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An important facet of the inverse eigenvalue problem for 
graphs is to determine the minimum number of distinct 
eigenvalues of a particular graph. We resolve this question for 
the join of a connected graph with a path. We then focus on 
bordering a matrix and attempt to control the change in the 
number of distinct eigenvalues induced by this operation. By 
applying bordering techniques to the join of graphs, we obtain 
numerous results on the nature of the minimum number of 
distinct eigenvalues as vertices are joined to a fixed graph.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Given a simple graph G on |G| = n vertices, let S(G) denote the set of all n × n real 
symmetric matrices A =

(
aij

)
such that, for i �= j, aij �= 0 if and only if i and j are 

adjacent in G. There are no restrictions on the main diagonal entries of A. The inverse 
eigenvalue problem for G asks which possible multi-sets of eigenvalues (spectra) occur in 
the class S(G). This is a very difficult problem for most graphs (which generally remains 
open, except for some sporadic graphs, including, for example, paths, cycles, complete 
graphs and some basic families of trees). Considerable work on this important problem 
has occurred over the past several decades (see the recent book [12]). Our work generally 
pertains to multiplicity lists associated to the spectra of matrices in S(G).

Suppose A is an n × n real symmetric matrix and λ is an eigenvalue of A, that is 
λ ∈ σ(A), where σ(A) denotes the collection of eigenvalues (spectrum) of the matrix A. 
We let mA(λ) denote the multiplicity of λ in σ(A); if a scalar λ is not an eigenvalue of a 
matrix A then we define mA(λ) = 0. Perhaps one of the most important results on the 
eigenvalues of real symmetric matrices is Cauchy’s interlacing inequalities, from which it 
immediately follows that if A is an n ×n principal submatrix of an (n +1) × (n +1) real 
symmetric matrix B, then |mA(λ) −mB(λ)| ≤ 1 for any scalar λ. Another way to view 
the principal submatrix A of B is to consider that B was obtained from A by bordering 
A with one row and column, and since the spectrum is invariant under permutation 
similarity, we might as well assume that the new row and column added to A are the 
first row and column of B. More generally, given a symmetric n ×n matrix A and r ≥ 1, 
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an r-bordering of A is any symmetric (n + r) × (n + r) matrix B which contains A as 
a trailing principal n × n submatrix (that is, A lies in rows and columns indexed by 
{r + 1, r + 2, . . . , r + n} of B), and it follows that |mA(λ) −mB(λ)| ≤ r. For brevity, we 
will also let A[S] denote the principal submatrix of A lying in rows and columns indexed 
by S ⊆ {1, 2, . . . , n}.

We define the maximum multiplicity of a symmetric matrix A to be

M(A) = max{mA(λ) : λ ∈ σ(A)},

and the maximum multiplicity of a graph G is

M(G) = max{M(A) : A ∈ S(G)}.

Let m = (m1, . . . , mk) ∈ Nk
0 be a sequence of k nonnegative integers and q(m) =

|{i : mi > 0}|. We say m is an ordered multiplicity list for a symmetric matrix A, if 
A possesses q(m) distinct eigenvalues λ1 < λ2 < · · · < λq(m) and mA(λi) = mji for 
i = 1, 2, . . . , q(m), where 1 ≤ j1 < j2 < · · · < jq(m) ≤ k are the q(m) indices j with 
mj > 0. In this case we write m = m(A). For any matrix A, we write q(A) = k if A has 
k distinct eigenvalues. For a given graph G, we define

q(G) = min{q(A) : A ∈ S(G)}.

It is easy to observe that for any graph G we have q(G) ≥ � |G|
M(G)�. In this paper our goal 

is to investigate the behaviour of q(·) upon appending vertices to a fixed graph G. Here, 
when a vertex is appended, all possible edges between the existing vertices and the new 
vertex are inserted.

We let Kn (n ≥ 1), Pn (n ≥ 1), Cn (n ≥ 3) denote the complete graph, the path, and 
the cycle on n vertices. If G and H are two graphs, then the join of G and H, denoted 
by G ∨ H, is the graph obtained from the union of G and H by adding all edges with 
one endpoint in G and one endpoint in H. Hence, our goal in this paper is to investigate 
the behaviour of q(G ∨H) for various graphs G and H.

Given a graph G, let V (G) denote its vertex set. For v ∈ V (G), we define jdup(G, v)
to be the supergraph of G obtained from G by duplicating v, with an edge connecting v
to its duplicate. That is, V (jdup(G, v)) = V (G) ∪ {w}, where w /∈ V (G), and {v, w} ∈
E(jdup(G, v)), and w has the same neighbours as v in jdup(G, v). As observed in [2, 
Theorem 3] and [15, Lemma 2.9],

q(jdup(G, v)) ≤ q(G). (1)

Since Kn+1 ∨ H = jdup(Kn ∨ H, v) for any vertex v ∈ Kn, we see that q(Kn ∨ H) is 
monotone decreasing in n.

One of the first examples considered along these lines was the case of determining 
q(K1 ∨ Pn). In [5, Example 4.5] it was shown that q(K1 ∨ Pn) = �n+1� for n ≥ 2. 
2
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We note here that the lower bound on q(K1 ∨ Pn) follows from Cauchy’s interlacing 
inequalities since q(Pn) = n. Another important example is the star, or Sn = K1∨En−1, 
where Ek represents the empty graph on k vertices. It is straightforward to show that 
M(Sn) = n −2 and that q(Sn) = 3. We remark that the star has played a key role in the 
inverse eigenvalue problem for graphs (mostly in the case of trees), and in many ways was 
a critical tool used in [7] to establish a converse to Cauchy’s interlacing inequalities. This 
technique has been extended and adapted to broaden the scope of which spectra can be 
realized by a graph that contains a dominating vertex (see, for example, [3,14,16]).

Merging the concepts of bordering a particular matrix and joining a vertex to a given 
graph, we are interested in determining the minimum number of distinct eigenvalues of 
a graph joined by a sequence of vertices, and we develop techniques, based in part of 
the nature of ordered multiplicity lists and eigenvectors, to aid this computation. We 
begin, in Section 2, with the necessary background and present a general upper bound 
(Theorem 2.2) on q(G ∨H) for connected graphs G and H, which reduces to a simple 
exact formula in the case G = Pn. In Section 3 we investigate the borderings of a given 
symmetric matrix. Theorem 3.1 describes in detail how a 1-bordering can change the 
spectrum of a symmetric matrix, and in Proposition 3.5 we find a necessary and sufficient 
condition for the existence of an r-bordering of a symmetric matrix with a given value of 
q. In Section 4 we make several observations on the patterns of such bordered matrices, 
and we apply them to estimate q(Kn ∨ H) when H is either a hypercube or a cycle. 
Finally, in Section 5, we pay particular attention to some possible limitations of our 
methods (Corollary 5.2).

2. General graphs and paths

It is known that if G and H are two connected graphs and |G| = |H|, then q(G ∨H) = 2
(see [11, Theorem 5.2]). This result was extended in [16,17] where it was shown that 
q(G ∨H) = 2 if G and H are connected graphs with 

∣∣|G| − |H|
∣∣ ≤ 2. Moreover, for trees 

T1 and T2 we have q(T1 ∨T2) = 2 if and only if 
∣∣|T1| −|T2|

∣∣ ≤ 2, so in this case the result 
is sharp.

An important notion used in [16] is generic realizability. Recall that a matrix (vector) 
is said to be nowhere zero if none of its entries is zero. Suppose G is a graph with |G| = n

vertices and σ is a collection of realizable eigenvalues in S(G) (with multiplicities), i.e., 
σ = σ(A) for some A ∈ S(G). The collection σ is said to be generically realizable in 
S(G) if, for any finite set Y of nonzero vectors in Rn, there is an orthogonal matrix U
such that Uy is nowhere zero for all y ∈ Y, and UDUT ∈ S(G), where D is a diagonal 
matrix with eigenvalues equal to σ (see [16] for more details). Observe that if we form 
an n × |Y| matrix Y from the columns of Y then this property ensures that there is 
an orthogonal matrix U so that UDUT ∈ S(G) and UY is nowhere zero, whenever Y
has no zero column (that is, no column of Y is the zero vector in Rn). We will use the 
following result.
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Theorem 2.1. [16, Theorem 2.5] Suppose G is a connected graph. Then any σ with |G|
distinct elements is generically realizable in S(G).

Theorem 2.1 allows us to construct matrices in S(G ∨H) with some desired spectral 
properties, using matrices A ∈ S(G) and B ∈ S(H) with distinct eigenvalues. In partic-
ular, in the next result we explore this idea of constructing matrices in S(G ∨H) with 
bounded number of distinct eigenvalues.

Theorem 2.2. Suppose G and H are two connected graphs. If k is a positive integer and 
|G| ≤ |H| ≤ k|G| + k + 1, then

q(G ∨H) ≤ k + 1.

In particular, for any connected graphs G and H with max{|G|, |H|} �= 1 we have:

q(G ∨H) ≤
⌈

|G| + |H|
min{|G|, |H|} + 1

⌉
.

Proof. Suppose |G| = n, |H| = m and k is a positive integer with n ≤ m ≤ kn + k + 1. 
To prove the first claim, we will construct a matrix in S(G ∨H) with distinct eigenvalues 
contained in S := {λj}k+1

j=1 for any chosen set S of k + 1 distinct numbers. To this end, 
choose real numbers λ1 < · · · < λk+1, and integers ki with 1 ≤ ki ≤ k for i = 1, . . . , n, 
satisfying:

0 ≤ k′ := m−
n∑

i=1
ki ≤ k + 1.

Now select n sets of real numbers Mi := {μi,1, . . . , μi,ki
}, i = 1, . . . , n, where we assume

μi,1 < · · · < μi,ki
.

Furthermore, we assume that Mi strictly interlaces {λ1, . . . , λki+1}, that the numbers 
μi,j for j = 1, . . . , ki and i = 1, . . . , n are all distinct, and finally we demand that numbers 
ai :=

(∑ki+1
j=1 λj

)
−
(∑ki

j=1 μi,j

)
, i = 1, . . . , n, are all distinct. Writing diag(x1, . . . , xm)

for the diagonal matrix with main diagonal (x1, . . . , xm), we define

Λ := diag(λ1, . . . , λk′),

Di := diag(μi,1, . . . , μi,ki
), i = 1, . . . , n,

Da := diag(a1, . . . , an),

Dμ := D1 ⊕ · · · ⊕Dn.

By [10, Theorem 4.2] and our strict eigenvalue interlacing requirement, for i = 1, . . . , n
there exist matrices:
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Mi :=
(
ai bT

i
bi Di

)

with eigenvalues λ1, . . . , λki+1, where bi is a nowhere zero vector. Clearly, the distinct 
eigenvalues of M := M1⊕· · ·⊕Mn⊕Λ are contained in {λ1, . . . , λk+1}, and in particular, 
q(M) ≤ k + 1. The same is true for the matrix:

M ′ :=
(
Da BT 0
B Dμ 0
0 0 Λ

)
,

where B =
⊕n

i=1 bi, since M ′ is permutationally similar to M .
Observe that the n × n matrix Da and the m × m matrix Dμ ⊕ Λ are both diago-

nal matrices with distinct eigenvalues. By Theorem 2.1, their spectra are generically 
realizable for G and H, respectively. Since the m × n matrix Y :=

(
B
0

)
has no 

zero column, by generic realizability for H there is an orthogonal matrix V so that 
V (Dμ ⊕ Λ)V T ∈ S(H) and V Y is nowhere zero. Since (V Y )T = Y TV T is nowhere zero 
and so has no zero column, by generic realizability for G there is an orthogonal matrix 
U so that UDaU

T ∈ S(G) and UY TV T is nowhere zero. Now

(U ⊕ V )M ′(UT ⊕ V T ) =
(
UDaU

T UY TV T

V Y UT V (Dμ ⊕ Λ)V T

)
∈ S(G ∨H),

so q(G ∨H) ≤ k + 1 as required.
To see that the second claim follows from the first, observe that if max{|G|, |H|} > 1, 

then |G| + |H| > min{|G|, |H|} +1, so k :=
⌈

|G|+|H|
min{|G|,|H|}+1

⌉
−1 is a positive integer, and 

if |G| ≤ |H|, then |G| ≤ |H| ≤ k|G| + k + 1, so q(G ∨H) ≤ k + 1 =
⌈

|G|+|H|
min{|G|,|H|}+1

⌉
. By 

symmetry, the same holds if |H| ≤ |G|. �
We remark that the hypothesis |G| ≤ |H| ≤ k|G| + k + 1 in Theorem 2.2 cannot be 

relaxed in general, since if we take k = 1 and G and H are trees with |H| > k|G| +k+1 =
|G| + 2, then q(G ∨H) > 2 = k + 1 by [16, Example 3.5].

The upper bound of Theorem 2.2 is sharp when H is a path, as shown below.

Corollary 2.3. If m > 1 and G is a connected graph with |G| = n ≤ m, then

q(G ∨ Pm) =
⌈
n + m

n + 1

⌉
.

Proof. Let X be a matrix in S(G ∨ Pm). Since X has an m × m principal submatrix 
corresponding to Pm, this submatrix must have distinct eigenvalues. By eigenvalue in-
terlacing, the matrix X can have maximum eigenvalue multiplicity at most n +1. Hence

q(X) ≥
⌈
|G ∨ Pm|

⌉
≥

⌈
n + m

⌉
.

M(X) n + 1



110 A. Abiad et al. / Linear Algebra and its Applications 679 (2023) 104–126
The opposite inequality was established in Theorem 2.2. �
Remark 2.4. In the case G = Pn where 2 ≤ n ≤ m, the formula of Corollary 2.3 improves 
on the upper bound q(Pn ∨ Pm) ≤ �n+m

2 � which follows from [4, Corollary 49], since 
Pn ∨ Pm contains a Hamiltonian cycle.

We conclude this section with a theorem which resolves a question from [16, Remark 
3.13].

Corollary 2.5. If m, n ≥ 2, then

q(Kn ∨ Pm) =
⌈
n + m

n + 1

⌉
.

Proof. For n ≤ m, this is a special case of Corollary 2.3. For n ≥ m, note that �m+n
n+1 � = 2. 

We know from Theorem 5.2 in [11] that q(Kn ∨ Pn) = 2, and for n > m, it follows that 
q(Kn ∨ Pm) = 2 by applying the notion of join duplication (jdup) and the inequality 
presented in (1). �
3. Bordering

Recall from the introduction that an r-bordering of a symmetric n × n matrix A is 
any symmetric (n + r) × (n + r) matrix B which contains A as its n ×n trailing principal 
submatrix of B. Building upon the classical results derived from Cauchy’s interlacing 
inequalities that characterize all possible eigenvalues of a 1-bordering of A, we aim to 
understand the fewest number of distinct eigenvalues possible for an r-bordering of A.

First we have a look at 1-borderings, noting that any r-bordering of A can be obtained 
by repeated 1-bordering.

Theorem 3.1. Let A be an n × n symmetric matrix and A′ a 1-bordering of A. The 
following statements are equivalent:

1. N is the set of distinct eigenvalues λ of A′ that satisfy mA′(λ) = mA(λ) + 1, and 
R0 is the set of distinct eigenvalues λ of A that satisfy mA′(λ) = mA(λ) − 1.

2. A′ =
(

α bTUT
0

U0b A

)
where k := |R0|, U0 is an n × k matrix with UT

0 U0 = Ik, and 

UT
0 AU0 is a k×k diagonal matrix D0 with distinct eigenvalues equal to R0. Further, 

b ∈ Rk is a nowhere zero vector so that the matrix

B =
(
α bT

b D0

)

has eigenvalues N .
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If the above hold, then A′ is similar to a matrix of the form DN ⊕D1 for some diagonal 
matrix D1 via an orthogonal similarity using

W =
(

vT 0
U0V0 U1

)
, (2)

where V =
(

vT

V0

)
∈ R|N |×|N| is an orthogonal matrix that satisfies V TBV = DN , and 

U =
(
U0 U1

)
is an orthogonal matrix that satisfies UTAU = D0 ⊕D1.

Proof. (1 ⇒ 2) Let λ1, . . . , λq be the distinct eigenvalues of A with multiplicities mi :=
mA(λi), i = 1, . . . , q, and let U ′ be an orthogonal matrix that diagonalizes A, that 
is, U ′TAU ′ = ⊕q

j=1λjImj
. Then for some α ∈ R and a ∈ Rn, we have

A′
1 := (1 ⊕ U ′T )A′(1 ⊕ U ′) =

(
α aT

a ⊕q
j=1λjImj

)
.

Write aT =
(

aT
1 aT

2 · · · aT
q

)
, where ai ∈ Rmi . Choose orthogonal matrices 

Zi ∈ Rmi×mi that satisfy Ziai = bie1, where bi ∈ R and e1 denotes the basic unit 
vector in Rmi whose first element is equal to 1. Note that bi �= 0 if and only if 
λi ∈ R0 (see for example [18, Lemma 5.1] for the nontrivial implication). Applying 
the orthogonal similarity 1 ⊕ (⊕q

i=1Zi) to A′
1, followed by a permutation similarity 

1 ⊕ P , we see that A′ is orthogonally similar to B ⊕ D1, where D1 is a diagonal 
(n − k) × (n − k) matrix,

B =
(
α bT

b D0

)

and b ∈ Rk is a nowhere zero vector. In summary, U := U ′(⊕k
i=1Z

T
i )P satisfies 

UTAU = D0 ⊕D1 and (1 ⊕U)TA′(1 ⊕U) = B⊕D1. Writing U =
(
U0 U1

)
where 

U0 ∈ Rn×k and computing A′ = (1 ⊕ U)(B ⊕D1)(1 ⊕ UT ) gives the form for A′ as 
in item 2.

(2 ⇒ 1) Let A′ and U0 be as in item 2, and U1 ∈ Rn×(n−k) be such that U :=
(
U0 U1

)
is orthogonal and UTAU is a diagonal matrix D0 ⊕D1. From

(1 ⊕ UT )A′(1 ⊕ U) = B ⊕D1

we conclude that A′ has eigenvalues as stated in item 1.
To prove the final claim we note that:

W := (1 ⊕ U)(V ⊕ In−k) =
(

vT 0
U0V0 U1

)
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and WTA′W = (V T ⊕ I)(B ⊕D1)(V ⊕ I) = DN ⊕D1, as claimed. �
Theorem 3.1 provides a construction of a 1-bordering of a symmetric matrix, subject 

to quite general eigenvalue constraints. Our first application of this theorem produces a 
known result [13, Theorem 4.3.10]. We include it here mostly to establish notation that 
we will depend on in the rest of this section.

Corollary 3.2. Let A be an n × n symmetric matrix, R the set of distinct eigenvalues of 
A, and R0 ⊆ R. If N is any set of |R0| +1 distinct real numbers which strictly interlaces 
R0, then there is a 1-bordering A′ of A so that for λ ∈ R,

mA′(λ) =

⎧⎪⎪⎨
⎪⎪⎩
mA(λ) − 1 if λ ∈ R0,

mA(λ) + 1 if λ ∈ N ,

mA(λ) otherwise,

where mA′(λ) = 0 means that λ is not an eigenvalue of A′.

Proof. Let D0 be a diagonal matrix with distinct diagonal elements equal to the elements 
in R0. By [6], since N strictly interlaces R0, there exist a ∈ R and a (nowhere zero) 
vector b ∈ R|R0| so that the matrix

B =
(

a bT

b D0

)

has the set of eigenvalues equal to N . The result now follows from Theorem 3.1. �
Starting with the eigenvalues of A, we will reduce the number of distinct eigenvalues 

of an r-bordering of A by removing all eigenvalues from different intervals. Along these 
lines, we let mA(α, β) denote the sum of the multiplicities of all eigenvalues λ of A that 
are contained in the open interval (α, β), where α, β ∈ R ∪ {−∞, ∞} with α < β.

The following straightforward consequence of eigenvalue interlacing produces a lower 
bound on r for an r-bordering to have no eigenvalues in a given interval.

Lemma 3.3. If M is an r-bordering of a symmetric matrix A and α, β ∈ R ∪ {−∞, ∞}
with α < β, then

|mA(α, β) −mM (α, β)| ≤ r.

Proof. The eigenvalues of A and any 1-bordering of A must interlace by Cauchy’s in-
terlacing inequalities, which establishes the case r = 1. In general, M is obtained by r
successive 1-borderings of A, and the statement follows immediately. �
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Table 1
The list of possible values of p2 and the corresponding parameters inside the formula for C(m, t) for 
m = (1, 2, 5, 5, 3, 1) and t = 3. Note that in each case, we have p1 = 1 and p3 = 6, whereas p2 can vary. The 
list of multiplicities in each of the two gaps derived from each value of p2 and the corresponding maximum 
gap multiplicities are given. Taking the minimum of the final column, we obtain C(m, 3) = 7.

p2 gm(p1, p2) gm(p2, p3) maximum gap
multiplicity

1 0 m2 + m3 + m4 + m5 = 2 + 5 + 5 + 3 15
2 0 m3 + m4 + m5 = 5 + 5 + 3 13
3 m2 = 2 m4 + m5 = 5 + 3 8
4 m2 + m3 = 2 + 5 m5 = 3 7
5 m2 + m3 + m4 = 2 + 5 + 5 0 12
6 m2 + m3 + m4 + m5 = 2 + 5 + 5 + 3 0 15

Let m = (m1, . . . , mk) ∈ Nk
0 be an ordered multiplicity list of a symmetric matrix. 

For 2 ≤ t ≤ k, we define

C(m, t) = min
1=p1≤p2≤···≤pt=k

(
max

1≤i≤t−1
gm(pi, pi+1)

)
(3)

where

gm(pi, pi+1) :=
pi+1−1∑
j=pi+1

mj .

In colloquial terms, C(m, t) is the solution to the problem of minimizing the largest 
“gap multiplicity” gm of m, over the gaps given by the various choices of t “gap bound-
aries” 1 = p1 ≤ p2 ≤ · · · ≤ pt = k.

Example 3.4. To illustrate the preceding definition, we demonstrate how C(m, t) is com-
puted for the case when m = (1, 2, 5, 5, 3, 1) and t = 3, by listing the possible values of 
the gap multiplicities for the various choices of gap boundary p2 in Table 1. The mini-
mum of the maximum gap multiplicities is 7, so C(m, 3) = 7. One can also determine 
that C(m, 4) = 3, C(m, 5) = 2, and C(m, 2) = 15.

Note that q(m) ≤ t if and only if C(m, t) = 0. Indeed, if q(m) ≤ t, then we may 
assume that m ∈ Nk where k = q(m) ≤ t, and then choosing pi = min{i, k} in (3)
shows that C(m, t) = 0; conversely, if C(m, t) = 0 is attained for some particular 
1 = p1 ≤ p2 ≤ · · · ≤ pt = k, then mi = 0 for all i ∈ [k] \ {p1, . . . , pt}, hence q(m) ≤ t. 
Hence, we can view C(m, t) as a measure of how far the multiplicity list m is from having 
q(m) = t. This will be made more precise in the next proposition.

Proposition 3.5. Let A be a symmetric matrix with k ≥ 2 distinct eigenvalues and ordered 
multiplicity list m = (m1, . . . , mk) ∈ Nk, and let 2 ≤ t ≤ k. For r ∈ N0 the following 
statements are equivalent:
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1. there is an r-bordering M of A with q(M) ≤ t;
2. C(m, t) ≤ r.

Proof. Let λ1 < · · · < λk be the distinct eigenvalues of A, with mA(λi) = mi for 
i = 1, . . . , k.

(1 ⇒ 2) Suppose μ1 < · · · < μτ are the distinct eigenvalues of some r-bordering M
of A, where τ ≤ t. By eigenvalue interlacing, we have λj ∈ [μ1, μτ ] for every j. 
Hence, there is a unique i0 with λ1 ∈ [μi0 , μi0+1) = [ν1, ν2), where νi := μi0−1+i. For 
1 ≤ i ≤ τ − i0, define

pi := min{j : 1 ≤ j ≤ k, λj ∈ [νi, νi+1)}

and let pi := k for i > τ − i0. Then 1 = p1 ≤ p2 ≤ · · · ≤ pt = k. Moreover, if 
pi < j < pi+1, then λj ∈ (νi, νi+1), so

gm(pi, pi+1) =
∑

j:pi<j<pi+1

mA(λj) ≤ mA(νi, νi+1) ≤ r,

where the final inequality follows from Lemma 3.3, since mM (νi, νi+1) = 0. Hence,

C(m, t) ≤ max
1≤i≤t−1

gm(pi, pi+1) ≤ r,

as required.
(2 ⇒ 1) If C(m, t) = 0, then q(A) ≤ t and we can take r = 0. From now on we assume 

C(m, t) > 0. Since r ≥ C(m, t), there exist p1 = 1 < p2 < · · · < pt′ = k where t′ ≤ t

so that

mA(λpi
, λpi+1) = gm(pi, pi+1) ≤ r, 1 ≤ i < t′.

It suffices to find a 1-bordering M1 of A so that σ(M1) ⊆ [λ1, λk] and

mM1(λpi
, λpi+1) ≤ max{r − 1, 0}, 1 ≤ i < t′,

since we can then continue inductively to find A = M0, M1, . . . , Mr =: M , where 
M�+1 is a 1-bordering of M�, so that mMr

(λpi
, λpi+1) = 0 for 1 ≤ i < t′ and 

every eigenvalue of Mr is in [λ1, λk], hence Mr has only the t′ distinct eigenvalues 
{λp1 , . . . , λpt′}.
To show that such a matrix M1 exists, first enumerate the open intervals Li :=
(λpi

, λpi+1) which contain at least one eigenvalue of A as Li1 , . . . , Lis , where 1 ≤ i1 <

· · · < is < t′, and choose μj ∈ σ(A) ∩Lij for 1 ≤ j ≤ s. (The assumption C(m, t) > 0
guarantees that at least one such interval exists.) Let R0 = {μ1, . . . , μs}, and choose 
any set N ⊆ {λp1 , . . . , λpt′} of size s + 1 which strictly interlaces R0. The matrix 
constructed in Corollary 3.2 then has the desired properties. �
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Given an n × n symmetric matrix A with σ(A) = {λ(m1)
1 , . . . , λ(mk)

k }, 
∑k

i=1 mi = n, 
the general procedure to find an r-bordering matrix M of A with q(M) ≤ t is shown in 
Algorithm 3.1 below. Note that we may have some freedom in how we choose the sets 
R0 and N in each step. One possible choice is given in the proof of Proposition 3.5, and 
we show all possible choices for a particular case in Example 4.4.

Algorithm 3.1 Find an r-bordering matrix M of A with q(M) ≤ t.
1. Choose an integer t, 2 ≤ t ≤ q(A). Define M0 := A, r := C(m, t).
2. For � = 1, . . . , r, use Corollary 3.2 to construct an (n + �) × (n + �) matrix M� such that

C(m(M�), t) = C(m(M�−1), t) − 1.

Note that we may have some freedom in how we choose the sets R0 and N in each step.
3. The resulting (n + r) × (n + r) matrix M := Mr has q(M) ≤ t.

4. Joins with complete graphs

In this section we consider the join of two graphs and develop a technique for deter-
mining, under certain conditions, the minimum number of distinct eigenvalues for the 
join of a graph with a complete graph.

4.1. Patterns and eigenvectors

If we want a 1-bordering of the matrix A ∈ S(G) to produce a matrix A′ ∈ S(K1∨G), 
then we need U0b to have no zero entries in Theorem 3.1 above. This will happen for 
most choices of b, unless U0 contains a zero row, or equivalently, unless eigenvectors 
corresponding to the eigenvalues in R0 all have a zero entry in the same position. The 
next results consider the case |R0| = 1. We call an eigenvalue of a symmetric matrix 
extreme if it is the smallest or the largest eigenvalue of that matrix.

Corollary 4.1. Suppose G is a non-empty graph and there exists an A ∈ S(G) with a 
nowhere zero eigenvector associated with some eigenvalue λ of A. Then there exists a 
1-bordering A′ of A in S(K1 ∨G) so that:

• q(A′) = q(A) + 1 if λ is an extreme eigenvalue,
• q(A′) = q(A) if λ is not an extreme eigenvalue,
• q(A′) = q(A) − 1 if λ is simple and not an extreme eigenvalue.

Proof. In Theorem 3.1 we choose R0 = {λ}, U0 ∈ Rn×1 = Rn a nowhere zero eigenvector 
of A with eigenvalue λ, and B with eigenvalues μ1, μ2, satisfying μ1 < λ < μ2, so that 
either μ1 or μ2 agrees with an eigenvalue of A, if λ is an extreme eigenvalue, and so that 
both μ1 and μ2 are eigenvalues of A, if λ is not an extreme eigenvalue of A. Since U0 is a 
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single column with no zero entries we get A′ ∈ S(K1 ∨G), and since the spectrum of A′

can be obtained from the spectrum of A by removing one multiple of λ and increasing 
the multiplicity of μ1 and μ2 by 1, the result follows. �

In Theorem 3.1 we have seen that after 1-bordering, some eigenvectors will necessarily 
have a zero entry, and this has an interesting consequence for the patterns of 2-borderings.

Corollary 4.2. Let A be a symmetric matrix, A′ a 1-bordering of A, and A′′ a 1-bordering 
of A′. If (A′′)1,2 �= 0, then there is an eigenvalue λ of A′ so that mA′′(λ) = mA′(λ) −1 =
mA(λ).

Proof. Adopting the notation and definitions from Theorem 3.1, recall that W =
(WN W1) where

WN =
(

vT

U0V0

)
and W1 =

(
0
U1

)
,

and WTA′W = DN ⊕ D1. Hence, A′W = W (DN ⊕ D1), i.e., (A′WN A′W1) =
(WNDN W1D1), so the columns of the matrices WN and W1 are eigenvectors of A′

corresponding to the eigenvalues of DN and D1, respectively. If λ is an eigenvalue of 
A′ which is not in N , then the λ-eigenspace of A′ is contained in the column space of 
W1, so every vector in this eigenspace has first entry equal to zero. It follows that any 
eigenvector of A′ with nonzero first entry must have its corresponding eigenvalue λ in 
N .

Consider now the 1-bordering A′′ of A′. Let us define R′
0, D′

0, U ′
0 and b′ for this 

1-bordering, analogously as was done above for the 1-bordering A′ of A. If (A′′)1,2 �= 0, 
then (U ′

0b′)1 �= 0 by the above, so the first row of U ′
0 cannot be a zero row. Since 

U ′
0
T
A′U ′

0 = D′
0, this implies that there is some eigenvector of A′, with eigenvalue λ ∈ R′

0, 
which has a nonzero first entry. Hence, by the previous paragraph, λ ∈ N ∩R′

0, and thus 
mA′′(λ) = mA′(λ) − 1 = mA(λ). �
Remark 4.3. Suppose r ≥ 2 and A0, A1, . . . , Ar are successive 1-borderings of a matrix 
A0 ∈ S(G). If Ar ∈ S(Kr ∨G), then by Corollary 4.2, it is necessarily the case that for 
0 ≤ s ≤ r− 2, there is a real number λs so that mAs+2(λs) = mAs+1(λs) − 1 = mAs

(λs).

In the following example we illustrate how Algorithm 3.1 may be used to border a 
matrix achieving a small q value in 3-bordering in different ways. We also identify cases 
when Remark 4.3 implies that the resulting 3-bordering cannot be in S(K3 ∨G).

Example 4.4. Let A be a 9 × 9 symmetric matrix with ordered multiplicity list m =
(1, 3, 3, 1, 1) and spectrum {1, 2(3), 3(3), 4, 5}. The goal is to find the spectra of all 3-
borderings of A that have three distinct eigenvalues. Observe that C(m, 3) = 3, and to 
achieve this goal the value of C must decrease by one every time we border. Table 2
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Table 2
Red eigenvalues are the ones that are forced to have reduced multiplicity in the next bordering, 
the blue ones satisfy the conclusion of Corollary 4.2 for the 2-bordering of A, and the green 
ones satisfy the same condition when we consider instead the 3-bordering of A. Moreover, 
λ, λ′ ∈ [3, 4], ν ∈ [4, 5], μ, μ′, μ′′ ≥ 5 and ρ ∈ (3, μ), are arbitrary. (For interpretation of the 
colours in the table, the reader is referred to the web version of this article.)
A {1, 2(3), 3(3), 4, 5}
1-bordering {1(2), 2(2), 3(4), 5, μ} {1(2), 2(2), 3(3), λ, μ, ν} {1(2), 2(2), 3(3), λ, 5(2)}
2-bordering {1(3), 2, 3(5), μ′, μ′′} {1(3), 2, 3(4), ρ, μ(2)} {1(3), 2, 3(3), λ′, 5(3)}
3-bordering {1(4), 3(6), μ′′ (2)} {1(4), 3(5), μ(3)} {1(4), 3(4), 5(4)}

shows all possible eigenvalues we can obtain in this way. We produced this table by 
exhaustive search.

We note that the construction in the proof of Proposition 3.5 produces only 
the spectrum {1(4), 3(6), 5(2)}, which we obtain after 1-bordering with spectrum 
{1(2), 2(2), 3(4), 4, 5} and 2-bordering with spectrum {1(3), 2, 3(5), 4, 5}. This example 
shows that there may be several options of choosing appropriate sets N and R0 in 
each step as we develop an r-bordering with the desired number of distinct eigenvalues.

In all three situations (corresponding to three columns of Table 2), if A ∈ S(G), then 
by appropriately choosing the free parameters, it is possible to satisfy the necessary 
conditions of Remark 4.3 for the 3-bordering of A to be in S(K3 ∨ G). However, if, for 
example, we choose λ = 4 or λ′ = λ in the last column, then the conditions of the remark 
do not hold.

4.2. Hypercubes

In this section we explore the minimum number of distinct eigenvalues for joins of 
complete graphs with a hypercube graph. Recall that for t ≥ 1, the vertices of the 
hypercube graph Qt are the 2t binary strings of length t, and its edges are the pairs 
of vertices with Hamming distance one. It was shown in [1, Corollary 6.9] that if Qt is 
the hypercube graph with t ≥ 2, then q(Qt) = 2. In the following, we use the matrix 
construction from [1] to demonstrate that Qt has a realization A having q(A) = 2 and a 
nowhere zero eigenvector.

Theorem 4.5. For any two positive integers s and t,

q(Ks ∨Qt) ≤ 3.

Moreover, if s ≤ t, then

q(Ks ∨Q2t+2) = 3.

Proof. We will demonstrate that Qt has a realization A having q(A) = 2 and a nowhere 
zero eigenvector. Corollary 4.1 will then imply that q(K1 ∨ Qt) ≤ 3 and so the result 
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follows from the inequality (1). As observed in [1], for any nonzero α and β with α2+β2 =
1, Qt has a realization

B =
(
αA βI

βI −αA

)

such that A2 = I and q(B) = 2. The vector

(
(I + αA)1

β1

)

with 1 representing the all ones vector, will be a nowhere zero eigenvector of B with 
eigenvalue 1 for any α sufficiently small.

The second part of the statement is a generalization of [5, Proposition 5.1]. It uses [5, 
Theorem 1.9], which is a small correction of [1, Theorem 4.4]. For i = 1, 2, . . . , t +1, con-
sider the vertices of the hypercube Qt given by the binary strings vi = 00 · · · 01100 · · · 0, 
with the two ones in positions 2i − 1 and 2i. Then {v1, . . . , vt+1} is a set of t + 1 inde-
pendent vertices in Ks ∨Q2t+2, and N(vi) ∩N(vj) = V (Ks) for i �= j. Therefore

∣∣∣∣∣∣
⋃
i�=j

N(vi) ∩N(vj)

∣∣∣∣∣∣ = s < t + 1,

hence q(Ks ∨Q2t+2) ≥ 3 by [1, Theorem 4.4]. �
By Theorem 2.2, if s is chosen sufficiently large, then q(Ks ∨Qt) = 2. Thus, in light 

of Theorem 4.5, and the fact that q(Ks ∨ Qt) is a non-increasing function of s as per 
Equation (1), it is natural to ask the following question: What is the minimum s for 
which q(Ks ∨Qt) = 2?

4.3. Cycles

Given A ∈ S(H) and a graph G, let S(G ∨A) be the set of all matrices X ∈ S(G ∨H)
so that X[H] = A, and let q(G ∨ A) be the minimum q(X) over all such matrices X. 
Note that q(G ∨ A) ≥ q(G ∨ H). Suppose A has ordered multiplicity list m = m(A). 
Given a number t ≥ 2 and a graph G, we want to determine whether or not q(G ∨A) ≤ t. 
By Proposition 3.5, a necessary condition is that

C(m, t) ≤ |G|.

In Section 5 we will show that this condition is not sufficient in general, since it may 
happen that none of the |G|-borderings guaranteed by Proposition 3.5 has the correct 
graph, G ∨H, where for any n ×n symmetric matrix A = (aij), H = G(A) is defined as 
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the graph on n vertices with edges {i, j} whenever i �= j and aij �= 0. In fact, it is not 
generally sufficient even in the case that G is a complete graph. Despite this, we provide 
examples when the procedure from Section 3 is applied successfully.

Note that the necessary condition above may be written as

q(G ∨A) ≥ min{t ≥ 2 : C(m(A), t) ≤ |G|}. (4)

Turning to cycles, it is known by [16, Theorem 3.4] that q(K2k−2 ∨ C2k) = 2. Next, 
we use the following result on the inverse eigenvalue problem for cycles to determine the 
minimum number of eigenvalues allowed for joins of complete graphs with even cycles.

Proposition 4.6. (IEPG for cycles [9]). Nonincreasing real numbers λ1 ≥ · · · ≥ λn are 
the eigenvalues of some A ∈ S(Cn) if and only if either

λ1 ≥ λ2 > λ3 ≥ λ4 > λ5 ≥ · · ·

or

λ1 > λ2 ≥ λ3 > λ4 ≥ λ5 > · · · .

Hence, if k ≥ 2, q(C2k) = k and M(C2k) = 2.

Observe that if λ is a multiple eigenvalue of A ∈ S(Cn), then the multiplicity of λ is 
two and there exists a nowhere zero eigenvector for λ associated with A. If the latter did 
not hold then every eigenvector x for λ would satisfy xi = 0 for some i = 1, 2, . . . , n. In 
this case λ is a multiple eigenvalue for the principal submatrix of A obtained by deleting 
row and column i. However, this submatrix lies in S(Pn−1), and can only possess simple 
eigenvalues.

Theorem 4.7. If k ≥ 2 then q(K1 ∨ C2k) = k.

Proof. To obtain the upper bound q(K1 ∨ C2k) ≤ k, use Proposition 4.6 to choose a 
matrix A ∈ S(C2k) with multiplicity list (2, 2, . . . , 2), choose a non-extreme eigenvalue 
of A and a nowhere zero eigenvector and apply Corollary 4.1.

To show the lower bound, assume that M ∈ S(K1 ∨ C2k) has eigenvalues μ1 ≤ μ2 ≤
· · · ≤ μ2k+1 and that A is the submatrix corresponding to C2k and has eigenvalues 
λ1 ≤ · · · ≤ λ2k. By Proposition 4.6, we have that the maximum multiplicity of an 
eigenvalue λi is 2 and furthermore, if there are eigenvalues λi and λj with multiplicity 
2 then mA(λi, λj) must be even. By eigenvalue interlacing we have that the maximum 
multiplicity of any eigenvalue of M is 3. We claim that if μi and μj each have multiplicity 
3, then there must be an eigenvalue of multiplicity 1 between them, and the lower bound 
follows once we show this.
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By way of contradiction, assume that there is some pair of eigenvalues with multiplicity 
3 and j distinct eigenvalues between them, each with multiplicity 2 (with the possibility 
that j is 0). That is, we have

μi = μi+1 = μi+2 < · · · < μi+2+2j+1 = μi+2+2j+2 = μi+2+2j+3.

From eigenvalue interlacing we must have λi = λi+1 and λi+2j+3 = λi+2j+4. Hence it 
follows that both λi+1 and λi+2j+3 have multiplicity 2 and mA(λi+1, λi+2j+3) = 2j + 1
is odd, a contradiction. �

As we saw in Example 4.4, we have to be careful about the choice of 1-bordering of A
in order to ensure that a subsequent 2-bordering of A has the desired pattern. As another 
illustration of this issue, observe that if an eigenvalue λ of A ∈ S(C6) has multiplicity 2
for A, and multiplicity 1 for a 1-bordering A′ of A, then eigenvectors of λ for A′ will not 
be nowhere zero—since the interlacing is not strict, an entry of the eigenvector for A′

is 0 (see [13, Theorem 4.3.17]). This shows that if we apply Algorithm 3.1 starting with 
A ∈ S(C6) with multiplicity list (2, 2, 2) to produce a 2-bordering A′′ with q(A′′) = 2, 
then A′′ /∈ S(K2 ∨ C6). In the next example we show that starting with a matrix A ∈
S(C6) with a different multiplicity list, it is possible that q(A′′) = 2 can still be reached 
for some A′′ ∈ S(K2 ∨ C6).

Example 4.8. Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 −1
1 −1 1 0 0 0
0 1 1 1 0 0
0 0 1 −1 1 0
0 0 0 1 1 1

−1 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ S(C6), U0 = 1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1

−1 0
0 −1
1 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then σ(A) = {(−2)(2), −1, 1, 2(2)}. Let R0 = {−1, 1}, and observe that UT
0 AU0 =(

1 0
0 −1

)
, corresponding to the setup of Theorem 3.1. Choose any t ∈ (−1, 1) and let 

N = {−2, t, 2}. Following Corollary 3.2 and [6, equation (2.4)], we find

B =

⎛
⎜⎝ t

√
3u

√
3v√

3u 1 0√
3v 0 −1

⎞
⎟⎠

where

u =
√

(1 − t)/2 and v =
√

(1 + t)/2,

and
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A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t u v −u −v u v

u 1 1 0 0 0 −1
v 1 −1 1 0 0 0

−u 0 1 1 1 0 0
−v 0 0 1 −1 1 0
u 0 0 0 1 1 1
v −1 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ S(K1 ∨ C6)

with σ(A′) = {(−2)(3), t, 2(2)}.
Repeating the construction, choosing R′

0 = {t} and N ′ = {−2, 2}, we obtain

A′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−t
√

1 − t2 −v u v −u −v u
√

1 − t2 t u v −u −v u v

−v u 1 1 0 0 0 −1
u v 1 −1 1 0 0 0
v −u 0 1 1 1 0 0

−u −v 0 0 1 −1 1 0
−v u 0 0 0 1 1 1
u v −1 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ S(K2 ∨ C6)

with σ(A′′) = {(−2)(4), 2(4)} and thus q(K2 ∨ C6) = 2.

Example 4.9. Using the Jacobi-Ferguson algorithm [8], we can construct numerical matri-
ces A ∈ S(C10) with spectrum {(−6)(2), −4, −2, 0(2), 4, 2, 6(2)}, and hence find numerical 
matrices A′′ ∈ S(K2∨C10) with spectrum {(−6)(4), 0(4), 6(4)} and thus q(K2∨C10) = 3. 
One such numerical matrix is:

A′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1.9720 −0.11321 −0.40399 −2.4521 −1.3819 0.0061884 0.00028437 −0.0036489 2.1264 −2.9646 1.3043

−1.9720 0 −2.2195 −2.0495 2.2752 −0.83772 0.0080390 0.005574 −0.018511 −1.9731 −1.7971 1.6944

−0.11321 −2.2195 0 3.2468 0 0 0 0 0 0 0 3.6901

−0.40399 −2.0495 3.2468 0 3.6175 0 0 0 0 0 0 0

−2.4521 2.2752 0 3.6175 0 1.5399 0 0 0 0 0 0

−1.3819 −0.83772 0 0 1.5399 0 0.010306 0 0 0 0 0

0.0061884 0.0080390 0 0 0 0.010306 0 5.4891 0 0 0 0

0.00028437 0.005574 0 0 0 0 5.4891 0 2.4227 0 0 0

−0.0036489 −0.018511 0 0 0 0 0 2.4227 0 0.013409 0 0

2.1264 −1.9731 0 0 0 0 0 0 0.013409 0 2.9999 0

−2.9646 −1.7971 0 0 0 0 0 0 0 2.9999 0 −2.7171

1.3043 1.6944 3.6901 0 0 0 0 0 0 0 −2.7171 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5. Limitations of Algorithm 3.1 for graph joins

In this section we show that the condition C(m(A), t) ≤ r from Proposition 3.5 is 
not generally sufficient in the case G = Kr for the existence of a matrix with at most t
eigenvalues in S(G ∨A).
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Proposition 5.1. Suppose t ≥ 2 and A1, . . . , Ak are successive 1-borderings of a symmetric 
matrix A = A0, and m(A) = (m1, k, m2, k, . . . , k, mt) where mj ≥ k ≥ t for each j, and 
q(Ak) = t. Then

m(Aj) = (m1 + j, k − j,m2 + j, k − j, . . . , k − j,mt + j), j = 0, 1, . . . , k.

Proof. Let μ1 < · · · < μ2t−1 be the distinct eigenvalues of A0 and λ1 < · · · < λt the 
distinct eigenvalues of Ak. By eigenvalue interlacing, every eigenvalue of Aj is in the 
closed interval [λ1, λt]. Moreover, by Lemma 3.3, for i = 1, . . . , t − 1 and j = 0, . . . , k, we 
have

mAj
(λi, λi+1) ≥ mA0(λi, λi+1) − j.

In particular, 0 = mAk
(λi, λi+1) ≥ mA0(λi, λi+1) − k, so

mA0(λi, λi+1) ≤ k.

Let S = {μ1, . . . , μ2t−1} \{λ1, . . . , λt}. Then |S| ≥ 2t −1 − t = t −1, and each eigenvalue 
in S has multiplicity at least k in A0 by hypothesis, so

k(t− 1) ≤ k|S| ≤
t−1∑
i=1

mA0(λi, λi+1) ≤ k(t− 1).

Hence, |S| = t − 1, so {λ1, . . . , λt} ⊆ {μ1, . . . , μ2t−1}. Since μ1, μ2t−1 ∈ [λ1, λt], this 
forces μ1 = λ1 and μ2t−1 = λt. If λi = μj and λi+1 = μl where l > j + 2, then 
mA0(λi, λi+1) ≥ 2k, a contradiction. It follows that λi = μ2i−1 for 1 ≤ i ≤ t.

Hence, mA0(λi, λi+1) = k for each i, and the bound we observed above becomes

k − j ≤ mAj
(λi, λi+1).

Since Ak is a (k − j)-bordering of Aj , by Lemma 3.3 we also have

mAj
(λi, λi+1) ≤ mAk

(λi, λi+1) + k − j = k − j,

so mAj
(λi, λi+1) = k − j. Moreover, by eigenvalue interlacing, k − j ≤ mAj

(μ2i) ≤
mAj

(λi, λi+1) = k−j, so we have equality. Hence, the multiplicity of μ2i as an eigenvalue 
of Aj is k − j, and no other real number in (λi, λi+1) is an eigenvalue of Aj . It follows 
that every eigenvalue of Aj other than μ2, . . . , μ2(t−1) is in the set {λ1, . . . , λt}. Observe 
that Aj is an (j + N) × (j + N) matrix, where N = (t − 1)k +

∑t
i=1 mi is the number 

of rows and columns of A. Hence,

t∑
mAj

(λi) = j + N −
t−1∑

mAj
(μ2i)
i=1 i=1
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= j − (t− 1)(k − j) + (t− 1)k +
t∑

i=1
mi =

t∑
i=1

(mi + j).

Since the total multiplicity of the eigenvalues λ1, . . . , λt in Aj is 
∑t

i=1(mi + j), and by 
eigenvalue interlacing, the multiplicity in Aj of λi = μ2i−1 is bounded above by mi + j, 
this must be precisely its multiplicity. �
Corollary 5.2. If A is a symmetric matrix with m(A) = (m1, k, m2, k, . . . , k, mt) where 
mi ≥ k ≥ t ≥ 2 for each i, then C(m(A), t) = k yet q(G ∨ A) > t for all non-empty 
graphs G with |G| = k. Hence, the inequality (4) is strict in this case.

Proof. We have C(m(A), t) = k, so q(B) ≥ t for all k-borderings B of A by Propo-
sition 3.5. Consider a sequence of successive 1-borderings taking us from A to some 
k-bordering B with q(B) = t. By Proposition 5.1, the successive eigenvalue multiplici-
ties of any given λ ∈ R in this sequence of matrices is monotone. Hence, by Corollary 4.2, 
the superdiagonal of the leading principal k × k submatrix of B is zero.

Now let P be a k × k permutation matrix, and consider BP = (P ⊕ Ir)B(PT ⊕ Ir), 
where k+r = |G|. By the previous paragraph, the superdiagonal of the leading principal 
k × k submatrix of BP is zero, for every such permutation matrix P . Hence, every 
off-diagonal entry of B is zero, so B has an empty graph. �

This shows a limitation of Algorithm 3.1. However, we show in the following propo-
sition that this limitation is very specific, and that if the multiplicity list is perturbed 
only slightly we may have success using this procedure.

Proposition 5.3. Suppose t ≥ 2 and A is a symmetric matrix with eigenvalues

λ
(m1)
1 < β < γ < λ

(m2)
2 < μ

(2)
2 < λ

(m3)
3 < μ

(2)
3 < · · · < μ

(2)
t−1 < λ

(mt)
t .

If A has an eigenbasis such that for each vertex u there is at least one eigenvector corre-
sponding to an eigenvalue in {μi} which is nonzero in the entry corresponding to u, then 
there exists a matrix B ∈ S(K2 ∨ A) such that B has eigenvalues λ(m1+2)

1 , . . . , λ(mt+2)
t . 

In particular, q(K2 ∨G(A)) ≤ t.

Proof. By [6] we know that there are 1-borderings Cβ and Cγ of the matrices 
diag(β, μ2, . . . , μt) and diag(γ, μ2, . . . , μt) respectively which each have eigenvalues 
{λ1, . . . , λt}. Furthermore, we know that these borderings can have no zeros in the first 
row or column, and by computing traces we see that the (1, 1) entries are k − β and 
k− γ respectively, where k = λ1 + · · ·+λt − (μ2 + · · ·+μt). Let the first row of Cβ have 
entries k − β, b1, . . . , bt−1 and the first row of Cγ have entries k − γ, c1, . . . , ct−1. Define 
B0 = [vβ , vγ ] where vβ = (k− β, 0, b1, 0, b2, 0, . . . )T , and vγ = (0, k− γ, 0, c1, 0, c2, . . . )T . 
That is, we are making vectors with the first rows of the borderings in the even or odd 
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positions. Now define matrices D1 = diag(k − β, k − γ), D2 = diag(β, γ, μ(2)
2 , . . . , μ(2)

t−1)
and D0 = diag(λ(m1)

1 , . . . , λ(mt)
t ), and finally define

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k − β b1 b2 · · · bt−1
k − γ c1 c2 · · · ct−1

b1 β
c1 γ

b2 μ2
c2 μ2

. . .
bt−1 μt−1

ct−1 μt−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕D0

where the blank entries denotes 0s. Since M is permutationally similar to the block diag-
onal matrix with blocks Cβ , Cγ , and D0, the eigenvalues of M are λ(m1+2)

1 , . . . , λ(mt+2)
t .

By the assumption, we may choose V to be a matrix which diagonalizes the matrix 
A such that for any row u, there is a column j corresponding to an eigenvector of some 
μ� such that Vuj �= 0. Without loss of generality assume that

V TAV = diag(β, γ, μ(2)
2 , . . . , μ

(2)
t−1, λ

(m1)
1 , . . . , λ

(mt)
t ) = D2 ⊕D0.

Define W ′ = I2 ⊕W2 ⊕ · · · ⊕Wt−1 where the Wi are any orthogonal 2 × 2 matrices, and 
define W = W ′ ⊕ Im1+···+mt

. Then, as W ′ commutes with D2, we have that

WTV TAVW = V TAV = D2 ⊕D0.

Let V ′ be the first 2t −2 columns of V , so that it has columns that are the eigenvectors 
corresponding to the eigenvalues of D2. Notate these columns by v1, . . . , v2t−2. Let U be 
any orthogonal 2 × 2 matrix. Then

(U ⊕ VW )M(UT ⊕WTV T ) = (U ⊕ VW )
(
D1 B0
BT

0 D2 ⊕D0

)
(UT ⊕WTV T )

=
(

UD1U
T UB0W

TV T

VWBT
0 U

T A

)
.

This matrix is in S(K2 ∨ G(A)) if UD1U
T has nonzero off-diagonal entries and the 

following matrix has no zero entry:

UB0W
TV T = UB′

0(W ′)T (V ′)T , where B′
0 =

(
b1 b2 · · · bt−1

c1 c2 · · · ct−1

)
.

Let θ2, . . . , θt−1 be uniformly and independently chosen angles and let Wi be the 2 ×2
rotation matrix by angle θi. Then the ij’th entry of B′

0(W ′)T (V ′)T is



A. Abiad et al. / Linear Algebra and its Applications 679 (2023) 104–126 125
b1v1(j) +
t−1∑
k=2

bkv2k−1(j) cos θk − bkv2k(j) sin θk

if i = 1 and

c1v2(j) +
t−1∑
k=2

ckv2k−1(j) sin θk + ckv2k(j) cos θk

if i = 2. Since the bi and ci are nonzero, and by the choice of V there is at least one u
with 3 ≤ u ≤ 2t − 2 with vu(j) �= 0, we have that the ij’th entry of B′

0(W ′)T (V ′)T is 
nonzero with probability 1. So we can choose W ′ for which B′

0(W ′)T (V ′)T has no zero 
entries. Moreover, since β �= γ, D1 is not a zero matrix. It is now easy to choose U such 
that UD1U

T and UB0W
TV T have all nonzero entries. �

In this paper we continued the study of the behaviour of q(G ∨ H). For a general 
graph H, we obtained results for the case when G is either a path or a complete graph, 
and we explored the potential impact of eigenvector patterns on q(G ∨H), for various 
families of graphs H.
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