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1. Introduction

We denote by Her,, the real vector space of all n-by-n Hermitian matrices; A is
Hermitian if and only if A = A* := (A)T. Let further O,,(C) be the group of complex
orthogonal n-by-n matrices. A matrix @ is orthogonal precisely when Q' = Q7. The
action of orthogonal *congruence on Her,, is defined as follows:

®: 0,(C) x Her,, — Her,, (Q,A4) —» Q"AQ. (1.1)

The study of Hermitian matrices under *congruence is indeed quite general, as can be
concluded from Hua’s fundamental result [13, Theorem 12] on the geometry of Hermitian
matrices (extended by Wan [24, Theorem 6.4]); see also the paper by Radjavi and Semrl
[19]. On the other hand (1.1) can be seen as a representation of O, (C) as a real classical
group (e.g. see the monograph [25]).

The isotropy group at A € Her,, with respect to the action (1.1) is denoted by

S = {Q € 0.(C) | Q"AQ = A}. (1.2)

Isotropy groups provide an important information about a group action (see textbooks
[6,18]). In a generic case (on a complement of a real analytic subset of codimension 1)
isotropy groups for (1.1) are clearly trivial (Proposition 2.1), while in general the situation
is more involved. The main purpose of this paper is to give an inductive procedure that
enables the computation and the description of a group structure of an isotropy group
(1.2) in a nongeneric case (Theorem 2.3 and Theorem 2.7). Analoguous results for skew-
Hermitian matrices under orthogonal *conjugation are valid as well. Key ingredients
in the proof are Lemma 4.1 and Lemma 4.2. They provide solutions of certain block
rectangular (complex-alternating) upper triangular Toeplitz matrix equations. These
equations characterize orthogonality of a solution @ of the equation AQ = QA (or
equivalently A = QAQ*, i.e. Q* € X 4); for a general @ this equation was solved by
Bevis, Hall and Hartwig [2].

In contrast to the complex case, the situation in the real case is simple. Each real
symmetric matrix is real orthogonally similar to A = 69?’:1(69;721 Aj) with Ao, v € R
pairwise distinct. Since QTAQ = A for real orthogonal ) transforms to the Sylvester
equation AQ = QA, the isotropy group at A with respect to real orthogonal similarity
consists of matrices Q = ®N_,Q, with Q, real orthogonal of size m,. x m,..

Pairs (A, B) with A arbitrary and B symmetric (i.e. B = BT) with respect to trans-
formations (cP* AP, PT BP) for a nonsingular matrix P and ¢ € C \ {0} are studied in
CR-geometry in the theory of CR-singularities of codimension 2. Normal forms under
this action for 2 x 2 matrices were obtained by Coffman [4]. In higher dimensions the
isotropy groups of (1.1) are expected to some extend to be applied to tackle this problem
as well as a closely related problem of simultaneous reduction of (A, B) under transfor-
mations (P*AP, PT BP) with P nonsingular. By applying Autonne-Takagi factorization
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we first reduce (A, B) to (A’, I) with the identity I. Next, we write A’ = Hy 4+ iHy with
Hy, Hy Hermitian. We put H; into Hong’s orthogonal *congruence normal form [8] and
then simplify Hs by using matrices from the isotropy group X, as they keep Hy, I
intact. We add that a reduction of Hermitian-symmetric pairs was considered by Hua
[14], Hong [8], Hong, Horn and Johnson [11], among others.

2. The main results

Isotropy groups corresponding to elements of Orb(A) := {Q*AQ | Q € O,(C)} (i.e.
the orbit of A with respect to (1.1)) are conjugate, thus it suffices to compute them for
representatives of orbits. Hong [8, Theorem 2.7] proved that each Hermitian matrix A is
orthogonally *congruent to a matrix of the form

H(A) = D ejHa, (V) @ D Kp, (1) @ P Lo (&), (2.1)
J k l

in which A\; > 0, g > 0, Im(&§;) > 0, ¢ = (e1,€92,...), all ¢; € {1,—1} with g; = 1 if
A; = 0 and o; odd, and where /\?, f,u% and 512 are nonnegative, positive and nonreal
eigenvalues of AA, respectively;

0 1 2z 0 1 0
Ho(2) :% S (nby-n),  (2.2)
1 .- . R |
2z 1 0 0 -10
B 0 —iH,(2) 0 Hy(z)
Ko(z) = LHn o 1 Lo(z) = [Hn o ] (2.3)

The author [21, Theorem 1.1] showed that (2.1) is uniquely determined up to a permu-
tation of its blocks. We add that *congrunce canonical forms and dimensions of their
orbits for general matrices are known as well ([12], [23]), and that the isotropy sub-
groups of invertible integer matrices under congruence at symmetric Gram matrices of
edge-bipartite graphs were studied in [17], [20].

By applying results from [2, Sec. 2] on solutions of the equation AY = Y A, we
immediately conclude the following facts; check also Proposition 3.4 (1).

Proposition 2.1.
1. Let p1,...,pn € C be all distinct and let H® = @?:1 HS be of the form (2.1), in

which Hj is a direct sum whose summands correspond to the eigenvalue p; of HEHE.
Then EHE = @?:1 E’Hi .
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2. If H° = Dj_ 60 @ @}’ll[g %} (a generic canonical form), in which \; > 0,
& € C\R are all distinct constants and all e € {1, —1}, then Xy- is trivial.

In Sec. 3, we describe nonsingular solutions of AY = Y A by the following matrices.
Given a = (a1,...,an) with ag > ... > ay and u = (mq,...,my) let T** and TSH
consist of N-by-N block matrices with a,.-by-a, blocks of the form:

0 Trs) ar < o

X =[x, Xys = [TSS] , Q> brs := min{ag, o}, (2.4)
7;‘87 Qp = Qg

in which 7,5 = T(Ap®, ..., Ap? ) and Tps = TL(AR, ..., A} ), respectively; A7° €
Cm™mrxms and all Aj" are nonsingular. We use the standard notation C™*™ to denote the
set of m-by-n matrices, and let a S-by-8 block upper triangular Toeplitz and a B-by-£
block complez-alternating upper triangular Toeplitz matrix be:

Ao Ay ... Aﬁ_l
Ay Ay ~-~Aﬁ—l 0 ZO y
T(AoroAs)i= |0 7 7 o g = | DA
: .ot A1
0 ... 0 A
_O ...... 0 ]

respectively, in which Ag,...,Ag_1 are of the same size, and T'(Ao,...,Ap_1) =
[Tk) o1y TelAos... Ap_1) = [T04]5,—, with Tyy = T}, = 0 for j > k and with
T+ k+1) = Tk, T(/j+1)(k:+1) = T;k. When in addition Ag is the identity matrix, they
are called block (complex-alternating) upper unitriangular Toeplitz.

Example 2.2. Examples of matrices of the form (2.4) are (o = 3, ag = 2):

Ay B) C1|Gy Hy Ay B; C1|Gy Hy
0 A Bi|0 Gy 0 A B1|0 Gy
X=10 0 A0 0, X=|0 0 4|0 0
0 N1 P1 AQBQ 0 N1 P1 A2 BQ
{0 0 Ni| 0 Ay {0 oﬁl‘o A

Let I,, be the n-by-n identity matrix. Given g = I, ® —I, denote by O, ,(C) (by
0,.4(R)) and U, 4(C) the complex (real) pseudo-orthogonal and pseudo-unitary group,
consisting of matrices of all complex (real) matrices @ such that Q! = gQTg and
Q' = gQ*g, respectively.

We state our first main result; we prove it in Sec. 5.
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Theorem 2.3. For p = (mq,...,my), a = (aq,...,ay) with a; > ... > ay, and
e ={en oy N with all e, j € {1, -1}, let

N m, erjHa, (\/P), p=0
%E:@(@M;)7 M;: Ka,,.(\/_p)a P<O ’
1 Lo(y7): pEC\R

r=1 j=
m
@jzrlgr,jv p 2 0

By =< ply, &1, p<0 ,
I2mm p < C \R

i.e. HEHE has precisely one eigenvalue p. Then the isotropy group Yy is conjugate

T e p>0
Tk T " R
hence isomorphic) to the subgroup X C @ P ECA , where T*#, ToH
ToH 0 ¢
e p=
']I‘a,2y’ p <0

and T2 are defined by (2.4). Furthermore, each X € X for p € R and each X ®X € X
for p e C\ R, with X of the form (2.4), satisfy the following properties:

(a) If p > 0 then all X.s are real, while for p < 0 the upper triangular parts Trs =
T(AR, ..., A}® 1) of Xps consist of 2-by-2 block matrices of the form:

v
Ay = i _} VIS WS € Cmexms e {1, bys — 1)

TS — TS = 0. (2.5)

(b) The nonzero entries of X.s forr,s € {1,..., N} with r > s can be chosen freely in
accordance with (a). If either p € C\ {0} or p =0 with o, odd, then (X,,)11 = Af"
is a solution of the equation B, = (A5 )T B.AY and such that (a) remains valid,
while for p = 0 with a, even, the matriz Ay" is any solution of the equation B, =
(AG")" B, Ap".

(c) For r € {1,...,N} with o, > 2, j € {1,...,0, — 1} we have (Xpr)1(14j) =

—(Z})*, ar —j even,p =10

_ (ZDT7 otherwise chosen arbitrarily

AT = AY'B. Z] + Dy for Z] = {

in accordance with (a), and for some D} depending polynomially on A’Jir, with

j € {0,...,5 =1}, v € {1,...,r} and on the nonzero entries of X,s for r > s
(described in (b)).
The nonzero entries of Xps for r;s € {1,...,N} with r < s are uniquely deter-

mined (polynomially) by the entries of X.s with r > s (described above).
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In particular,

Zmr(gar(mr 1)+Zasms), p>0

T]T]I 1 s=1

Z (armf +2 Zasmrms) — Z My — Z o‘#ﬂmr, p=0
dlm]R(E’Hs) _ r;l s=1 L o, even a, odd

Zmr(aT(er—l)—I—QZasms), p<0

v =

Z2mr(%aT(mT—1)+Zasms), peC\R

r=1 s=1

Remark 1. An algorithm to compute matrices in Theorem 2.3 (c) is provided as part of
its proof, more precisely, by Lemma 4.1 and Lemma 4.2.

The following significant examples of matrices satisfy Theorem 2.3 (b), (c).

Example 2.4. ([22, Example 3.1]) Fix B, nonsingular symmetric and let Z! be any skew-

symmetric matrix (i.e. Z7 = —(Z")T); all of size m,. x m,.. We set W := 0 and
N 1 n—1
T r ro._ —1 T T r
W=@BTTn, , W,...., W, 1), W= 3B (Zn = > (W) B,W;_,).
r=1 j=1

(2.6)

Example 2.5. For r € {1,...,N}, n € {1,...,a, — 1}, we are given B, nonsingular real
symmetric with B}, := ®_, B, and let Z; be any skew-symmetric matrix for a,. —n odd
(skew-Hermitian for a,. — n even); all of size m, x m,.. Set:

N
1 Ar B _ P , even
W = T.(1,, ,WT,...,WT , W’ .= _B—1<Zr_ _77}71 n—1"n—1> “r )7
re:? ( r 1 arfl) n 9T n -AnleyTlfl,Pv:fl o odd
(2.7)
Wh
Ao LD W )T DT medd Wan-s
e (W) (W) T oes(Wi_ ) (W) ], meven ~ 20717 W2 7
wi
Wi,
Wan—1
W,
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the entry in the j-th column of Aj, is (WF™)T (and (WfT)T) for j odd (even), and the

entry in the j-th row of Pk* is (W}* ., )" (and (W ZS j+1)T) for j even (odd), P§ := 0.

Example 2.6. Let a matrix of the form (2.4) have the identity as principal submatrix,
formed by all blocks except those at the p-th, the t-th columns and rows, i.e.

_ @q;1lmra r=s,
Trs = { O,J ot s Ar, st & {p, t}. (2.8)

In particular, given B, nonsingular symmetric of size m,-by-m,., F' € C™»*™t and
0<k<a;—1,re{l,...,N}, in [22, Example 3.2] we set:

7;"7” = T(ImMA?lr7 A” 1)7 re {p7 t}v p < ta

J 0, otherwise ’
Att — ) On— 1By (BtFB LFTY By, 5 =n(2k +a — B)
i ) (2.9)
0, otherwise
—1 2n k k —1 T
Qnp ::_22n+1(n+1) n 9 ﬁp:Nat(F)’ Et:Nat(_Bp F Bp)7

where Ng (X) is a B-by-8 block matrix with X on the k-th upper diagonal (the main
diagonal for £ = 0) and zeros otherwise. For example, if N =2, a3 =4, ag =2, m; = 2,
me =3, By = I, By = I3, then F € C2%3 and we obtain

(I, 0 —3FTF 0 |-FT 0 ]
0L 0 —iFT'F| 0 —FT
00 I 0 0 0

2.1
00 0 I 0 0 (2.10)
00 F 0 Is 0
(00 0 F 0 I3 |

F Kk dd
The other intrieguing choice, with G := { oo o , is
F, k4 a; even

Tor = Te(Ipm,, AT, - - Ag;—l) r € {p,t}, p<t

(GTBtGB;I)"Bp, ayp, ap odd
(GT"BGB, )" By, ay,a even
(GT"ByGB, )" By, ay, even, oy odd
(GT"BGB,")"B

pp 1
An(2k+ap—a ) = Qn-— 1B

p, 0 odd, oy even
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(BeF B 'FT)" By, ay, o 0dd
—r
) (BUFB;AF By, ay, 0y even
Lt - " , 2.1
n(2k+ay—a;) — dn—1 (B FBp LFTY By, oy even, oy odd ( )
(B:F B, 1FT)ﬁBt7 a, odd, a; even
1 2n
it _ _ ; -
Al =0, AP =0, J#n(2k +ap — ), an——m( >

Tip = Nk (F), Up = Nk (- B, 'G"By),

XXX---XX, nodd
XX---XX, neven
with X as odd (with X as even) factor, and N cg(X ) is a complex-alternating 3-by-f3
Toeplitz with X, X, X, ... on the k-th upper diagonal (the main diagonal for k¥ = 0) and
zeros otherwise. If N =2, a; =4, as =2, my = 2, mg = 3, By = I, By = I3, we have
(cf. (2.10)):

in which X7 := { is the complex-alternating product of n factors

[I, 0 —3F*F 0 |-F* 0 ]
0L 0 —3FTF| 0 -FT
00 I 0 0 0
00 0 I 0 0
00 F 0 Is 0
(00 0 F 0 I3 |

We now exihibit the structure of isotropy groups; the proof is given in Sec. 5.

Theorem 2.7. Let He, T#, T2 and T®H be as in Theorem 2.5. Then g is iso-
morphic to a semidirect product:

E’Hsg@lxv,

in which QO and V are described as follows:
(I) Suppose H® = @f«\[:l ( f;r JHo, (V) @ @ H,, (A)) for X\ >0, m, :=p, + q,.

i. If A >0, then @ C T®* consists of all matrices Q = @ivzl (@?;1 QT) with
Qr € Op, 4. (R), while V.C T** s generated by all real matrices of the form
(2.6) and of the form (2.4) with (2.8), (2.9) for B, = I, @& —I,,..

it. If A =0 and for a, odd m, = p,, then O C T>* consists of all matrices Q =
DY (@ 8Q, ®Q, &) with Qy € Oy, (C) for ay odd and Q, € U, (C)
for o, even, while V.C T2 is generated by matrices of the form (2.7) and of
the form (2.]) with (2.8), (2.11) for B, =1, & —I,,.

(The possible summands @Q

=1 tHa, (A) and £1o are left out.)
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(II) If He = @7]-\]:1 (B, Ka, (1)) for >0, then O C T consists of all matrices

Q= EBivzl (@?;1 QT) such that (plp, @ Im,)Qr(plm, © Iy,) € Om,m,(C),

and such that Q, = {_;JWTST. VVVEM} for some Vi7", W§T € C™r>™r while each
VeV c T can be written as V = V, H?Zl V;, where Vo = @il W, with W,
upper unitriangular Toeplitz and Vi,...,V, of the form (2.8); all Vo, V1,...,Vn
are of the form (2.4) with (2.5) and satisfying (b), (c¢) for p <0 in Theorem 2.3.

(III) If H* = @ivzl (B La, (€)), € € C\R, then O C T** consists of all matrices
Q= @ivzl (EB?;I Qr) with Q, € Oy, (C), and V. C T is generated by matrices
of the form (2.6) and of the form (2.4) with (2.8), (2.9) for B, = I,,..

In particular, V is unipotent of order at most ag — 1 (nilpotent of class < o).

Remark 2. Isotropy groups for A and ¢A under orthogonal *conjugation coincide, thus
analogues of Theorem 2.7 and Theorem 2.7 for skew-Hermitian matrices are valid.

3. The matrix equation AY =Y A
Given a square matrix A we consider the matrix equation
AY =Y A. (3.1)

For Y = PXP~! with P nonsingular, (3.1) transforms to BX = XB for B = P AP;
such A and B are said to be consimilar. Bevis, Hall and Hartwig [2] used the canonical
form under consimilarity, given by Hong and Horn [10, Theorem 3.1], to reduce (3.1) to
Sylvester equations. In a similar fashion we shall solve (3.1) by using Hong’s Hermitian
consimilarity canonical form (2.1) for ¢ = (1,1,...) [9, p. 3-4]. Consimilarity canonical
forms were first developed by Haantjes [7], Asano and Nakayama [1], but these are not
suitable to solve (3.1).
Recall the classical result [5, Ch. VIII] on solutions of a Sylvester equation.

Theorem 3.1. Given A1, \s € C, an m-by-n matriz Y satisfies the matriz equation

Al 0
Jm(A)X = X J,(Na), J.N:=| > |, xeC (a-byw),

-
0 A

if and only if either \y £ Ao and X =0, or Ay = Ay and

0T],m<n

X = , m>n > (3.2)

0

T, n=m
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in which T is an B-by-B upper triangular Toeplitz matriz (8 = min{m,n}).
Lemma 3.2. Given matrices M and N, let us consider the following equation

MY =YN. (3.3)
Denote the n-by-n backward identity matriz by E, (with ones on the anti-diagonal).

1. If M and N are of the form (2.2) or (2.3) and such that MM and NN correspond
to different eigenvalues, it then follows that Y = 0.

2. If M = Hp,(\) and N = H,()\) with \ positive (zero), then Y satisfies (3.3) if and
only if Y = P, X P,, in which X is an m-by-n matriz of the form (3.2) for T an (3-
by-B real (complex-alternating) upper triangular Toeplitz matriz with § = min{m,n},
and P, := %e*%(la +iEy,) for a € {m,n}.

3. If M = K,,(u) and N = K, (p) with > 0, then' Y satisfies (3.3) if and only if Y =
QS () XS (1)ViQn, in which Qg := €T (Py ® P.), Vi := €5 (W, ® W)
with W, := @?‘;Olij for o€ {m,n}, and

X Xo
o, ] o

where X1, Xo are m-by-n matrices of the form (3.2) for an B-by-8 upper triangular
Toeplitz T with = min{m,n}, and S (n) := |:Jl‘1(77;"70)ﬁ(y(17) Uao(n)} with Uy(n) as any
solution of Uy (n)Ja(—0?) = (Ja(in))?Ua(n) for a € {m,n}.

4. If M = L, (&) and N = L, (&) with Im(¢) > 0 and €2 nonreal, then Y satisfies
(3.3) if and only if Y = RV XR,, in which X = X, ® X, and X; is an m-by-n
matriz of the form (3.2) for T an B-by-B complex upper triangular Toeplitz matriz
with 8 = min{m,n}, and Ry := P, ® P, for a € {m,n}.

The proof of the lemma relies very much on the ideas in [2].

Proof of Lemma 3.2. The following is a part of Hong’s construction of the canonical
form under consimilarity [9, p. 9-10]:

_ — _ . — _ 0 J.(6)]5s
Ho(N) = Pe JaWPas Kalp) = Qa' [ 5 6" [@ar Lal) = B2, 5 ™37 | R

in which A >0, >0, £2 € C\ R, and P,, Qq, R, are as defined in the lemma.

The equation H,,(\)Y = Y H,(k) for \,k > 0 transforms to J,,(\)X = XJ,()\)
with X = P,,Y P, 1. By setting X = U + iV with real m-by-n matrices U, V, we get
I MU = UJ, (k) and —J,,, (A)V = VJ,, (k). The first equation for A # x implies U = 0,
while for A = k we get U upper triangular Toeplitz (see Theorem 3.1). We write the
second equation as Jp,(=A\)FV = FVJ,(k) with F = —-1®1® —1® ---. If either
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A# Kor A=k >0, then V=0. When A\ = k = 0, then F'V is real upper triangular
Toeplitz, hence X is complex-alternating upper triangular Toeplitz. This proves (1) for
M = H,,(\), N =H,(p) with A # v and (2).

If V,, and S, (u) are defined as (3), it is not difficult to check that

0 Ja(n) | _ -1 0 Jalin) |77
[*Ja(n) 0 } =Va [Ja(,i,,) 0 }Vm
-1 0 JuGin)]o _ 0 I
Sq (77)[]&(_1»,7) 077 }Sa(ﬁ) = |:Ja(77]2) 0 }
Thus K,,,(n)Y = YK, (v) for p,v > 0 transforms to
J;n(ﬂ)y = XJT/I(V)’ X = S;ml(u)vamYQ;IVnilsn(V)v J&(/U') = [Jn(2n2) I(()l } .
Set X = [ ¥2]: X3 = Xodu(—12), Jn(—12) X1 = Xydu(—12), Jn(—42) X2 = Xs,

X, = X;. If u = v we get (3), while p # v gives (1) for M = K,,,(11), N = K,,(v).
We transform L,, (€)Y = Y L, (¢) for Im(¢),Im(¢) > 0 to

0 Jn(®) |57 _ 0 Jn(Q) -1 _ yv._[X1 X
[Jm@ 0 ]X_X{Jn(f) 0 ] RnY R, =X :=[3] %],

where X7, Xo, X3, X4 are m-by-n matrices. We have

)Xo, (3.5)
)

m(§) X3, X3J,(C) = Il

XoJn () = J
= Jn()X1, XuJn(C) = T

3
X171, (€) 3

>

1-

By combining the first and the last pair of equations we deduce X3(J,,(¢))* =
(Jm(§))° X5, Xa(Jn(€))? = (Jm(§))* X2 and X4(J5,(€))? = (Jm(§))*Xa, X1(Jn(())? =
(Jm(€))?X 1, respectively. Since Im(¢),Im(¢) > 0, the first two equations imply X3 =
Xo = 0, while the last two for £ # ¢ yield X; = X4 = 0 (thus (1) for M = L,,,(§),
N = L, (¢)). Subtracting the conjugation of the last equation from the third equation of
(3.5) for &€ = ¢ gives (X1 — X4)Jn(€) = =T (€)(X1 — X4). Hence F(X; — X4)J, (&) =
In(=OF(X1—X4), F=-1®13®—-1@---, thus we obtain X4 = X;. Using (3.5) then
yields that X; is complex upper triangular Toeplitz, which shows (4).

Similarly, K (1) = YLn(€) for u > 0, €2 € C \ R reduces to [42 " Jmo(“)}? -

Y{Jﬁg) J"O(f)} with QX Ry =Y := [¥1 ¥2] and Xy, Xp, X3, Xy of size m x n. Thus

X2Jn(g)

= Jm(ﬂ)y?n X3Jn(§) = me(,u)Yg,
X1Jn(§) = J

(1) X2, Xadn(€) = =T ()X 1.

By combining these equations we get X3(J, (€))% = —(Jm(1))?X3 and X 4(J,(€))? =
—(Jm(p))?X 4, which implies X; = Xo = X3 = X4 = 0, hence X = 0.
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Next, H,,(\)Y = YK, (x) for A > 0, u > 0 reduces to J,,(\)X = X[ 0

Y
where P,YQ,! = X :
2 =

Jn(u)}
—Ja(p) 0 ]

= [ X1 X2| with m-by-n matrices X1, Xa. We get J,,(A\)X; =
— Xadu(1)s I X2 = Xi (i), thus (Jn(N)2X1 = —Jon(N) Koo (1) = — X1 (i)
It yields S71J,,(\2)SX, = =X T~ FJ,(—p?)F~1T and for some nonsingular S, T and
F=-1%19-1®---. Since A> > 0 > —pu?, Theorem 3.1 implies SX, 7' F = 0 with
X1 =0 (hence Xo =0), and therefore X = 0.

Further, H,,(\)Y = YL,(£) yields J,(\)X = X{J - J"o(g)} with P, YR-1 —

X := [ X1 Xz] for some m-by-n matrices X1, X5. We obtain J,,,(\)X; = X5J,,(€) and
TN X2 = X1J,(€), therefore (J,,,(AN)2X1 = Jn(N)X2Jn(€) = X1 (Jn(€)2. Tf X >0
and &2 is nonreal, Theorem 3.1 yields X; = X5 = 0), thus X = 0.

Since H,,(\), K (1), L, (€) are Hermitian, by conjugating and transposing K, ()Y =
YHp(\), Ln(6)Y = YHpu(N), Lo(6)Y = YKn(n) we obtain YT K, (1) = Ha(NY ',
L,()YT = Hm()\)?T, YTL,.(&) = Kn(u)?T, respectively. These equations have al-
ready been solved with solution Y = 0. This concludes (1). O

Remark 3. The form of a solution of (3.3) for M = L,,(§), N = L, (§) with £2 € C\R in
0 Jm(ﬁ)]

[2] is not suited for our application in the proof of Theorem 2.7; the usage of [ @ 0

instead of {J (()52) I(’)"] in the proof of Lemma 3.2 is essential.

We proceed with a technical lemma based on the idea from the paper by Lin,
Mehrmann and Xu [16, Sec. 3.1] (see also [22, Sec. 2]). It enables us to transform a
block matrix with (complex-alternating) upper triangular Toeplitz blocks to a block
(complex-alternating) upper triangular Toeplitz matrix. Set

Qom = [61 €atl - €(m—1)atl €2 Cat2 - C(m—1)at2 --- Ca €20 - - Bam} ,  (3.6)
where eq,€es,...,€eqm is the standard orthonormal basis in C*™. Multiplication with
Qq,m from the right (with QF , from the left) puts the k-th, the (o + k)-th, ..., the

((m — 1)ae + k)-th column (row) together for all k € {1,...,a}. For example,

_(11 b1 a9 b2 as b3_ _al a2 as b1 bz bg_

0 a1|0 a2 0 a3 ayg a5 aglbsy bs bg

T 0 0j]0 0]0 O 0 0 O a1 a2 as
Q35 Qa3 =

“ las byalas bslag bg ) 0 0 Olayg as ag

0 Q4 0 as 0 Qg 00 0]0 OO

[0 0|0 0[0 O] (00 0|0 0 0]

Similarly, multiplication with the following matrix from the right puts the k-th, the
(2a + k)-th, ..., the ((2m — 1)a + k)-th column (row) together:

o
Qom = |€1 €2041 -+ €2(m—1)atl Catl €3a+1 -+ €(2m—1)atl €2 €2a+2 -+ €2(m—1)at2
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€a+2 €342 . .- e(2m—1)a+2 ...... €qn €3¢ - - - ea(zm_l) €2« €40 - - - ea(Qm)] .
(3.7)

It is then immediate:

Lemma 3.3. Suppose X = [X,],_; such that each block X, = [(Xrs)]; 704 is an

my-by-ms block matrixz with blocks of the same size, and let oy > ... > ay with b.g :=
{ap, as}. Also, set Q := erY:l Qa,m, and Q' = @ L

Qe y My

1. Assume that each X,s consists of blocks of size o, X as and such that

TS __ T8 TS
Trs T = T(ao,jk7a1,jk7" abm—mk)
(er>jk - 6k , Qp > Qg
TS __ T8 T8 s
" (or 1] —Tc(aoyjk,alyjk,...,abm_lyjk))
ik Qpr = Qg
J

forje{l,...om.}, ke {l,...,ms}, a7’; € C, and set A}® = [a;°, 701 Then

0 Trsl, ar < g

X = QTXQ, X = [XTSL]"\,IS=1’ = 7-65‘| or > 0g , (38)
Trs, o

with X5 of size a. X ag and Trs = T(AD®, ..., AZfs—l) (or Trs = T.(AF®, . .. 7Agfs—1))-
2. Let each X,s consist of four blocks of size a,. X ag, and such that:

,TTS TS
— k j ke :
(Xos)jk = lJ (;7)0” ?is ; je{l,...m.}, ke{l,...ms}, neC,
ar jk ' jk
[0T7 ], a < g [0572], ap <
T = Tel, ar>a o= Sk, ap > a
]k 0 ’ T s ]k 0 ’ T s
]Tlgv Qpr = Qg ;lfﬂ Qpr = Qg
TS __ T8 rSs rSs __ rs T8 TS
jk _T(UOJIC""7Ubrrv5—1,jk?)7 S]k} —T(wo’jk,...,wbrs_17jk), all Unjk:’ n,jk e C.
Set Wi := 0 and further V7 =[], [70 00, Wie o= [wp®, [0 with ATS =
Ve wre
I:nW'rs+WTs v } forn € {0,...,b.s —1}. Then

X = ()X

is of the form (3.8) with Trs = T(A, ..., Ay ).
Furthermore, if all W]° = 0, then there exists a permutation matriz Qo such that
QX0 =V &V with V of the form (3.8) for Trs = T(VJ*,...,V;y*_)).
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The following proposition describes the (nonsingular) solutions of (3.1).

Proposition 3.4.

1. Let p1,...,pn € C be all distinct and let H = @?:1 H;, in which H; is a direct sum
whose summands are either of the form (2.2) or (2.3), and such that they correspond
to the eigenvalue p; of HH. Then the solution of HY = YH is of the form Y =
P;_, Y; with Y; as a solution of H;Y ; = Y;H;.

2. Forp=(my,...,mn), = (aq,...,an) let T, T%* and T®* consist of matrices
as described in (2./), and let H = HE be as in Theorem 2.3 for all e, ; =1 (HH has
precisely one eigenvalue p). The nonsingular solutions of HY = YH form a group
conjugate to T *H eT™" for p € C\R, conjugate to T&H for p =0, conjugate to the
subgroup of all real matrices in T** for p > 0, and conjugate to the subgroup of all
matrices in T2 of the form (2.]) with (2.5) for p < 0.

Proof. Suppose H = P; M; with all M; either of the form (2.2) or of the form (2.3).
The equation HY = YH is then equivalent to a system of equations:

Mijk :Y}kMk, j,k‘: 1,2,..., Y = [Y}k]j,k’ (39)

in which Y is partitioned conformally to H. Lemma 3.2 (1) implies (1).
Next, let all M;M; have the same eigenvalue p. In view of Lemma 3.2 there exist
nonsingular matrices U, so that any solution Y of (3.9) is of the form

Y=U'XU (Y =U;'XuU"); X=Xl U= &,U;

where all X, are of the form (3.2) with real (complex-alternating) upper triangular
Toeplitz T for p > 0 (for p = 0), or of the form (3.4) with upper triangular Toeplitz X,
X2 (and X5 =0) for p <0 (for p € C \ R). Lemma 3.3 gives (2). O

We observe the group structures of T*#, T&#. The claim for T*# coincides with
[22, Lemma 2.2] and its proof is based on ideas from [18, Example 6.49] describing upper

unitriangular matrices; it works mutatis mutandis for TS #.

Lemma 3.5. Let T** and TS consist of matrices defined in (2.4). Then T** =D x U
and T&H =D, x U, are semidirect products of subgroups, where D C T*# D, C TS
contain nonsingular block diagonal matrices, and U C T*#, U, C T* are normal sub-
groups consisting of upper (complex-alternating) unitriangular Toeplitz diagonal blocks.
Moreover, U and U, are unipotent of order < a; — 1.
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4. Certain block matrix equation

Let a1 > ag > ... > ay and suppose that we are given nonsingular matrices

N N N
B=EPT1(B;.B},....B, 1), C=EPT(C;.Cy,....CL. 1), F=@DEa,(In,),
r=1 r=1 r=1
(4.1)
0 Inm
with symmetric B}, C;, € C™*™ and Eg(l,,) := { } is an S-by-3 block matrix
Im O
with I,,, on the anti-diagonal and zero matrices otherwise. We find all X in T*# or TS#
for a = (aq,...,an), p = (m1,...,my) (see (2.4)) that solve
C=FXTFBx; (4.2)

this is essential to prove Theorem 2.3 and Theorem 2.7. The observation
(FXTFBX)" = XTB"FXF = FFXTF(FB' F)XF = F(FXTFBX)F

shows that for r # s we have (FXTFBX),s = 0 if and only if (FXTFBX),. = 0.
When comparing the left-hand side with the right-hand side of (4.2) blockwise, it thus
suffices to observe the upper triangular parts of FXT FBX and C. Since (FXTFBX),,
and C,s are rectangular upper triangular Toeplitz of the same form, it is enough to
compare their first rows. By simplifying the notation with ) := BX and X = FXTF,
we obtain the entry in the j-th column and in the first row of (FXTFBX),, = (!\?y)m
by multiplying the first rows of blocks X1, .. .,QEN with the j-th columns of blocks
Visy ..., Vns, respectively, and then adding them. Hence (4.2) reduces to:

Crrip)s :(XTT)(l)(yr('r‘-‘rp) Z Xok) (1) ( yk(r+p))( 7 (4.3)
k=r+1
r—1 N
+ Z(er:)(l) (yk(rer))(j)? 1 S] S Apr4p, 0 S p S N —r.
k=1

It turns out to be important to consider the equations (4.3) in an appropriate order. The
following lemmas provide this computation in detail.

Lemma 4.1. Let B,C as in (4.1) be given. Then the dimension of the space of solutions of
(4.2) that are of the form X = [X,.s|N._, (partitioned conformally to B,C) with

0 Trsl, ar < as
(1 > a9 >...>an),

X,.s = lﬁ‘g] , Q> ,  beg:=min{ag, o, }, (4.4)

0
Too = T(AFS,..., AT ), ATs € Cmrxms
7;‘87 Oy = Qg
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18 Z _ my (T

+3 asms) and each solution satisfies the following properties:

(a) Each A} is a solution of the equation C§ = (A")T BSAY . If N > 2 the matrices
AL for j€{0,...,a, =1}, mys € {1,..., N} with v > s can be taken freely.

(b) Assuming (a) and choosing matrices Z] = —Z7 € C™ ™ for r € {1,...,N},
je{l,. — 1} freely, the remaining entries of X are computed as follows:
‘I’km = Zz 0 ?OZ(AIW)TBS i— ZAZCS
TS . n n—1 T s n—1 T s
Whrs = YO S (AR TBE | AFs 4+ ST (AF)TBE Af
for j=0:a;—1 do
ifre{l,...,N}, je{l,...,0, — 1} then
Tr Tr Tr T T rrr r—1 rr N rr
Aj - %AO 7;"40 (CO) (Z +\I] +Z \II;C apta, +Zk:r+1 \Ilé" a,Jrak)

end if
forp:l:N—l do
ifre{l,....N}, j<app—1,7+p <N then
A;(rﬂo) AT(HP)(CT) 1((ATT)TBT r(r+p)+\1ﬂr(r+p)+zr I‘Pfr(iffl
+EZ“;+1 kr(r+p) +Zk — ,1,;?:(;:1;)+ak)
end if
end for
end for
For simplicity, we define Z?:l a;j =0 if L > n, and it is understood that the inner
loop (i.e. for p =1: N-1) is not performed for N = 1.
(c) (i) If B,C are real, then X is real if and only if the following statements hold
o Matrices By and C{ in (4.1) have the same inertia for all v € {1,...,N}.
o All matrices Ay, matrices A%* withr > s, j € {0,...,a, — 1}, and Z] for
je{l,...,a, — 1} in (a) and (b) are chosen to be real.
(i) For anyr € {1,...,N}, n € {1,...,b.s — 1} assume in (4.1) that m, = 2m,,
and

B:L = U:LKT + U:;_lLT, K, := _M2Im,’,, D Im,/,,a L, := Im;, @0, u>0,
(4.5)
Cy=v, K, +v, 1Ly, ug,vo,..., U, —1,,,-1€R, ug,v9 #0,

U_1 =01 = 0.

Then there are V]'*,W* € CmeXmy for j € {0,...,bys — 1} and such that
VTS WTS VT‘S W’V’S
ASS - |:_M20W65 Vgsi|, Are = |: —u W SAWre e V :|7 ne {17"'7b7‘871}7

(4.6)

precisely when Ag®, Z7 in (a), (b) are of the form [—EW VVV}, V,W € Cmrxmy,
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Lemma 4.1 (a), (b), (c) (i) coincides with [22, Lemma 3.1]; we apologize for minor
errors in formulas providing A7" and A;(Hp ) in [22, Lemma 3.1 (b)]. Thus we only prove
(¢) (ii), in which solutions are of a special form, which makes the analysis considerably
more involved.

Lemma 4.2. Let B, C as in (4.1) and real be given. Then the solution of (4.2) that is of
the form X = (X, N, (partitioned conformally to B,C) with

[0 7:"3]’ ar < Qg
(a1 > Qg >...>CYN),

X,s = [TTS] , Qp>as ,  bes = min{ag,q,} (4.7)
I AR A A
exists if and only if the following condition holds:
Bj and C{ have the same inertia for all v € {1,..., N} such that a, is even. (4.8)

If (4.8) is fulfilled, then the real dimension of the space of solutions is

N r—1

2 Q- ar+1
E (armr +2 E asmrms) — E Smy — E My
r=1 s=1 o, even o, odd

Furthermore, such solutions satisfy the following properties:

(a) Each AL" w