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Abstract. We have developed a 2-D numerical meshless adaptive approach for phase-
field modelling of dendritic solidification. The quadtree-based approach decomposes the
computational domain into quadtree sub-domains of different sizes. The algorithm generates
uniformly-distributed computational nodes in each quadtree sub-domain. We apply the meshless
radial basis function generated finite difference method and the forward Euler scheme to
discretise governing equations in each computational node. The fixed ratio between the
characteristic size and the node spacing of a quadtree sub-domain ensures space adaptivity.
The adaptive time-stepping accelerates the calculations further. In the framework of previous
research studies, we used the approach to solve quantitative phase-field models for single dendrite
growth in pure melts and dilute binary alloys. In the present study, we upgrade the solution
procedure for the modelling growth of multiple differently oriented dendrites. Along with the
space-time adaptive approach, we apply non-linear preconditioning of the phase-field equation
to increase computational efficiency. We investigate a novel numerical approach’s accuracy and
computational efficiency by simulating the equiaxed dendrite growth from a dilute binary alloy.

1. Introduction
Numerical modelling of dendritic solidification represents an important task for predicting the
microstructure evolution of many metals at different casting conditions [1,2]. The microstructure
evolution is closely linked to the material properties of the solidified material. The numerical
models are, therefore, crucial for the design and production of high-quality castings. In the
present study, we employ the phase-field (PF) method for modelling dendritic solidification.
The PF method [3, 4] represents a powerful tool for solving many free boundary problems in
material science and engineering [5].

In the previous studies, we consider PF models for simulating single dendrite growth in pure
melts and dilute binary alloys [6,7]. In this paper, we extend the test case for the single dendrite
solidification of dilute binary alloys [8] to polycrystalline solidification. There are two main PF
approaches for modelling this situation, which is important for the practice. The first approach
is the multi-PF model [9–11], where each of the grains is represented by its own PF. This
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approach provides a detailed framework for analysing grain boundary evolution. However, multi-
PF simulations experience significant memory usage and long computational times. The second
approach is the orientation field method [12–15]. This approach complements the PF model
with information on the grain orientation. As a result, the related orientation field method is
computationally much less demanding and can be used for PF modelling of many simultaneously
growing dendrites [16]. The latter approach, however, experiences a limitation, i.e., the standard
governing equation for the orientation field is incorrect in coherent polycrystalline matter [17]. In
this paper, we consider early-stage equiaxed solidification of dilute binary alloys. In this case, the
orientation field method does not experience the mentioned limitation [17]. Our primary focus is
the solidification of multiple differently-oriented dendrites before the impingement. Therefore,
we do not have to account for the physics of grain boundaries. For this purpose, the front-
tracking (FT) algorithm [18] represents a very suitable and computationally efficient algorithm
for tracking the preferential growth direction of each dendrite. Additionally, we employ the
non-linear preconditioning of the PF equation to increase computational efficiency [19–21].

Researchers developed many different computational approaches for the PF modelling of
dendritic growth in the last 20 years, e.g., adaptive mesh refinement [22], parallel simulations
using graphic processing units [23], implicit time-stepping and multi-grid approaches [24], etc.
In this paper, we employ the space-time adaptive algorithm to accelerate the meshless PF
modelling of dendritic solidification [7]. Meshless methods represent a fast-growing family of
numerical methods that do not rely on the division in space in elements like finite element or finite
volume methods. The representatives of this family are the element-free Galerkin method [25],
the smoothed particle hydrodynamics method [26], the meshless-collocation method [27], etc. In
the present study, we employ the local radial basis function collocation method (LRBFCM) [28],
also known as the radial basis function generated finite difference (RBF-FD) method [29].
The meshless RBF-FD method is especially suitable for orientation-insensitive PF modelling
of dendritic solidification in arbitrary preferential growth directions [6].

2. Governing equations
We consider the isothermal solidification of a dilute supersaturated binary alloy in the 2-D
computational domain Ω with the boundary Γ. A simplified case is studied where the solute
diffusivity in the liquid phase D`, the chemical capillary length dc, and the partition coefficient
k0 are constant. The solute diffusion in the solid phase is neglected. We define supersaturation
U as

U =
C` − Ce`

(1− k0)Ce`
, (1)

where C` and Ce` stand for the solute concentration in the liquid phase and the equilibrium
solute concentration in the liquid phase, defined from the phase diagram, respectively. We use
the dimensionless PF model [8], where the spatial and temporal coordinates are measured in
units of the PF interface thickness and the PF characteristic attachment time, respectively. The
PF interface thickness is defined as

W0 = dc
1

α1
λ, (2)

where α1 stands for a constant and λ for the free parameter of the PF model. The PF
characteristic attachment time is given as

τ0 =
d2
c

D`

α2

α2
1

λ3, (3)

where α2 stands for a constant of the PF model. The PF constants are equal to α1 = 0.8839
and α2 = 0.6267 [30]. The selection of free parameter λ has to yield W0 much smaller than the
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diffusion length of solidification to ensure a valid PF model. The PF model [8] constrains the
PF φ in the interval −1 ≤ φ ≤ 1, where φ = 1 and φ = −1 denote solid and liquid phases,
respectively. We use the preconditioned PF variable ψ, defined as [19]

ψ =
√

2 tanh−1(φ), (4)

to increase numerical stability for larger node spacings.

2.1. Equations for ψ and U
The governing equation for ψ reads [20]

a2(n)
∂ψ

∂t
=
√

2 (φ− λ(1− φ)U) + 2a(n)∇a(n) · ∇ψ

−
√

2φ∇ψ · a(n) +∇ · a(n) + a2(n)
(
∇2ψ −

√
2φ|∇ψ|2

)
,

(5)

where a(n) and a(n) stand for the anisotropy function and vector, respectively. They depend
on the solid-liquid interface normal

n = − ∇ψ
|∇ψ|

, (6)

and are defined in the following subsection. The governing equation for U reads as

1

2
(1 + k0 − (1− k0)φ)

∂U

∂t
= D

1− φ
2
∇2U −D1− φ2

2
√

2
∇U · ∇ψ

− 1

2
√

2
((1 + (1− k0)U)∇G · n +G(1− k0)∇U · n)

− G

2

[
1 + (1− k0)U

(
1− ∇ · n√

2

)]
,

(7)

where D = D`τ0/W
2
0 is the dimensionless solute diffusivity in the liquid phase, and the scalar

G is defined as

G =
1− φ2

√
2

∂ψ

∂t
. (8)

2.2. Anisotropy of the surface energy
Let’s denote the anisotropy function and vector in a dendrite’s coordinate system as ã(m) and
ã(m), where m = (mx,my) represents the normal to the interface in a dendrite’s coordinate
system. We employ the cubic anisotropy function

ã(m) = 1− 3ε4 + 4ε4
(
m4
x +m4

y

)
, (9)

where ε4 stands for the anisotropy strength of the interface energy. Function ã(m) yields
anisotropy vector [20]

ã(m) = 16ε4|∇ψ|ã(m)
[
mx(m4

x +m4
y −m2

x),my(m
4
x +m4

y −m2
y)
]
. (10)

Function a(n) from equation (5) is obtained with the following relation

a(n) = ã(RTn), R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (11)

where R is the rotation matrix and θ stands for the preferential growth direction angle. We
employ the following relation to obtain a(n) from equation (5)

a(n) = Rã(RTn). (12)
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3. Solution procedure
3.1. Solution of governing equations for ψ and U
We solve the governing equations for ψ and U by our previously developed space-time adaptive
approach [7]. It is based on dynamic quadtree domain decomposition, as seen in figure 1. Regular
or scattered node distribution with fixed node spacing is generated in each quadtree sub-domain;
in the present study, we employ regular node distribution. The constant ratio mΩ between a
quadtree sub-domain’s side length and node spacing ensures space adaptivity, as seen on the
left in figure 1. The free parameters of the space-time adaptive approach are the minimum
spacing h, the ratio mΩ, the maximum number of different node spacings nh, the maximum
number of different time steps n∆t, and the overlapping parameter noverlap [7]. In this paper,
we set noverlap = 1 and n∆t = 2; such configuration yields good accuracy and computational
efficiency [7]. In subsection 4.1, we analyse the influence of minimum spacing h on the accuracy.

Figure 1. A scheme of space-time adaptive meshless solution procedure. The quadtree-based
approach ensures a high density of computational nodes and fine time-stepping at and near the
solid-liquid interface. The solution procedure employs the meshless RBF-FD method for spatial
discretisation of equations for ψ and U in each quadtree sub-domain.

We apply the forward Euler scheme and the meshless RBF-FD method to discretise the
governing equations for ψ and U in the computational nodes from a quadtree sub-domain. We
calculate the minimum stable time step in the forward Euler scheme as

∆t = α∆t
1

4

h2

max (D, 1/(1− ε4))
, (13)

where α∆t stands for the time step stability parameter. Value α∆t = 0.2 yields sufficiently small
time steps for solving the considered PF model, i.e., further refinement of α∆t has a negligible
effect on accuracy. We employ adaptive time-stepping to increase computational efficiency. The
stable time step depends on node spacing; hence, larger time steps can be used in quadtree
sub-domains with larger node spacing, as seen in figure 1. We employ fifth-degree polyharmonic
splines as radial basis functions, second-order augmentation with monomials, and thirteen nodes
in a local support domain in the meshless RBF-FD method. We have previously shown that
such a configuration is very suitable out of many tested configurations for the PF modelling of
dendritic growth [6, 7].
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A PF model can be accurately resolved using larger node spacings when employing
preconditioning [19–21]. However, when we use space adaptivity, the preconditioning yields
stability issues far from the solid-liquid interface, where very large node spacings can not resolve
the model. Solving a non-preconditioned PF model by space adaptive algorithm does not
experience this problem since the PF is a constant far away from the solid-liquid interface.
We tackle this problem by applying the following restriction [16]

ψ =


ψc ψ > ψc

−ψc ψ < −ψc
ψ −ψc ≤ ψ ≤ ψc

, (14)

where ψc is the numerical cut-off parameter. The adaptive algorithm ensures the minimum
node spacing h where |ψ| < ψc − 1.0. Regions where |ψ| > ψc − 0.5 can be de-refined. Care is
taken to keep the quadtree balanced in the refinement/de-refinement procedure. Details of the
space-time adaptive algorithm can be found in [7]. In subsection 4.1, we analyse the influence
of parameter ψc on the accuracy.

3.2. Front-tracking of the grain orientation
We use the FT algorithm [18] to track the preferential growth direction angle of each dendrite in
Ω. Along with ψ(r) and U(r), we also define position-dependent orientation field θ(r), which is
used for calculating a(n) and a(n) in equations (11) and (12). When we consider single dendrite
growth or multiple dendrite growth with the same preferential growth direction θ0, θ(r) = θ0

throughout simulation.
Suppose a particle with a radius r0, centre r0, and orientation angle θ0 ∈ (0, π/2] nucleates

in Ω. The initial condition for ψ reads as

ψ(r, t = 0) = r0 − |r − r0|. (15)

We define the initial condition for θ as

θ(r, t = 0) =

{
θ0

∣∣r0 − |r − r0|
∣∣ ≤ ψFT

0
∣∣r0 − |r − r0|

∣∣ > ψFT
, (16)

where ψFT is the FT thickness of the boundary layer around the solid-liquid interface. Value
θ = 0 represents the bulk of the solid or liquid phase, while values θ > 0 represent the FT
boundary layer surrounding the solid-liquid interface.

As ψ evolves, the FT algorithm applies in a computational node ri ∈ Ω to track the orientation
of a growing dendrite. Suppose {rj}ri is a set of nodes nearest to ri. The FT algorithm sets
the orientation field as

θ(ri, t) =


0 |ψ(ri, t)| > ψFT

θ(ri, t) θ(ri, t) > 0

θ(rj , t) θ(ri, t) = 0

, (17)

where θ(rj , t) > 0 and |ψ(rj , t)| ≤ ψFT for rj ∈ {rj}ri . The algorithm performs a loop over a set
of nearest nodes {rj}ri when checking the last condition from equation (17). When conditions
θ(rj , t) > 0 and |ψ(rj , t)| ≤ ψFT are fulfilled for rj ∈ {rj}ri , the algorithm sets θ(ri, t) = θ(rj , t),
exits the loop over rj ∈ {rj}ri , and moves to the next computational node ri ∈ Ω. In subsection
4.1, we analyse the influence of parameter ψFT to the accuracy.
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4. Results
We verify the present numerical model by solving the test case for a single dendrite growth [8].
The influence of the free parameters on the accuracy of modelling growth in arbitrary growth
directions is investigated. Next, we extend the test case for a single dendrite growth [8] to the
solidification of multiple randomly-oriented dendrites.

4.1. Verification of the numerical model
The test case [8] considers the growth of a single dendrite from a supersaturated dilute binary
alloy in a square computational domain Ω = [−L/2, L/2] × [−L/2, L/2], where L stands for
the size of the computational domain. We set the initial condition for ψ according to equation
(15). The initial condition for U reads as U(r, t = 0) = −∆, where ∆ stands for the initial
supersaturation. Zero flux Neumann boundary conditions are applied for ψ and U

∇ψ
∣∣∣
Γ
· nΓ = 0, ∇U

∣∣∣
Γ
· nΓ = 0, (18)

where nΓ is the outward-facing normal to Γ. Table 1 contains the simulation parameters used
in verification of our numerical model.

Table 1. Simulation parameters for verifying the numerical model.

Computational domain
Size of domain (L) 537.6

Physical problem
Strength of anisotropy (ε4) 0.02
Initial supersaturation (∆) 0.55
Center of nucleus (r0) (0, 0)
Radius of nucleus (r0) 22α1α2/2
Partition coefficient (k0) 0.15

PF model
Constant (α1) 0.8839
Constant (α2) 0.6267
Coupling parameter (λ) 2/α2

Dimensionless solute diffusivity (D) 2

We analyse first the influence of the minimum node spacing h on the accuracy. In this
analysis, the orientation field is constant in the whole Ω, i.e., we turn off the FT algorithm and
set θ(r) = θ0. The reason for the turned-off FT algorithm is to analyse only the influence of
spacing h on the accuracy. We test the performance for the minimum node spacings h = 0.4,
h = 0.8, h = 1.2, and h = 1.4. The following sets of free parameters are used (nh = 6,mΩ = 21),
(nh = 5,mΩ = 21), (nh = 5,mΩ = 14), and (nh = 5,mΩ = 12) for h = 0.4, h = 0.8, h = 1.2,
and h = 1.4, respectively. We set the numerical cut-off parameter to ψc = 12. Figure 2 shows
the dendrite growth velocity as a function of time at θ0 = 0 for h = 0.4. The figure also shows
Karma’s reference solution [8], obtained using the finite-difference method with the node spacing
h = 0.4 and the forward Euler scheme with the time step ∆t = 0.008. We can see that our
velocity agrees well with the reference solution. Figure 3 shows the steady-state dendrite growth
velocity as a function angle θ0 for four node spacings h. The steady-state velocity for h = 0.4
and h = 0.8 is approximately 1.9 % above the reference solution and almost independent of θ0,
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while h = 1.2 and h = 1.4 yield θ0-dependent results. There are three main reasons for minor
discrepancy with the reference solution at h = 0.4 and h = 0.8. First, contrary to [8], we employ
preconditioned PF model. Second, we use different numerical methods to solve the PF model.
And third, our algorithm for calculating growth velocity is probably not the same as in [8]. The
steady-state velocity for h = 1.2 is closer to the reference solution. The difference between the
maximum and the minimum velocity at h = 1.2 is approximately 1.6 %. Nevertheless, we believe
that h = 1.2 ensures high enough accuracy and is used for calculations in the rest of the paper.
The value h = 1.4 is unsuitable for calculating this test case.

Figure 2. Dendrite growth velocity as a
function of time.

Figure 3. Steady-state dendrite growth
velocity as a function of preferential growth
direction angle θ0 at four values of the node
spacing h.

We next analyse the influence of the numerical cut-off parameter ψc on the accuracy. The
FT algorithm is still turned off in this analysis. The reason for the turned-off FT algorithm
is to analyse only the influence of parameter ψc on the accuracy. Figure 4 shows the steady-
state dendrite growth velocity as a function angle θ0 for five parameters ψc. Too small values
of ψc significantly decrease the accuracy. The accuracy is no longer increased for ψc ≥ 12.
Therefore, we employ ψc = 12 for calculations in the rest of the paper. Finally, we turn on
the FT algorithm and analyse the influence of the FT interface thickness ψFT to the accuracy.
We set the initial condition for θ according to equation (16). Figure 5 shows the steady-state
dendrite growth velocity as a function angle θ0 for four parameters ψFT . As for parameter ψc,
too small values of ψFT significantly decrease the accuracy. The accuracy is no longer increased
for ψFT ≥ 5 Therefore, we employ ψFT = 5 for calculations in the rest of the paper. To
conclude, parameters h = 1.2, ψc = 12, and ψFT = 5 represent a good compromise between
the accuracy and computational efficiency for the PF modelling of dendritic growth in arbitrary
growth directions. We use this selection of parameters to simulate polycrystalline solidification
in the following subsection.

4.2. Polycrystalline solidification
In this subsection, we extend the test case from the previous subsection to the growth of
multiple randomly-oriented dendrites. We use the simulation parameters from table 1 with
two differences. First, the size of Ω is set to L = 1075.2. And second, we have multiple centres
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Figure 4. Steady-state dendrite growth
velocity as a function of preferential growth
direction angle θ0 at five values of the cut-off
parameter ψc.

Figure 5. Steady-state dendrite growth
velocity as a function of preferential growth
direction angle θ0 at four values of the
orientation parameter ψFT .

of nuclei since we consider polycrystalline solidification. We use the same boundary condition for
ψ and U as in the previous subsection. The initial condition for U is also the same. However,
the initial conditions for ψ and θ have to be modified to describe the nucleation of multiple
dendrites.

Nuclei are quasi-randomly positioned in Ω. For instance, if the number of nuclei is 4, we first
divide a square Ω into 4 square sub-domains Ω̃ of equal size. Suppose r̃Ω is the centre of Ω̃. The
quasi-random position of the nucleus r0 ∈ Ω̃ is set as

r0 = r̃Ω + 0.2L̃(Rx,Ry), (19)

where L̃ is the side length of Ω̃ while Rx ∈ [−1, 1] and Ry ∈ [−1, 1] represent random numbers.
The random orientation angle is similarly set as θ0 = π/2Rθ, where Rθ ∈ (0, 1] is a random
number. After we determine the sets of positions {r0} and corresponding orientations {θ0}, we
use the following equation for the initial condition for ψ

ψ(r, t = 0) = max
r′
0∈{r0}

(r0 − |r − r′0|). (20)

The initial condition for θ is set as θ(r, t = 0) = θ′0 if |r0 − |r − r′0|| ≤ ψFT where r′0 and θ′0
belong to the same nucleus. This condition is checked for all r′0 ∈ {r0} and θ′0 ∈ {θ0}. The
initial condition for θ is set as θ(r, t = 0) = 0 if |r0 − |r − r′0|| > ψFT for all r′0 ∈ {r0}.

Figure 6 shows rescaled concentration field C/Ce` in Ω in the case of four (top row), nine
(middle row), and sixteen (bottom row) randomly oriented and quasi-randomly-positioned
growing dendrites. In the first stage of solidification, dendrites freely grow into the melt.
Their growth is constrained after they approach neighbouring dendrites. In the final stage,
the dendrites become coarser and coarser. Naturally, the average dendrite’s size and primary
trunk thickness decrease as the number of nuclei increases.
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Figure 6. Rescaled concentration field C/Ce` in computational domain Ω = [−537.6, 537.6] ×
[−537.6, 537.6] in the case of four (top row), nine (middle row), and sixteen (bottom row)
randomly oriented and quasi-randomly-positioned growing dendrites. The field is plotted at
t = 1000 (left column), t = 2000 (middle column), and t = 3000 (right column).

5. Conclusions
This paper demonstrates the use of meshless-based space-time adaptive numerical approach
for the PF modelling of polycrystalline early-stage isothermal solidification of supersaturated
dilute binary alloys. The approach, developed initially for modelling single dendrite growth,
is extended to model the growth of multiple differently-oriented dendrites. We analyse the
influence of the minimum node spacing h, the numerical cut-off parameter ψc, and the FT
interface thickness ψFT to the accuracy in the case of single dendrite growth at different
preferential growth directions. We show that the selection of parameters h = 1.2, ψc = 12,
and ψFT = 5 represents the best compromise between accuracy and computational efficiency.
We then simulate polycrystalline solidification in the case of four, nine, and sixteen randomly-
oriented nuclei and obtain expected results.

The present paper shows that our numerical approach is suitable for the PF modelling of
dendritic solidification. The approach can be easily extended to model the solidification of pure
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melts and multi-component alloys. In the case of dilute binary and multi-component alloys, the
model can be easily extended to simulate non-isothermal solidification in the frozen-temperature
approximation, i.e., when the temperature is considered as an input parameter. In the future,
the numerical approach will be extended to 3-D using an octree instead of a quadtree algorithm.
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