
The International Journal of Advanced Manufacturing Technology
https://doi.org/10.1007/s00170-024-13609-5

ORIG INAL ART ICLE

Exploiting image quality measure for automatic trajectory generation
in robot-aided visual quality inspection

Atae Jafari-Tabrizi1,3 · Dieter P. Gruber1,3 · Andrej Gams2

Received: 29 November 2023 / Accepted: 5 April 2024
© The Author(s) 2024

Abstract
Currently, the standard method of programming industrial robots is to perform it manually, which is cumbersome and time-
consuming. Thus, it can be a burden for the flexibility of inspection systems when a new component with a different design
needs to be inspected. Therefore, developing a way to automate the task of generating a robotic trajectory offers a substantial
improvement in the field of automatedmanufacturing and quality inspection. This paper proposes and evaluates amethodology
for automatizing the process of scanning a 3D surface for the purpose of quality inspection using only visual feedback. The
paper is divided into three sub-tasks in the same general setting: (1) autonomously finding the optimal distance of the camera
on the robot’s end-effector from the surface, (2) autonomously generating a trajectory to scan an unknown surface, and (3)
autonomous localization and scan of a surface with a known shape, but with an unknown position. The novelty of this work
lies in the application that only uses visual feedback, through the image focus measure, for determination and optimization of
the motion. This reduces the complexity and the cost of such a setup. The methods developed have been tested in simulation
and in real-world experiments and it was possible to obtain a precision in the optimal pose of the robot under 1mm in
translational, and 0.1◦ in angular directions. It took less than 50 iterations to generate a trajectory for scanning an unknown
free-form surface. Finally, with less than 30 iterations during the experiments it was possible to localize the position of the
surface. Overall, the results of the proposed methodologies show that they can bring substantial improvement to the task of
automatic motion generation for visual quality inspection.

Keywords Industrial robotics · Robot learning · Robotic quality inspection · Visual quality inspection

1 Introduction

In modern industrial environment, minimizing the man-
ual work and replacing them with machines performing
automated tasks is constantly in demand [1]. Recent devel-
opments and breakthroughs in the field of machine vision
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and artificial intelligence accelerate this transformation even
further [2]. Quality inspection, as one of the essential pro-
cesses in manufacturing, is no exception. If done manually,
quality inspection is a highly repetitive and tedious task.
Moreover, exposure to long hours of manual labor makes the
inspecting operators prone to mistakes in their judgements
[3]. New trends in manufacturing require fast and flexible
quality inspection processes with reliable outcomes. In this
regard, a necessary step is employing industrial robots and
AI-based quality inspection methods. An example of a pos-
sible robotic inspection scheme is presented in Fig. 1.

However, manual programming of the robot can be a
bottleneck in reaching the goal of “minimal human interven-
tion”, as it is highly time-consuming [4]. In today’s industrial
environment, the trend is towardsmanufacturing components
in lower volumes with higher flexibility and adaptability
depending on the wishes of the customers [5]. This has led
to development of adaptive and reconfigurable robot cells
[6], which are suitable to work on several different work-
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Fig. 1 A conceptual quality inspection setup, in which a robot is scan-
ning the parts which come out of the production on a conveyor belt.
Unlike the case depicted here, in some manufacturing facilities it might
not be possible to locate the workpieces under inspection in predefined
positions, yet a thorough inspection of their surfaces might be needed

pieces. In such a fast-paced environment, the task of manual
programming of the robot is unimaginable. For this reason, a
methodology enabling the robot to automatically learn a new
behavior or adapt itself to the changes and the uncertainties
of the environment offers a valuable contribution to the field
of manufacturing and quality inspection.

The work presented in this paper is a proof-of-concept to
autonomously generate a robot motion in order to scan an
unknown free-form surface in a dynamic inspection environ-
ment. It has been assumed that an industrial robot, equipped
with a camera and a light source on its end-effector, is used
to scan the surface of workpieces which arrive to the inspec-
tion cell from the production line. The main challenges in
this work are: (a) if CAD data of the component are not
available, or for any reason not processable, the shape of the
surface is not known, (b) even if a trajectory for the robot
to scan the shape is available, in many inspection cases the
surface is not always located at a fixed, predefined location.
Depending on how it has arrived to the inspection station,
it can be located at a random point on the inspection table.
The proposed approach in this paper introduces solutions to
these challenges. A robotic arm, equipped with an industrial
camera and a ring light source was used for this work. In
all the experiments, the camera was the only external sensor
available. Focus measure, an image processing operator, has
been used as a metric for measuring the quality of the robot
motion [7].

The approach in the paper is separated into three sub-tasks,
aligned with the above-listed challenges. In the first sub-task,
presented in Section 5, it is shown that the focus measure can
be used to obtain the optimal pose of the camera and robot
from the surface of the inspected component. In the sec-
ond sub-task, introduced in Section 6, a trajectory generation
method to scan an unknown surface is presented. In the third

sub-task, introduced in Section 7, the object’s location and
orientationwith respect to the robot is determined and used to
execute a known inspection trajectory. The approach and the
subsequent sub-taskswere implemented in a simulation envi-
ronment and also evaluated with a real-world experimental
setup, employing a 7 degree of freedom Kuka LWR-4 col-
laborative robot. The results of this proof-of-concept work
indicate that the proposed methodology has potential to be
implemented in a relevant industrial environment at a higher
technology readiness level (TRL).

In this work we show how automatic trajectory generation
with a robot and a camera can be implemented by only the
sensory feedback from the camera and no additional sensors.
Autonomous robot movement minimizes manual labor time,
and using a single visual camera saves the costs and reduces
the complexity of the robotic inspection. Another contribu-
tion of this work is employing the focus measure, which is
traditionally used for autofocus applications.

2 State of the art and proposed approach

Theworkpresented in thismanuscript covers different topics.
In this section, the state of the art in each of these areas is
shortly summarized.

2.1 Focus measure

The focus measure (FM) is an integer value, representing the
image quality, and acting as a figure-of-merit [8]. As there are
different image processing techniques available in the litera-
ture to calculate the FM, e.g., methods based on calculating
the central moments of the images [9], wavelet transforma-
tion [10], discrete Chebyshev moments [11], energy of the
image [12], singular value decomposition [13], probability
coefficients and entropy [14], and texture and structural infor-
mation of the image [15], there are as well works which
compare their performance for different applications [8, 16–
18].

After assessing different FM functions, “thresholded
absolute gradient” has been chosen for this work. The cri-
teria for choosing it was that it requires substantially less
computational time, as also shown in [18]. This function is
based on image differentiation, where the calculation in hor-
izontal direction for an image of size M × N pixels is given
as follows [16].

Fhorizontal =
M−1∑

i=0

N−2∑

j=0

|g(i, j + 1) − g(i, j)|,

while |g(i, j + 1) − g(i, j)| ≥ v

(1)
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Here, g(i, j) is the grey level intensity at the pixel (i, j),
and v is the threshold. Equation1 is extended to calculate
the FM both in horizontal and vertical directions [16]. This
function reaches its maximum value when the image is the
sharpest. The relation between the distance and the angle of
the camera from the surface and the FM is shown in Fig. 2.
As it can be seen, the model fitted to the angle variation has
a higher standard deviation compared to that fitted to the
distance variation.

During the simulations the behavior of the FM in vicin-
ity of the optimal distance from the surface was estimated
with a Gaussian function (see Eq.2). In this equation, x is
the actual distance of the camera from the surface, and the
mean μ represents the optimal distance of the camera from
the surface [18]. We illustrate the applicability of modeling
the FM variation as a Gaussian distribution with the results
depicted in Fig. 2.

f (x) = 1

σ
√
2π

e− 1
2 (

x−μ
σ

)2 . (2)

2.2 Robot-based quality inspection

Vision-based quality inspection is increasingly receiving
attention, while there is still relatively large room for further
development in the robot-based automation of such systems
[19]. Some challenges in implementing fully robotic in-line
inspection systems to the manufacturing lines include high
initial costs, incompatibility with the current machines, and
traditions [20]. Despite these challenges, the developments
in the industry and evenmore so in the computational powers
of the computers enable AI-based robotic inspection lines to
become widespread.

A robotic inspection setup has been introduced in [21]
for detecting geometric and other non-conventional defects.
A camera and a light source were installed on the robot
arm. For quality inspection of forged metallic components,
which are still at high temperatures, a robotic setup has been
introduced in [22]. The setupwas intended to be used in high-
temperature environment. To counter the negative effects of
high temperatures, a blue light filter and infrared cut filter
were added to the lens of the imaging system, along with a
cooling system. The authors of [23] have proposed a hyper-
redundant robotic system to inspect the quality of additive
manufacturing components. It comprised a mobile omni-
drive robot, an industrial robot, and a bionic continuum arm
attached to the end-effector of the robotic arm. The authors
have also developed a trajectory control strategy. A different
solution than optical inspection has been proposed in [24],
where a device that gathers acoustic and accelerometer data
from the surroundings during the assembly tasks has been
introduced. These data are processedwith convolutional neu-
ral networks for detection of faulty actions in real time.

Here we present a robotic setup which is aimed to be
employed at a flexible production line, for manufacturing
several components with different shapes in small quantities.
This is in contrast with conventional high-volume produc-
tion lines, where a single component can be manufactured
for years. Additionally, it is assumed that in the robotic
inspection cell there is no fixed position for the components.
Therefore, the robot’s starting pose for the scan is not known.
Our approach can also be applied for visual inspection of the
components where their surfaces are not deterministic after
production. Therefore the robot might always need adjust-
ments to be able to inspect them.

2.3 Automatic trajectory generation

Automatic or semi-automatic generation of robot trajectory
depending on changes in its environment (commonly known
as robot learning) is an attractive research field due to its
broad range of applications [25]. A popular methodology
for generating the robot trajectory is to employ the informa-
tion from the CAD data of the component. It has been used
for application such as generating a trajectory for painting
surfaces [26, 27], laser cladding [28], visual quality inspec-
tion [29], and heterogeneous ensemble of car-painting robots
[30]. Learning-by-demonstration is another popular method,
which has been addressed in [31] for assembly tasks, and in
[32] for quality control systems. The authors in [33] have
developed a method focusing on energy consumption min-
imization of the robot. They have reported energy savings
up to 10%. An online trajectory generation method has been
introduced in [34], which calculates the velocity, accelera-
tion and jerk profiles of the generated trajectory, and also
taking the changes in the desired trajectory on-the-fly into
account. A method for point-to-point trajectory generation
using model predictive control has been introduced in [35].
The data to estimate the position of the ball are sent from
the vision system during the motion of the robot, meaning
that there is no predefined path at the start of the motion.
A Markov decision process-based method to create robotic
path for surface inspection has been proposed in [36], whose
aim was to scan the surface of the component within the pro-
duction cycle time. An offline programming method with the
capability of overcoming the uncertainties in the environment
(e.g., misplacement of the workpiece) has been introduced in
[37]. The authors have used a three-dimensional vision sys-
tem to localize the workpieces, and generate the trajectory
accordingly. A method for detecting the welding groove and
generating a robotic welding trajectory has been introduced
in [38]. For grinding the welded free-form surfaces a method
has been proposed in [39]. A hybrid position-force control
was used to apply the generated trajectory.

In our work, the automatic trajectory generation is done
online. The robot, equipped with a camera and a light source,
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optimizes its trajectory episodically based on the shape of
the scanned surface. For learning or optimization of the
trajectory we employed different algorithms: Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [40], and
RewardWeighted PolicyLearningwith importance sampling
(RWPL) which is a simplified version of Policy learning by
Weighting Exploration with the Returns (PoWER) [41].

For updating the trajectories, the objective function was
the summation of the integer FM values.

Objective =
K∑

i=1

Fi . (3)

Here, K is the total number of images taken during a single
scan episode, and Fi is the FM value of the area of interest in
image i . In an experimental environment, during each scan
episode images are acquired from the surface, and the FM
values are calculated for each image. As the scan episode
terminates, the sum of these values is calculated. This final
value gives an indication of overall quality of the episode.
The objective function reaches maximum only (in the ideal
case), when the camera is able to acquire the sharpest images
during the whole scan episode (see Fig. 2).

2.4 Dynamic movement primitives in robotics

Research on Dynamic Movement Primitives (DMPs) helps
develop solutions for sophisticated robotic applications, and
facilitate their optimization. We in this work utilize them to
encode the trajectories of motion. Here some of the recent
advances are mentioned. A task-parametrized DMPmethod-
ology has been introduced in [42], which can adapt the
learned robotic movement to different environmental situ-
ations. The authors also introduce Deep-DMP (D-DMP),
which uses deep learning methods as function approxima-
tors. A learning-by-demonstration-based robotic trajectory
generation and tracking scheme has been developed in [43],
which uses DMP for trajectory definition. In [44], the dif-
ficulties of applying deep reinforcement learning method to
the robotic contact applications (e.g., assembly tasks) has

been addressed, and a neural network-based DMP has been
proposed. Deep Deterministic Policy Gradient (DDPG), a
reinforcement learning method, has been used for learning.
This method incorporates also a force controller. Another
DMP implementation for contact-rich assembly applications
has been introduced in [45]. The authors employ Proxi-
mal Policy Optimization (PPO), a reinforcement learning
algorithm. In [46] a method for motor skills learning using
reinforcement and statistical learning has been introduced
which takes advantage of low dimensional latent spaces. The
authors have shown that this method can be applied to the
real-world robots, by experimenting with a robot throwing a
ball to a target. In [29], a different formulation of DMPs,
namely Cartesian DMPs (CDMPs), has been used. This
formulation is advantageous for considering end-effector ori-
entations and speed, which are essential factors for visual
quality inspection of surfaces.

In this work we use DMPs because of their relatively low
dimensional encoding of motion trajectories. The trajectory
optimization algorithms we apply update the weights of the
DMP formulations based on the visual feedback obtained
from the scan episodes.

3 Methodology

In this work we aim to introduce a method for generating
a robot trajectory for scanning an unknown free-form sur-
face. The exact position of the surface is also unknown. The
purpose of scanning the surface is to perform visual inspec-
tion. Therefore it is assumed that a camera is installed on the
end-effector of the robot. Here, we utilize the same camera
for automatic robot path generation. To achieve this, inter-
mediate steps can be defined. These steps act as milestones
for reaching the goal. In this context, we introduce three sub-
tasks,which belong to the samegeneral settings, as illustrated
in Fig. 3.

The first sub-task was to automatically determine the opti-
mal distance and angle of the visual sensor installed on the
end-effector of the robot from the inspection surface. This

Fig. 2 Variation of the FM
function “threshold absolute
gradient” with respect to the
distance (left) and angle (right)
of the camera from the surface,
with the Gaussian model fitted
to the data
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Fig. 3 An illustration of the three sub-tasks to achieve automatic robot
trajectory generation for the purpose of visual quality inspection of
unknown free-form surfaces. Sub-task 1 (on the left) describes the
determination of the optimal distance of the robot end-effector from
the surface under inspection (Section 5). Both sub-tasks 2 and 3 are dif-
ferent from sub-task 1 in that they are episodic. Total visual feedback

after each episode is used to calculate the total FM value. Sub-task 2
is for generation of the optimal trajectory to scan an unknown surface
(Section 6). Sub-task 3 is for determination of the starting pose of the
robot for scanning a known surface, given that the position of the surface
is unknown (Section 7)

was the most rudimentary step that the robot must be able
to perform. Additionally, it served as a proof to the fol-
lowing claim: that only visual feedback from the camera is
enough for a robot to generate an optimal trajectory to scan an
unknown surface. As a quantifying metric of the visual feed-
back, the focus measure (FM) was used. As explained more
in detail in Section 5, the Fibonacci search method [47] was
used to determine the optimal distance and angle of camera
placement.

As the capability of the robot to determine its optimal pose
with respect to the surface is demonstrated in sub-task 1, the
next step was to generate a path used to scan an unknown
surface (sub-task 2 in Fig. 3). In this intermediate step, it
was assumed that the position of the unknown surface rela-
tive to the robot’s base was known. Due to the nature of the
task, a learning algorithm was adopted. The visual feedback
(i.e., FM) was used as a reward to update the robot motion
throughout the learning iterations. As already mentioned in
Section 2, and discussed in detail in Section 6, DMPs were
used as building blocks of the overall robot trajectory. Two
optimization algorithms,CovarianceMatrixAdaptationEvo-
lution Strategy (CMA-ES) [40], and a simplified version of
PoWER algorithm [41] were chosen to be tested.

Finally, in sub-task 3 the goal was to optimize the start-
ing position and orientation of the scan trajectory, depending
on where the unknown surface was positioned relative to

the robot’s base (sub-task 3 in Fig. 3). As the work in this
paper proposes a solution for robot visual inspection of
unknown free-form surfaces in a flexible inspection envi-
ronment, approaching the challenge of workpiece position
uncertainty is necessary. In this step, two different algorithms
were utilized for simulation and real-world experimentations,
namely the Nelder-Mead simplex method [48] for simula-
tions and a simple line search for the experiments with the
real robot.

As it can be seen in Fig. 3, themain difference between the
sub-tasks is that sub-tasks 2 and 3 have an episodic nature.
In sub-task 1, the robot continuously updates its position
depending on the continuous visual feedback obtained from
the surface, until the optimal position is reached. On the other
hand, in sub-tasks 2 and 3 the robot must perform the scan,
while the images through the visual feedback are accumu-
lated, and the total FM value is obtained from these images.
In the end of each episode, the total FM value is sent to the
learning and optimization algorithm, which calculates the
updated parameters. The controller uses these parameters to
respectively update the motion of the robot.

The premise of the work presented in this paper is that
although the methodology and the overall approach are
unique, different algorithms and learning methods can be
applied. Moreover, factors such as type of the surface, the
properties of the camera deployed, the inspection environ-
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ment and the hardware make it difficult to determine a single
set of best performing algorithms. The aim of this work is
not to determine the best algorithms for specific tasks, but to
demonstrate to the reader the possibility of applying different
optimization approaches for the overall, general task.

4 Hardware and software

The simulations were done in MuJoCo HAPTIX [49] envi-
ronment. The robot employed was a Kuka LWR-4 collabora-
tive robot for both simulations and experiments. During the
experiments Fast Research Interface (FRI) [50] was used to
control the robot. All the programming was done in Matlab.
The camera used for the experiments was a Basler acA1300-
60gm, with a resolution of 1.3 MP, and a frame rate of 60
fps. The lens used had a fixed focal length of 8.5 mm, and an
aperture of f/1.3. The aperture was set at the widest possible,
to achieve the lowest possible focus range. The exposure time
was set to 2000 μs. The light source used was a ring light,
HPR2-100SWby the companyCCS.A custom-designed and
3D-printed bracket was used to mount the camera and the
light source on the robot end-effector, as shown in Fig. 4a.
The object used to showcase the applicability of the proposed
methodology for automated robot trajectory generation had a
curved top surface with an arbitrary text. In the experiments
it was located on a stable table near the robot, as shown in

Fig. 4 An overview of the experimental setup used. In (a), the camera
and the light source installed on the end effector of the robot along with
the 3D object under inspection can be seen. In (b), the curved surface
of the object can be seen

Fig. 4a. The curved surface of the object of inspection is
shown in Fig. 4b.

5 Finding the optimal pose of the camera
from the surface in static mode

5.1 Problem definition

This section presents how the optimal distance and angle
from the inspection surfacewere determined. For fixed-focus
cameras (typically used in industrial settings), the distance
and angle from the object are often determined manually
based on the camera and lens properties. In our case this was
done automatically, ensuring optimal image quality.

5.2 Solution approach

We tested the approach with real-world experiments. The
Fibonacci search method was used (see Appendix A). It is
a suitable search method for this work, as there exists only
one optimal solution as shown in Fig. 2. As mentioned in
Section 1, the FM is a means to quantify the sharpness of
the images. Therefore, here it was used as the optimization
objective for the algorithm. The initial search step and direc-
tion were chosen empirically.

Themotion of the robot was controlled in task space using
inverse kinematics. The pseudoinverse method was used to
solve the inverse kinematics problem [51]. Given that the
required change in position of the end-effector is e ∈ R

3, the
Jacobian matrix of the robot is defined as J ∈ R

3×7, and the
change in the joint angles of the robot which would move the
robot’s end-effector to the target position is �q ∈ R

7 (the
robot employed in this work has 7 degrees-of-freedom),

�q = J+e. (4)

Here J+ is the pseudoinverse of the Jacobian matrix. This
approach was used throughout this work for motion control
of the robot.

5.3 Distance and angle— results

As the first step, the optimal distance of the camera from
the surface has been obtained. During the experiments the
camera was positioned normally to the surface. The results
of these experiments are shown in Fig. 5a.

Next, keeping thedistance constant the angle of the camera
with respect to the surface was optimized. The camera was
set to an arbitrary angle, and at the end of the experiment it
had converged to zero, i.e., perpendicular to the surface. The
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Fig. 5 Results of the
experiments (a) to find the
optimal distance, (b) to find the
optimal angle from the surface.
As it can be observed, searching
for optimal position and angle
stabilizes after approximately 10
iterations

results of this experiment can be seen in Fig. 5b. For both
distance and angle optimization experiments the number of
iterations was limited to 15. It can be seen that the highest
rewards for both position and angle optimizations have been
reached in iteration 15. A schematic depicting the axes of

motion for determining theposition andangle of the camera is
shown in Fig. 6a. The image taken from the optimal position
can be seen in Fig. 6b.A clear degradation of image sharpness
can be observed in Figs. 6c and dwhere the camerawas offset
for 3mm and 20 degrees respectively.

Fig. 6 (a) Translation and
rotation performed during the
simulations and experiments to
find the optimal position and
orientation of the robot, (b)
image taken at the optimal
distance and orientation from
the surface, (c) image taken with
3mm translational offset from
the optimal position, (d) image
taken with 20◦ rotational offset
from the optimal position
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6 Obtaining an optimal scanning trajectory
for an unknown curved 3D surface

6.1 Problem definition

After determination of the optimal camera distance and angle
from the surface in previous step (Section 5), in this step, the
aim was to generate a trajectory for the robot such that it
could scan a curved surface, depicted in Fig. 7, while main-
taining the highest possible image sharpness. Assuming that
the y-axis of the coordinate system o(x, y, z) defined for the
surface is aligned with that of the robot base’s coordinate
system O(X ,Y , Z), the distance that the robot should travel
along Y -axis is known. This is not a simplification, as this
distance can easily be measured or even simply determined
— it defines the area one wants to inspect. However, as the
shape of the surfacewas not known, the problemwas to deter-
mine the motion of the end-effector along the Z -axis, and its
rotation around the X -axis, as highlighted in Fig. 7.

6.2 Solution approach

To facilitate effective learning of the motion trajectories, the
motions were encoded as DMPs. The two motions (trans-
lation and rotation) were solved independently from each
other. This resulted in two independent DMP formulations
with two independent sets ofweights (see Eq.5). In this equa-
tion weights wz ∈ R

N are for the translation motion, and
wα ∈ R

N for the rotation. In Eq.5, xs represents the state of
the motion, which is equal to 1 at the start of the motion, and
converges to zero as the motion reaches its end.

fz(xs) =
∑N

i=1 �i (xs)wzi∑N
i=1 �i (xs)

xs

fα(xs) =
∑N

i=1 �i (xs)wαi∑N
i=1 �i (xs)

xs (5)

The functions �i (xs) are exponential basis functions,

�i (xs) = exp

(
− 1

2σ 2
i

(xs − ci )
2

)
. (6)

Here, ci and σi are constants used to define the shape of the
individual basis function. Details about the DMP mathemat-
ical formulations can be found in Appendix B. The overall
learning and optimization process described is visualized in
Fig. 8.

Different learning or optimization algorithms can be
applied to obtain the desired robot behavior. In this work
we tested two different optimization algorithms: Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [40], and
Reward Weighted Policy Learning with importance Sam-
pling (RWPL), which is a simplified version of PoWER
algorithm [41]. They were chosen because they have shown
to be effective in similar tasks [29]. CMA-ES is a stochas-
tic, black box optimization method. Having an initial current
solution wm ∈ R

N , the algorithm generates several other
candidate solutions (offspring) around it. The samples are
generated as follows [52]

wi ∼ wm + σN (0,C) for i = 1, . . . , λ (7)

Here, σ ∈ R+ is the step size, C ∈ R
N×N is the covariance

matrix (defining how the samples are distributed around the
current solution), and λ is the number of offspring. By proper
updating the sampling parameters, the algorithm converges
to the global optimum.

As an alternative, PoWER can be used to learn the DMP
weights. It was developed specifically for the reinforcement
learning framework applied to learning motor primitives in

Fig. 7 A simplified
visualization of the
experimental setup
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Fig. 8 Overall learning and optimization process of the DMP weights, leading to the convergence to an optimal overall trajectory, utilizing the FM
values obtained from the camera as rewards

robotics. In RWPL, a simplified form of the PoWER algo-
rithm, the weights w ∈ R

n are updated as follows

wi+1 = wi +
∑L

j=1 Rb, j × (wb, j − wn)
∑L

j=1 Rb, j
(8)

In this equation, L is the importance sampling length, Rb, j

and wb, j are respectively the reward and weights of the j th

best rollout obtained up to nth iteration. See Appendices C
and D for more details. The feedback for the algorithms was

the sum of the FM values obtained from the images (see
Eq.3).

Figure 8 depicts the main loop for optimizing the motion
of the robot. Seen in this figure, as the new weights for the
DMP were calculated by the optimization algorithm, they
were used in operation to generate the actual robot trajec-
tory (“DMP2Path”). A low-level robot controller was used
to implement the motion.
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Fig. 9 Simulation results with CMA-ES (top row) and RWPL (bottom row)
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6.3 Scanning trajectory— results

In simulations an object with a triangular shape was used
to test the approach. The results are shown in Fig. 9. For the
CMA-ES algorithm, λwas chosen as 50. For theRWPL algo-
rithm, the number of rollouts was 140, the standard deviation
σ of the exploration noise was 25, and the importance sam-
pling length was 5. The number of weights to be optimized
for both algorithms was 30. As mentioned before, during
the simulations the FM was modeled as a Gaussian distribu-
tion (see Eq.2). We can see from the results that the position
aspect of the motion was determined accurately with both
algorithms, however for the orientation CMA-ES performed
better.

Next, the results of real-world experiments are presented.
During the experiments with both algorithms (CMA-ES and
RWPL), the initial motion of the robot was random (except
its motion in x-direction). Total number of iterations of the
CMA-ES algorithm was 38, and that of the RWPL algorithm
was 145. The value of λ used in the CMA-ES algorithm was
5. Results can be seen in Fig. 10. The translational motion
of the end-effector in z-direction, and the tilting motion of
the end-effector obtained by both algorithms can be seen.
The slight oscillations of the orientation motion were a con-
sequence DMP formulation, caused by the combination of
weighted kernel functions. Also, another reason was the
lower influence of the orientation motion on changes in the
image quality. As it can be seen, the CMA-ES algorithm
required considerably less iterations to reach our predefined
threshold. A series of snapshots from the optimized trajec-
tory of the robot can be seen in Fig. 11. Here, from the first
image on the left to the next the scanning motion of the robot
can be seen sequentially.

7 Obtaining the starting point and scan
angle of a free-form surface with known
scan trajectory

7.1 Problem definition

A practical problem in the surface quality inspection of
a free-form component can arise when it is required for
the components to be positioned accurately on a fixture.
However, it is not always possible to fix the positions of
components on a production line. It may not be economically
feasible, or it might be too time-consuming. For example, it
is the case when the components fall on a platform from a
conveyor belt. In such a case, a manually programmed robot
cannot inspect the surface of the component, as it requires
accurate positioning of the component for acquiring mean-
ingful data. Therefore, a solution to automatically adapt the
scan trajectory to the position of the component can save

considerable resources, as it mitigates the need for special
hardware fixtures that ensure repeatable positioning.

7.2 Solution approach

In this section we propose a solution for such a problem
by optimizing and modifying the starting pose of the scan
trajectory with respect to the positioning of the object of
inspection. For the simulations and the experiments, the same
curved-shape surface used in Section 6 was used.

Assuming that the main coordinate system in this work
is located as shown in Fig. 12a, random positioning of the
inspection object means that, as shown in Fig. 12b, its posi-
tion will vary in x- and y-directions (with variations shown
as �x and �y respectively), and also around z-axis (shown
as �γ ) with respect to the base coordinate system. Here it is
assumed that the workpiece is located on a flat surface, such
that translation in z-axis, and rotational variations around x-
and y-axes are always zero.

In the simulations the variation �x (in x-direction) was
always zero. Additionally, assuming the surface under the
component was flat, �z was also equal to zero. The two
variables, namely�y and�γ were estimated. Therefore the
problem was approached as a learning/optimization problem
in a 2-dimensional space. The results obtained can be anal-
ogously extended to the case when all three variations are
present.

To solve this optimization problem the Nelder-Mead sim-
plex method [48] has been used. In a 2-dimensional space,
this method uses a triangle to search for the optimum. The
triangle can move around in the search space, and it can
change its size. At each iteration, the vertices of the trian-
gle are updated with function evaluations at those vertices,
and finally the triangle converges to the optimum, and it can
also shrink around it [47]. The details of the algorithm are
provided in Appendix E.

During the real-world experiments the workpiece was
deviated only in y-direction; that is, there was only one
unknown parameter (i.e., �y), to demonstrate proof-of-
concept behavior. A simple line search (see Algorithm 1)
was used to find the optimal position of the robot.

7.3 Obtaining the starting point— results

The results of the simulation are shown in Fig. 13. The initial
deviationswere arbitrarily chosen as 0.2m in the y-axis (�y),
and 5◦ around the z-axis (�γ ). In case of correct positioning
of the workpiece both of the variables were zero. As it can
be seen in Fig. 13, both �y and �γ start to converge rapidly
already in the initial iterations. At around 30th iteration both
parameters reached their respective expected values. Also
the optimization function already reached a value close to
the optimum before 25th iteration (Fig. 13).
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Fig. 10 Experiment results with CMA-ES (top row) and RWPL (bottom row)

Fig. 11 Snapshots from the optimized trajectory of the robot. The progression of the robot movement while scanning the surface can be seen
beginning from the image (a) to the image (f)

Fig. 12 (a) Coordinate system of the robot, O(x, y, z), (b) Possible positional variations of the workpiece with respect to the robot coordinate
system
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Fig. 13 Simulation results. With increasing iterations both translational offset (left image) and angular offset (center image) stabilize, and approach
to zero. Additionally, the increase and final stabilization of the rewards can be observed on the right image

Algorithm 1 Line search algorithm for finding the optimal
initial position of the robot

Define the threshold as T .
Define the step as S.
Define initial position of the robot.
Initialize Rnew and Rold such that: Rnew >> Rold.
while |Rnew − Rold| > T do

Move robot with S in corresponding direction.
Follow the defined trajectory.
Calculate Rnew as sum of the FM of the images taken during the

movement.
if Rnew > Rold then

Continue.
else if Rnew < Rold then

Make the step smaller.
Reverse the direction.
Continue.

end if
Rold = Rnew

end while

0 5 10 15 20 25
Iteration

2.2

2.3

2.4

2.5

2.6

R

104

Fig. 14 Reward improvement during the experiments with the real
robot. By observing the increase and stabilization of the reward curve
with each iteration, the convergence to the optimal starting point can be
seen

For the real-world experiments, the linear search method
was shown to be able to optimally modify the trajectory to
scan the whole surface. The reward improvement during the
iterations is shown in Fig. 14.

8 Discussion

Employing additional sensors (e.g., laser distance sensors)
could be a solution to both challenges of generating trajecto-
ries for unknown surfaces and of localizing the surfaces under
inspection. EmployingCADdata (as a popular research field,
already addressed in Section 2) could provide information
to generate robot trajectory in both off- and online manners.
Likewise, amechanical solution (for instance, a fixture) could
guarantee the proper positioning of the component. However,
as discussed in the introduction, every additional sensor or
hardware upgrade increases the cost and complexity of the
robotic cell, and introduces new elements that have to be
adapted if production is changed to a different component.

Since an industrial camera is already present for visual
quality inspection, it can be used to adapt the robot motion
any time when a new series or product line is started. Addi-
tionally, it is not always possible to use additional sensors due
to many reasons. The nature of the components under pro-
duction, or their surface properties might not always allow
the use of additional sensors, or the workpieces might not be
identical and therefore the required sensor reading might not
be foreseeable.

In this paper we present a solution which can be useful
under such exact circumstances. The aim of this work was
to assess the feasibility of automatically generating and opti-
mizing the trajectory of a robot, and be as flexible as possible
concerning the uncertainties in the environment, while the
amount of sensory information available is at a minimum.

In an inspection environment, where it is not possible
(due to any foreseeable reasons) to employ additional sen-
sors, such an approach can be the only solution for this
challenge. Additionally, for small and medium enterprises
(SMEs), where low-volume production is common, such an
automated approach can make robotization economical by
reducing the re-programmingwork of the operator and reduc-
ing the initial investment by reducing the number of external
sensors.
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In Section 6, the algorithms CMA-ES and RWPL were
used to demonstrate the possibility of applying evolution-
ary or RL algorithms. Their applicability in industrial setting
increases the adaptability of the solution and shows their
potential in increasing the productivity. The main reason
for choosing Nelder-Mead algorithm in Section 7 for the
optimization task was that it converges rapidly in the initial
iterations. In an industrial environment where time plays an
important factor this is a desired property. Another advantage
is that it works well for the problems with noisy parameters.
Therefore it is a suitable method for problems, which do not
have an accurate solution [53]. In the work presented here,
and as shown in Section 2, solutions which lie within the
depth of field of the camera/lens were acceptable. Therefore,
there was some room for tolerance.

The task of calculation of the focus measure from the
taken images was a substantially fast process, so that it never
caused a bottleneck regarding the overall duration of the
experiments. For determining the optimal distance and angle
of the camera from the surface, each iteration was finished
within 1 s (including the motion of the robot and the calcu-
lation of the focus measure). Thus, the overall process of
optimization was done within approximately 15s. During
optimization of the scanning trajectory, and also localization
of the free-form surface, the duration of the robot scan trajec-
tory was measured to be on average 5.3 s. The total iteration
duration (including the time for the robot to move back to the
starting pose) was approximately 10.4 s. Thus, the CMA-ES
and theRWPLalgorithms took approximately 7 and25min to
converge, respectively. And the line search algorithm needed
approximately 5min to localize the position of the surface.

As this work is based on a novel approach with rela-
tively simple simulation and experimental implementations,
there is room for improvement and optimization. The focus
measure function is highly dependent on the surface texture
and illumination characteristics. Therefore depending on dif-
ferent practical applications, different textures and different
illumination strategies can be examined. The shape of the
surface used during the experiments was rather basic. A sys-
tem whose aim is to be used on a production line must be
able to deal with complex shapes. The presented approaches,
however, can also deal with more complex shapes, although
one must reckon with higher number of iterations. We will
also test different optimization algorithms that are relatively
more sample efficient for acquiring the desired robot motion.
This would enable us to test the method with more complex
free-form surfaces.

9 Conclusion

In this work, a method for automatic adaptation of an indus-
trial robot to different uncertainties in its environment, based

only on the focus measure feedback quantity is presented. In
a robot-based surface quality inspection scenario, the robot’s
end-effector is equipped with a camera and a light source.
Here, the same camera was used for robot motion generation
and adaptation. The task could be divided into three sub-
tasks: (1) Obtaining the optimal distance and orientation of
the end-effector from the surface, (2) Generating a trajectory
to scan an uneven surface, which is not previously known,
(3) Adapting the starting point of the scanning motion of
the end-effector, given that the exact position of the surface
is not known. The first sub-task was tested with real-world
experiments. Fibonacci search method was used to obtain
optimal distance and orientation. The second and third sub-
tasks were implemented both in simulations and in the real
world.CMA-ESandRWPLalgorithmswere used to generate
a trajectory to scan the unknown surface. For the third sub-
task, in the simulations the Nelder-Mead search method was
used. While as a proof-of-concept during the experiments
only a simple line search method was used, more complex
problems can also be solved with the proposed methods. For
the first sub-task using the focus measure precisions under
1mm in translational, and 0.1o in angular directions were
obtained. In the experiments carried out for the second sub-
task it is shown that the optimized trajectory was obtained
within 50 iterations for scanning an unknown free-form sur-
face. Finally, in the framework of the third sub-task it was
possible to localize the position of the surface with less than
30 iterations during the experiments.

The algorithms used in this work were chosen based on
their simplicity to be implemented and be applied. In the
future, further algorithms will be tested. With the above-
mentioned improvements and assessments, the current work
has the potential to provide solutions to real-world challenges
in the field of manufacturing.

This approach of generating a desired behavior for a robot
can also be applied to other novel inspection and character-
ization methods which employ different sensor technology
than an imaging sensor, such as a tactile sensor.

Appendix A. Fibonacci search

Fibonacci search is a bracketing method [47]. Bracketing
methods are suitable for univariate functions. Given that a
minimum exists in a selected interval, these methods shrink
around the minimum. In Fibonacci method the number of
function evaluations is limited. Defining the parameters of
the search method as follows,
s = 1−√

5
1+√

5

φ = 1+√
5

2
ρ = 1

φ×(1−sn+1)
1−sn
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d = ρ × b + (1 − ρ) × a
the search algorithm is given below.

Algorithm 2 Fibonacci search method (adapted from [47])
Initialize:
ε ← 0.01
yd ← f (d)

for i = 1 : (n − 1) do
if i = n − 1 then

c ← ε × a + (1 − ε) × d
else

c ← ρ × a + (1 − ρ) × b
end if
yc ← f (c)
if yc < yd then

b, d, yd ← d, c, yc
else

a, b ← b, c
end if
ρ ← 1

φ×(1−sn−i+1)

1−sn−i

end for

Appendix B. Dynamic movement primitives

DMPs are used to model complex motor skills in robotics
with a well-known dynamical system which also includes a
forcing term [54]. Using the forcing term enables it to mod-
ulate the dynamical system to achieve various behaviors,
which later can be transferred to a robot. The mathemati-
cal formulation to model the behavior of the robot has the
following form [54]

τ ż = αz(βz(g − y) − z) + f ,

τ ẏ = z.
(9)

In this formulation τ is a time constant, αz and βz are
positive constants, y converges to the goal g, and f is the
forcing term, given as

f (x) =
∑N

i=1 �iwi∑N
i=1 �

x(g − y0). (10)

Here, x is a replacement of explicit dependence of the
system on time. In the beginning of the motion it is 1 and it
converges to 0 as the motion reaches its end. The indepen-
dence from time enables the individual dynamical systems to
be easily coupled with other systems. The term (g− y0) con-
tributes to the amplitude of the motion, to make it scalable.

And �i is defined as

�i (x) = exp
( − 1

2σ 2
i

(x − ci )
2). (11)

The terms σi and ci are constants of the basis function.
There are N basis functions. By choosing certain N number
of weights (wi where i = 1, ..., N ), the forcing term can
make y in Eq.9 to follow a certain trajectory. Therefore the
ultimate goal is to find the correct weights corresponding to
the behavior that is desired from the robot.

Algorithm 3 CMA-ES (adapted form [40])
Define the parameters λ, wi=1...λ, cσ , dσ , cc, c1, and cμ.
Initialize pσ ← 0, pc ← 0, covariance matrixC ← I, g ← 0, mean
xm ∈ R

n , and step size σ ∈ R+.
while termination criteria is not met do

Sample λ new points: xi ∼ xm + σN (0,C) for i = 1, . . . , λ
Update the mean: xm ← xm + σ

∑μ
i=1 wiyi :λ, where yi ∼

N (0,C), and
∑μ

i=1 wi = 1, wi > 0 for i = 1 . . . μ.

Update the step size: σ ← σ × exp( cσdσ
(

||pσ ||
E||N (0,I)|| − 1)), where

pσ = (1 − cσ )pσ + √
cσ (2 − cσ )μe f f C− 1

2 (
∑μ

i=1 wiyi :λ).
Update the covariance matrix: C ← C +

c1pcp
T
c + cμ

∑λ
i=1 wo

i yi :λyTi :λ, where wo
i = wi ×

(1 if wi ≥ 0 else n

||C− 1
2 yi :λ ||2

), and pc = (1 − cc)pc +
hσ

√
cc(2 − cc)μe f f (

∑μ
i=1 wiyi :λ).

(Note: hσ is the Heaviside function.)
end while

Appendix C. Covariance Matrix Adaptation
Evolution Strategy (CMA-ES)

CMA-ES is a black box, stochastic searchmethod. Thorough
explanation of this method can be found in [40, 52]. The
algorithm is given below (Algorithm 3).

Algorithm 4 RWPL (adapted from [41] and simplified)
Define initial policy parameters θ0, number of rollouts N , impor-
tance sampling length L , and exploration noise σ .
while convergence θk+1 ≈ θk is not met do

Perform N rollouts: θ i ← θ + εt , i = 1 . . . N , where εt ∼
N (0, σ 2).

Collect: (i, θ i , Ri ) for i = 1 . . . N where Ri is the reward.
Sort the rollouts based on their rewards: (l, θ l , Ql ) for l = 1 . . . L .

Update the policy using θk+1 ← θk +
∑L

l=1(θ l−θk )Ql∑L
l=1 Ql

.

end while
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Appendix D. Reward weighted policy learn-
ing (RWPL)

RWPL is a simplified form of the algorithm PoWER [41].
It is a policy learning method which focuses on the motor
primitives (see Algorithm 4).

Algorithm 5 Nelder-Mead triangle search method (adapted
from [47])

while convergence criteria is not met do
Compute the reflection: xr ← x + α(x − xh), where α > 0 and

is typically equal to 1.
if yr < yl then compute the expansion: xe ← x + β(xr − x),

where β > max(1, α) and is typically set to 2.
if ye < yr then replace xh with xe.
else replace xh with xr .
end if

else
if yr ≥ ys then

if yr < yh then replace xh with xr .
end if
Compute the contraction: xc ← x + γ (xh − x).

if yc > yh then shrink by replacing all x(i) with x(i)+xl
2 .

else replace xh with xc.
end if

else replace xh with xr .
end if

end if
end while

Appendix E. Nelder-Mead simplex search

Nelder-Mead search is composed of rules, which determine
the behavior of the simplex (in the case of this work, the
triangle) at each iteration. Let us assume the vertex of the
triangle with the highest function value is xh , xl is the vertex
with the lowest value, and xm has the second highest value.
The mean of the two lowest vertices, x is defined as x =
xm+xl

2 . For any point xθ the function value is yθ = f (xθ ).
For a pseudocode see Algorithm 5.
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