason for
this outcome is that AFFINE problem instances are a recombination of
the BBOB problem instances.

For 3𝑑 problems in the case of BBOB, AFFINE and ZIGZAG bench-
mark suites, the ES algorithm provides the best results across all
budgets. On the other hand, on the RANDOM benchmark, the ES
algorithm provides the worst results, however, a much higher com-
plimentarity in algorithm performance is observed on this benchmark,
with algorithms having similar performance scores across all budgets.

For 10𝑑 problems, the GA and PSO algorithms provide the best
results on all benchmarks, while the ES algorithm is the worst-
performing.

In summary, we find that the BBOB and AFFINE benchmarks rank
algorithms in a similar way for both problem dimensions, having the
same single-best solver as the ZIGZAG benchmark for 3𝑑 problems. For
3𝑑 problems, the algorithm performance on the RANDOM benchmark
differs from the other benchmarks. This becomes relevant in the next
section, as it affects the performance of the baseline model against
which the feature-based AS models are compared.

4.2. Generalization of an algorithm selection model across benchmarks

Fig. 2 depicts the results of the model generalizability assessment
for the 3𝑑 problems. A corresponding figure for the 10𝑑 problems can
be found in the appendix. The figure is separated into six subplots,

with rows of subplots referring to a different budget used for algorithm

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
Fig. 1. Mean score of each optimization algorithm on 3𝑑 and 10𝑑 benchmarks, for budgets of 10, 30 and 50 iterations.
execution, and columns referring to the two evaluation metrics. It is
important to note that we aim to maximize both metrics, so a higher
score (darker value) indicates better performance. Within each subplot,
the row labels indicate the training and testing benchmark, with the
first one being the training benchmark. The columns refer to different
feature types (ELA, transformer or the merged ELA and transformer
features) calculated with different sample sizes (50𝑑 or 100𝑑) used for
training the RF model. The first column contains the results of a dummy
model, which simply predicts the mean score of each algorithm in the
training data and only serves as a baseline against which the other
models are compared.
6

4.2.1. Comparing AS model performance with a baseline model
In this subsection, we focus on comparing the performance of the

AS model with a simple baseline.

3𝑑 analysis: Looking at the pairwise ranking score (in the left column
of Fig. 2), we can see that the feature-based models outperform the
dummy, except for the cases BBOB-ZIGZAG, AFFINE-ZIGZAG, ZIGZAG-
BBOB, and ZIGZAG-AFFINE. The transformer features commonly out-
perform ELA in the cases AFFINE-BBOB, AFFINE-RANDOM, ZIGZAG-
BBOB, while the opposite is true for BBOB-RANDOM, RANDOM-
AFFINE, RANDOM-BBOB and RANDOM-ZIGZAG. For the remaining
cases, both feature types provide similar results.

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
Fig. 2. Pairwise ranking score and loss achieved by the models for 3𝑑 problems.
Looking at the loss metric (in the right column of the figure), there
are several cases where the feature-based models achieve very good
results (above 0.90), but do not outperform the dummy. This indicates
that the models perform well, however, the task itself is not very
7

difficult. The reason for this is that when two benchmarks have the
same best-performing algorithm (i.e., single best solver), the dummy
model is very strong and it is difficult for any of the feature-based mod-
els to achieve a better loss. This is the case for the BBOB, AFFINE, and

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.

5
o
B
0

f
E

d
w

t
m
i
s
i
b
R
a
o

4

b
t
i
t
t
o
o
f
o
t
F
r
d
t
c
m
E
𝑏
d
f
e
m
n

ZIGZAG benchmarks, on which the ES algorithm largely outperforms
the others, resulting in very good performance of the dummy model
when the training and testing is executed on a combination of these
benchmarks. In these cases, none of the models can outperform the
dummy in terms of the loss metric, or outperform it by a very small
margin.

The RANDOM benchmark has a different distribution of the algo-
rithm performance scores compared to the other benchmarks. Con-
sequently, the loss of the dummy model trained or tested on the
RANDOM benchmark is somewhat lower, and the feature-based mod-
els manage to obtain a better loss. The transformer model obtains
slightly better loss than the ELA features in the AFFINE-BBOB, AFFINE-
RANDOM, and AFFINE-ZIGZAG, while the ELA features perform better
in the cases RANDOM-ZIGZAG, RANDOM-AFFINE, RANDOM-BBOB,
and BBOB-RANDOM.

10𝑑 analysis: In our experiments for 10𝑑 problems, available in the
appendix, we can again observe the pattern of the dummy outperform-
ing all of the feature-based models for all budgets, which is due to the
benchmarks sharing the same single best solver. The transformer fea-
tures outperform ELA in the case AFFINE-RANDOM, while the ELA fea-
tures outperform the transformer in the cases ZIGZAG-BBOB, ZIGZAG-
AFFINE and RANDOM-ZIGZAG. However, in the majority of cases, both
feature types provide comparable results.

4.2.2. Comparison of the feature-based AS models
To summarize the obtained results, Figs. 3(a) and 3(b) show the

number of times a specific model outperforms another model type, as
well as the mean difference in the loss obtained by the models for 3𝑑
and 10𝑑 problems, respectively. In this case, we are presenting the
generalization results, i.e., when the training and testing benchmark
is different, since this is the primary focus of our study. We are only
considering the loss metric, since we believe it is more relevant for a
practical application of an AS, where we are primarily interested in
selecting only the best algorithm, and may not be so interested in the
pairwise rankings of the algorithms which is captured by the pairwise
ranking score.

The rows in the figures denote which pair of models are compared,
while the columns indicate the benchmark that was used for testing
the AS. Each cell can have a maximum value of nine, since each
model is trained on three different benchmark suites and evaluated on
the benchmark suite presented in the column, across three different
budgets. The loss results presented are aggregated across different
training benchmark suites and different budgets. With this analysis, we
aim to analyze which feature types and sample sizes used to calculate
the features are better suited for which benchmark.

3𝑑 analysis: The first row in Fig. 3(a), labeled as ‘‘ELA 100d >
dummy (count)’’ indicates how many times (out of 9) the ELA features
calculated with a sample size of 100𝑑 outperform the dummy model.
In contrast, the second row shows the mean difference in the losses
obtained with these models.

From the first six rows of Fig. 3(a), we can see that the ELA,
transformer and merged features generally outperform the dummy on
the AFFINE, BBOB and RANDOM benchmarks, but not on the ZIGZAG
benchmark.

Rows 7–12 indicate that the differences between the losses obtained
with a same feature type calculated using different sample sizes are
fairly low, meaning that using a larger sample size may not be practi-
cally relevant. Evidence of a 100𝑑 sample size being preferable over a
0𝑑 sample size is only prominent for the transformer features applied
n the AFFINE benchmark and the merged features applied on the
BOB benchmark, however, the observed mean differences are less than
.02.

Considering rows 13–16, which analyze whether the transformer
eatures obtain better results than the ELA features, we can see that the
8

LA features consistently outperform the transformer for the AFFINE b
benchmark with a sample size of 50𝑑, while mixed outcomes are
obtained for the other benchmarks. The mean difference between the
performance obtained with the ELA and transformer features is always
less than 0.03.

Finally, the last four rows investigate whether using both the trans-
former features and the ELA features together provides better results
than using only the ELA features. In this case, we can again observe
mixed outcomes with mean differences in performance being less than
0.03, which does not allow us to make a firm conclusion.

10𝑑 analysis: Looking at Fig. 3(b), summarizing the results for the
10𝑑 problems, we can see that the ELA and transformer features do
not consistently beat the dummy, with the ELA features beating the
dummy more often than the transformer. The performance obtained
with different sample sizes used for feature calculation is consistent
with the 3𝑑 problems, in that the mean differences in performance are
quite low, and a strong argument cannot be made for the use of one
sample size over another.

The comparison of the ELA and transformer features is also consis-
tent with the 3𝑑 problems, in that ELA features provide better results
on the BBOB and AFFINE benchmarks, with mean differences in the
range 0.04–0.08. The transformer features provide better results on the
RANDOM benchmark, while no clear conclusion can be drawn for the
ZIGZAG benchmark.

The analysis of whether the merged features outperform using only
the ELA features for 10𝑑 problems shows conflicting outcomes for
ifferent benchmarks and sample sizes, with low mean differences,
hich do not allow for a well-founded conclusion.

To summarize, in this subsection, we show that there are combina-
ions of training and testing benchmarks for which the feature-based
odels do not outperform the dummy model. The dummy model

s particularly strong when the pairs of benchmarks have the same
ingle-best solver. The comparison of the ELA and transformer features
ndicates that the ELA features perform better on the BBOB and AFFINE
enchmarks, while the transformer features perform better on the
ANDOM benchmark. For the ZIGZAG benchmark, conclusive results
re not obtained across problem dimensions, regarding the superiority
f ELA or transformer features.

.3. Distributions of feature values

To identify the reasons for the lack of generalization from one
enchmark to another (inability of feature-based models to outperform
he dummy), we analyze the distributions of the values of the most
mportant features for the models trained on each benchmark. To
his end, we first find the top 10 most important features for the AS
rained for each budget and each benchmark, by taking the median
f the feature importance scores produced by the RF model in each
f the 10 training repetitions. Figs. 4 and 5 show the distribution of
eature values (scaled in the range [0,1] for visualization purposes
nly) for the 10 most important features of the AS trained on each
raining benchmark for 3𝑑 problems and a budget of 50 iterations.
ig. 4 refers to the 10 most important ELA features, while Fig. 5
efers to the 10 most important transformer features. The figures are
ivided into four subplots, each one containing the top features of
he AS trained on a different benchmark. The boxplots in different
olors reflect the distribution of feature values across the four bench-
arks. In Fig. 4, we can see that for all benchmark suites some
LA features appear with no variation (e.g., 𝑒𝑙𝑎_𝑚𝑒𝑡𝑎.𝑞𝑢𝑎𝑑_𝑠𝑖𝑚𝑝𝑙𝑒.𝑐𝑜𝑛𝑑,
𝑎𝑠𝑖𝑐.𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑚𝑖𝑛). However, we need to clarify, that they do have
ifferent values. The impression that they have no variation in the
igure is due to the fact that there are a few problems that have
xtreme values for these features. Including these problems in the figure
akes the variation of the feature values of the other problems look
egligible. From Fig. 4, we can see that for some features, the RANDOM

enchmark has feature values that are outside of the range of feature

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
Fig. 3. Summary results in terms of the loss metric.
values observed in other benchmarks. Such is the case for the fea-
tures 𝑖𝑐.𝑒𝑝𝑠.𝑚𝑎𝑥, 𝑒𝑙𝑎_𝑚𝑒𝑡𝑎.𝑙𝑖𝑛_𝑠𝑖𝑚𝑝𝑙𝑒.𝑐𝑜𝑛𝑑, 𝑒𝑙𝑎_𝑚𝑒𝑡𝑎.𝑙𝑖𝑛_𝑠𝑖𝑚𝑝𝑙𝑒.𝑐𝑜𝑒𝑓 .𝑚𝑎𝑥,
𝑒𝑙𝑎_𝑚𝑒𝑡𝑎.𝑞𝑢𝑎𝑑_𝑠𝑖𝑚𝑝𝑙𝑒.𝑐𝑜𝑛𝑑, 𝑏𝑎𝑠𝑖𝑐.𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑚𝑎𝑥, 𝑏𝑎𝑠𝑖𝑐.𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑚𝑖𝑛,
𝑛𝑏𝑐.𝑛𝑛_𝑛𝑏.𝑚𝑒𝑎𝑛_𝑟𝑎𝑡𝑖𝑜, and 𝑖𝑐.𝑚0. One thing to point out is that some of
the features (most apparent for the features 𝑏𝑎𝑠𝑖𝑐.𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑚𝑎𝑥, and
𝑏𝑎𝑠𝑖𝑐.𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑚𝑖𝑛, measuring the maximum and minimum value of
the objective function values in the sample) are very sensitive to the
9

range of the objective function values. A possible solution to ensuring
these features have within-distribution values for all benchmarks is to
scale the objective function values before computing the ELA features.
While scaling the objective value would solve the issue with the fea-
tures 𝑏𝑎𝑠𝑖𝑐.𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑚𝑎𝑥, and 𝑏𝑎𝑠𝑖𝑐.𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑚𝑖𝑛, it is not completely
straightforward to say whether it would help with the other features.
These results are also aligned with results from a recent study [40],

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
Fig. 4. Distribution of the values of the top most important ELA features for the AS trained for 3𝑑 problems and a budget of 50 iterations.
where it has been shown that some features are not invariant of shift
and scaling if the objective value is not scaled. However, the scaling
of the objective function is left for future work as a separate topic and
we have performed the experiments with no scaling which is the most
common approach presented in the AS studies.

Due to the fact that the transformer features are not explicitly
defined, but are generated from a neural network architecture, they do
not have dedicated names. Because of this, in Fig. 5, we simply name
the features according to their index in the feature vector. In this case,
we can also observe that there are several features for which some
problem instances from the RANDOM benchmark have values which
are out of the distribution of the feature values of other benchmarks.
Such is the case, for instance, for features 59, 73, and 63. We should
point out here that training a transformer model requires the scaling of
the objective function values before computing the features. This means
that in this case, the out-of-distribution values obtained for some of the
RANDOM problem instances are not simply a result of excessive ranges
of objective values, but an indication that there is truly something
inherently different about these problems. We can also observe the
same for the ZIGZAG benchmark, however, only for feature 49.
10
In summary, in this subsection, we observe that the RANDOM
benchmark has feature values which are outside of the distribution
of the other benchmarks, which can explain the poor performance
which is sometimes achieved when an AS model is trained on another
benchmark, and transferred to the RANDOM benchmark. This behavior
is less prominent in case of the transformer features compared to the
ELA features, which can also explain why the transformer features out-
perform ELA when the testing is executed on the RANDOM benchmark,
as we saw in the previous section.

4.4. Coverage of the problem landscape

In this subsection, we aim to assess the similarity between prob-
lem instances of different benchmarks and analyze the benchmark’s
coverage of the problem landscape, in order to see if this can explain
the generalizability of AS models trained on these benchmarks. To
identify the distribution of problem instances from different problem
benchmarks, we perform clustering of the problem instances from all
benchmarks and analyze the distribution of the benchmarks across
clusters. We have performed the clustering twice, using both features

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.

t
t
o
t
a
p
u
p
a
b

Fig. 5. Distribution of the values of the top most important transformer features for the AS trained for 3𝑑 problems and a budget of 50 iterations.
(ELA and transformer-based) separately. To this end, we first merge the
problem instances from all benchmarks into one set. We then scale the
feature representations of the entire set in the range [0,1], and estimate
the optimal number of clusters using the elbow method. Finally, we
cluster the problem instances using KMeans clustering with Euclidean
distance. Figs. 6 and 7 show the number of problem instances from
each benchmark that belong to each of the clusters. Fig. 6 refers to the
results of the clustering performed using ELA features calculated on a
100𝑑 sample, while Fig. 7 shows the results of the clustering done using
the transformer features calculated on a 100𝑑 sample.

The optimal number of clusters is determined to be seven when
he clustering is done using the ELA features, and five when using the
ransformer features. The difference in the optimal number of clusters
btained could be owed to the fact that the transformer features are
rained for the task of classifying BBOB problem instances, and they
re thus likely to embed the other benchmarks close to the BBOB
roblems (i.e., in the same vector space). When the clustering is done
sing ELA features, we can see that three clusters are almost exclusively
opulated by RANDOM problem instances, which is consistent with the
nalysis of the feature distributions, where we saw that the RANDOM
enchmark has features with values outside of the distributions of
11
the other benchmarks. On the other hand, the clustering using the
transformer features still produces one cluster which is dominated by
RANDOM problem instances, however, this cluster also contains two
BBOB problem instances.

To summarize, the results presented in this subsection provide
another confirmation that the RANDOM benchmark contains problem
instances which are substantially different from other benchmarks and
occupy their own part of the problem landscape.

4.5. Algorithm performance alignment to problem landscape features

In this subsection, we evaluate if the similarity of the problem
landscape features is reflected in the raw algorithm performance. To
this end, we analyze the similarity of algorithm performance in problem
instances which are deemed to be similar according to their problem
landscape features.

Fig. 8 features the algorithm performance metric as defined in
Section 3.3 of the first instance of the first BBOB problem class (sphere)
when 𝑑 = 3, as well as the scores of the algorithms on the 10 problem
instances from the ZIGZAG benchmark, which are most similar to this

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
Fig. 6. Number of problem instances from each benchmark in the clusters generated
using ELA features with a sample size of 100𝑑.

Fig. 7. Number of problem instances from each benchmark in the clusters generated
using transformer features with a sample size of 100𝑑.

problem instance according to the cosine similarity of their problem
landscape features. The similarity is calculated separately based on
the ELA features, transformer features, and their combination, with a
sample size of 100𝑑. In this case, the algorithm scores are calculated at
a budget of 30 iterations for the algorithm execution. In each row, we
present a matrix where the rows are different algorithms, the columns
are different problem instances, and the values represent the score of
the algorithm on the problem instance. The first column represents
the query problem instance, i.e. the first instance of the first 3𝑑 BBOB
problem class (Sphere). The remaining 10 columns represent the 10
most similar problem instances from the ZIGZAG benchmark.

The first plot refers to the ELA features, the second suplot refers to
the transformer features, and the third subplot refers to the merged ELA
and transformer representations.

On the query function, the ES algorithm has the best performance,
with the DE algorithm being second-ranked, with a very similar perfor-
mance. From the figure, we can observe the best-performing algorithm
on most of the similar problem instances matches that of the query
problem instance. This holds regardless of the type of features used to
identify the similar problem instances.

On the other hand, Fig. 9 presents the opposite case, where similar
problem landscape features do not result in similar algorithm perfor-
mance. In this figure, the query problem instance in the first column is
the first instance of the fifth 3𝑑 BBOB problem class (Linear Slope),
where the DE, GA, and PSO provide similar results and are ranked
much better than the ES algorithm. Looking at the results for the
12
ELA features in the first plot, we can see that the best-performing
algorithm is always ES. This is an example of a very poor alignment
of the problem landscape features and algorithm performance. The
transformer features and the merged features, provide similar results
to the ELA features. These results indicate that there are problem
instances for which there is no guarantee that similar problem feature
distribution will lead to similar algorithm performance, which raises
questions about the predictive power of the evaluated features.

Due to page limitations, we cannot present separate figures for
each problem instance and each budget for the optimization algorithm
execution. Instead, we opt to summarize the information presented in
Fig. 8 in the following manner. We calculate the loss value of the
algorithm scores of the query function in the first column and the scores
of the top 10 most similar functions in the rest of the columns. We then
take the mean of these 10 loss values. In this manner, the performance
alignment reflected in each subplot of Figs. 8 and 9 is represented by a
single number, which indicates how much the algorithm scores of the
similar functions differ from the query function.

Fig. 10(a) shows the performance alignment of the first instance
of the 24 3𝑑 BBOB problem classes and their 10 most similar func-
tions from the ZIGZAG benchmark. The figures depicting the same
information for the RANDOM and AFFINE benchmarks can be found
in the appendix. Each subplot refers to a different budget used for
the algorithm execution. Within each subplot, the rows denote the
features and sample size used to represent the problem instances when
calculating the top 10 most similar functions, while the columns con-
tain the BBOB problem instance used as a query function. We use the
BBOB problem instances as the query problem instances since BBOB
is the most well-understood and commonly used benchmark. From the
figure, we can see that for most problem instances, the similarity in
the problem landscape features is reflected in the similarity of the
algorithm performance. There are, however, several problem instances
where this does not hold. For instance, such is the case with the
Buche-Rastrigin Function (4_1) and the Linear Slope function (5_1).

To see whether the lack of alignment between the similarity of
problem landscape features and algorithm performance leads to worse
performance of the AS, Fig. 10(b) shows the loss of the AS achieved on
the query functions, i.e. the first instance of each BBOB problem class,
when the training is done on the ZIGZAG benchmark.

Comparing Fig. 10(a) to Fig. 10(b), showing the alignment of al-
gorithm performance to problem instance features, we can see that
the AS performs worse on problem instances where there is a lack
of alignment between similarity of problem landscape features and
algorithm performance. For instance, we can see that the alignment
is low on the Linear Slope function (5_1), and this is exactly where
the loss of the algorithm selector is the lowest. These results show that
there are problem instances for which the existing landscape features
do not properly capture algorithm performance, which is in line with
what was found in a previous work [15]. This indicates that there is a
need for further development of problem features which will capture
complimentary information related to algorithm performance.

5. Conclusion

In this paper, we assessed the generalizability of an algorithm
selector across different benchmarks. In particular, we considered four
benchmark suites (BBOB, AFFINE, ZIGZAG, and RANDOM) across two
problem dimensions. We also evaluated whether the recently pro-
posed transformer features can complement the well-established ELA
features for the task of algorithm selection. Our results indicate that
ELA features provide better results on the BBOB and AFFINE bench-
marks, while the transformer features work better on the RANDOM
benchmark. Our analysis points out several explanations for this phe-
nomenon.

Firstly, when benchmark suites share a similar distribution in the
raw algorithm performance across all included algorithms, and they

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
Fig. 8. Performance alignment of the first instance of the first 3𝑑 BBOB problem class and its 10 most similar problem instances from the ZIGZAG benchmark, for a budget of
30 iterations.
have the same single-best solver, the feature-based AS models exhibit
inferior performance. These models, trained on one benchmark suite
and tested on others, are outperformed by a baseline model that
simply predicts mean performance based on the training data. Next,
if the benchmark suite used for training the feature-based AS models
differs in raw performance distribution of the algorithms and has a
different single-best solver compared to the evaluation suites, these
feature-based AS models surpass the baseline dummy model.

We find that the four algorithms (DE, GA, ES, and PSO) are ranked
in a mostly consistent manner on the BBOB and AFFINE benchmarks,
but rankings differ on the ZIGZAG and RANDOM benchmarks for
different problem dimensions. These benchmarks also have similar
feature distributions across the problem space. However, the algorithm
rankings on the RANDOM benchmark deviate from the rankings on
the other benchmarks, and the ELA feature values for some of the
problem instances in this benchmark fall outside the ranges observed
in the other benchmarks. This implies that the RANDOM benchmark
contains some problem instances that are dissimilar to any problem
instances from the other benchmarks in terms of ELA features. This is
also the case for the transformer features, however, to a smaller extent.
The values of the transformer features of the RANDOM benchmark are
more consistent with the other benchmarks. A possible reason for this
13
is that the transformer features require the normalization of the objec-
tive function values before feature extraction. Further investigation is
needed to determine whether normalizing the objective function values
before computing ELA features could improve their generalizability
across benchmarks.

Our evaluation highlights a common challenge faced by AS models
that there are problem instances for which there is no guarantee
that similar problem features will lead to similar algorithm perfor-
mance. This implies that the tested features might lack the necessary
discriminatory power to accurately gauge algorithm performance in
certain instances. This challenge remains consistent across both ELA
and TransOpt features, which brings about the need for novel features
to complement existing ones.

For future work, our first direction is to evaluate the ELA features
by scaling the objective value before calculating them and see the
effect on the AS task. We also plan to involve more landscape feature
techniques that have been published recently including topological
landscape features (TLA) [22] and features based on convolution neural
networks [41]. Next, to find features that capture also algorithm per-
formance, we are planning to evaluate trajectory-based features such
as DynamoRep [42], and trajectory-based ELA [14,43]. Last but not
least, we are planning to merge all problem instances from different
benchmark suites, selecting only representative ones that cover the

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
Fig. 9. Performance alignment of the first instance of the fifth 3𝑑 BBOB problem class and its 10 most similar problem instances from the ZIGZAG benchmark, for a budget of
30 iterations.
problem space as uniformly as possible [44,45], train an AS model, and
further use transfer learning techniques to fine-tune it if new problem
landscape spaces appear in the future that were not observed in the
training phase.

CRediT authorship contribution statement

Gjorgjina Cenikj: Conceptualization, Methodology, Software, Vali-
dation, Formal analysis, Investigation, Writing – original draft, Writing
– review & editing, Visualization, Funding acquisition. Gašper Petelin:
Conceptualization, Methodology, Software, Writing – original draft,
Writing – review & editing, Funding acquisition. Tome Eftimov: Con-
ceptualization, Methodology, Validation, Writing – original draft, Writ-
ing – review & editing, Resources, Supervision, Project administration,
Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Gjorgjina Cenikj reports financial support was provided by Slovenian
14
Research and Innovation Agency. Tome Efimov reports financial sup-
port was provided by Slovenian Research and Innovation Agency.
Gasper Petelin reports financial support was provided by Slovenian
Research and Innovation Agency. If there are other authors, they de-
clare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported
in this paper.

Data availability

The data is publically available via shared linked in the repository.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the author(s) used ChatGPT in
order to improve language and readability of their own writing. After
using this tool/service, the author(s) reviewed and edited the content as
needed and take(s) full responsibility for the content of the publication.

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
Fig. 10. Performance alignment of the first instance of each of the 3𝑑 BBOB problem classes to the ZIGZAG benchmark, and loss achieved on these instances when the model is
trained on the ZIGZAG benchmark.
Acknowledgments

Funding in direct support of this work: Slovenian Research Agency:
research core funding No. P2-0098, young researcher grants No. PR-
12393 to GC and No. PR-11263 to GP, and project No. J2-4460.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.swevo.2024.101534.
15
References

[1] L. Kotthoff, Algorithm selection for combinatorial search problems: A survey, in:
Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary
Approach, Springer International Publishing, Cham, 2016, pp. 149–190, http:
//dx.doi.org/10.1007/978-3-319-50137-6_7.

[2] P. Kerschke, H.H. Hoos, F. Neumann, H. Trautmann, Automated algorithm
selection: Survey and perspectives, Evol. Comput. 27 (1) (2019) 3–45, http://
dx.doi.org/10.1162/evco_a_00242, arXiv:https://direct.mit.edu/evco/article-pdf/
27/1/3/1552398/evco_a_00242.pdf.

[3] K.M. Malan, A.P. Engelbrecht, A survey of techniques for characteris-
ing fitness landscapes and some possible ways forward, Inform. Sci. 241

https://doi.org/10.1016/j.swevo.2024.101534
http://dx.doi.org/10.1007/978-3-319-50137-6_7
http://dx.doi.org/10.1007/978-3-319-50137-6_7
http://dx.doi.org/10.1007/978-3-319-50137-6_7
http://dx.doi.org/10.1162/evco_a_00242
http://dx.doi.org/10.1162/evco_a_00242
http://dx.doi.org/10.1162/evco_a_00242
https://direct.mit.edu/evco/article-pdf/27/1/3/1552398/evco_a_00242.pdf
https://direct.mit.edu/evco/article-pdf/27/1/3/1552398/evco_a_00242.pdf
https://direct.mit.edu/evco/article-pdf/27/1/3/1552398/evco_a_00242.pdf

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
(2013) 148–163, http://dx.doi.org/10.1016/j.ins.2013.04.015, URL https://
www.sciencedirect.com/science/article/pii/S0020025513003125.

[4] K.M. Malan, A survey of advances in landscape analysis for optimisation,
Algorithms 14 (2) (2021) http://dx.doi.org/10.3390/a14020040, URL https://
www.mdpi.com/1999-4893/14/2/40.

[5] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, G. Rudolph, Ex-
ploratory landscape analysis, in: Proc. of Genetic and Evolutionary Computation
Conference, GECCO, 2011, pp. 829–836.

[6] Q. Renau, C. Doerr, J. Dreo, B. Doerr, Exploratory landscape analysis is strongly
sensitive to the sampling strategy, in: Proc. of Parallel Problem Solving from
Nature, PPSN, 2020, pp. 139–153.

[7] U. Škvorc, T. Eftimov, P. Korošec, The effect of sampling methods on the invari-
ance to function transformations when using exploratory landscape analysis, in:
2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 1139–1146,
http://dx.doi.org/10.1109/CEC45853.2021.9504739.

[8] U. Škvorc, T. Eftimov, P. Korošec, Understanding the problem space in single-
objective numerical optimization using exploratory landscape analysis, Appl. Soft
Comput. 90 (2020) 106138, http://dx.doi.org/10.1016/j.asoc.2020.106138, URL
https://www.sciencedirect.com/science/article/pii/S1568494620300788.

[9] A. Nikolikj, C. Doerr, T. Eftimov, RF+clust for leave-one-problem-out perfor-
mance prediction, in: Applications of Evolutionary Computation: 26th European
Conference, EvoApplications 2023, Held as Part of EvoStar 2023, Brno, Czech
Republic, April 12–14, 2023, Proceedings, Springer-Verlag, Berlin, Heidelberg,
2023, pp. 285–301, http://dx.doi.org/10.1007/978-3-031-30229-9_19.

[10] A. Kostovska, A. Jankovic, D. Vermetten, S. Džeroski, T. Eftimov, C. Doerr,
Comparing algorithm selection approaches on black-box optimization problems,
in: Proceedings of the Companion Conference on Genetic and Evolutionary
Computation, in: GECCO ’23 Companion, Association for Computing Machinery,
New York, NY, USA, 2023, pp. 495–498, http://dx.doi.org/10.1145/3583133.
3590697.

[11] N. Hansen, S. Finck, R. Ros, A. Auger, Real-Parameter Black-Box Optimization
Benchmarking 2009: Noiseless Functions Definitions, Report RR-6829, INRIA,
2009, URL https://hal.inria.fr/inria-00362633.

[12] U. Škvorc, T. Eftimov, P. Korošec, Transfer learning analysis of multi-class classi-
fication for landscape-aware algorithm selection, Mathematics 10 (3) (2022) http:
//dx.doi.org/10.3390/math10030432, URL https://www.mdpi.com/2227-7390/
10/3/432.

[13] A. Nikolikj, G. Cenikj, G. Ispirova, D. Vermetten, R.D. Lang, A.P. Engelbrecht,
C. Doerr, P. Korošec, T. Eftimov, Assessing the generalizability of a performance
predictive model, 2023, arXiv:2306.00040.

[14] A. Kostovska, A. Jankovic, D. Vermetten, J. de Nobel, H. Wang, T. Eftimov,
C. Doerr, Per-run algorithm selection with warm-starting using trajectory-based
features, in: Parallel Problem Solving from Nature, PPSN, in: LNCS, vol. 13398,
Springer, 2022, pp. 46–60, http://dx.doi.org/10.1007/978-3-031-14714-2_4.

[15] B. Lacroix, J. McCall, Limitations of benchmark sets and landscape features for
algorithm selection and performance prediction, in: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, GECCO ’19, Association
for Computing Machinery, New York, NY, USA, 2019, pp. 261–262, http://dx.
doi.org/10.1145/3319619.3322051.

[16] Y. Tian, S. Peng, X. Zhang, T. Rodemann, K.C. Tan, Y. Jin, A recommender
system for metaheuristic algorithms for continuous optimization based on deep
recurrent neural networks, IEEE Trans. Artif. Intell. 1 (1) (2020) 5–18, http:
//dx.doi.org/10.1109/TAI.2020.3022339.

[17] J. Kudela, R. Matousek, New benchmark functions for single-objective opti-
mization based on a zigzag pattern, IEEE Access 10 (2022) 8262–8278, http:
//dx.doi.org/10.1109/ACCESS.2022.3144067.

[18] D. Vermetten, F. Ye, T. Bäck, C. Doerr, MA-BBOB: Many-affine combinations of
BBOB functions for evaluating automl approaches in noiseless numerical black-
box optimization contexts, in: Proc. of Genetic and Evolutionary Computation
Conference, GECCO, GECCO ’23, Association for Computing Machinery, New
York, NY, USA, 2023, pp. 813–821.

[19] K. Dietrich, O. Mersmann, Increasing the diversity of benchmark function sets
through affine recombination, in: G. Rudolph, A.V. Kononova, H. Aguirre, P.
Kerschke, G. Ochoa, T. Tušar (Eds.), Parallel Problem Solving from Nature –
PPSN XVII, Springer International Publishing, Cham, 2022, pp. 590–602.

[20] B. van Stein, F.X. Long, M. Frenzel, P. Krause, M. Gitterle, T. Bäck, DoE2Vec:
Deep-learning based features for exploratory landscape analysis, in: Proceedings
of the Companion Conference on Genetic and Evolutionary Computation, in:
GECCO ’23 Companion, Association for Computing Machinery, New York, NY,
16

USA, 2023, pp. 515–518, http://dx.doi.org/10.1145/3583133.3590609.
[21] G. Cenikj, G. Petelin, T. Eftimov, TransOpt: Transformer-based representation
learning for optimization problem classification, in: 2023 IEEE Symposium Series
on Computational Intelligence, 2023, URL http://arxiv.org/abs/2311.18035.

[22] G. Petelin, G. Cenikj, T. Eftimov, TLA: Topological landscape analysis for single-
objective continuous optimization problem instances, in: Proceedings of IEEE
Symposium Series on Computational Intelligence, 2022, pp. 1698–1705, http:
//dx.doi.org/10.1109/SSCI51031.2022.10022126.

[23] R. Storn, K. Price, Differential evolution - A simple and efficient heuristic for
global optimization over continuous spaces, J. Global Optim. 11 (1997) 341–359,
http://dx.doi.org/10.1023/A:1008202821328.

[24] V. Chahar, S. Katoch, S. Chauhan, A review on genetic algorithm: Past,
present, and future, Multimedia Tools Appl. 80 (2021) http://dx.doi.org/10.
1007/s11042-020-10139-6.

[25] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95
- International Conference on Neural Networks, Vol. 4, 1995, pp. 1942–1948,
http://dx.doi.org/10.1109/ICNN.1995.488968, vol.4.

[26] H. Beyer, H. Schwefel, Evolution strategies - a comprehensive introduction, Nat.
Comput. 1 (1) (2002) 3–52, http://dx.doi.org/10.1023/A:1015059928466.

[27] R. Tanabe, Benchmarking feature-based algorithm selection systems for black-box
numerical optimization, IEEE Trans. Evol. Comput. 26 (6) (2022) 1321–1335.

[28] J. Liang, B. Qu, P. Suganthan, Problem Definitions and Evaluation Criteria for the
CEC 2014 Special Session and Competition on Single Objective Real-Parameter
Numerical Optimization, Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou China and Technical Report, Nanyang Technological
University, Singapore, 2013.

[29] A. Nikolikj, M. Pluhacek, C. Doerr, P. Korosec, T. Eftimov, Sensitivity analysis
of RF+clust for leave-one-problem-out performance prediction, in: IEEE Congress
on Evolutionary Computation, CEC 2023, Chicago, IL, USA, July 1-5, 2023, IEEE,
2023, pp. 1–8, http://dx.doi.org/10.1109/CEC53210.2023.10254146.

[30] B. Lacroix, L.A. Christie, J.A.W. McCall, Interpolated continuous optimisation
problems with tunable landscape features, in: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO ’17, Association for
Computing Machinery, New York, NY, USA, 2017, pp. 169–170, http://dx.doi.
org/10.1145/3067695.3076045.

[31] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, D. Brockhoff, COCO: A
platform for comparing continuous optimizers in a black-box setting, Optim.
Methods Softw. (2020) 1–31.

[32] D. Vermetten, F. Ye, C. Doerr, Using affine combinations of BBOB problems for
performance assessment, 2023, arXiv preprint arXiv:2303.04573.

[33] F.X. Long, B. van Stein, M. Frenzel, P. Krause, M. Gitterle, T. Bäck, Learning
the characteristics of engineering optimization problems with applications in
automotive crash, in: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’22, Association for Computing Machinery, New York, NY,
USA, 2022, pp. 1227–1236, http://dx.doi.org/10.1145/3512290.3528712.

[34] J. Blank, K. Deb, Pymoo: Multi-objective optimization in python, IEEE Access 8
(2020) 89497–89509.

[35] J. Menčík, Latin hypercube sampling, in: J. Mencik (Ed.), Concise Reliability for
Engineers, IntechOpen, Rijeka, 2016, http://dx.doi.org/10.5772/62370, Ch. 16.

[36] P. Kerschke, H. Trautmann, Comprehensive feature-based landscape analysis of
continuous and constrained optimization problems using the R-package flacco, in:
N. Bauer, K. Ickstadt, K. Lübke, G. Szepannek, H. Trautmann, M. Vichi (Eds.),
Applications in Statistical Computing: From Music Data Analysis to Industrial
Quality Improvement, Springer, 2019, pp. 93–123, http://dx.doi.org/10.1007/
978-3-030-25147-5_7.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[38] R. Shwartz-Ziv, A. Armon, Tabular data: Deep learning is not all you need, Inf.
Fusion 81 (2022) 84–90.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning
in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[40] R.P. Prager, H. Trautmann, Nullifying the inherent bias of non-invariant
exploratory landscape analysis features, in: Applications of Evolutionary Com-
putation, Springer-Verlag, Berlin, Heidelberg, 2023, pp. 411–425, http://dx.doi.

org/10.1007/978-3-031-30229-9_27.

http://dx.doi.org/10.1016/j.ins.2013.04.015
https://www.sciencedirect.com/science/article/pii/S0020025513003125
https://www.sciencedirect.com/science/article/pii/S0020025513003125
https://www.sciencedirect.com/science/article/pii/S0020025513003125
http://dx.doi.org/10.3390/a14020040
https://www.mdpi.com/1999-4893/14/2/40
https://www.mdpi.com/1999-4893/14/2/40
https://www.mdpi.com/1999-4893/14/2/40
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb5
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb5
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb5
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb5
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb5
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb6
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb6
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb6
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb6
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb6
http://dx.doi.org/10.1109/CEC45853.2021.9504739
http://dx.doi.org/10.1016/j.asoc.2020.106138
https://www.sciencedirect.com/science/article/pii/S1568494620300788
http://dx.doi.org/10.1007/978-3-031-30229-9_19
http://dx.doi.org/10.1145/3583133.3590697
http://dx.doi.org/10.1145/3583133.3590697
http://dx.doi.org/10.1145/3583133.3590697
https://hal.inria.fr/inria-00362633
http://dx.doi.org/10.3390/math10030432
http://dx.doi.org/10.3390/math10030432
http://dx.doi.org/10.3390/math10030432
https://www.mdpi.com/2227-7390/10/3/432
https://www.mdpi.com/2227-7390/10/3/432
https://www.mdpi.com/2227-7390/10/3/432
http://arxiv.org/abs/2306.00040
http://dx.doi.org/10.1007/978-3-031-14714-2_4
http://dx.doi.org/10.1145/3319619.3322051
http://dx.doi.org/10.1145/3319619.3322051
http://dx.doi.org/10.1145/3319619.3322051
http://dx.doi.org/10.1109/TAI.2020.3022339
http://dx.doi.org/10.1109/TAI.2020.3022339
http://dx.doi.org/10.1109/TAI.2020.3022339
http://dx.doi.org/10.1109/ACCESS.2022.3144067
http://dx.doi.org/10.1109/ACCESS.2022.3144067
http://dx.doi.org/10.1109/ACCESS.2022.3144067
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb18
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb18
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb18
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb18
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb18
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb18
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb18
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb18
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb18
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb19
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb19
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb19
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb19
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb19
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb19
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb19
http://dx.doi.org/10.1145/3583133.3590609
http://arxiv.org/abs/2311.18035
http://dx.doi.org/10.1109/SSCI51031.2022.10022126
http://dx.doi.org/10.1109/SSCI51031.2022.10022126
http://dx.doi.org/10.1109/SSCI51031.2022.10022126
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1023/A:1015059928466
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb27
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb27
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb27
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb28
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb28
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb28
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb28
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb28
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb28
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb28
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb28
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb28
http://dx.doi.org/10.1109/CEC53210.2023.10254146
http://dx.doi.org/10.1145/3067695.3076045
http://dx.doi.org/10.1145/3067695.3076045
http://dx.doi.org/10.1145/3067695.3076045
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb31
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb31
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb31
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb31
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb31
http://arxiv.org/abs/2303.04573
http://dx.doi.org/10.1145/3512290.3528712
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb34
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb34
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb34
http://dx.doi.org/10.5772/62370
http://dx.doi.org/10.1007/978-3-030-25147-5_7
http://dx.doi.org/10.1007/978-3-030-25147-5_7
http://dx.doi.org/10.1007/978-3-030-25147-5_7
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb37
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb37
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb37
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb38
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb38
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb38
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb39
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb39
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb39
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb39
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb39
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb39
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb39
http://dx.doi.org/10.1007/978-3-031-30229-9_27
http://dx.doi.org/10.1007/978-3-031-30229-9_27
http://dx.doi.org/10.1007/978-3-031-30229-9_27

Swarm and Evolutionary Computation 87 (2024) 101534G. Cenikj et al.
[41] M.V. Seiler, R.P. Prager, P. Kerschke, H. Trautmann, A collection of deep
learning-based feature-free approaches for characterizing single-objective contin-
uous fitness landscapes, in: Proc. of Genetic and Evolutionary Computation Con-
ference, GECCO, GECCO ’22, Association for Computing Machinery, New York,
NY, USA, 2022, pp. 657–665, http://dx.doi.org/10.1145/3512290.3528834.

[42] G. Cenikj, G. Petelin, C. Doerr, P. Korošec, T. Eftimov, DynamoRep: Trajectory-
based population dynamics for classification of black-box optimization problems,
2023, pp. 813–821, http://dx.doi.org/10.1145/3583131.3590401.

[43] A. Janković, C. Doerr, Adaptive landscape analysis, in: Proc. of Genetic and
Evolutionary Computation Conference, GECCO, GECCO ’19, Association for Com-
puting Machinery, 2019, pp. 2032–2035, http://dx.doi.org/10.1145/3319619.
3326905.
17
[44] G. Cenikj, R. Dieter Lang, A. Petrus Engelbrecht, C. Doerr, P. Korošec, T. Eftimov,
SELECTOR: Selecting a representative benchmark suite for reproducible statistical
comparison, in: Proc. of Genetic and Evolutionary Computation Conference,
GECCO, 2022.

[45] T. Eftimov, G. Petelin, G. Cenikj, A. Kostovska, G. Ispirova, P. Korošec, J.
Bogatinovski, Less is more: Selecting the right benchmarking set of data for
time series classification, Expert Syst. Appl. 198 (2022) 116871, http://dx.doi.
org/10.1016/j.eswa.2022.116871, URL https://www.sciencedirect.com/science/
article/pii/S0957417422003189.

http://dx.doi.org/10.1145/3512290.3528834
http://dx.doi.org/10.1145/3583131.3590401
http://dx.doi.org/10.1145/3319619.3326905
http://dx.doi.org/10.1145/3319619.3326905
http://dx.doi.org/10.1145/3319619.3326905
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb44
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb44
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb44
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb44
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb44
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb44
http://refhub.elsevier.com/S2210-6502(24)00072-5/sb44
http://dx.doi.org/10.1016/j.eswa.2022.116871
http://dx.doi.org/10.1016/j.eswa.2022.116871
http://dx.doi.org/10.1016/j.eswa.2022.116871
https://www.sciencedirect.com/science/article/pii/S0957417422003189
https://www.sciencedirect.com/science/article/pii/S0957417422003189
https://www.sciencedirect.com/science/article/pii/S0957417422003189

	A cross-benchmark examination of feature-based algorithm selector generalization in single-objective numerical optimization
	Introduction
	Related Work
	Methodology
	Problem Portfolios
	Algorithm Portfolio
	Algorithm Performance Metric
	Problem Representations
	ELA Features
	Transformer Features

	Model
	Algorithm Selector Evaluation Metrics

	Results
	Analysis of the Raw Algorithm Performance Data
	Generalization of an Algorithm Selection Model Across Benchmarks
	Comparing AS Model Performance with a Baseline Model
	Comparison of the feature-based AS models

	Distributions of Feature Values
	Coverage of the Problem Landscape
	Algorithm Performance Alignment to Problem Landscape Features

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Acknowledgments
	Appendix A. Supplementary data
	References

