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We prove a dimension-free Lp(Ω) × Lq(Ω) × Lr(Ω) →
L1(Ω × (0, ∞)) embedding for triples of elliptic operators 
in divergence form with complex coefficients and subject to 
mixed boundary conditions on Ω, and for triples of exponents 
p, q, r ∈ (1, ∞) mutually related by the identity 1/p + 1/q +
1/r = 1. Here Ω is allowed to be an arbitrary open subset of 
Rd. Our assumptions involving the exponents and coefficient 
matrices are expressed in terms of a condition known as p-
ellipticity. The proof utilizes the method of Bellman functions 
and heat flows. As a corollary, we give applications to (i) 
paraproducts and (ii) square functions associated with the 
corresponding operator semigroups, moreover, we prove (iii) 
inequalities of Kato–Ponce type for elliptic operators with 
complex coefficients. All the above results are the first of 
their kind for elliptic divergence-form operators with complex 
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Bellman function
Heat flow

coefficients on arbitrary open sets. Furthermore, the approach 
to (ii),(iii) through trilinear embeddings seems to be new.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction and statement of the main results

Let Ω ⊆ Rd be an arbitrary open set. Denote by A(Ω) the family of all complex 
uniformly strictly accretive (also called elliptic) d × d matrix functions on Ω with L∞

coefficients. That is, A(Ω) is the set of all measurable A : Ω → Cd×d for which there 
exist λ, Λ > 0 such that for almost all x ∈ Ω we have

Re 〈A(x)ξ, ξ〉 � λ|ξ|2 , ∀ξ ∈ Cd; (1.1)

|〈A(x)ξ, η〉| � Λ |ξ| |η| , ∀ξ, η ∈ Cd. (1.2)

Elements of A(Ω) will also more simply be referred to as accretive or elliptic matrices. 
For any A ∈ A(Ω) denote by λ(A) the largest admissible λ in (1.1) and by Λ(A) the 
smallest Λ in (1.2).

1.1. The p-ellipticity condition

The concept of p-ellipticity was introduced by the first two authors of the present 
paper in [21] as follows.

Given A ∈ A(Ω) and p ∈ (1, ∞), we say that A is p-elliptic if Δp(A) > 0, where

Δp(A) := ess inf
x∈Ω

min
ξ∈Cd

|ξ|=1

Re
〈
A(x)ξ, ξ + |1 − 2/p|ξ̄

〉
Cd . (1.3)

Equivalently, A is p-elliptic if there exists c = c(A, p) > 0 such that for a.e. x ∈ Ω,

Re
〈
A(x)ξ, ξ + |1 − 2/p|ξ̄

〉
Cd � c|ξ|2 , ∀ξ ∈ Cd. (1.4)

It follows straight from (1.3) that Δp is invariant under conjugation of p, meaning that 
Δp(A) = Δq(A) when 1/p + 1/q = 1. Furthermore, note that Δ2(A) = λ(A), so p-
ellipticity generalizes the notion of classical ellipticity. We will refer to Δp(A) and Λ(A)
collectively as the p-ellipticity constants of A. In order to unify some computations, we 
extend the definition (1.3) to all p ∈ (0, ∞].

Denote by Ap(Ω) the class of all p-elliptic matrix functions on Ω. It is known, see [21], 
that {Ap(Ω) ; p ∈ [2,∞)} is a decreasing chain of matrix classes such that

{elliptic matrices on Ω} = A2(Ω) ,

http://creativecommons.org/licenses/by/4.0/
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{real elliptic matrices on Ω} =
⋂

p∈[2,∞)

Ap(Ω) . (1.5)

In [21] it was argued that p-ellipticity could be of interest for the Lp-theory of elliptic 
PDEs with complex coefficients. So far, several examples have been found that support 
this thought. The current paper aims to continue further in this direction, by establishing 
new applications of p-ellipticity: trilinear embeddings, paraproducts, square function 
estimates and Kato–Ponce inequalities.

A condition similar to (1.4), yet slightly weaker, was formulated in a different manner 
by Cialdea and Maz’ya in [23, (2.25)]; see [21, Remark 5.14]. It was a result of their 
study of a condition on sesquilinear forms known as Lp-dissipativity. The authors of [21]
arrived at (1.4) from a different direction, that is, via bilinear embeddings and generalized 
convexity of power functions; see Section 1.2 for more background.

While the first two authors of the present paper were preparing [21], M. Dindoš and J. 
Pipher were working on their own article [27]. They discovered remarkable connections 
between (1.4) and the regularity theory of elliptic PDEs. More precisely, they found the 
following sharp condition which implies reverse Hölder inequalities for weak solutions of 
elliptic operators in divergence form with complex coefficients: for some ε = ε(A, p) > 0
and almost all x ∈ Ω,

〈ReA(x)λ, λ〉Rd + 〈ReA(x)η, η〉Rd +
〈(√

p′/p ImA(x) −
√
p/p′ ImA(x)T

)
λ, η

〉
Rd

� ε
(
|λ|2 + |η|2

)
for all λ, η ∈ Rd. Here p′ = p/(p − 1) is the conjugate exponent of p. It turned out that 
the above condition of theirs, devised independently of [21], namely, as a strengthening 
of [23, (2.25)], was precisely a reformulation of (1.4). The same authors have since then 
been successfully continuing their line of exploration of p-ellipticity in PDEs; see their 
recent paper [28] and a preprint with Li [29].

1.2. Genesis of p-ellipticity

The idea of attaching a number to the pair (A, p), highlighting positivity of that 
number as a key condition, writing it as in (1.3), recognizing its relation to the classical 
ellipticity, studying its dynamics with respect to A and p, etc., came as a synthesis of 
the first two authors’ long-term study of Bellman functions, heat flows and generalized 
convexity.

Among the very first works where the Bellman-heat approach started getting devel-
oped were Petermichl–Volberg [58] and Nazarov–Volberg [53]. Afterwards, in a series of 
papers [32,33,31,19,20,18], the heat flow method associated with a particular Nazarov–
Treil function Q (an example of a Bellman function), found in [56], was applied and 
developed further.
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For example, in [33] a scrutinous analysis of Q revealed fine convexity properties 
that were, on one hand, indispensable for the main goal of [33] (a so-called bilinear 
embedding), and unexpected on the other. That suggested that Q may possess further 
important convexity properties, which was subsequently confirmed in above-cited works 
[19,20,18]. Another milestone on that path was [19], where the flow associated with Q
was for the first time studied for complex times. This led to a universal spectral multiplier 
theorem for generators of symmetric contractive semigroups with the optimal angle, thus 
introducing the Bellman-heat method into spectral multipliers and answering a question 
posed several years earlier by Stein.

As indicated above, the gist of each of those works was establishing the convexity of Q. 
In [21] the concept of convexity of a function with respect to a matrix was introduced (see 
Section 2.3 for the definition). When the matrix in question is the identity matrix, this 
is the usual convexity. In the same work the focus was fully shifted from the convexity 
of Q to the convexity of its principal building blocks – power functions. The p-ellipticity 
condition (1.4) was conceived there first as the uniform convexity of power functions 
|ζ|p with respect to A, and then reshaped into (1.4); see [21, Remark 5.9]. Therefore 
the p-ellipticity emerged in [21] after several years of gradually distilling the heat flow 
method through [32,33,31,19,20,18].

Other works using the Bellman-heat approach include Domelevo–Petermichl [30], 
Mauceri–Spinelli [48], Wróbel [61], Betancor–Dalmasso–Fariña–Scotto [12], Kucharski 
[45], the article [44] by the latter two authors of the present paper, and [22] by the 
former two.

Since we will be dealing with pairs and triples of matrices, it is useful to introduce 
further notation, as in [21,22]:

Δp(A1, . . . , AN ) = min{Δp(A1), . . . ,Δp(AN )},
λ(A1, . . . , AN ) = min{λ(A1), . . . , λ(AN )},
Λ(A1, . . . , AN ) = max{Λ(A1), . . . ,Λ(AN )}.

1.3. Elliptic partial differential operators in divergence form

Suppose that either:

(a) U = H1
0 (Ω),

(b) U = H1(Ω), or
(c) U is the closure in H1(Ω) of the set of restrictions 

{
u|Ω ; u ∈ C∞

c (Rd\Γ)
}
, where Γ

is a (possibly empty) closed subset of ∂Ω.

Here H1
0 (Ω) stands for the closure of C∞

c (Ω) in the Sobolev space H1(Ω) = W 1,2(Ω). 
Recall that H1

0 (Rd) = H1(Rd); see [1, Corollary 3.19] for a reference.
We would like to define the divergence form operator LAu = −div(A∇u). A standard 

way of achieving this is to use sesquilinear forms. Before proceeding we state that all 
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the integrals in this paper will be taken with respect to the Lebesgue measure. As the 
ambient space we will typically take the complex Hilbert space H = L2(Ω).

Let the sesquilinear form a = aA,U be given by D(a) and

a(u, v) :=
ˆ

Ω

〈A∇u,∇v〉Cd for u, v ∈ U .

We define L = LA = LA,U to be the operator associated with aA,U . See [57, Sec-
tion 1.2.3] for information about this construction. The bottomline is that

〈LAu, v〉H =
ˆ

Ω

〈A∇u,∇v〉Cd , ∀u ∈ D(LA), v ∈ U , (1.6)

where the domain D(LA) is the set of all u ∈ U for which the right-hand side, regarded 
as an antilinear functional on U with input v, extends boundedly to the whole L2(Ω). 
Depending on the choice (a)–(c) of U , we say that L is subject to (a) Dirichlet, (b) 
Neumann or (c) mixed boundary conditions, see [57, Section 4.1].

Consider the operator semigroup on L2(Ω) generated by −LA,U :

TA,U
t := exp(−tLA,U ) for t ∈ (0,∞).

The semigroup (TA,U
t )t>0 is known to be contractive and analytic on L2(Ω); see [42, 

Chapter VI], [4] and [57, Chapters 1 and 4].

1.4. Trilinear embedding

The main result of this paper is the following dimension-free trilinear embedding the-
orem. Recall that by the p-ellipticity constants of A we mean the numbers Δp(A), λ(A), 
Λ(A).

Theorem 1.1. Let Ω ⊆ Rd be an open set and let the spaces U , V , W be as in Section 1.3. 
Take p, q, r ∈ (1, ∞) such that

1
p

+ 1
q

+ 1
r

= 1. (1.7)

Suppose that accretive matrices A, B, C : Ω → Cd×d are max{p, q, r}-elliptic. Then for 
f ∈

(
Lp ∩ L2)(Ω), g ∈

(
Lq ∩ L2)(Ω) and h ∈

(
Lr ∩ L2)(Ω) we have

∞̂

0

ˆ

Ω

∣∣∣∇TA,U
t f

∣∣∣ ∣∣∣∇TB,V
t g

∣∣∣ ∣∣∣TC,W
t h

∣∣∣ dx dt � ‖f‖p ‖g‖q ‖h‖r . (1.8)

When Ω = Rd, the same conclusion holds under milder assumptions, namely, when
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• A is p-elliptic and (1 + p/q)-elliptic,
• B is q-elliptic and (1 +q/p)-elliptic, (�)
• C is r-elliptic.

The implied embedding constants only depend on p, q, r and ∗-ellipticity constants of 
A, B, C alluded to in the theorem’s assumptions.

The proof of Theorem 1.1 will be given in Section 6 (case of Ω = Rd) and Section 7
(for general Ω), after all the needed preparatory results are established in Sections 2–5.

Remark 1.2. Introduce, for p ∈ (1, ∞), the notation

p∗ := max{p, p′},

where p′ is the conjugate exponent of p, that is, 1/p + 1/p′ = 1. Owing to the symmetry 
and monotonicity properties of Δp(A) specified in Section 1.1, we have that

A is s-elliptic and t-elliptic ⇐⇒ A is max{s∗, t∗}-elliptic.

In particular, in the special case p = q the assumptions (�) read that C is r-elliptic, 
while A, B are p-elliptic for 2/p + 1/r = 1.

Observe also that 1 + p/q and 1 + q/p are conjugate exponents, therefore (1 + p/q)-
ellipticity is the same as (1 + q/p)-ellipticity. Furthermore, note that 1 + p/q = p/r′ and 
1 + q/p = q/r′.

1.5. Motivation. Bilinear versus trilinear

A bilinear embedding is, roughly, an estimate of the following type:

∞̂

0

ˆ

X

|∇Ttf ||∇Ttg|dμ(x) dt � ‖f‖p ‖g‖q ,

where (Tt)t>0 is an operator semigroup acting on complex functions f, g which map from 
some measure space (X, μ), and 1/p + 1/q = 1. Variants of bilinear embeddings have 
been instrumental in proving an array of sharp results, e.g. Riesz transform estimates, 
general spectral multiplier theorems, maximal regularity etc.; see [21,22,19] for the rele-
vant literature. In [21,22], bilinear embeddings for elliptic operators in divergence form 
with complex coefficients were proved; see Theorem 1.3 for the result’s statement. Our 
colleagues C. Thiele and J. Bennett have asked us whether bilinear estimates in the con-
text of elliptic matrices admit a reasonable trilinear counterpart. Our answer to these 
inquiries is Theorem 1.1. Apart from pushing the Bellman-heat technique further, this 
result and its applications described in Section 1.7 extend the scope of p-ellipticity. We 
believe that Theorem 1.1 bears potential for other applications in the future.
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The special case Ω = Rd and A = B = C = I of Theorem 1.1 follows by applying 
classical tools from harmonic analysis. The latter two authors of the present paper gave 
an alternative proof for d = 1 in [44, Section 3.3], using a Bellman-heat argument and 
utilizing an original function constructed in the same paper. Hence that function will be 
a natural starting point for the proof of our Theorem 1.1.

On Rd, embedding-type theorems for general complex elliptic matrices were first stud-
ied in [21]. As mentioned above, their embedding differs from the one in this paper by 
being bilinear. It was however also based on a Bellman-heat argument, yet associated 
with another (simpler) function. Recently, the same authors proved bilinear embedding 
for complex-coefficient operators under mixed boundary conditions on arbitrary open 
sets Ω ⊆ Rd, see [22,16]. Passing from Rd to general open sets Ω was technically de-
manding and called for a major modification of the approach from [21]. This is also the 
reason why the two cases of Theorem 1.1 (namely, Ω = Rd and Ω � Rd) will be treated 
in separate sections.

On top of grossly extending [44, Section 3.3], the trilinear embedding of Theorem 1.1
also directly implies the above-said bilinear embeddings from [21,22]. See Section 1.6 for 
a more precise formulation of this statement and its proof.

The main challenge of the trilinear context when compared to the bilinear one is that 
symmetry is lost, i.e., knowing p does not yet determine any of the other two exponents, 
unlike in the bilinear case with a pair of mutually conjugate exponents. On the other 
hand, the generalized convexity coefficient Δp(A) is naturally fit for conjugation, as 
it is actually invariant under conjugation of p. This is what makes the trilinear case 
significantly different and more difficult.

Thus the proof of Theorem 1.1 is based on combining the elements from [44] on one 
hand, and the technique from [21] (for Ω = Rd) and [22] (for general Ω) on the other.

1.6. Trilinear implies bilinear

Here we present a simple argument demonstrating that our trilinear embedding (The-
orem 1.1) implies the following bilinear estimate. The latter appeared in [21] in the special 
case of Ω = Rd and in [22] with general open Ω ⊆ Rd. We formulate it here for the sake 
of convenience.

Theorem 1.3. [21,22] Let U , V ⊆ H1(Ω) be as in Section 1.3. If p, q > 1 are conjugate 
exponents and A, B ∈ Ap(Ω), then for all f, g ∈ (Lp ∩ Lq)(Ω) we have

∞̂

0

ˆ

Ω

∣∣∣∇TA,U
t f(x)

∣∣∣ ∣∣∣∇TB,V
t g(x)

∣∣∣ dx dt � ‖f‖p‖g‖q, (1.9)

with the implied constants depending only on p, Δp(A, B), λ(A, B) and Λ(A, B).
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Let p, q, A, B, Ω, U , V , f, g satisfy the assumptions of Theorem (1.9). We further re-
quire that p �= q, hence, by symmetry of (1.3) with respect to the interchange p ↔ q, we 
may assume that p > 2 > q. Also, suppose that either Ω = Rd or A, B are real.

Choose 0 < ε < 1 − (p − 1)−1. Then q + ε < 2 < p − ε and (p − ε)−1 + (q + ε)−1 < 1, 
so that there exists a unique r = r(ε) > 1 determined by

1
p− ε

+ 1
q + ε

+ 1
r(ε) = 1. (1.10)

By interpolation of Lp spaces we also have f ∈ (Lp−ε ∩ L2)(Ω) and g ∈ (Lq+ε ∩ L2)(Ω).
Choose also δ > 0 and let C = δICd . By [21, Lemma 5.20] we have that C is r-elliptic. 

Furthermore, take R > 0 such that the ball B(0, R) intersects the open set Ω and define 
h = χΩ∩B(0,R), with χ denoting the characteristic function. Clearly, h ∈ (Lr ∩ L2)(Ω). 
Finally, let W = H1

0 (Ω).
We would like to apply Theorem 1.1 for the triples of functions f, g, h, matrices 

(A, B, δI) and indices (p − ε, q + ε, r(ε)) as chosen above and with arbitrarily small 
ε > 0. To this end we need to make sure that the corresponding ∗-ellipticity conditions 
are satisfied.

• If Ω is arbitrary A, B are real, then for every s > 0 they are automatically s-elliptic 
[21]. In particular, they are max{p, q, r}-elliptic regardless of the choice of p, q, r > 1. 
We also know from [21] that real elliptic matrices are the only ones with this property.

• If Ω = Rd and A, B are arbitrary (complex elliptic), then we have to verify that (�)
holds for indices (p − ε, q + ε, r(ε)).
Recall that p, q were conjugate expontents. Since A, B ∈ Ap(Ω) = Aq(Ω), we infer 
from [21, Corollary 5.16] and the choice of ε that A ∈ Ap−ε(Ω) and B ∈ Aq+ε(Ω). 
Similarly, for

s(ε) := 1 + p− ε

q + ε

we have

2 < s(ε) = q + p

q + ε
<

q + p

q
= p,

which means that A, B are also s(ε)-elliptic.

We may now apply (1.8) as follows:

∞̂

0

ˆ

Ω

∣∣∣∇TA,U
t f

∣∣∣ ∣∣∣∇TB,V
t g

∣∣∣ ∣∣∣T δI,W
t h

∣∣∣ dx dt � ‖f‖p−ε ‖g‖q+ε ‖h‖r(ε) . (1.11)

We first want to send ε → 0.
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By the continuity of Ls norms at s = p, q, ∞ we have

lim
ε→0

‖f‖p−ε ‖g‖q+ε ‖h‖r(ε) = ‖f‖p ‖g‖q ‖h‖∞ = ‖f‖p ‖g‖q .

Since ε does not appear on the left-hand side in (1.11), we proved

∞̂

0

ˆ

Ω

∣∣∣∇TA,U
t f

∣∣∣ ∣∣∣∇TB,V
t g

∣∣∣ ∣∣∣T δI,W
t h

∣∣∣ dx dt � ‖f‖p ‖g‖q . (1.12)

A comment is in place at this point. As stated in Theorem 1.1, the embedding constants 
implied in (1.8) also depend on r and Δr(C). So when we move ε → 0, one has to 
make sure that the embedding constants stay finite. In fact this is indeed the case; see 
Corollary 7.12. Moreover, the same Corollary 7.12 tells us that the embedding constants 
from (1.12) do not depend on δ.

Next we want to send δ → 0. By the strong continuity of T I,W
s in L2(Ω) we have

h = lim
s↘0

T I,W
s h

in the L2(Ω) sense. Choose k, n ∈ N. From (1.12) we trivially get

∞̂

0

ˆ

Ω

min
{∣∣∣∇TA,U

t f
∣∣∣ , k} ∣∣∣∇TB,V

t g
∣∣∣ ∣∣∣T (1/n)I,W

t h
∣∣∣ dx dt � ‖f‖p ‖g‖q . (1.13)

Therefore the integrand on the left-hand side (1.13) can be decomposed as XkY Zn, 
where for every fixed t > 0 we have Xk(t) ∈ L∞(Ω), Y (t) ∈ L2(Ω), while Zn(t) ∈ L2(Ω)
and converges in L2(Ω) to h ∈ L2(Ω) as n → ∞. Consequently, for any fixed t > 0
one obtains 

´
Ω(XkY Zn)(t) →

´
Ω(XkY )(t)h as n → ∞, which through Fatou’s lemma 

transforms (1.13) into

∞̂

0

ˆ

Ω

min
{∣∣∣∇TA,U

t f
∣∣∣ , k} ∣∣∣∇TB,V

t g
∣∣∣ |h|dx dt � ‖f‖p ‖g‖q .

The embedding constants are the same as in (1.12), since those were independent of δ.
Recalling that we had h = χΩ∩B(0,R), we finally pass R → ∞ and k → ∞ which gives 

(1.9).

Remark 1.4. The reason for restricting ourselves in this section to the cases of either 
Ω = Rd or A, B real, was to apply Theorem 1.1 for triples (A, B, δI) and (p, q, r) with 
arbitrarily large r. The underlying observation is that A, B, C ∈ Amax{p,q,r}(Ω) holds 
for all r > 1 only when A, B, C are real, see [21, p. 3179] or (1.5). We believe that 
Theorem 1.1 might hold under the more convenient conditions (�) for any open Ω, not 
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only Ω = Rd, yet at this moment we cannot prove this. If we could, then the reasoning 
from this section would automatically extend to the case of arbitrary open Ω and complex 
elliptic A, B.

Note also that if r → ∞ (as in this section), then p, q become conjugate exponents, 
therefore the condition Δ1+q/p(A) > 0 from Theorem 1.1 becomes just Δp(A) > 0, which 
is familiar to us from Theorem 1.3. This makes the connection between the two results 
and the limiting procedure from this section look more natural. Also, it supports our 
impression that the set of conditions (�) could indeed be optimal for trilinear embeddings 
on any open sets.

1.7. Applications

1.7.1. Paraproducts associated with semigroups
Let p, q, r, Ω, A, B, C, U , V , W , f, g, h be as in Theorem 1.1. Define the trilinear form 

Θ by

Θ(f, g, h) := −
∞̂

0

ˆ

Ω

( d
dtT

A
t f

)
(TB

t g)(TC
t h) dx dt =

∞̂

0

ˆ

Ω

(LAT
A
t f)(TB

t g)(TC
t h) dx dt.

Using (1.6) and the product rule it can be rewritten as

Θ(f, g, h) =
∞̂

0

ˆ

Ω

(TC
t h)

〈
A∇TA

t f,∇TB
t g

〉
Cd dx dt

+
∞̂

0

ˆ

Ω

(TB
t g)

〈
A∇TA

t f,∇TC
t h

〉
Cd dx dt.

Theorem 1.1 gives

|Θ(f, g, h)|� ‖f‖p ‖g‖q ‖h‖r . (1.14)

In particular, Θ can be uniquely extended to a bounded trilinear form on Lp(Ω) ×
Lq(Ω) ×Lr(Ω). It is natural to call it the paraproduct associated with semigroups (TA

t )t�0, 
(TB

t )t�0 and (TC
t )t�0. In order to arrive at a more familiar paraproduct-type expression, 

we define

ϕ(z) := e−z, ψ(z) := ze−z,

and then rewrite Θ using the functional calculus notation, as

Θ(f, g, h) =
∞̂ˆ (

ψ(tLA)f
)(
ϕ(tLB)g

)(
ϕ(tLC)h

)
dx dt

t
.

0 Ω
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It is more common to reserve the word “paraproduct” for certain bilinear operators 
(f, g) �→ Π(f, g), but one quickly arrives at a trilinear form by dualizing them with a 
third function h.

Paraproducts associated with semigroups were previously studied by several authors 
in various settings, often more general than ours; see the papers by Bernicot [7], Bernicot 
and Sire [10], Frey [38], Frey and Kunstmann [39], Bernicot and Frey [8], and Wróbel 
[60]. However, in the context of divergence form operators, Theorem 1.1 allows the study 
of paraproducts associated with three different semigroups, while the aforementioned 
literature was confined to taking A = B = C, A∗ = B = C or A = B∗ = C. More-
over, the implicit constant in estimate (1.14) only depends on the exponents p, q, r and 
the stated ∗-ellipticity constants of A, B, C, so the result has a “dimensionless” flavor. 
We regard (1.14) rather as the first hint of a possible general dimension-free theory of 
paradifferential calculus for complex elliptic operators.

1.7.2. Square functions
In [21] a question was raised about a connection between p-ellipticity and square 

function estimates on Lp. Here we present a few observations in this direction.
Fix Ω ⊆ Rd and U as in Section 1.3. Set TA

t = TA,U
t . Consider the vertical Littlewood–

Paley–Stein square function defined for f ∈ L2(Ω) by the rule

GA
U (f)(x) :=

⎛⎝ ∞̂

0

∣∣(∇TA
t f)(x)

∣∣2 dt

⎞⎠1/2

.

When Ω = Rd, it was proved by Auscher [3, Chapter 6] that GA
U is bounded on 

Lq(Rd) for q−(A) < q < q+(A) and unbounded for q < q−(A) or q > q+(A), where 
(q−(LA), q+(LA)) is the maximal open interval of exponents p ∈ [1, ∞] for which 
(
√
t∇TA

t )t>0 is uniformly bounded on Lp. We have q−(A) = 1 for all real A [3, Corollary 
6.6]. While q+(I) = ∞, in principle q+(A) can be arbitrarily close to 2 even for real 
elliptic matrices A. In order to have a more convenient result for all q ∈ (2, ∞), Auscher, 
Hofmann and Martell [5] considered the conical square function, defined as

CA(f)(x) :=

⎛⎝¨

Vx

∣∣∇(TA
t f)(y)

∣∣2 dy dt
td/2

⎞⎠1/2

,

where Vx =
{
(y, t) ∈ Rd × (0,∞) ; |x− y| <

√
t
}

is a cone with respect to the parabolic
metric on Rd × (0, ∞), given by d

(
(x, t), (y, s)

)
:=

√
|x− y|2 + |t− s|.

Again following Auscher [3], denote by (p−(LA), p+(LA)) the maximal open inter-
val of exponents p for which (TA

t )t>0 is uniformly bounded on Lp. Auscher, Hofmann 
and Martell [5, Theorem 3.1.(2)] showed that CA is bounded on Lp(Rd) whenever 
p ∈ (p−(LA), ∞). Moreover, the lower bound is optimal and equals 1 when A is real 
[3, p.19].
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The situation of Ω � Rd is notably different, as it can be proved that if d � 3, then for 
every p > 3 there exists a bounded, connected open set Ω ⊆ Rd with strongly Lipschitz 
boundary such that, if either U = H1(Ω) (pure Neumann boundary conditions) or 
U = H1

0 (Ω) (pure Dirichlet conditions), then GA
U is not bounded on Lp(Ω) even for 

A = I (see [17]).
In the generality we consider in this paper, we cannot prove the trilinear inequality 

(1.8) by means of the semigroup maximal operator TA
∗ : f �→ supt>0

∣∣TA
t f

∣∣ and the 
vertical square function GA

U (compare with [44, p. 460]). Namely, we do not know whether 
TA
∗ is bounded on Lp [17]. Moreover, when A = B = C are real matrices, Theorem 1.1

holds true for any p, q, r ∈ (1, ∞) such that 1/p + 1/q + 1/r = 1, while, as discussed 
above, the square function GA

U could be unbounded on Lp for p > 3, even for A = I.
In light of the discussion above, it is natural to consider yet another square function, 

in the spirit of the P.-A. Meyer’s modified square function originally associated with 
a Poisson diffusion semigroup [51,52] (see also [24, Section 3]). Denote by (Tt)t>0 the 

Neumann heat semigroup on Ω, i.e., Tt = T
I,H1(Ω)
t . The modified square function is 

defined by the rule

G̃A
U (f)(x) :=

⎛⎝ ∞̂

0

Tt

(∣∣∇TA
t f

∣∣2) (x) dt

⎞⎠1/2

, f ∈ L2(Ω).

We emphasize that the definition of G̃A
U (f) features two different semigroups. Let us also 

remark that in principle we could replace Tt by a more general sub-Markovian semigroup.
From the classical formula for the heat kernel on Rd we notice that when Ω = Rd, we 

have

CAf � e1/8(4π)d/4 G̃Af (1.15)

pointwise on Rd. Conversely, a bit more work shows that the boundedness of CA on 
Lp(Rd) implies the boundedness of G̃A on the same space.

The following result of ours deals with the functional G̃A
U , which thus by (1.15) ma-

jorizes CA when Ω = Rd. Our theorem applies to arbitrary domains Ω, and, unlike most 
of the results cited above, features dimension-free estimates.

Theorem 1.5. Let U be as in Section 1.3. If A ∈ A(Ω) and p � 2 are such that A is p-
elliptic, then the modified square function G̃A

U is bounded on Lp(Ω). The norm estimates 
do not depend on the underlying dimension d.

Proof. Take f ∈ (Lp ∩ L2)(Ω) and write G = G̃A
U f . By duality, for s = (p/2)′ we have

‖G‖2
p =

∥∥G2∥∥
p/2 = sup

⎧⎨⎩∣∣∣ ˆ G2 · φ̄
∣∣∣ ; φ ∈ (Ls ∩ L2)(Ω), ‖φ‖s = 1

⎫⎬⎭ .
Ω
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Since the identity matrix is r-elliptic for any r � 1, see e.g. [21, Lemma 5.20], we may 
apply Theorem 1.1 with the triples of indices (p, p, s), matrices (A, A, I) and functions 
(f, f, φ̄). �
Remark 1.6. After the proofs of Theorems 1.1 and 1.5 were completed, the first two 
authors of the present paper realized that Theorem 1.5 could also be proven by a variant 
of a bilinear embedding based on a modification of the technique from [22]. This will be 
explained in their paper in preparation [17].

1.7.3. Kato–Ponce-type inequalities and Bessel–Sobolev algebras
It was proven in [21, Theorem 1.3], [34, Theorem 2] and [22, Lemma 17] that (TA

t )t>0
extends to a contractive analytic semigroup on L℘(Ω) whenever A is ℘-elliptic; see Propo-
sition 7.1 for a more explicit statement. In this section we slightly abuse the notation and 
maintain the symbol LA for the negative generator of (TA

t )t>0 in L℘(Ω). Let D℘(LA)
denote its domain. The generator LA is a sectorial operator (see [26], [35, Theorem II.4.6]
or [41] for references) on L℘(Ω) of angle < π/2, so

L℘(Ω) = N℘(LA) ⊕ R℘(LA),

where N℘(LA) and R℘(LA) denote the kernel (null space) and the range of the operator 
LA. Moreover, the projection QA

℘ onto N℘(LA) is given by QA
℘f = limt→+∞ TA

t f in 
L℘; see [26]. In particular, 

{
QA

℘ ; A is ℘-elliptic
}

is a consistent family of contractive 
projections. See [26, Theorem 3.8 and p. 63].

In order to simplify our proofs, we shall always assume that N2(LA) = {0}. Under this 
assumption, LA is thus an injective sectorial operator of angle ϑ ∈ (0, π/2) on L℘(Ω), 
provided that A is ℘-elliptic. Then the complex powers Lz

A are well defined on L℘(Ω)
for every z ∈ C; see [41, Section 3.2] or [62, Chapter 2, Section 7] for the construction.

Let A be ℘-elliptic. By [22, Theorem 3], LA admits a bounded H∞-calculus of angle 
< π/2 on L℘(Ω) in the sense of [26]. It follows that LA has bounded imaginary powers
(see [26] and [41, Proposition 3.5.5] for the main properties) on L℘(Ω) and there exist 
θ℘ ∈ (0, π/2) and C > 0 such that

∥∥Liu
A

∥∥
℘
� Ceθ℘|u|, ∀u ∈ R. (1.16)

See [26, Theorems 4.2 and 5.1].

Theorem 1.7 (Kato–Ponce-type inequality). Choose numbers p1, q1, p2, q2, r ∈ (1, ∞) and 
denote � = r′ = r/(r−1). Assume that 1/p1+1/q1 = 1/p2+1/q2 = 1/�. Suppose that A ∈
A(Ω) is max{p1, p2, q1, q2, r}-elliptic. Let β ∈ (0, 1/�). Then for all f ∈ Dp1(L

β
A) ∩Lp2(Ω)

and g ∈ Dq2(L
β
A) ∩ Lq1(Ω) we have fg ∈ D�(Lβ

A) and

‖Lβ
A(fg)‖� � ‖Lβ

Af‖p1‖g‖q + ‖f‖p ‖Lβ
Ag‖q2 .
1 2
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When Ω = Rd, the same conclusion holds under milder assumptions, namely, when the 
triplets (p1, q1, r) and (p2, q2, r) satisfy (�) from page 6.

The implied constants depend on β, p1, q1, p2, q2, r and ∗-ellipticity constants of 
A, B, C alluded to in the theorem’s assumptions.

The inequalities of the above kind, known also as fractional Leibniz rule, bear name 
after the classical 1988 paper by Kato and Ponce [43] and have since then been studied 
profusely. See e.g. Bernicot–Coulhon–Frey [11], Grafakos–Oh [40] and Li [47] for just a 
few of the very many recent works on the subject.

To the best of our knowledge, Theorem 1.7 is the first instance of a Kato–Ponce-
type inequality for general divergence-form operators with complex coefficients and on 
arbitrary open sets Ω, and thus the first one that relates p-ellipticity to this type of 
estimates. We emphasize that the condition it imposes (p-ellipticity) is algebraic and 
thus easy to verify. Together with other examples presented in this paper it suggests 
that the trilinear embedding and the route to its proof have a significant potential that 
might be explored in the future.

Remark 1.8. In Theorem 1.7 the upper bound β < 1/r′ is consistent with the up-
per bound α < p0/p, p0 = 2, in Bernicot and Frey [9, Theorem 1.3]. Note that in 
[9, Theorem 1.3] (restricted to the special case of divergence form operators on open 
sets satisfying the doubling condition) p0 = 2 corresponds to [9, (G2)]: the estimate 
supt>0

∥∥√t∇TA
t

∥∥
2 < +∞, which comes for free from the definition of LA by means of 

the sesquilinear form a and the analyticity of (TA
t )t>0 in L2.

1.8. Organization of the paper

Here is the summary of each section.

• In Section 2 we summarize some of the main notions needed in the paper.
• In Section 3 we state the main result regarding the Bellman function X.
• In Section 4 we discuss the building blocks of X, namely, the power functions.
• In Section 5 we define X and prove the theorem announced in Section 3.
• In Section 6 we prove the trilinear embedding for Rd.
• In Section 7 we prove the trilinear embedding for general Ω.
• In Section 8 we prove the Kato–Ponce inequality announced in Section 1.7.3.

2. More notation and preliminaries

For a1, a2 > 0 we write a1 � a2 if there is a constant c > 0 such that a1 � ca2. 
Similarly we define a1 � a2. If both a1 � a2 and a1 � a2, then we write a1 ∼ a2.
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If z = (z1, . . . , zd) ∈ Cd and w is likewise, we write

〈z, w〉Cd =
d∑

j=1
zjwj

and |z|2 = 〈z, z〉Cd .
Let N denote the set of all positive integers.

2.1. Real form of complex operators

We explicitly identify Cd with R2d as follows. For each d ∈ N consider the operator 
Vd : Cd → Rd ×Rd, defined by

Vd(ξ1 + iξ2) = (ξ1, ξ2).

Let N, d ∈ N. We define another identification operator,

WN,d : Cd × . . .×Cd︸ ︷︷ ︸
N times

−→ R2d × . . .×R2d︸ ︷︷ ︸
N times

,

by the rule

WN,d(ξ1, . . . , ξN ) =
(
Vd(ξ1), . . . ,Vd(ξN )

)
with ξj ∈ Cd for j = 1, . . . , N .

2.2. Gradient and Hessian forms

Let Ω ⊆ Rd be an open set and u : Ω → C. Following [36, Appendix A.3], we will 
denote by Du the gradient (∂x1u, . . . , ∂xd

u) of u, while D2u will denote the Hessian 
matrix of u, that is, the matrix of all second-order derivatives of u. We will also regard 
Du and D2u as sets of all first- and, respectively, second-order derivatives of u. In 
accordance with this notation we also have

|Du| =

⎛⎝ d∑
j=1

|∂xj
u|2

⎞⎠1/2

and likewise

∣∣D2u
∣∣ =

⎛⎝ d∑
|∂2

xjxk
u|2

⎞⎠1/2

.

j,k=1
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Sometimes we may also write Dju for ∂xj
u and similarly D2

jku for ∂2
xjxk

u.
When the entries of u are complex, that is, if function u is defined on a subset of CN , 

then by Du we mean 
[
D
(
u ◦W−1

N,1
)]

◦WN,1 and the same for D2u.

2.3. Generalized Hessians and generalized convexity

Given a matrix A ∈ Cd×d, we introduce, as in [21,22], its derived real (2d) × (2d)
matrix-form as follows:

M(A) =
[

ReA −ImA

ImA ReA

]
.

Let N, d ∈ N and Φ: CN → R of class C2. Choose and, respectively, denote

ω1, . . . , ωN ∈ C ω := (ω1, . . . , ωN )

X1, . . . , XN ∈ Cd X := (X1, . . . , XN )

A1, . . . , AN ∈ Cd×d A := (A1, . . . , AN ).

(2.1)

Following [21,22], we define the generalized Hessian form of Φ with respect to A as

HA
Φ [ω;X] =

〈[
D2Φ(ω) ⊗ IRd

]
WN,d(X), [M(A1) ⊕ . . .⊕M(AN )]WN,d(X)

〉
R2Nd .

We recall that D2Φ(ω) stands for the Hessian matrix of the function Φ ◦W−1
N,1 : (R2)N →

R, calculated at the point WN,1(ω) ∈ (R2)N .
Observe that

[M(A1) ⊕ . . .⊕M(AN )]WN,d(X) = WN,d (A1X1, . . . , ANXN ) .

In particular, when N = 1 we have the formula already stated in [21, (2.4)]:

Vd(Aξ) = M(A)Vd(ξ)

for A ∈ Cd×d and ξ ∈ Cd.
To shed more light onto the notion of HA

Φ , let us illustrate it in the special case N = 2. 
There, applying the block notation, we have

H
(A1,A2)
Φ [ω;X]

=
〈
D2Φ(ω)

⎡⎢⎢⎢⎣
ReX1
ImX1
ReX2
ImX2

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
ReA1 −ImA1
ImA1 ReA1

ReA2 −ImA2
ImA2 ReA2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ReX1
ImX1
ReX2
ImX2

⎤⎥⎥⎥⎦
〉

(Rd)4

.
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We say that Φ is convex with respect to A if HA
Φ [ω; X] � 0 for all ω, X.

The sharp condition (1.4) is equivalent to the strict generalized convexity of power 
functions Fp (see (4.1) for the definition), that is, to the (uniform) positivity HA

Fp
[ω; X]. 

Prior to [21], the importance of this positivity was recognized and studied in a few special 
cases: when A is either the identity [56,33], real accretive [32], of the form eiφI [19], or of 
the form eiφB with B real, constant and with a symmetric part which is positive definite 
[20]. Such problems are also related to similar questions considered earlier by Bakry; see 
[6, Théorème 6]. The paper [21] brought a systematic approach to convexity of power 
functions in presence of arbitrary uniformly strictly accretive complex matrix functions 
A. See also Section 4.

3. The Bellman function

Bellman functions have been a powerful tool in harmonic analysis since the 1980’s 
papers by Burkholder, e.g. [13,14]. The method was given a huge boost by the pioneering 
works by Nazarov, Treil and Volberg [54], who also gave it its name [55]. The exploration 
of heat flows associated with Bellman functions started in the works by Petermichl and 
Volberg [58] and Nazarov and Volberg [53]. See e.g. [21] for more recent references on 
the method and its applications.

We use a three-variable Bellman function found by the latter two authors of the 
present paper [44]. It is modeled over a two-variable Bellman function due to Nazarov 
and Treil [56]. Compared to [44, Theorem 1.1], the main novelty in the convexity estimate 
formulated here is the presence of complex elliptic matrices, as specified below.

Denote

Υ =
{
(u, v, w) ∈ C3 ; (uvw = 0) ∨ (|u|p = |v|q) ∨ (|u|p = |w|r) ∨ (|v|q = |w|r)

}
.

Theorem 3.1. Suppose that p, q, r ∈ (1, ∞) satisfy 1/p + 1/q + 1/r = 1 and Ω ⊆ Rd is 
open. Let the accretive matrices A, B, C : Ω → C satisfy (�) from page 6, that is, assume 
that:

• A is p-elliptic and (1 + p/q)-elliptic
• B is q-elliptic and (1 + q/p)-elliptic
• C is r-elliptic.

There exists a function X : C3 → R+ of class C1 on C3 and of class C2 on C3\Υ, 
such that:

a) for all u, v, w ∈ C,

X(u, v, w) � |u|p + |v|q + |w|r;
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b) for all u, v, w ∈ C,

|∂ūX|� (max {|u|p, |v|q, |w|r})1−1/p
,

|∂v̄X|� (max {|u|p, |v|q, |w|r})1−1/q
,

|∂w̄X|� |w|r−1

c) for almost every x ∈ Ω we have,

H
(A,B,C)(x)
X

[(u, v, w); (ζ, η, ξ)] � |w||ζ||η| (3.1)

for all (u, v, w) ∈ C3\Υ and (ζ, η, ξ) ∈
(
Cd

)3.

The implied constants depend on p, q, r and ∗-ellipticity constants of A, B, C alluded to 
in the theorem’s assumptions.

The theorem will be proven in Section 5. The crucial and the most difficult to verify 
is property c). As indicated above, we will prove that the function from [44] satisfies the 
above requirements, possibly after refining its parameters.

4. Power functions

For p > 0 and N ∈ N define the power function (by which we actually mean powers 
of the modulus) Fp : CN → [0, ∞) by

Fp(ζ) = |ζ|p. (4.1)

While these functions are, technically speaking, different for different values of the di-
mension N , we will use the same symbol Fp to denote all of them. We also set F0 = 1, 
where 1 denotes the constant function of value 1 on CN . These functions played a fun-
damental rôle in [16,19,22,20,21]. In fact, p-ellipticity was in [21] initially introduced as 
the (uniform strict) positivity of generalized Hessians of power functions on C; see [21, 
Remark 5.9]. Namely, the operator Ip : Cd → Cd, defined by

Ipξ = ξ + (1 − 2/p)ξ, (4.2)

which clearly features in (1.4) and (1.3), appeared as a result of our expressing the 
Hessian of Fp (as a function on C, that is, with N = 1) in an appropriate manner. See 
Lemma 4.4 for a more general statement. Here is the formula, first stated in [21, (5.5)], 
that for N = 1 directly relates D2Fp to Ip:

D2Fp(ζ)ξ = p2
|ζ|p−2 sign ζ · Ip(sign ζ̄ · ξ)
2
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for ζ ∈ C\{0} and ξ ∈ Cd. (Here sign z = z/|z|; furthermore, we implicitly identified Cd

with Rd ×Rd.) See also [16, Remark 2.4].
Recall that if f, g are complex functions on some sets X, Y respectively, then their 

tensor product f ⊗ g is the function on X×Y mapping (x, y) �→ f(x)g(y). In [19–21] the 
authors analyzed the heat flow associated with the Nazarov–Treil function Q introduced 
in [56]. Given that Q was a combination of tensor products Fp ⊗ 1, 1 ⊗ Fq and F2 ⊗
F2−q, where p, q are conjugate exponents, this eventually drew our attention to the 
power functions Fp. However, tensor products of power functions also represent the core 
of another Bellman function, namely, function X which was constructed by the latter 
two authors of the present paper in [44] and whose generalized convexity we study in 
Theorem 3.1. The main difference is that function X is a function of three complex 
variables and is made of tensor products of up to three power functions, while Q was a 
function of two variables made of tensor products of two power functions. This amounts 
to a significantly higher degree of complexity of X compared to Q.

We continue with lower estimates of generalized Hessians of (tensor products of) power 
functions. We single out the cases of 1, 2 or 3 factors, for they constitute the function 
X. In fact, it turns out that it is slightly more convenient to express X by means of the 
following multiples of power functions:

Gp(ζ) := |ζ|p
p

.

Likewise, in the context of power functions we find it fitting to renormalize the entries 
of generalized Hessians and work with a modified quantity defined as

H̃A
Φ [ω;X] := HA

Φ [ω; (ω1X1, . . . , ωNXN )] (4.3)

for ω, X, A as in (2.1). With this notation introduced, we are in a position to formulate 
the estimates that we will need in the proof of Theorem 3.1.

Proposition 4.1. [21, Corollary 5.10] For p > 0, u ∈ C\{0}, α ∈ Cd and A ∈ Cd×d we 
have

H̃A
Gp

[u;α] � p

2Δp(A)|u|p|α|2.

Proposition 4.2. For r, s > 0, u1, u2 ∈ C\{0}, α1, α2 ∈ Cd and A, B ∈ Cd×d we have

H̃
(A,B)
Gr⊗Gs

[(u1, u2); (α1, α2)]

� |u1|r|u2|s
rs

(
r2

2 Δr(A)|α1|2 + s2

2 Δs(B)|α2|2 − 2rsΛ(A,B)|α1||α2|
)
.

Proof. Follow the proof of [21, Corollary 5.12]. �
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By now we see how to generalize this to arbitrary N -tuples of Lebesgue exponents 
and matrix functions. Let us only explicate the case N = 3 which we will use in our 
proofs.

Proposition 4.3. For r, s, t > 0, u1, u2, u3 ∈ C\{0}, α1, α2, α3 ∈ Cd and A, B, C ∈ Cd×d

we have

H̃
(A,B,C)
Gr⊗Gs⊗Gt

[(u1, u2, u3); (α1, α2, α3)]

� |u1|r|u2|s|u3|t
rst

(
r2

2 Δr(A)|α1|2 + s2

2 Δs(B)|α2|2 + t2

2 Δt(C)|α3|2

− 2Λ(A,B,C) (rs|α1||α2| + rt|α1||α3| + st|α2||α3|)
)
.

Proof. The proof can be carried out very similarly to the proofs of [21, Corollary 5.10]
and [21, Corollary 5.12]. Alternatively, one can first establish the identity

H̃
(A,B,C)
Gr⊗Gs⊗Gt

[(u1, u2, u3); (α1, α2, α3)]

= |u1|r|u2|s|u3|t
2 Re

(
r2〈Aα1, Irα1〉Cd + rs〈Aα1, I∞α2〉Cd + rt〈Aα1, I∞α3〉Cd

+ rs〈Bα2, I∞α1〉Cd + s2〈Bα2, Isα2〉Cd + st〈Bα2, I∞α3〉Cd

+ rt〈Cα3, I∞α1〉Cd + st〈Cα3, I∞α2〉Cd + t2〈Cα3, Itα3〉Cd

)
and then simply use the definitions of the appropriate ellipticity constants. �
4.1. Generalized convexity of power functions in higher dimensions

Recall that the power functions Fp and the operators Ip were introduced in (4.1) and 
(4.2), respectively.

Lemma 4.4. [22, Lemma 8] Suppose that p > 1 and N, d ∈ N. Let ω, X, A be as in (2.1). 
Then, for ω �= 0,

HA
Fp

[ω;X] = |ω|p−2HA
Fp

[ω/|ω|;X]. (4.4)

In case when |ω| = 1 and ωj �= 0 for all j = 1, . . . , N we have, for Yj := ωj Xj, the 
following formulæ:
(I)

p−1HA
Fp

[ω;X] =
N∑

|ωj |−2 Re 〈AjYj , Yj〉 + (p− 2)
N∑

Re 〈AjYj ,ReYk〉

j=1 j,k=1
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(II)
p−1HA

Fp
[ω;X] =

N∑
j=1

(
|ωj |−2 − 1

)
Re 〈AjYj , Yj〉 + p

2

N∑
j=1

Re 〈AjYj , IpYj〉

+ (p− 2)
∑
j 
=k

Re 〈AjYj ,ReYk〉 .

We note that in the special case N = 1, Lemma 4.4 was proven earlier in [21, 
Lemma 5.6]. The case of foremost interest for us in this paper will be N = 3.

Corollary 4.5. [22, Corollary 9] Repeating the assumptions of Lemma 4.4 and introducing 
the notation

Δp(A) := min
j=1,...,N

Δp(Aj) and Λ(A) := max
j=1,...,N

Λ(Aj),

we have, for |ω| = 1 and p � 2,

p−1HA
Fp

[ω;X] � Δp(A)|X|2 − (p− 2)Λ(A)
∑
j 
=k

|ωj ||ωk||Xj ||Xk|.

We remarked at the beginning of Section 4 that, when N = 1 and A ∈ Cd×d, the 
A-convexity of Fp is closely related to the condition Δp(A) > 0; in fact, it is equivalent 
to Δp(A) � 0 [21, Proposition 5.8]. The case of N > 1 is in striking contrast with this: 
when N > 1, the power function Fp : CN → [0, ∞) may fail to be A-convex even if 
Δp(A) > 0; see [22, Example 7].

We may however fix this by perturbing the power function of ω ∈ CN by a sufficiently 
small linear combination of power functions of individual components of ω. This is the 
content of the following lemma. It extends [22, Section 4.3], where the case N = 2 was 
treated and proven in a different, more geometrically flavored manner. The lemma will 
be used in Section 7.

Lemma 4.6. If s > 2 and A := (A1, . . . , AN ) ∈
(
Cd×d

)N are such that Δs(A) > 0, then 
there exists c = c(s, A, N) > 0 such that the function Ps : CN → [0, ∞), defined as

Ps(u1, . . . , uN ) := Fs(u1, . . . , uN ) + c
N∑
j=1

Fs(uj), (4.5)

satisfies

HA
Ps

[u;X] � |u|s−2|X|2, ∀u ∈ CN , X ∈
(
Cd

)N
.

The implied constants depend on s, A and N . In particular, Ps is A-convex.
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Proof. For the moment we will assume just that c > 0; the range of admissible c’s will 
be getting restricted as the proof will progress.

We have, by Corollary 4.5 and (4.4),

HA
Ps

[u;X] � |u|s−2

⎛⎝|X|2 − σ
∑
j<k

|uj |
|u| · |uk|

|u| · |Xj | · |Xk|

⎞⎠ + c

N∑
j=1

|uj |s−2|Xj |2.

Here σ = σ(s, A) > 0.
By writing

vj := |uj |
|u| and yj := |Xj |

|X| ,

and using the trivial inequality

∑
j<k

(vjyj)(vkyk) �
N − 1

2

N∑
j=1

(vjyj)2,

we get

HA
Ps

[u;X] � |u|s−2|X|2
⎛⎝1 − (N − 1)σ

2

N∑
j=1

(vjyj)2 + c
N∑
j=1

vs−2
j y2

j

⎞⎠ .

Denote σ̃ := (N − 1)σ/2.
We see that it suffices to show the following: there exists c = c(s, A, N) > 0 such that

c
N∑
j=1

vs−2
j y2

j + 1
2 � σ̃

N∑
j=1

(vjyj)2

for all (v1, . . . , vN ), (y1, . . . , yN ) ∈ SN−1 ∩ [0, ∞)N .
If s � 4 then, since vj � 1, we have vs−2

j � v2
j , while for

T :=
N∑
j=1

(vjyj)2

we clearly obtain cT + 1/2 � σ̃T for c � σ̃.
If s > 4, write s − 2 = 2 + ε, where ε > 0. Since y2

1 + . . . + y2
N = 1, the elements {

y2
1 , . . . , y

2
N

}
represent a weighted counting measure on {1, . . . , N} of mass 1. Therefore, 

recalling that ε > 0, Hölder’s inequality gives

N∑
v2+ε
j y2

j �
(

N∑
v2
j y

2
j

)1+ε/2

.

j=1 j=1
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So it is enough to prove that there exists c > 0 such that cT 1+ε/2 + 1/2 � σ̃T for all 
T ∈ [0, 1]. An elementary analysis of the function f : [0, ∞) → R, defined by f(T ) :=
cT 1+ε/2 + 1/2 − σ̃T , confirms the existence of such c. �
4.2. Regularization

We would like to replace X by a function which satisfies the inequality c) of Theo-
rem 3.1 but is, in addition, also of class C2 everywhere on C3 (not only on C3\Υ). A 
standard way of achieving this involves mollifiers.

Fix N ∈ N and a radial function ϕ ∈ C∞
c (CN ) such that 0 � ϕ � 1, suppϕ ⊆

BCN (0, 1) and 
´
ϕ = 1. For ν ∈ (0, 1] and ω ∈ CN set ϕν(ω) = ν−2Nϕ(ω/ν). If Z :

CN → R is locally integrable, let the convolution Z ∗ ϕν : CN → R be defined for 
ω0 ∈ CN as

(Z ∗ ϕν)(ω0) =
ˆ

CN

Z(ω0 − ω)ϕν(ω) dω.

Explicit connection between this definition and the (perhaps slightly more standard) no-
tion of convolution on real euclidean spaces goes, as expected, through the identification
operator WN,1: if Ψ : CN → R, we define

ˆ

CN

Ψ(ω) dω :=
ˆ

R2N

(
Ψ ◦W−1

N,1

)
(x) dx.

We will frequently use the abbreviation Xν = X ∗ ϕν .
Taking Theorem 3.1 as a starting point and arguing as in [21, Section 5.1] we obtain 

the following estimates.

Corollary 4.7. Let X be as in Theorem 3.1. Then for any u, v, w ∈ C and ν ∈ (0, 1] we 
have:

a’)

Xν(u, v, w) � (|u| + ν)p + (|v| + ν)q + (|w| + ν)r;

b’)

|∂ūXν |� (max {(|u| + ν)p, (|v| + ν)q, (|w| + ν)r})1−1/p
,

|∂v̄Xν |� (max {(|u| + ν)p, (|v| + ν)q, (|w| + ν)r})1−1/q
,

|∂ X |� (|w| + ν)r−1;
w̄ ν
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c’) for A, B, C satisfying the ∗-ellipticity conditions as in Theorem 3.1 and almost every 
x ∈ Ω,

H
(A,B,C)(x)
Xν

[(u, v, w); (ζ, η, ξ)] � (|w| − ν)|ζ||η| ∀u, v, w ∈ C, ζ, η, ξ ∈ Cd.

The implied constants are the same as in the corresponding estimates of Theorem 3.1.

5. Proof of Theorem 3.1

We can assume that p � q. Indeed, suppose that in such a case the function X from 
Theorem 3.1 exists. Now take a triplet of exponents (p, q, r) with 1/p + 1/q + 1/r = 1
and 1 < p < q and a triplet of matrices (A, B, C) which together with (p, q, r) satisfy the 
assumptions of Theorem 3.1. It is easy to verify that in this case the desired function 
can be taken to be X(u, v, w) = X̃(v, u, w), where X̃ is a function which Theorem 3.1
gives in the case of the triplets (q, p, r) and (B, A, C). In particular,

H
(A,B,C)
X

[(u, v, w); (ζ, η, ξ)] = H
(B,A,C)
X̃

[(v, u, w); (η, ζ, ξ)].

So we assume that p � q. This implies p > 2, for 1 −2/p � 1 −1/p −1/q = 1/r > 0. As 
announced earlier, we will prove that the function from [44], constructed by the latter two 
authors of the present paper, can be marginally adapted so as to fit the requirements 
of Theorem 3.1. Before recalling the definition of the function and embarking on the 
proofs, let us introduce notation that we deem handy, since it simplifies the function’s 
coefficients.

For u ∈ C and p > 0 introduce the ad hoc notation

[u]p := |u|p
p

,

with [u] := [u]1 = |u|. Note that p has to be interpreted simply as the upper index in [u]p
and not as an exponent of a power. In other words, [u]p is not equal to the “pure power” 
|u|p, but rather to a renormalized version of it. This will not cause confusions and, after 
all, the distinction will only affect the coefficients of the function X below, making them 
appear more elegant. Also observe that, in fact, [u]p = Gp(u), with Gp defined as in the 
previous section.

Next, we present the function from [44].

5.1. Case p > q

Define

X(u, v, w) :=
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[u]p + D[v]q + E[w]r; |w|r � |v|q � |u|p,
[u]p + D[v]1+q/p[w] +

(
E − D

1 + q/p

)
[w]r; |v|q � |w|r � |u|p,

[u]1+p/q[w] + D[v]1+q/p[w] +
(
E − D + q/p

1 + q/p

)
[w]r; |v|q � |u|p � |w|r,

(1 − q/p)[u]2[v]1−q/p[w] +
(
D − 1 − q/p

2

)
[v]1+q/p[w]

+
(
E − D + q/p

1 + q/p

)
[w]r; |u|p � |v|q � |w|r,

(1 − q/p)[u]2[v]q−2q/p + [u]2[w]r−2r/p

+
(
D − 1 − q/p

2

)
[v]q + (E − 1/2)[w]r; |u|p � |w|r � |v|q ,

1/r
1 − 2/p

[u]p + (1 − q/p)[u]2[v]q−2q/p

+
(
D − 1 − q/p

2

)
[v]q + E[w]r; |w|r � |u|p � |v|q .

Remark 5.1. The function X admits a certain type of homogeneity, as explained below.
Write

U := [u]p, a := 1/p,

V := [v]q, b := 1/q,

W := [w]r, c := 1/r

and

Ω1 :=
{
(u, v, w) ∈ C3 ; |w|r � |v|q � |u|p} ,

Ω2 := { ; |v|q � |w|r � |u|p} ,
Ω3 := { ; |v|q � |u|p � |w|r} ,
Ω4 := { ; |u|p � |v|q � |w|r} ,
Ω5 := { ; |u|p � |w|r � |v|q} ,
Ω6 := { ; |w|r � |u|p � |v|q} .

Then we can observe that X(u, v, w) is a linear combination of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

U, V, W in Ω1,

U, V 1−cW c, W in Ω2,

U1−cW c, V 1−cW c, W in Ω3,

U2aV b−aW c, V 1−cW c, W in Ω4,

U2aV 1−2a, U2aW 1−2a, V, W in Ω5,

U, U2aW 1−2a, V, W in Ω6.

The above-said homogeneity is intended in the sense that the sum of exponents of any 
of the monomials above is always one. Consequently, we have

X
(
t1/pu, t1/qv, t1/rw

)
= tX(u, v, w)
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valid for any u, v, w ∈ C and t � 0.

One has

X(u, v, w) = 1
p
Ar,p,q(|w|, |u|, |v|),

where A = Ap,q,r (note the permutation of variables and indices) is the function from 
[44, p.464], with an adequate choice of its parameters A, B, C.

This function is of class C1 on C3 and of class C2 on the complement of Υ; see 
[44]. The properties a) and b) are rather straightforward to verify, therefore we focus on 
proving c). First we notice that the inequality (3.1) is equivalent to

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] � |u||v||w||α||β|. (5.1)

This is the inequality that we will actually be proving.
Using the estimates from Section 4 we want to choose coefficients D, E > 0, which 

may depend on p, q, r and all the ∗-ellipticity constants of A, B, C that were assumed to 
be positive in the formulation of Theorem 3.1, such that all of the coefficients above are 
positive and the estimate (5.1) holds in the interior of each of the six domains Ω1, . . . , Ω6. 
Note that we will not have positivity of all ellipticity constants of A, B, C appearing in 
the computation below. For instance, Δ1(C) is never positive [21], but the only control 
of this quantity we will need is that |Δ1(C)| is at most a constant times Λ(C).

Write

(A,B,C) := (|α|, |β|, |γ|)
(u, v,w) := (|u|, |v|, |w|).

Denote also Λ := Λ(A, B, C).

Domain #1: wr < vq < up
By combining (4.3) with Proposition 4.1 we have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] � pΔp(A)
2 upA2 + DqΔq(B)

2 vqB2 + ErΔr(C)
2 wrC2

�
√

DpqΔp(A)Δq(B)upvq AB + 0.

Taking into account the characteristic inequalities of the current subdomain, and recall-
ing that p � 2, gives

√
upvq = u · up(1/2−1/p)vq/2 � u · vq(1/2−1/p)vq/2 = u · v · vq/r � uvw.

Hence we proved

H̃
(A,B,C)[(u, v, w); (α, β, γ)] �

√
DpqΔp(A)Δq(B) uvwAB.
X
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Domain #2: vq < wr < up
By combining (4.3) and Propositions 4.1, 4.2, we obtain

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

� p

2Δp(A)upA2

+ Dv1+q/pw
( (1 + q/p)Δ1+q/p(B)

2 B2 − 2ΛBC + Δ1(C)
2(1 + q/p)C2

)
+

(
E − D

1 + q/p

)
r

2Δr(C)wrC2.

Recall that Δ1(C) � 0 always and that Δ1+q/p(B) > 0 by our assumption. Moreover, 
in the current domain we have v1+q/pw � wr. Hence we may continue as

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

� pΔp(A)
2 upA2 +

D(1 + q/p)Δ1+q/p(B)
2 v1+q/pwB2 (5.2)

− (2DΛ)v1+q/pwBC +
(
ErΔr(C)

2 − D(rΔr(C) + |Δ1(C)|)
2(1 + q/p)

)
v1+q/pwC2. (5.3)

The key term is the one containing B2. We will split it into a sum of two parts, by 
splitting the factor 1 + q/p in that term: one summand (for example, the one containing 
1) will be added to the bottom row (5.3) in order to make it nonnegative, while the 
other summand (containing q/p) will be left in the middle row (5.2) for the purpose of 
obtaining (5.1).

In the current domain we have

up−2 � wr(p−2)/p = wr(1/q−1/p) · w � v1−q/pw,

therefore

upv1+q/pw = up−2 ·
(
u2v1+q/pw

)
� (uvw)2.

Hence (5.2) can be estimated as

�
√

DqΔp(A)Δ1+q/p(B) uvwAB.

Regarding (5.3), when augmented by the other term with B2 and divided by v1+q/pw, 
it becomes

�
DΔ1+q/p(B)

B2 − (2DΛ)BC +
(
ErΔr(C) − D(rΔr(C) + |Δ1(C)|)

)
C2. (5.4)
2 2 2(1 + q/p)
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Clearly, if E is large enough, the above expression becomes nonnegative uniformly in 
B, C.

Domain #3: vq < up < wr

By combining (4.3) and Propositions 4.1, 4.2 we get

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

� u1+p/qw
( (1 + p/q)Δ1+p/q(A)

2 A2 − 2ΛAC + Δ1(C)
2(1 + p/q)C2

)
+ Dv1+q/pw

( (1 + q/p)Δ1+q/p(B)
2 B2 − 2ΛBC + Δ1(C)

2(1 + q/p)C2
)

+
(
E − D + q/p

1 + q/p

)
r

2Δr(C)wrC2.

Similarly as before, we actually estimate explicitly the terms with A2 and B2, while 
the terms containing C will just be dismissed as positive, which will be achieved by the 
splitting trick, used in domain #2, and the parameter E being sufficiently large. This 
means that we break up each of the terms containing A2 or B2 into a sum of two parts, 
by splitting the factors 1 + p/q and 1 + q/p in those terms, in the sense of treating each 
of the summands separately.

Parts of the terms with A2, B2 containing the summand 1 from 1 + p/q or 1 + q/p

will serve for dismissing the terms with C, for which we apply the estimates v1+q/pw �
u1+p/qw � wr.

On the other hand, parts of the terms with A2, B2 containing p/q resp. q/p will get 
estimated through the inequality u1+p/qv1+q/p � (uv)2 as follows:

w
2

(
p

q
Δ1+p/q(A)u1+p/qA2 + Dq

p
Δ1+q/p(B)v1+q/pB2

)
�

√
DΔ1+p/q(A)Δ1+q/p(B) uvwAB.

Domain #4: up < vq < wr

By combining (4.3) and Propositions 4.1, 4.2, 4.3, we have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

� u2v1−q/pw
2

[
2Δ2(A)A2 + (1 − q/p)2

2 Δ1−q/p(B)B2 + 1
2Δ1(C)C2

− 2Λ (2(1 − q/p)AB + 2AC + (1 − q/p)BC)
]

+
(
D − 1 − q/p

)
v1+q/pw

( (1 + q/p)Δ1+q/p(B)
B2 − 2ΛBC + Δ1(C) C2

)

2 2 2(1 + q/p)
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+
(
E − D + q/p

1 + q/p

)
r

2Δr(C)wrC2.

By using that in the current domain we have

u2v1−q/pw � uvw � v1+q/pw � wr,

let us rewrite the above estimate of H̃(A,B,C)
X

in a manner that focuses on the essential: 
for certain γ1, . . . , γ10 > 0, depending on p, q, r and the ∗-ellipticity constants of A, B, C, 
we have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

� γ1 u2v1−q/pw A2

+ (γ2D − γ3) v1+q/pw B2

+ (γ4E − γ5D − γ6) wr C2

− γ7 uvw AB

− γ8 u2v1−q/pw AC

− (γ9D + γ10) v1+q/pw BC.

In order to obtain (5.1) we first estimate

1
2

(
γ1 u2v1−q/pw A2 + (γ2D − γ3) v1+q/pw B2

)
�

√
γ1(γ2D − γ3)uvwAB.

Choose D large enough so that 
√
γ1(γ2D − γ3) > γ7. Since in the current domain we 

also have √
u2v1−q/pwr+1 � u2v1−q/pw√

v1+q/pwr+1 � v1+q/pw,

we may next choose E large enough so that, simultaneously,

1
2

(
γ1 u2v1−q/pw A2 + (γ4E − γ5D − γ6) wr C2

)
� γ8 u2v1−q/pw AC

1
2

(
(γ2D − γ3) v1+q/pw B2 + (γ4E − γ5D − γ6) wr C2

)
� (γ9D + γ10) v1+q/pw BC.

By combining all the above inequalities, we prove, for such choices of D and E, that

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] �
(√

γ1(γ2D − γ3) − γ7

)
uvwAB. (5.5)

Recall that, by our choice of D, the constant in parentheses is strictly positive.
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Domain #5: up < wr < vq
By combining (4.3) and Propositions 4.1 and 4.2, we obtain

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

� (1 − q/p)u2vq−2q/p
(

Δ2(A)
q − 2q/pA2 − 2ΛAB +

(q − 2q/p)Δq−2q/p(B)
4 B2

)
+ u2wr−2r/p

(
Δ2(A)
r − 2r/pA2 − 2ΛAC +

(r − 2r/p)Δr−2r/p(C)
4 C2

)
+

(
D − 1 − q/p

2

)
q

2Δq(B)vqB2

+ (E − 1/2) r2Δr(C)wrC2.

In the current domain we have wr � u2wr−2r/p. Furthermore, p > q implies that 
p > 2, therefore r − 2r/p > 0. Putting this together, we see that the sum of the third 
and the fifth line above is nonnegative for E sufficiently large.

Regarding the sum of the second and the fourth line, use that u2vq−2q/p � uv1+q/r �
vq, which returns (for E large as explained above),

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

� 1/q − 1/p
1 − 2/p Δ2(A)u2vq−2q/pA2 − 2Λ(1 − q/p)uv1+q/rAB

+ q

2

[(
D − 1 − q/p

2

)
Δq(B) −

(1 − q/p)(1 − 2/p)|Δq−2q/p(B)|
2

]
vqB2.

Since 
√

u2vq−2q/p · vq = uv1+q/r � uvw, the last two lines can be estimated as � uvwAB
if D is sufficiently large.

Domain #6: wr < up < vq
We have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)]

� 1/r
1 − 2/p · p2Δp(A)upA2

+ (1 − q/p)u2vq−2q/p
(

Δ2(A)
q − 2q/pA2 − 2ΛAB +

(q − 2q/p)Δq−2q/p(B)
4 B2

)
+

(
D − 1 − q/p

2

)
q

2Δq(B)vqB2

+ ErΔr(C)wrC2.
2
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The first and the last term on the right-hand side are positive by our assumptions, while 
the remaining two can be estimated exactly as in Domain #5, since we have the same 
expression and the relations between u, v are also the same.

5.2. Case p = q

Define

X(u, v, w) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[u]p + [v]p + E[w]r; |w|r � min{|u|p, |v|p},
[u]p + [v]2[w] + (E − 1/2)[w]r; |v|p � |w|r � |u|p,
[u]2[w] + [v]p + (E − 1/2)[w]r; |u|p � |w|r � |v|p,
[u]2[w] + [v]2[w] + (E − 1)[w]r; max{|u|p, |v|p} � |w|r.

This function is of class C1 on C3 and of class C2 outside of Υ. It satisfies estimates a) and 
b) of Theorem 3.1. Now let us prove c). This time we only have available the positivity of 
the following ∗-ellipticity constants: Δp(A), Δp(B), Δr(C) and, consequently, also that 
of Δ2(A), Δ2(B).

Domain #1: wr < min{up, vp}
We have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] � p

2Δp(A)upA2 + p

2Δp(B)vpB2 + Er

2 Δr(C)wrC2

� p
√

Δp(A)Δp(B)upvpAB + 0.

We conclude noting that up � u2w and vp � v2w.

Domain #2: vp < wr < up
We have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] � p

2Δp(A)upA2

+ 1
2 v2w

(
2Δ2(B)B2 − 4Λ(B,C)BC + Δ1(C)

2 C2
)

+
(
E − 1

2

)
r

2Δr(C)wrC2.

By the splitting trick and using that wr � v2w and upv2w � (uvw)2, we get the desired 
estimate for adequately large E.

Domain #3: up < wr < vp
This case is completely symmetric to the previous one (with respect to switching 

u ↔ v) and so is the desired conclusion, so there is nothing left to prove.
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Domain #4: max{up, vp} < wr

We have

H̃
(A,B,C)
X

[(u, v, w); (α, β, γ)] � (E − 1)r
2 Δr(C)wrC2

+ 1
2 u2w

(
2Δ2(A)A2 − 4Λ(A,C)AC + Δ1(C)

2 C2
)

+ 1
2 v2w

(
2Δ2(B)B2 − 4Λ(B,C)BC + Δ1(C)

2 C2
)
.

Again we split the two terms involving A2 and B2 into two halves. One part we estimate 
as

(
Δ2(A)u2A2 + Δ2(B)v2B2)w � 2

√
Δ2(A)Δ2(B) uvwAB.

The remaining parts of the terms involving A2 and B2 we add to the other terms so as 
to make them nonnegative for large E, just as we have been doing in the case p > q (this 
time we use that wr � max{u2w, v2w}).

The proof of Theorem 3.1 is now complete. �
Remark 5.2. Verification of convexity properties of the function X performed in Sec-
tions 5.1 and 5.2 can be automatized to a large extent using a computer algebra system. 
In fact, this has already been done in [44], but for a weaker (i.e., purely scalar) type 
of convexity (case A = B = C = I). In [44] a computer-based algebraic manipulation 
also helped in finding the exact formula for X(u, v, w). In the present paper we included 
the “manual” verification of the aforementioned properties in order to show that their 
checking is actually manageable without any aid of computer. This even resulted in our 
simplifying a few lengthy expressions from [44]. Still, we redid computer-based verifica-
tion for our own peace of mind.

5.3. Supplementary estimate

The next estimate reflects (i.e., is in the spirit of) [22, (30)]. It may be viewed as a 
supplement to Theorem 3.1. It will be used in Section 7.

Proposition 5.3. Function X admits the estimates

∣∣D2X(u, v, w)
∣∣ � v−(1−q/p)w

+ up/q + up−2

+ vq/p + vq−2 + vq(1−2/p) + v

+ wr−2 + wr(1−2/p) + w.

(5.6)
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Here, as before, (u, v, w) := (|u|, |v|, |w|).
The implied constants depend on p, q, r, A, B, C and their ∗-ellipticity constants.

Proof. As usual when dealing with X, one considers each of the six defining domains 
separately. We will present the complete proof in one of them only (case p > q, domain 
#2), as an exemplary sample; the others will be left out.

Recall that X is constituted of tensor products of power functions Fs(ζ) = |ζ|s with 
1, 2 or 3 nontrivial factors. Let us single out their estimates:

|D2Fp(u)| � up−2

|D2(Fp ⊗ Ft)(u, v)| � up−2vt + up−1vt−1 + upvt−2

|D2(Fp ⊗ Ft ⊗ Fs)(u, v, w)| � up−2vtws + up−1vt−1ws + up−1vtws−1

+ upvt−1ws−1 + upvt−2ws + upvtws−2.

Upper estimate of |D2X| in case p > q, domain #2.
Here we have vq < wr < up and X(u, v, w) is a linear combination of up, v1+q/pw and 

wr. We obtain

|D2X| � up−2 + (vq/p−1w + vq/p + v1+q/pw−1) + wr−2.

Use that in the given domain we have v1+q/pw−1 � wr−2. Consequently,

|D2X|� up−2 + vq/p + wr−2 + vq/p−1w.

Of course, other terms in (5.6) are contributions of analogous estimates in other 
regions. �
5.4. Auxiliary results on the Hölder triples of exponents

Here we gather a few simple results regarding the types of triples (p, q, r) that we are 
considering in this paper — that is, triples of numbers p, q, r ∈ (1, ∞) satisfying (1.7). 
Such (p, q, r) are said to be the Hölder triple of exponents or to fulfill the Hölder scaling 
condition.

The first two results below are motivated by the estimates of DX and D2X; see 
Theorem 3.1 (b) and Proposition 5.3, respectively. They have very similar proofs, so we 
will only prove the second one of these two.

Lemma 5.4. For a Hölder triple of exponents p, q, r ∈ (1, ∞) satisfying p � q denote

P := {p− 1, q − 1, r − 1, q(1 − 1/p), r(1 − 1/p), p(1 − 1/q), r(1 − 1/q)} .

Then
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maxP = max{p, r} − 1

minP = min{q, r} − 1.

Lemma 5.5. For a Hölder triple of exponents p, q, r ∈ (1, ∞) satisfying p � q denote

S := {p− 2, q − 2, r − 2, 1, q(1 − 2/p), r(1 − 2/p), p/q, q/p} .

Then

max S = max{p, r} − 2

min S = min{q, r} − 2.

Proof. Write M := max{p, r} and m := min{q, r}. Recall that p > 2, as we saw on page 
24. Similarly, m � 3 � M .

Let us start with the first identity. We have:

• q − 2 � p − 2 � max{p − 2, r − 2} = M − 2;
• q(1 − 2/p) � p(1 − 2/p) = p − 2 � M − 2;
• r(1 − 2/p) � M(1 − 2/M) = M − 2;
• q/p � 1 � p/q = p(1 − 1/p − 1/r) � M(1 − 1/M − 1/M) = M − 2. (♠)

By mirroring the above inequalities we prove the second identity. �
The last auxiliary result of this section will be used for the proof of Corollary 6.2

below.

Lemma 5.6. Take a Hölder triple of exponents p, q, r ∈ (1, ∞). Then

p, q, r, 1 + p/q, 1 + q/p ∈ [M ′,M ],

where M := max{p, q, r} and M ′ is the conjugate exponent of M .

Proof. Since the assumptions and the desired conclusions of the lemma are invariant 
under the reversal of p and q, we may assume that p � q.

From (♠) above we see that 2 � 1 +p/q � M − 1 < M . Since 1 + q/p is the conjugate 
exponent to 1 + p/q, it follows that M ′ � 1 + q/p � 2.

It remains to show that p, q, r ∈ [M ′, M ]. We prove this when M = p; the proof in the 
case M = r is identical. Since 1/p′ = 1/q+1/r, one gets 1/p′ > max{1/q, 1/r}, meaning 
that M ′ = p′ < min{q, r}. �
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5.5. More about the constants in Theorem 3.1

A scrutinous analysis of the proof of Theorem 3.1 reveals information on the growth 
of constants there. We record some of these pieces of information here, as we may need 
them later.

Proposition 5.7. Let X be the Bellman function from Section 5.1 adapted to the case 
p > q and D, E the parameters that appear in its definition. The estimates of X, as 
specified in Theorem 3.1, involve constants that can be bounded as follows:

• in a),

X � 1
p
|u|p + D

q
|v|q + E

r
|w|r; (5.7)

• in c),

H
(A,B,C)
X

�
(√

α1D − α2 − α3

)
|w||ζ||η|,

where the constants α1,2,3 are all positive and depend on p, q and the ∗-ellipticity and 
L∞ constants of A, B, while D is chosen in a manner such that 

√
α1D − α2−α3 > 0. 

For example,

D = Dp,q,A,B = α2 + (α3 + 1)2

α1
, (5.8)

making 
√
α1D − α2 − α3 = 1. Such a choice is possible if E is large enough.

Assume that E is admissible in the sense of X satisfying the conclusions of Theo-
rem 3.1. Then for any 0 < δ � 1, the constant δ−1E is admissible if we replace the triple 
(A, B, C) by (A, B, δC).

In the special case C = I, we may arrange for E to stay bounded as we move r → ∞
in the sense of sending ε → 0 in (1.10).

Proof. Consider each of the six domains separately and put together the calculations 
performed there. For parts (a) and (c) they can be done rather easily. The size of E is 
mostly determined by the requirement that the “discarded” terms in the calculation of 
D2X in each of the six subdomains – indeed be positive. For example, in the subdomain 
Ω4, the identity (5.8) reflects (5.5) from page 29.

For the sake of completeness, we will present the proof of (5.7) in subdomain Ω4 where 
the function X is defined as

X(u, v, w) =1 |u|2|v|1−q/p|w| + 1
(
D − 1 − q/p

)
|v|1+q/p|w|
2 1 + q/p 2
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+
(
E

r
− D + q/p

r(1 + q/p)

)
|w|r.

We can apply Young’s inequality to get

|u|2|v|1−q/p|w| � 2
p
|u|p +

(
1
q
− 1

p

)
|v|q + 1

r
|w|r

|v|1+q/p|w| �
(

1 − 1
r

)
|v|q + 1

r
|w|r

and hence

X(u, v, w) � 1
2 · 2

p
|u|p +

[
1
2

(
1
q
− 1

p

)
+ 1

1 + q/p

(
D − 1 − q/p

2

)
·
(

1 − 1
r

)]
|v|q

+
[

1
2r + 1

r(1 + q/p)

(
D − 1 − q/p

2

)
+ E

r
− D + q/p

r(1 + q/p)

]
|w|r

= 1
p
|u|p + D

q
|v|q + E

r
|w|r,

which gives us exactly (5.7). All the other subdomains are treated in a similar way.
Let us now address the second statement. Again we present the proof in the case of 

only one subdomain, namely, Ω2. The principle that works there also applies to other 
subdomains.

Starting from (5.4), in order for it to become nonnegative, we see that it suffices for 
E to satisfy the inequality(

ErΔr(C) − D(rΔr(C) + |Δ1(C)|)
1 + q/p

)
Δ1+q/p(B) � 4DΛ2. (5.9)

Replace C by δC, write Eδ for the corresponding constant (that we are looking for), and 
notice that Δs(δC) = δΔs(C) for δ > 0. Eventually we get

δ

(
EδrΔr(C) − D(rΔr(C) + |Δ1(C)|)

1 + q/p

)
Δ1+q/p(B) � 4DΛ2.

At the same time we have δ < 1, therefore it is sufficient to have the following inequality:(
δEδrΔr(C) − D(rΔr(C) + |Δ1(C)|)

1 + q/p

)
Δ1+q/p(B) � 4DΛ2.

But this is exactly (5.9) for Eδ = δ−1E.
In fact we also used that for δ ∈ (0, 1] we have Λ(A, B, δC) � Λ(A, B, C).
Regarding the case C = I, the crucial observation is that in the inequalities deter-

mining E, we have r, Δr(C) appearing only as the product rΔr(C); see (5.9) for the 
situation in the subdomain Ω2, for example. But for r � 2 we have rΔr(I) = 2, [21, 
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(5.18)], which of course stays bounded as r → ∞. Finally use that Δs(A) depends on s
in a continuous manner. �
6. Proof of Theorem 1.1 for Ω = Rd

As noted on page 4, in case of Ω = Rd we have U = V = W = H1
0 (Rd) = H1(Rd), 

so that there we may drop the symbol for space from the notation for operators and 
semigroups. That is, we will write LA instead of LA,U and TA

t instead of TA,U
t , and the 

same for other operators and semigroups.
We closely follow [21, Section 6]. We will for the moment assume that the entries of 

A, B, C are bounded C1 functions with bounded derivatives. Once the proof for smooth 
A, B, C is over, we will apply the regularization argument from [21, Appendix] to pass 
to the case of arbitrary (nonsmooth) A, B, C. Also, we will initially work with f, g, h ∈
C∞

c (Rd) and then pass to f, g, h as in the formulation of Theorem 1.1.

The heat flow

Let X be as in Theorem 3.1. Here we use the ∗-ellipticity assumptions on A, B, C. 
Take f, g, h ∈ C∞

c (Rd). Suppose that ψ ∈ C∞
c (Rd) is radial, ψ ≡ 1 in the unit ball, 

ψ ≡ 0 outside the ball of radius 2, and 0 < ψ < 1 elsewhere. For R > 0 define the dilates 
ψR(x) := ψ(x/R).

Let ϕν be as in Section 4.2. Abbreviate X∗ϕν = Xν and γt = (TA
t f, TB

t g, TC
t h). With 

these choices made and fixed, define for t � 0 the quantity ER,ν by

ER,ν(t) =
ˆ

Rd

ψR ·Xν(γt) .

This flow is regular [21, Section 4.1]. Fix T > 0. We want to estimate the integral

−
T̂

0

E′
R,ν(t) dt (6.1)

from above and below.

Upper estimate of the integral (6.1)

Corollary 4.7 (a) leads to

−
T̂

E′
R,ν(t) dt � ER,ν(0)
0
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=
ˆ

Rd

ψR ·Xν(f, g, h)�
ˆ

Rd

ψR [(|f | + ν)p + (|g| + ν)q + (|h| + ν)r] .

By the Lebesgue dominated convergence theorem we may send first ν → 0 and then 
R → ∞ and obtain

lim sup
R→∞

lim sup
ν→0

⎛⎝−
T̂

0

E′
R,ν(t) dt

⎞⎠ � ‖f‖pp + ‖g‖qq + ‖h‖rr . (6.2)

Lower estimate of the integral (6.1)

Recall the differential operators

∂z = ∂x − i∂y
2 and ∂z̄ = ∂x + i∂y

2 .

For R > 0 define ωR =
{
x ∈ Rd ; R � |x| � 2R

}
, so that supp ∇ψR ⊆ ωR. By apply-

ing [21, Proposition 4.3] and Corollary 4.7 (c) we obtain

−
T̂

0

E′
R,ν(t) dt �

T̂

0

ˆ

Rd

ψR(|TC
t h| − ν)|∇TA

t f ||∇TB
t g|

+ 2Re
T̂

0

ˆ

ωR

(
[(∂ūXν) ◦ γ] ·

〈
∇ψR, A∇TA

t f
〉
Cd

+ [(∂v̄Xν) ◦ γ] ·
〈
∇ψR, B∇TB

t g
〉
Cd + [(∂w̄Xν) ◦ γ] ·

〈
∇ψR, C∇TC

t h
〉
Cd

)
.

(Note that the assumption on the entries of A, B, C being C1 with bounded derivatives 
was used in order to justify applying [21, Proposition 4.3].) We would like to study 
this inequality as ν → 0 and R → ∞. Since X is of class C1, we have ∂ūXν → ∂ūX, 
∂v̄Xν → ∂v̄X and ∂w̄Xν → ∂w̄X pointwise on C3, as ν → 0.

Recall the estimates of Corollary 4.7 (b). Thus, by using [21, Lemma 6.1] and the 
dominated convergence theorem,

lim inf
ν→0

⎛⎝−
T̂

0

E′
R,ν(t) dt

⎞⎠ �
T̂

0

ˆ

Rd

ψR|∇TA
t f ||∇TB

t g||TC
t h|

+2 Re
T̂

0

ˆ

ωR

(
[(∂ūX) ◦ γ] ·

〈
∇ψR, A∇TA

t f
〉
Cd

+ [(∂v̄X) ◦ γ] ·
〈
∇ψR, B∇TB

t g
〉

d + [(∂w̄X) ◦ γ] ·
〈
∇ψR, C∇TC

t h
〉

d

)
.

C C
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Hence, by Theorem 3.1 (b), the second part of [21, Lemma 6.1] and Fatou’s lemma,

lim inf
R→∞

lim inf
ν→0

⎛⎝−
T̂

0

E′
R,ν(t) dt

⎞⎠�
T̂

0

ˆ

Rd

|∇TA
t f ||∇TB

t g||TC
t h|. (6.3)

Summary (for smooth A, B, C)

The combination of (6.2) and (6.3) immediately gives

T̂

0

ˆ

Rd

|∇TA
t f ||∇TB

t g||TC
t h| � ‖f‖pp + ‖g‖qq + ‖h‖rr .

Now replace f, g, h by a1f, a2g, a3h where aj are positive numbers such that a1a2a3 = 1. 
After minimizing over all triples (a1, a2, a3) as above and applying Lemma 6.1 below, we 
get

T̂

0

ˆ

Rd

|∇TA
t f ||∇TB

t g||TC
t h| � ‖f‖p ‖g‖q ‖h‖r .

At this point send T → ∞ and use the monotone convergence theorem. This gives the 
trilinear embedding for smooth A, B, C.

Proof for nonsmooth A, B, C

In order to extend the trilinear embedding to arbitrary (nonsmooth) A, B and C, we 
adapt the argument from [21, Section 6] as follows. We shall assume the notation from 
[21, Appendix].

Suppose that A, B, C satisfy conditions (�) of Theorem 1.1 and let Aε, Bε, Cε be their 
smooth approximations as in [21, Section A.1]. It follows from [21, Lemma A.5 (iv)] that, 
for sufficiently small ε > 0, matrices Aε, Bε, Cε also satisfy (�). We will work with such 
ε.

Denote

f̃A(x, t) :=
(
PA
t f

)
(x).

Choose 0 < a < b < ∞. Applying the Minkowski’s integral inequality to the second 
identity from the proof of [21, Lemma A.4] gives∥∥∥∇xf̃

A −∇xf̃
Aε

∥∥∥
2 d
L (R ×(a,b))
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= 1
2π

⎛⎜⎝ ˆ

Rd×(a,b)

∣∣∣∣∣∣
ˆ

γ

e−tζ∇U(ε, ζ)f(x) dζ

∣∣∣∣∣∣
2

dx dt

⎞⎟⎠
1/2

� 1
2π

ˆ

γ

⎛⎜⎝ ˆ

Rd×(a,b)

∣∣e−tζ∇U(ε, ζ)f(x)
∣∣2 dx dt

⎞⎟⎠
1/2

d|ζ|

= 1
2π

ˆ

γ

⎛⎝ bˆ

a

e−2tRe ζ dt

⎞⎠1/2 ⎛⎝ ˆ

Rd

|∇U(ε, ζ)f(x)|2 dx

⎞⎠1/2

d|ζ|.

Write

F (δ) = Fa,b(δ) :=
bˆ

a

e−2tδ dt.

Of course, F is a continuous function on R that can be expressed explicitly. On the other 
hand, by [21, Lemma A.1] we have

⎛⎝ ˆ

Rd

|∇U(ε, ζ)f(x)|2 dx

⎞⎠1/2

� ‖MA−Aε
T0(ζ)f‖L2(Rd) ,

with implicit constants depending on A. Therefore∥∥∥∇xf̃
A −∇xf̃

Aε

∥∥∥
L2(Rd×(a,b))

�
ˆ

γ

√
F (Re ζ) ‖MA−Aε

T0(ζ)f‖L2(Rd) d|ζ|. (6.4)

Since Λ(A), Λ(Aε) � Λ, we have

‖MA−Aε
T0(ζ)f‖L2(Rd) � ‖T0(ζ)f‖L2(Rd) � |ζ|−1/2‖f‖L2(Rd)

as in [21, proof of Lemma A.4]. Hence the integrands in (6.4) admit, uniformly in 
ε > 0, the majorant 

√
F (Re ζ)/|ζ|, which belongs to L1(γ, d|ζ|). Thus we may use 

Lebesgue’s dominated convergence when passing ε → 0. Since for ζ ∈ γ we have 
‖MA−Aε

T0(ζ)f‖L2(Rd) → 0 as ε → 0 [21, proof of Lemma A.4], we conclude that

lim
ε→0

∥∥∥∇xf̃
A −∇xf̃

Aε

∥∥∥
L2(Rd×(a,b))

= 0.

In a similar fashion we show that

lim
∥∥∥f̃A − f̃Aε

∥∥∥
2 d

= 0.

ε→0 L (R ×(a,b))
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That is,

f̃A = lim
ε→0

f̃Aε in H1(Rd × (a, b)
)
.

Of course, the same is valid for B, Bε and C, Cε.
Now a standard theorem in measure theory implies that there exists a sequence (εl)l∈N

such that f̃Aεl → f̃A and ∇f̃Aεl → ∇f̃A as l → ∞ almost everywhere on Rd × (a, b), 
and the same for (B, g) and (C, h). Consequently, Fatou’s lemma gives

bˆ

a

ˆ

Rd

|∇TA
t f ||∇TB

t g||TC
t h|dx dt � lim inf

l→∞

bˆ

a

ˆ

Rd

|∇T
Aεl
t f ||∇T

Bεl
t g||TCεl

t h|dx dt

� lim inf
l→∞

∞̂

0

ˆ

Rd

|∇T
Aεl
t f ||∇T

Bεl
t g||TCεl

t h|dx dt.

Recall that we have already established the trilinear embedding for triples of smooth 
matrices and that Δs(Aε) → Δs(A) as ε → 0 [21, Lemma A.5 (iv)]. Passing a → 0 and 
b → ∞ finishes the proof of Theorem 1.1 for functions in f, g, h ∈ C∞

c . It remains to 
prove it for a larger class of functions, as specified in the formulation of the theorem.

6.1. Proof for arbitrary f, g, h

We assume that the trilinear embedding (1.8) holds for triples of functions from 
C∞

c (Rd). Take f ∈
(
Lp ∩ L2) (Rd). Let 

(
fn

)
n∈N be such a sequence in C∞

c (Rd) that 
fn → f in both Lp and L2. (Scrutinous reading of the proof of convergence in a 
single Lr reveals that simultaneous convergence in a pair of Lebesgue spaces may be 
achieved.) By the bilinear embedding theorem [21, Theorem 1.1] on L2 ×L2 we conclude 
that 

(
∇f̃A

n

)
n∈N is a Cauchy sequence in L2(Rd × (0, ∞)

)
. Therefore it is Cauchy in 

H = HM := L2(Rd × (0, M)
)

for every fixed M > 0. Consequently, there exists Ψ ∈ H

such that ∇f̃A
n → Ψ in H as n → ∞. At the same time we know that the semigroup 

(TA
t f)t>0 is contractive on L2(Rd), which implies that f̃A

n → f̃A in H as n → ∞. Here 
we use that we work on Rd × (0, M) instead of working on Rd × (0, ∞) straight away. 
Hence 

(
f̃A
n

)
n∈N is a Cauchy sequence in H1(Rd× (0, M)

)
. By using completeness of H1, 

the fact that convergence in H1 implies convergence in H and, once again, that f̃A
n → f̃A

in H, we conclude that f̃A
n → f̃A in H1(Rd × (0, M)

)
. In particular, ∇f̃A

n → ∇f̃A in 
H. Now a standard theorem provides the existence of an increasing sequence of positive 
integers (nk)k∈N so that

a.e. (x, t) ∈ Rd × (0,M) :
{

f̃A
nk

→ f̃A

∇f̃A → ∇f̃A
as k → ∞. (6.5)
nk
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Of course, we can analogously find gn, hn ∈ C∞
c (Rd) and arrange that (6.5) also holds 

(for the same subsequence) for (g, B) and (h, C). Now use that

M̂

0

ˆ

Ω

∣∣∇TA
t fn

∣∣ ∣∣∇TB
t gn

∣∣ ∣∣TC
t hn

∣∣ dx dt � ‖fn‖p ‖gn‖q ‖hn‖r ,

apply (6.5), Fatou’s lemma and the fact that fn → f in L2(Rd) and the same for g, h. 
Since the implied constants do not depend on M , we may finally send M → ∞ and 
complete the proof of Theorem 1.1 for f ∈ Lp ∩ L2, g ∈ Lq ∩ L2 and h ∈ Lr ∩ L2. �
Lemma 6.1. Suppose that the numbers p1, . . . , pn > 1 are related by

1
p1

+ . . . + 1
pn

= 1.

Then for every sequence f1, . . . , fn > 0 we have

min

⎧⎨⎩
n∑

j=1
(ajfj)pj ; a1, . . . , an > 0,

n∏
j=1

aj = 1

⎫⎬⎭ =
n∏

j=1
p
1/pj

j fj .

Proof. The lemma follows from Young’s inequality and, on the other hand, the choice of

aj =

(∏n
k=1 p

1/pk

k fk
)1/pj

p
1/pj

j fj

which confirms that the minimum is actually attained. �
Let us finally prove that the assumptions (�) of Theorem 1.1, pertaining to the case 

Ω = Rd, are indeed milder than A, B, C ∈ Amax{p,q,r}(Rd), as indicated in the formula-
tion of Theorem 1.1. As a matter of fact, this is a quick consequence of Lemma 5.6.

Corollary 6.2. Let p, q, r ∈ (1, ∞) be such that 1/p + 1/q + 1/r = 1. If A is max{p, q, r}-
elliptic, then A is t-elliptic for any t ∈ {p, q, r, 1 + p/q, 1 + q/p}.

Proof. This follows from Lemma 5.6 and the fact that Δt(A) is invariant under conju-
gation of t and, as a function of t, decreases on [2, ∞). �

The proof of Theorem 1.1 for Ω = Rd is now complete.

7. Proof of Theorem 1.1 for general Ω

For the sake of simplifying the notation, we will only prove the theorem in the case 
when U = V = W . The proof of the general case is exactly the same. Consequently, we 
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will again omit writing U , V , W in the notation, just like we did in Section 6. We will 
occasionally abbreviate A = (A, B, C).

We first remark that in order to pass from Rd to arbitrary open sets there, we cannot 
merely imitate Section 6. The reason is explained in [22, Section 1.4]. Instead, here we 
closely follow [22], adapting the argument there to the current trilinear context. Hence 
in this section we will always assume that Ω ⊆ Rd is open and U is one of the subspaces 
of Section 1.3.

We first recall a basic result on Lp extensions of semigroups (TA
t )t>0.

Proposition 7.1. [22, Lemma 17] Let s � 2 and A ∈ As(Ω). There exists ϑ = ϑ(s) ∈
(0, π/2) such that (TA

t )t>0 for any ℘ ∈ [s′, s] extends to a semigroup which is analytic 
and contractive in L℘(Ω) in the cone {z ∈ C \ {0} ; | arg z| < ϑ}. We denote the negative 
generator of (TA

t )t>0 on L℘ by L(℘)
A .

Let us start with a reduction in the spirit of [22, Section 6.1].

Proposition 7.2. Suppose that A, B, C, p, q, r are as in the formulation of Theorem 1.1
and X = X(u, v, w) as in Theorem 3.1. Assume that

ˆ

Ω

|∇f| |∇g| |h| � Re
ˆ

Ω

(
∂uX (f, g, h)LAf + ∂vX (f, g, h)LBg + ∂wX (f, g, h)LCh

)
(7.1)

for f ∈ D(LA), g ∈ D(LB), h ∈ D(LC) such that f, g, h, LAf, LBg, LCh ∈
(
Lp ∩ Lp′ ∩

Lr
)
(Ω). Then the statement of Theorem 1.1 holds.

Proof. By symmetry it is enough to prove Theorem 1.1 for p � q. Let f, g, h ∈
(
Lp ∩

Lp′ ∩Lr
)
(Ω). This intersection is contained in Lq (cf. the end of the proof of Lemma 5.6).

Define γ : [0, ∞) → C3 by

γt = γ(t) :=
(
TA
t f, TB

t g, TC
t h

)
and E : [0, ∞) → [0, ∞) by

E(t) =
ˆ

Ω

X(γt).

Recall that Δp′(A) = Δp(A). Theorem 3.1 (b) and Proposition 7.1 imply that E is well 
defined, continuous on [0, ∞), differentiable on (0, ∞) with a continuous derivative and

−E′(t) = 2 Re
ˆ (

∂uX(γt)LAT
A
t f + ∂vX(γt)LBT

B
t g + ∂wX(γt)LCT

C
t h

)
; (7.2)
Ω
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see [21, Proposition 4.3] or [22, Section 6.1]. Since E is nonnegative and γ(0) = (f, g, h), 
we have, by Theorem 3.1 (a),

−
∞̂

0

E′(t) dt � E(0) =
ˆ

Ω

X(f, g, h)� ‖f‖pp + ‖g‖qq + ‖h‖rr . (7.3)

Analyticity of the semigroups yields TA
t f ∈ D

(
L

(p)
A

)
∩D

(
L

(p′)
A

)
∩D

(
L

(r)
A

)
, and the same 

for (g, B) and (h, C). By consistency of the semigroups and Hölder’s inequality, we have

D
(
L

(p)
A

)
∩D

(
L

(p′)
A

)
∩D

(
L

(r)
A

)
⊆ D

(
L

(2)
A

)
⊆ U

and the same for B, C. Therefore we may apply (7.1) with (f, g, h) =
(
TA
t f, TB

t g, TC
t h

)
=

γt. Together with (7.2) and (7.3) we then obtain

∞̂

0

ˆ

Ω

∣∣∇TA
t f

∣∣ ∣∣∇TB
t g

∣∣ ∣∣TC
t h

∣∣ dx dt � ‖f‖pp + ‖g‖qq + ‖h‖rr .

Using again Lemma 6.1 completes the proof of Theorem 1.1 for f, g, h ∈
(
Lp ∩ Lp′ ∩

Lr
)
(Ω).

In order to pass to f ∈ Lp ∩ L2, g ∈ Lq ∩ L2 and h ∈ Lr ∩ L2, we argue just as in 
Section 6.1, that is, by considering triples from C∞

c (Ω), only replacing [21, Theorem 1.1]
by [22, Theorem 2]. �

We will thus focus on proving (7.1). Given functions f, g, h, denote

L (X)(f, g, h) = Re
ˆ

Ω

(
(∂uX) (f, g, h)LAf+(∂vX) (f, g, h)LBg+(∂wX) (f, g, h)LCh

)
.

(7.4)
Proving (7.1) thus means proving

ˆ

Ω

|∇f| |∇g| |h| � L (X)(f, g, h) (7.5)

for f ∈ D(LA), g ∈ D(LB), h ∈ D(LC) such that f, g, h, LAf, LBg, LCh ∈
(
Lp ∩ Lp′ ∩

Lr
)
(Ω).

7.0. Scheme of the proof of (7.1)

Our plan is to start with the right-hand side of (7.1), integrate by parts in the sense of 
(1.6), arrive at the (generalized) Hessian form of X, and finally use convexity properties 
of X (Theorem 3.1). When doing so we will encounter several technical obstacles which 
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we will tackle one by one, each time by approximating the integrand with an adequately 
constructed sequence of functions. As said before, our inspiration for this part of the 
paper is [22].

7.1. First approximation

In order to apply integration by parts (1.6) to the right-hand side of (7.1), we must 
have (∂uX)(f, g, h) ∈ U and the same for ∂vX, ∂wX. In particular, these functions should 
belong to H1(Ω). Moreover, we would like to apply the chain rule to ∇[(∂uX)(f, g, h)]
and obtain the Hessian matrix of X. Based on standard results regarding the chain rule 
for Sobolev functions, we would for that purpose need ∇u,v,wX to be of class C1. Hence 
we first replace X by its smooth version.

Let ϕν be as in Section 4.2. For the reasons just explained, one could try to replace 
L (X) by L (X ∗ ϕν) and then terminate the approximation by sending ν → 0.

7.2. Second approximation

We want to integrate by parts as in (1.6), but we still cannot prove that ∂u,v,w(X ∗
ϕν)(f, g, h) ∈ U . The problem is that ∂u,v,w(X ∗ ϕν)(f, g, h) is not a Lipschitz function; 
see [22, proof of Lemma 19] or [34, Lemma 4] cited there. In order to fix this, we multiply 
X ∗ ϕν by compactly supported smooth functions which are identically equal to 1 on 
gradually larger sets.

Thus, choose a radial function ψ ∈ C∞
c (C3) such that ψ � 0, ψ = 1 on {|ω| � 3} and 

ψ = 0 on {|ω| > 4}. For n ∈ N define ψn(ω) = ψ(ω/n). We try to consider the flow

L (ψn · (X ∗ ϕν)) (f, g, h)

and then send n → ∞ and ν → 0.

7.3. Third approximation

As explained earlier and demonstrated in the proof of the case Ω = Rd (Section 6), 
the gist of our method is the (global) quantitative generalized convexity – that is, lower 
estimates of generalized Hessians – of X and its approximations. For X, this convexity 
is made explicit in Theorem 3.1 (c). In case of X ∗ϕν we have a very similar estimate in 
Corollary 4.7 (c). However, if we pass to ψn · (X ∗ ϕν), then we quickly see that in the 
domain where ψn is not (locally) constant, which is {3n < |ω| < 4n}, this estimate might 
break. This problem was already encountered in [22] where we considered a two-variable 
function Q instead of X. There we solved it by adding to ψn · (Q ∗ ϕν) a perturbation 
comprising power function in several variables and a correction factor (νq−2). The size of 
that correction factor was determined on the basis of upper L∞ estimates of the Hessian 
of ψn · (Q ∗ ϕν) for |ω| ∼ n, see [22, (34)].
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However, as said before, in [22] we dealt with a different Bellman function. That 
is, working with X calls for a new set of estimates. Assessing the magnitude of ∥∥D2 [ψn · (X ∗ ϕν)]

∥∥
∞ for |ω| ∼ n requires some effort. We do that next and summa-

rize the outcome in Corollary 7.7.
Let s+ := max{s, 0} denote the positive part of the real number s.

Lemma 7.3. Let ν ∈ (0, 1] and α ∈ R. Denote Φα := Fα⊗1 ⊗1, that is, Φα : C3 → [0, ∞)
acts as Φα(u, v, w) = |u|α. If α > −2 (so that Φα ∈ L1

loc) then for ω = (u, v, w) ∈ C3 we 
have

|(Φα ∗ ϕν) (ω)| � να + |u|α+ .

If −2 < β < 0 and Ψβ := F1 ⊗ Fβ ⊗ 1, then

|(Ψβ ∗ ϕν) (ω)| � νβ (|u| + 1) .

Proof. The proof is an adaptation of the proof of [22, Lemma 14]. Let N = 3. Then we 
have

ˆ

CN

|u′|αϕν(u− u′, y − y′) du′ dy′

= ν−2
ˆ

C

|u′|α
⎡⎣ν−2(N−1)

ˆ

CN−1

ϕ

(
u− u′

ν
,
y − y′

ν

)
dy′

⎤⎦ du′

= ν−2
ˆ

C

|u′|α
ˆ

CN−1

ϕ

(
u− u′

ν
, z′

)
dz′ du′

= να
ˆ

{|u′′−u/ν|<1}

|u′′|α
ˆ

{|z′|<1}

ϕ (u/ν − u′′, z′) dz′ du′′

� να ‖ϕ‖∞ |BCN−1(0, 1)|
ˆ

{|u′′−u/ν|<1}

|u′′|α du′′.

Denote the last integral by Iα(u/ν). We analyze it depending on the sign of α.
If −2 < α < 0, then we clearly have

lim
|ū|→∞

Iα(ū) = 0.

Therefore in this case Iα is a bounded function on C, that is, Iα(u/ν) � 1.
If α � 0, then

Iα(ū)� α

ˆ
(|ū|α + 1) du′′ � |ū|α + 1.
BC(ū,1)



A. Carbonaro et al. / Advances in Mathematics 431 (2023) 109239 47
Therefore ναIα(u/ν) � |u|α + να, as claimed.
Regarding the second part of the proof,

ˆ

C3

|u′||v′|βϕν(u− u′, v − v′, w − w′) du′ dv′ dw′

= ν−4
ˆ

C2

|u′||v′|β
⎡⎣ν−2(N−2)

ˆ

CN−2

ϕ

(
u− u′

ν
,
v − v′

ν
,
w − w′

ν

)
dw′

⎤⎦ du′ dv′

= ν−4
ˆ

C2

|u′||v′|β
ˆ

CN−2

ϕ

(
u− u′

ν
,
v − v′

ν
, z′

)
dz′ du′ dv′

�

⎛⎜⎝ν

ˆ

{|u′′−u/ν|<1}

|u′′|du′′

⎞⎟⎠
⎛⎜⎝νβ

ˆ

{|v′′−v/ν|<1}

|v′′|β dv′′

⎞⎟⎠ ‖ϕ‖∞ |BN−2
C (0, 1)|.

The already completed part of the proof shows that the we can continue as

� νI1(u/ν) · νβIβ(u/ν) � (|u| + ν)νβ . �
Remark 7.4. Upon obvious changes of the lemma’s modification, the above proof would 
clearly work for any N ∈ N\{1}, not only N = 3.

The next result is modeled after [22, Lemma 14] and the estimate [22, (34)] derived 
from it. Its gradient estimates complement those of Corollary 4.7.

Notation. Until the end of this section we will assume that p, q, r ∈ (1, ∞) are such 
that 1/p + 1/q + 1/r = 1 (i.e., that the exponents satisfy the Hölder scaling) and p � q. 
Given a triple of such (p, q, r), we will denote

m := min{q/p + 1, r}
M := max{p, r}.

(7.6)

Corollary 7.5. Let X be as in Theorem 3.1. Take ν ∈ (0, 1]. Then for every ω ∈ C3 we 
have

(i) |(X ∗ ϕν)(ω)| � up + vq + wr + 1,
(ii) |D(X ∗ ϕν)(ω)| � |ω|m−1 + |ω|M−1,
(iii)

∣∣D2(X ∗ ϕν)(ω)
∣∣ � νm−2 (|ω|M−2 + |ω| + 1

)
.

The implied constants depend on p, q, r, A, B, C and their ∗-ellipticity constants arising 
from the assumption (�), but not on ω, ν. The constants in (ii) and (iii) may also depend 
on d.
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Proof. Item (i) follows from Corollary 4.7 (a).
Let us prove (iii). Recalling the convention from Section 2.2, we have

∣∣D2(X ∗ ϕν)(ω)
∣∣ �

d∑
j,k=1

∣∣D2
jk(X ∗ ϕν)(ω)

∣∣
�

d∑
j,k=1

ˆ

C3

∣∣D2
jkX

∣∣ (y)ϕν(ω − y) dy

� d

ˆ

C3

∣∣D2X
∣∣ (y)ϕν(ω − y) dy

=
(∣∣D2X

∣∣ ∗ ϕν

)
(ω).

We justify the second estimate above as in [21, Section 5.1], [22, Section 5.2] or [19, 
Section 5]. Now use, consecutively, Proposition 5.3 and Lemma 7.3 to arrive at(∣∣D2X

∣∣ ∗ ϕν

)
(ω) �

ν−(1−q/p)(w + 1)

+
(
νp/q + up/q

)
+

(
νp−2 + up−2)

+
(
νq/p + vq/p

)
+

(
νq−2 + v(q−2)+

)
+

(
νq(1−2/p) + vq(1−2/p)

)
+ (ν + v)

+
(
νr−2 + w(r−2)+

)
+

(
νr(1−2/p) + wr(1−2/p)

)
+ (ν + w).

By taking into account that 0 < ν � 1, we simplify this through Lemma 5.5 as(∣∣D2X
∣∣ ∗ ϕν

)
(ω) � νmin{q,r}−2 + |ω|M−2 + ν−(1−q/p)(|ω| + 1).

Since q/p < q(1/p + 1/r) = q − 1, we have min{q, r, q/p + 1} = m, which settles (iii).
We conclude by proving (ii). Let j ∈ {1, . . . , 2N}. Since X ◦W−1

3,1 and ϕν ◦W−1
3,1 are 

even functions in each of the variables in R6, the function (X ∗ ϕν) ◦W−1
3,1 also has this 

property, so

Dj(X ∗ ϕν)(0) = 0. (7.7)

Hence, by item (iii) and the mean value theorem, if |ω| < ν � 1 we get

|Dj(X ∗ ϕν)(ω)| � max
|η|�1

∣∣D2(X ∗ ϕν)(η)
∣∣ |ω|� νm−2|ω|� |ω|m−1.

By Corollary 4.7 (b) and Lemma 5.4, if |ω| � ν we get

|Dj(X ∗ ϕν)(ω)| � |ω|max{p,r}−1 + |ω|min{q,r}−1.
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Recalling that q � q/p + 1, we complete the proof of (ii). �
Remark 7.6. An important property required for Rn,ν in [22] was that

F ∈ Lp ∩ Lq ⇒ (DRn,ν)(F ) ∈ Lp′
+ Lq′ . (7.8)

It was needed in [22, (37)], namely, to justify the use of the Lebesgue dominated con-
vergence theorem there, for which one needed the integrand to be in L1 uniformly with 
respect to n, and to this end one applied the Hölder’s inequality. In order to achieve 
the above property, one may pose the following question: if F ∈ Lp, for which γ do we 
necessarily have |F |γ ∈ Lp′? Of course, the (unique) answer is γ = p − 1. Therefore we 
achieve (7.8) if we prove

|(DRn,ν)(ω)|� |ω|p−1 + |ω|q−1.

This is precisely [22, Theorem 16 (iv)]. It follows (in part) from

|D(Q ∗ ϕν)(ω)|� |ω|p−1 + |ω|q−1, (7.9)

which is [22, Lemma 14 (ii)].
Trying to repeat the argument from [22] in the current (trilinear) setting, we would 

thus probably like to have the estimate

|D(X ∗ ϕν)(ω)|� |ω|p−1 + |ω|q−1 + |ω|r−1.

Instead, Corollary 7.5 (ii) gives

|D(X ∗ ϕν)(ω)|� |ω|p−1 + |ω|q/p + |ω|r−1. (7.10)

Yet in spite of some discrepancy at the first glance, the estimate (7.10) is consistent with 
(7.9), because when 1/p +1/q = 1 (which was the case in [22], but not here), we exactly 
have q/p = q − 1. So we seem to be on the right path.

An estimate like (7.10), however, permits the implication

F ∈ Lp ∩ Lq ∩ Lr ⇒ [D(X ∗ ϕν)] (F ) ∈ Lp′
+ Lp + Lr′ .

For reasons hinted at here and which will become completely apparent later, see Sec-
tion 7.6, we will initially assume that F = (f, g, h) ∈ Lp∩Lp′ ∩Lr. Note that, by the end 
of the proof of Lemma 5.6 and an interpolation of Lebesgue spaces, this implies F ∈ Lq. 
To reach the class of f, g, h as stated in the formulation of Theorem 1.1, we will then 
apply approximation arguments.

The next estimate has its roots in [22, (34)].
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Corollary 7.7. If |ω| ∼ n for some n ∈ N, then for any ν ∈ (0, 1] we have

|D [ψn · (X ∗ ϕν)] (ω)| � |ω|M−1∣∣D2 [ψn · (X ∗ ϕν)] (ω)
∣∣ � νm−2|ω|M−2.

Proof. For both inequalities we use the Leibniz rule. Regarding the first-order derivatives,

|D [ψn · (X ∗ ϕν)]| � |ψn ·D(X ∗ ϕν)| + |Dψn · (X ∗ ϕν)|

� |D(X ∗ ϕν)| +
1
n
|X ∗ ϕν |.

Now apply Corollary 7.5 (i), (ii).
Regarding the second-order derivatives,∣∣D2 [ψn · (X ∗ ϕν)]

∣∣ � |ψn ·D2(X ∗ ϕν)| + |Dψn ·D(X ∗ ϕν)| + |D2ψn · (X ∗ ϕν)|

� |D2(X ∗ ϕν)| +
1
n
|D(X ∗ ϕν)| +

1
n2 |X ∗ ϕν |.

Now apply Corollary 7.5. �
Now we seem to be in a position to fix the problem described at the beginning of this 

section (Section 7.3). Following [22], we try by adding to ψn · (X ∗ ϕν) a function which 
is:

• A-convex everywhere;
• strictly A-convex for |ω| ∼ n, to the extent sufficient to compensate for the lack of 

convexity of ψn · (X ∗ ϕν) there.

Based on the analysis leading to Corollary 7.7, and on Lemma 4.6, we think of adding 
the function νm−2PM (u, v, w), where m and M are as in (7.6) and PM is as in (4.5). 
Therefore at this stage our candidate is

ψn · (X ∗ ϕν) + νm−2PM .

By this we mean that we want to consider the flow

L
(
ψn · (X ∗ ϕν) + νm−2PM

)
(f, g, h)

and then send n → ∞ and ν → 0.

7.4. Fourth (and final) approximation

In order to perform integration by parts, we need properties akin to [22, Theorem 16]. 
We see that the perturbation νm−2PM is still not sufficient for that. For example, its 
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second-order derivatives are not in L∞, its gradient and Hessian do not converge to the 
gradient and, respectively, Hessian of X ∗ ϕν as n → ∞, and so on.

Again we resort to [22] for a hint on how to resolve this. Namely, we try to replace 
the perturbation PM by its smooth tamed version, as follows. This section will serve as a 
preparation for that step, while the actual construction will then be made in Section 7.5.

Given a > 1 define

Da(t) =
{

ta ; 0 � t � 1,
at− (a− 1) ; t � 1.

Observe that Da ◦Db = Dab and that Da is continuously differentiable on [0, ∞) with

D′
a(t) = a

{
ta−1 ; 0 � t � 1,

1 ; t � 1.

For s > 2, n ∈ N, ε > 0 and N ∈ N define the function Fs,n,ε by

Fs,n,ε(ω) = ns D s+ε
2

(∣∣∣ω
n

∣∣∣2) ω ∈ CN .

Explicitly,

Fs,n,ε(ω) =

⎧⎨⎩ n−ε|ω|s+ε ; |ω| � n,
s + ε

2 ns−2|ω|2 −
(
s + ε

2 − 1
)
ns ; |ω| � n.

Let A1, . . . , AN be accretive matrices on Ω ⊆ Rd. Write A = (A1, . . . , AN ). Suppose 
that Δs(A) > 0 and let c = c(s, A, N) > 0 be any constant fitting Lemma 4.6. Note 
that the dependence of c on A is limited to Δs(A) and Λ(A).

By continuity of Δt(A) in t we have Δs+ε(A) > 0 for sufficiently small ε > 0. Choose 
and fix such an ε > 0. In analogy with (4.5) we then define function Ps,n,ε : CN → [0, ∞)
by

Ps,n,ε(u1, . . . , uN ) := Fs,n,ε(u1, . . . , uN ) + c

N∑
j=1

Fs,n,ε(uj).

Define the set Θn ⊆ CN by

Θn = {|(u1, . . . , uN )| = n} ∪
N⋃
j=1

{|uj | = n}.

The next proposition is based on [22, Proposition 12].
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Proposition 7.8. Under the above assumptions on A, s, ε, we have:

(i) Ps,n,ε ∈ C1(CN ) ∩ C2(CN \ Θn) for all n ∈ N. Moreover,

DPs,n,ε → 0 pointwise in CN ,

D2Ps,n,ε → 0 pointwise in CN \
⋃
k∈N

Θk

as n → ∞.
(ii) Ps,n,ε is A-convex in CN \ Θn, for all n ∈ N. Moreover, for all n ∈ N, X =

(X1, . . . , XN ) with Xj ∈ Cd, and u ∈ CN \ Θn with |u| > n, we have

HA
Ps,n,ε

[u;X] � (s + ε)ns−2λ(A)|X|2.

(iii) There exists C > 0 that does not depend on n such that for all n ∈ N we have

|(DPs,n,ε)(ω)| � C|ω|s−1, ∀ω ∈ CN ,∣∣(D2Ps,n,ε)(ω)
∣∣ � C|ω|s−2, ∀ω ∈ CN \ Θn.

(iv) For every n ∈ N there exists C(n) > 0 such that

|(DPs,n,ε)(ω)| � C(n)|ω|, ∀ω ∈ CN .

(v) For all n ∈ N we have 
∣∣D2Ps,n,ε

∣∣ ∈ L∞(CN \ Θn).

Proof. Item (i) holds since, fixing u = (u1, . . . , uN ), for n large enough (n > |u|) we have

Ps,n,ε(u) = n−ε

⎛⎝|u|s+ε + c

N∑
j=1

|uj |s+ε

⎞⎠ , (7.11)

where the term in the parentheses is clearly independent of n.
We now prove item (ii). Suppose first that |u| < n; then |uj | < n for j = 1, . . . , N . 

In this case (7.11) holds, therefore Ps,n,ε(u) = n−εPs+ε(u) for all u ∈ CN \ Θn and the 
A-convexity follows from Lemma 4.6.

Suppose now that |u| > n. Then

Ps,n,ε(u) = s + ε

2 ns−2|u|2 +
(

1 − s + ε

2

)
ns + c

N∑
Fs,n,ε(uj).
j=1
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Therefore, by [21, (5.7)],

HA
Ps,n,ε

[u;X] = (s + ε)ns−2
N∑
j=1

Re 〈AjXj , Xj〉 + c
N∑
j=1

H
Aj

Fs,n,ε
[uj ;Xj ]

� (s + ε)ns−2λ(A)|X|2 + c

N∑
j=1

H
Aj

Fs,n,ε
[uj ;Xj ].

Since

H
Aj

Fs,n,ε
[uj ;Xj ] =

⎧⎨⎩ n−εH
Aj

Fs+ε
[uj ;Xj ] ; |uj | < n;

s + ε

2 ns−2H
Aj

F2
[uj ;Xj ] ; |uj | > n

and Δs+ε(A) > 0, we deduce from [21, Proposition 5.8 and Corollary 5.16] that 
H

Aj

Fs,n,ε
[uj ; Xj ] � 0 for every j ∈ {1, . . . , N}, which finishes the proof of item (ii).

Item (iii) follows from the estimate

|DFs,n,ε(ω)|�
{

n−ε|ω|s+ε−1 ; |ω| � n,

ns−2|ω| ; |ω| � n

� |ω|s−1

(7.12)

and similarly for second-order derivatives.
Item (iv) likewise follows from (7.12).
Item (v) follows by noting that outside a ball in CN , the function Fs,n,ε is defined as 

A|ω|2 + B for some constants A, B. �
Now we pass to the estimates for Ps,n,ε ∗ ϕν . Since Ps,n,ε ∈ C1(CN ) and its second-

order partial derivatives exist on CN \Θn and extend to a locally integrable function on 
CN , by the ACL characterization of Sobolev spaces (see, for example, [59, Théorème V, 
p. 57] or [46, Theorem 11.45]) we have

D(Ps,n,ε ∗ ϕν) = (DPs,n,ε) ∗ ϕν ,

D2(Ps,n,ε ∗ ϕν) = (D2Ps,n,ε) ∗ ϕν .
(7.13)

The following statement closely resembles [22, Proposition 15]. For the reader’s con-
venience, we give a complete proof (which to a significant extent uses Proposition 7.8).

Proposition 7.9. Assume the conditions on s, A, ε as on page 51 and let ν ∈ (0, 1).

(i) We have

D (Ps,n,ε ∗ ϕν) → 0,

D2 (P ∗ ϕ ) → 0
s,n,ε ν
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pointwise in CN as n → ∞.
(ii) The function Ps,n,ε ∗ ϕν is A-convex in CN . Moreover, for all n ∈ N, X =

(X1, . . . , XN ) with Xj ∈ Cd, and all ω ∈ CN with |ω| > 2n,

HA
Ps,n,ε∗ϕν

[ω;X] � (s + ε)ns−2λ(A)|X|2.

(iii) There exists C > 0 that does not depend on n and ν such that for any š � 2 we 
have

|D(Ps,n,ε ∗ ϕν)(ω)| � C
(
|ω|s−1 + |ω|š−1) , ∀ω ∈ CN , ∀n ∈ N.

(iv) For every n ∈ N there exists C(n) > 0 (that does not depend on ν) such that

|D(Ps,n,ε ∗ ϕν)(ω)| � C(n)|ω|, ∀ω ∈ CN .

(v) We have 
∣∣D2(Ps,n,ε ∗ ϕν)

∣∣ ∈ L∞(CN ) with

∥∥D2(Ps,n,ε ∗ ϕν)
∥∥
∞ � C

for some C > 0 that does not depend on ν.

Proof. Item (i) follows by combining (7.13), Proposition 7.8 (i) and (iii) with the domi-
nated convergence theorem.

Item (v) follows from (7.13) and Proposition 7.8 (v).
By (7.13) we have

H
A(x)
Ps,n,ε∗ϕν

[ω;X] =
ˆ

CN

H
A(x)
Ps,n,ε

[ω − ω′;X]ϕν(ω′) dω′,

for all x ∈ Ω, ω ∈ CN and X ∈ (Cd)N . If we assume that |ω| > 2n, since the support 
of the integrand is contained in BCN (0, ν), we have |ω − ω′| > 2n − ν > n. Therefore 
we may estimate the integrand by means of Proposition 7.8 (ii) almost everywhere on 
BCN (0, ν) and thus prove item (ii).

Let us address item (iii). We proceed much as in the proof of Corollary 7.5 (ii). First 
consider |ω| � 1. By smoothness and evenness properties of Ps,n,ε ∗ ϕν ,

D(Ps,n,ε ∗ ϕν)(0) = 0. (7.14)

Hence, the second identity in (7.13), the second estimate of Proposition 7.8 (iii) and the 
mean value theorem imply

|D(Ps,n,ε ∗ ϕν)(ω)| � C|ω| � C|ω|š−1, ∀|ω| � 1, ∀n ∈ N.
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Now take |ω| > 1. From the first identity in (7.13), the first estimate of Proposi-
tion 7.8 (iii) and Lemma 7.3 we get

|D(Ps,n,ε ∗ ϕν)(ω)| � C|ω|s−1.

Thus we proved (iii).
Finally, item (iv) follows from item (v), (7.14) and the mean value theorem. �

7.5. The sequence Xn,ν

Here we finally present the function that will be the backbone of our heat-flow process. 
We start by summarizing the assumptions.

Let p, q, r ∈ (1, ∞) satisfy 1/p + 1/q + 1/r = 1 and p � q. Let M, m be as in (7.6). 
Furthermore, take an open set Ω ⊆ Rd and A, B, C ∈ AM (Ω). Write A = (A, B, C). 
Choose ε > 0 such that we also have A, B, C ∈ AM+ε(Ω).

We will apply the results from Section 7.4 with N = 3 and s = M . Since ε will 
stay fixed throughout the process, for the sake of transparency we will drop it from the 
indices. Thus we will write just PM,n instead of PM,n,ε.

The final stage of our construction is the function

Xn,ν := ψn · (X ∗ ϕν) + Cνm−2(PM,n ∗ ϕν)

with C > 0 to be defined in the following theorem. The latter is a “three-variable 
counterpart” of [22, Theorem 16] and the function Xn,ν is the analogue of Rn,ν from 
[22].

Theorem 7.10. Let ν ∈ (0, 1]. There exists C > 0, depending on ψ, p, q, r, A and the ∗-
ellipticity constants stipulated in Theorem 1.1, but not depending on ν or n, such that 
Xn,ν is A-convex in C3 for all n ∈ N. Moreover, the following statements hold.

(i) We have

DXn,ν → D(X ∗ ϕν),

D2Xn,ν → D2(X ∗ ϕν)

pointwise in C3 as n → ∞.
(ii) For any n ∈ N there exists C = C(n, ν, C) > 0 such that

|(DXn,ν)(ω)| � C|ω|, ∀ω ∈ C3.

(iii) There exists C > 0 that does not depend on n such that

|(DXn,ν)(ω)| � Cνm−2 (|ω|m−1 + |ω|M−1)
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for all ω ∈ C3, n ∈ N and ν ∈ (0, 1].
(iv) For any n ∈ N and ν > 0 we have

(∂ūXn,ν)(0, v, w) = (∂v̄Xn,ν)(u, 0, w) = (∂w̄Xn,ν)(u, v, 0) = 0,

for all u, v, w ∈ C.
(v) |D2Xn,ν | ∈ L∞(C3).

Proof. We address the statements of the theorem one by one.
• Let us first prove the A-convexity in the region {|ω| < 3n} ∪ {|ω| > 4n}. It follows 

from the A-convexity of X ∗ ϕν and PM,n ∗ ϕν . Indeed, from Corollary 4.7 (c) we have

H
(A,B,C)(x)
Xν

[ω;X] � − ν|X|2.

By combining this with Proposition 7.9 (ii) we get, for sufficiently large C ,

H
(A,B,C)(x)
Xn,ν

[ω;X] �
[
Cνm−2(M + ε)nM−2λ(A) − ν

]
|X|2.

Since ν ∈ (0, 1] and m − 2 � 0 we thus get

H
(A,B,C)(x)
Xn,ν

[ω;X] �
[
C(M + ε)nM−2λ(A) − 1

]
ν|X|2.

Thus we see that this quantity is positive if C is large enough.
In order to achieve A-convexity in the region {3n � |ω| � 4n}, we choose C large 

enough and combine Corollary 7.7 with the second part of Proposition 7.9 (ii).
• Item (i) is a trivial consequence of Proposition 7.9 (i) and the definition of ψn ·

(X ∗ ϕν).
• From (7.7) and the fact that ψn ≡ 1 in a neighborhood of 0, we conclude that

(D [ψn · (X ∗ ϕν)])(0) = 0.

Hence, by the mean value theorem and the fact that ψn · (X ∗ ϕν) ∈ C∞
c (C3), we get

|(D [ψn · (X ∗ ϕν)])(ω)| � C(ν, n)|ω|.

Item (ii) follows from here and Proposition 7.9 (iv).
• In order to prove (iii) we separately estimate |D [ψn · (X ∗ ϕν)] (ω)| and

|D(PM,n ∗ ϕν)|. The estimate of |D [ψn · (X ∗ ϕν)] (ω)| follows by Corollary 7.5 (ii) (for 
|ω| /∈ [3n, 4n], since Dψn ≡ 0 there) and Corollary 7.7 (for |ω| ∈ [3n, 4n]).

On the other hand, the estimate of |D (PM,n ∗ ϕν) | is Proposition 7.9 (iii), used with 
s = M and š = m.

• To prove item (iv) just observe that Xn,ν is smooth and even in each of the variables, 
because both X ∗ ϕν and PM,n ∗ ϕν have this property.

• Item (v) follows from Proposition 7.9 (v) and the fact that ψn·(X∗ϕν) ∈ C2
c (C3). �
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As a consequence of Theorem 7.10, items (iv) and (v), we have the following invariance 
result, which is modeled after (and proven exactly as) [22, Lemma 19].

Lemma 7.11. If f, g, h ∈ U then ∂uXn,ν (f, g, h) ∈ U , and the same for ∂vXn,ν and 
∂wXn,ν .

7.6. Completion of the proof of Theorem 1.1

Recall that we need to prove (7.5). So take f, g, h ∈ U such that f, cg, h, LAf, LBg,
LCh ∈ (Lp ∩ Lp′ ∩ Lr)(Ω). As noted before, this intersection is contained in Lq.

Recalling the notation (7.4), we will first prove that

L (X)(f, g, h) = lim
ν↘0

lim
n→∞

L (Xn,ν)(f, g, h). (7.15)

Let us justify (7.15). First consider the limit as n → ∞. We want to use the Lebesgue 
dominated convergence theorem. Thus we must prove that for all n ∈ N, the integrands 
in

L (Xn,ν)(f, g, h)

= Re
ˆ

Ω

(
(∂uXn,ν) (f, g, h)LAf + (∂vXn,ν) (f, g, h)LBg + (∂wXn,ν) (f, g, h)LCh

)
(7.16)

admit a majorant which lies in L1(Ω) and is independent of n. It is enough to treat the 
first summand, as the other two can be estimated in exactly the same manner.

By Theorem 7.10 (iii) we have, with ω = (f, g, h),

|(∂uXn,ν) (f, g, h)LAf| � |ω|p−1 |LAf| + |ω|q/p |LAf| + |ω|r−1 |LAf| .

(We omitted copying from Theorem 7.10 (iii) the power of ν, since at this stage we 
consider it as constant.) The above majorant clearly does not depend on n. We claim 
that it belongs to L1. Indeed, use that LAf ∈ Lp ∩Lp′ ∩Lr and that |ω| ∈ Lp ∩Lq ∩Lr. 
It then follows that

|ω|p−1 |LAf| + |ω|q/p |LAf| + |ω|r−1 |LAf| ∈ Lp′ · Lp + Lp · Lp′
+ Lr′ · Lr,

which by the Hölder’s inequality belongs to L1. Thus, by Theorem 7.10 (i), we proved

lim
n→∞

L (Xn,ν)(f, g, h) = L (X ∗ ϕν)(f, g, h). (7.17)

Now let us take the limit as ν ↘ 0. We argue as before, just that now the adequate 
estimates are provided by Corollary 7.5 (ii). From the fact that X ∈ C1(C3) and the 
Lebesgue dominated convergence theorem we thus deduce that
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lim
ν↘0

L (X ∗ ϕν)(f, g, h) = L (X)(f, g, h). (7.18)

The combination of (7.18) and (7.17) returns (7.15).
By Lemma 7.11, we can integrate by parts the integral in (7.16) and, from the chain 

rule for the composition of smooth functions with vector-valued Sobolev functions, de-
duce as in [21, Corollary 4.2] that

2 Re
ˆ

Ω

(
∂uXn,ν (f, g, h)LAf + ∂vXn,ν (f, g, h)LBg + ∂wXn,ν (f, g, h)LCh

)

=
ˆ

Ω

H
(A,B,C)
Xn,ν

[W3,1 (f, g, h) ;W3,d (∇f,∇g,∇h)] ,

so we merge this with (7.17) into

2L (X ∗ ϕν)(f, g, h) = lim
n→∞

ˆ

Ω

H
(A,B,C)
Xn,ν

[W3,1 (f, g, h) ;W3,d (∇f,∇g,∇h)] . (7.19)

By Theorem 7.10, the function Xn,ν is A-convex in C3, so the integrand on the right-
hand side of (7.19) is nonnegative for all n ∈ N. Hence, by (7.19), Fatou’s lemma and 
Theorem 7.10 (i), followed by Corollary 4.7 (c),

2L (X ∗ ϕν)(f, g, h) �
ˆ

Ω

H
(A,B,C)
X∗ϕν

[W3,1 (f, g, h) ;W3,d (∇f,∇g,∇h)]

�
ˆ

Ω

|∇f||∇g|(h− ν),

for all ν ∈ (0, 1), where the implied constant may depend on p, q, r, A, B, C and their 
∗-ellipticity constants alluded to in Theorem 1.1, but not on ν. The desired inequality 
(7.1) now follows from (7.18).

7.7. Growth of the embedding constants

Here we make more explicit the behavior of the embedding constants appearing in 
Theorem 1.1.

Corollary 7.12. Under the assumptions of Theorem 1.1, when p > q, the embedding 
constant in (1.8) can be estimated as

�
(

1
)1/p (

D
)1/q (

E
)1/r

.

p q r



A. Carbonaro et al. / Advances in Mathematics 431 (2023) 109239 59
Here D, E are parameters of the function X from Section 5.1, with D chosen specifically 
as in (5.8). In particular, while the constant E in general depends on the choice of the 
matrix C, the constant D does not.

If C = I, the constant stays bounded when considering the triple (p −ε, q+ε, r(ε)) with 
conjugate exponents p, q and sending ε → 0, as described in Section 1.6. More precisely, 
in the limit ε → 0 the constants get majorized by

� D1/q

p1/pq1/q .

Proof. The statement follows from Proposition 5.7 and the “polarization trick” (see the 
way Lemma 6.1 was used on pages 39 and 44). Choosing D as in (5.8) gives 

√
α1D − α2−

α3 = 1.
Note that just the last factor depends on r. And since in the case of C = I we saw 

(Proposition 5.7) that E stays bounded as r → ∞, we proved the last part, too, as in 
this situation the rightmost term disappears with r → ∞. �
Lemma 7.13. Let Ω, U , V , W , p, q, r, A, B, C, f, g, h be as in the formulation of Theo-
rem 1.1. Then for every s � 1 we have

∞̂

0

ˆ

Ω

∣∣∇TA
stf

∣∣ ∣∣∇TB
st g

∣∣ ∣∣TC
t h

∣∣ dx dt � s−1/r′‖f‖p‖g‖q‖h‖r.

The implied embedding constants only depend on p, q, r and ∗-ellipticity constants of 
A, B, C alluded to in the assumptions.

Proof. Change the variable by st = t′ and apply Proposition 5.7 and Corollary 7.12. �
8. Proof of Theorem 1.7

In this section we prove Theorem 1.7. The proof consists of the following principal 
elements:

• dualization (Proposition 8.6);
• Littlewood–Paley decomposition (Section 8.2.2);
• subordination to the imaginary powers of LA (Section 8.1.2);
• holomorphic functional calculus for LA [22, Theorem 3];
• trilinear embedding (Theorem 1.1) with control of the embedding constants for 

(A, B, δC) in terms of δ > 0 (Corollary 7.12).

We first either review or create anew some necessary tools.
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8.1. Preliminaries

Fix A ∈ A(Ω). Recall that for simplicity we assume that LA is injective in L2(Ω). 
We will systematically use the holomorphic functional calculus for injective sectorial 
operators on Banach spaces, see [49,26,41].

8.1.1. Abstract Littlewood-Paley decomposition
For every α > 0 define

ψα(z) := zαe−z, φα(z) := 1
Γ(α)

∞̂

1

ψα(sz) ds
s
, Re z > 0.

A rapid calculation shows that for α ∈ N+ we have

φα(z) =
α−1∑
j=0

ψj(z)
j! =

⎛⎝α−1∑
j=0

zj

j!

⎞⎠ e−z. (8.1)

It follows that on L2(Ω) we have

φα(tLA) =
α−1∑
j=0

1
j!ψj(tLA) =

α−1∑
j=0

(tLA)jTA
t

j! , ∀α ∈ N+. (8.2)

If A is χ-elliptic, then, by [22], the identity holds true in Lχ(Ω).
The next result can be referred to as the Calderón reproducing formula, see [11, 

Proposition 2.11] for a similar version.

Lemma 8.1. Let χ ∈ (1, +∞). Suppose that A is χ-elliptic. Then we have

• limt↓0 φα(tLA)f = f in Lχ(Ω),
• limt↑∞ φα(tLA)f = 0 in Lχ(Ω),

for every α > 0 and f ∈ Lχ(Ω).

Proof. By [22] the operator LA has bounded H∞-calculus of angle ϑχ < π/2 in Lχ(Ω). 
For every ϑ ∈ [0, π/2) we have φα ∈ H∞(Sϑ). Therefore, for 0 < ε < π/2 − ϑχ,

sup
t>0

‖φα(tLA)‖χ � ‖φα‖H∞(Sϑχ+ε) < ∞.

Also, for all z ∈ C+ we have

φα(tz) = 1 − 1
Γ(α)

tˆ
(sz)αe−zs ds

s
,

0
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yielding

lim
t↘0

φα(tz) = 1

lim
t→∞

φα(tz) = 0.

Now the lemma follows from a well-known convergence lemma due to A. McIntosh 
[49]; see [26, Lemma 2.1], [2, Theorem D] and [41, Proposition 5.4.1]. �
8.1.2. Mellin transform and Cowling’s subordination

Let m ∈ L1(R+, dλ/λ). The Mellin transform Mm of m is the Fourier transform of 
m ◦ exp:

Mm(u) :=
∞̂

0

m(λ)λ−iu dλ
λ

, u ∈ R.

If Mm belongs to L1(R), then we have the Mellin inversion formula

m(λ) = 1
2π

+∞ˆ

−∞

Mm(u)λiu du, λ > 0. (8.3)

Let A ∈ A(Ω) be χ-elliptic. Then, as we remarked in Section 1.7.3, the operator LA has 
bounded imaginary powers in Lχ(Ω) [22] and we have the estimates (1.16).

Suppose now that m ∈ L1(R+, dλ/λ) is such that Mm ∈ L1(R) and that the estimate

|Mm(u)| � Ce−c|u|, ∀u ∈ R

holds for some C > 0 and c > θχ. Then we can use (8.3) to extend m holomorphically 
to Sϑχ+ε for small ε > 0. Assuming the notation from the proof of Lemma 8.1, we have 
m ∈ H∞(Sϑχ+ε). The McIntosh convergence lemma [49] that we already used in the 
proof of Lemma 8.1, together with (8.3) shows that

m(LA) = 1
2π

+∞ˆ

−∞

Mm(u)Liu
A du, (8.4)

where the integral converges in the strong operator topology of B(Lχ(Ω)).
For details and proofs (in the self-adjoint case) see [25,50,19].
We shall apply Cowling’s subordination to the functions ψα. Note that Mψα(u) =

Γ(α− iu) for u ∈ R, hence, by Stirling’s formula,

|Mψα(u)| � Cα(1 + |u|)α−1/2e−π|u|/2, u ∈ R. (8.5)
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Therefore Mψα ∈ L1(R), which shows that the inversion formula (8.3) applies with 
m = ψα.

Fix A ∈ A(Ω) and α > 0. By (8.4), for every f ∈ L2(Ω) and t > 0 we have

ψα(tLA)f = 1
2π

+∞ˆ

−∞

[Mψα] (u) tiuLiu
A f du, (8.6)

where the right-hand side should be interpreted as a Bochner integral that converges in 
L2(Ω). Since both TA

t and ∇TA
t are L2-bounded, we may apply these operators to (8.6). 

Together with ψα(2tLA) = 2αTA
t ψα(tLA), we then have subordination estimates

|ψα(2tLA)f | � 2α−1

π

+∞ˆ

−∞

|Mψα(u)|
∣∣TA

t Liu
A f

∣∣ du (8.7)

|∇ψα(2tLA)f | � 2α−1

π

+∞ˆ

−∞

|Mψα(u)|
∣∣∇TA

t Liu
A f

∣∣ du (8.8)

almost everywhere in Ω.

8.1.3. Modified trilinear embedding
The next result follows from Theorem 1.1 and, at the same time, extends it.

Proposition 8.2. Let Ω ⊆ Rd be an open set and let the spaces U , V , W be as in Sec-
tion 1.3. Take p, q, r ∈ (1, ∞) such that 1/p + 1/q + 1/r = 1. Suppose that the accretive 
matrices A, B, C : Ω → Cd×d are max{p, q, r}-elliptic. Write LA = LA,U , LB = LB,V

and LC = LC,W . Let ηαj
, j = 1, 2, 3, denote either ψαj

with αj > 0, or φαj
with 

αj ∈ N+. Then for every f ∈
(
Lp ∩ L2)(Ω), g ∈

(
Lq ∩L2)(Ω) and h ∈

(
Lr ∩ L2)(Ω) we 

have
∞̂

0

ˆ

Ω

|∇ηα1(tLA)f | |∇ηα2(tLB)g| |ηα3(tLC)h| dx dt � ‖f‖p ‖g‖q ‖h‖r . (8.9)

When Ω = Rd, the same conclusion holds under milder assumptions, namely, (�) from 
page 6. The implied embedding constants only depend on α1,2,3, p, q, r and ∗-ellipticity 
constants of A, B, C alluded to in the theorem’s assumptions.

Proof. By using (8.1) we reduce to prove (8.9) in the case when ηαj
is either ψα with 

α > 0, or e−λ. For simplicity, we only prove the estimate

∞̂ˆ
|∇ψα(tLA)f |

∣∣∇TB
t g

∣∣ ∣∣TC
t h

∣∣ dx dt � ‖f‖p ‖g‖q ‖h‖r ; (8.10)

0 Ω



A. Carbonaro et al. / Advances in Mathematics 431 (2023) 109239 63
the other cases can be proved similarly.
By using, consecutively, (8.8) and Theorem 1.1 we obtain

∞̂

0

ˆ

Ω

|∇ψα(tLA)f |
∣∣∇TB

t g
∣∣ ∣∣TC

t h
∣∣ dx dt

� α

+∞ˆ

−∞

|Mψα(u)|
∞̂

0

ˆ

Ω

∣∣∣∇T
A/2
t Liu

A f
∣∣∣ ∣∣∇TB

t g
∣∣ ∣∣TC

t h
∣∣ dx dt du

� α‖g‖q‖h‖r

+∞ˆ

−∞

|Mψα(u)|
∥∥Liu

A f
∥∥
p
du

and (8.10) follows by combining (8.5) with (1.16). �
Recall that the estimate (1.16) was a consequence of [22] and that, to the best of our 

knowledge, in the generality considered here, no analogous results are available.

8.1.4. Integration by parts
Let Ω ⊆ Rd be an open set and let U ⊆ H1(Ω) be one of the subspaces introduced 

in Section 1.3. For every ε > 0 define Φε : C → C by the rule

Φε(z) := z

1 + ε
√
|z|2 + 1

.

Lemma 8.3. Let f ∈ U . For every ε > 0 we have Φε(f) ∈ U ∩L∞(Ω), |Φε(f)| � |f | and 
|∇Φε(f)| � 2 |∇f |. Moreover, as ε → 0 we get Φε(f) → f and ∇Φε(f) → ∇f , in both 
cases almost everywhere on Ω and in L2(Ω).

Proof. The function Φε is of class C∞ and both Φε and its gradient are bounded on C.
When U = H1(Ω), the lemma easily follows from the characterization of Sobolev 

spaces in terms of absolute continuity on lines [64, Theorem 2.1.4], the chain rule for 
differentiable functions and Lebesgue dominated convergence theorem. One can also 
apply directly to Φε(f) a version of the chain rule for weak derivatives [64, Theorem 
2.1.11] adapted to complex functions.

When U is of the types (a) or (c) from Section 1.3, all there is left to prove is 
that Φε ∈ U . Consider a sequence (φn)n∈N ∈ C∞

c (Rd\Γ) converging to f in H1(Ω). 
Then Φε(φn) ∈ C∞

c (Rd\Γ) and the chain rule together with the Lebesgue dominated 
convergence theorem show that Φε(φn) converges to Φε(f) in H1(Ω), as n → ∞. �
Lemma 8.4. Let p, q, r ∈ (1, ∞) such that 1/p + 1/q + 1/r = 1 and let A ∈ A(Ω) be 
p-elliptic. Suppose that u ∈ D2(LA) ∩Dp(LA), v ∈ U ∩Lq(Ω) and w ∈ U ∩Lr(Ω). Then
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∣∣∣∣∣∣
ˆ

Ω

LAu · vw

∣∣∣∣∣∣ � 2Λ

⎛⎝ˆ

Ω

|∇u| |∇v| |w| +
ˆ

Ω

|∇u| |∇w| |v|

⎞⎠ . (8.11)

Suppose furthermore that

|∇u| (|w| |∇v| + |v| |∇w|) ∈ L1(Ω). (8.12)

Then we have
ˆ

Ω

LAu · vw =
ˆ

Ω

〈A∇u,∇v̄〉w +
ˆ

Ω

〈A∇u,∇w̄〉 v. (8.13)

Proof. For ε > 0 set vε = Φε(v) and wε = Φε(w). Lemma 8.3 gives vε, wε ∈ U ∩L∞(Ω). 
It is well known that the Leibniz rule holds in H1 ∩ L∞, see [37, Theorem 4.4]. This 
means that vεwε ∈ H1(Ω) ∩ L∞(Ω) and

∇(vεwε) = vε∇wε + wε∇vε . (8.14)

We want to show a little bit more, namely, that

vεwε ∈ U . (8.15)

If U = H1(Ω), this has just been proved. Assume now that U is of type (c) from Sec-
tion 1.3. We saw in the proof of Lemma 8.3 that, for some sequences (φn)n∈N , (ψn)n∈N ∈
C∞

c (Rd\Γ),

Φε(φn) → Φε(v)
Φε(ψn) → Φε(w)

}
in H1(Ω).

By Lemma 8.3 and the Lebesgue dominated convergence theorem, it is from here not 
difficult to see that Φε(φn)Φε(ψn) → Φε(v)Φε(w) = vεwε in H1(Ω), as n → ∞. This 
proves (8.15).

Since u ∈ D2(LA), it follows from (1.6) and (8.14) that

ˆ

Ω

LAu · vεwε =
ˆ

Ω

〈A∇u,∇v̄ε〉wε +
ˆ

Ω

〈A∇u,∇w̄ε〉 vε. (8.16)

By (1.2) and Lemma 8.3, the right-hand side of (8.16) is bounded by the right-hand side 
of (8.11), uniformly in ε > 0. By Lemma 8.3 and the Lebesgue dominated convergence 
theorem, the left-hand side of (8.16) converges to the left-hand side of (8.13) as ε → 0.

Under the assumption (8.12), the right-hand side of (8.16) converges to the right-hand 
side of (8.13), by Lemma 8.3 and the Lebesgue dominated convergence theorem. �
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Corollary 8.5. Let Ω ⊆ Rd be an open set and U ⊆ H1(Ω) one of the closed subspaces 
introduced in Section 1.3. Take p, q, r ∈ (1, ∞) such that 1/p + 1/q + 1/r = 1. Let 
A ∈ A(Ω) be max{p, q, r}-elliptic and α1, α2, γ � 0. Furthermore, fix f ∈ (Lp ∩ L2)(Ω), 
g ∈ (Lq ∩ L2)(Ω) and h ∈ (Lr ∩ L2)(Ω). Then with As := (A + AT )/2 and for almost 
every t > 0 we have

ˆ

Ω

ψα1(tLA)f · ψα2(tLA)g · LA∗ψγ(tLA∗)h

−
ˆ

Ω

LAψα1(tLA)f · ψα2(tLA)g · ψγ(tLA∗)h

−
ˆ

Ω

ψα1(tLA)f · LAψα2(tLA)g · ψγ(tLA∗)h

= − 2
ˆ

Ω

〈
As∇ψα1(tLA)f,∇ψα2(tLA)g

〉
ψγ(tLA∗)h. (8.17)

Proof. By Proposition 8.2 and Tonelli’s theorem, for almost every t > 0 the function

|∇ψα1(tLA)f | |∇ψγ(tLA∗)h| |ψα2(tLA)g| + |∇ψα2(tLA)g| |∇ψγ(tLA∗)h| |ψα1(tLA)f |
+ |∇ψα1(tLA)f | |∇ψα2(tLA)g| |ψγ(tLA∗)h|

belongs to L1(Ω). Now (8.17) follows integrating by parts each term in the left-hand side 
of (8.17) by means of Lemma 8.4. �
8.2. Proof of Theorem 1.7

8.2.1. Step 1: Duality and density
As recalled in Section 1.7.3, for every χ ∈ {p1, p2, q1, q2, r} the semigroup (TA

t )t>0 ex-
tends to an analytic and contractive semigroup on Lχ(Ω) in a cone of positive angle in C. 
It is well-known [63] and it can be easily proved by using functional calculus [41, Exam-
ple 3.4.6] that strong continuity (in particular, analyticity) together with contractivity 
imply that the fractional power −Lβ

A for β ∈ (0, 1) generates an analytic and contractive 
semigroup on Lχ(Ω) for every χ ∈ {p1, p2, q1, q2, r}. These semigroups are consistent, 
because they are subordinated to the consistent semigroups (TA

t )t>0, see [15,62,35]. An 
approximation argument based on the above facts shows that D2(Lβ

A) ∩Dχ1(L
β
A) ∩Lχ2(Ω)

is dense in Dχ1(L
β
A) ∩ Lχ2(Ω) and the same for A replaced by A∗. Here the domain of 

fractional power is endowed with the graph norm, ‖·‖χ1
+ ‖Lβ

A · ‖χ1 . It also follows that 
the Hermitian dual 

(
Lβ
A∗

)∗ of Lβ
A∗ on Lχ′(Ω) coincides with Lβ

A on Lχ(Ω).
In light of the considerations above, Theorem 1.7 is equivalent to the following state-

ment.
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Proposition 8.6. Under the assumptions of Theorem 1.7, for f ∈ Dp1(L
β
A) ∩ D2(Lβ

A) ∩
Lp2(Ω), g ∈ Dq2(L

β
A) ∩D2(Lβ

A) ∩ Lq1(Ω) and h ∈ Dr(Lβ
A∗) ∩D2(Lβ

A∗) we have∣∣∣∣∣∣
ˆ

Ω

fgLβ
A∗h dx

∣∣∣∣∣∣ �
(∥∥∥Lβ

Af
∥∥∥
p1
‖g‖q1 + ‖f‖p2

∥∥∥Lβ
Ag

∥∥∥
q2

)
‖h‖r.

So in the continuation we focus on proving the above result.

8.2.2. Step 2: Littlewood-Paley decomposition
Fix α ∈ N, α � 2. By Lemma 8.1 we have

ˆ

Ω

fgLβ
A∗h dx = −

∞̂

0

ˆ

Ω

d
dt

(
φα(tLA)f · φα(tLA)g · φα(tLA∗)Lβ

A∗h
)

dx dt.

Observe that the left-hand side above does not depend on α. Thus in principle we could 
have just worked with α = 2. Still, we opted for keeping a generic α, in order to underline 
and understand better its role.

It follows from the very definition of φα or (8.2) that for M ∈ A(Ω) and w ∈ L2(Ω)
we have

− d
dtφα(tLM )w = 1

(α− 1)! LMψα−1(tLM )w.

Therefore, for the sake of proving Proposition 8.6 we need to estimate three terms:

I1 :=
∞̂

0

ˆ

Ω

LAψα−1(tLA)f · φα(tLA)g · φα(tLA∗)Lβ
A∗h dx dt,

I2 :=
∞̂

0

ˆ

Ω

LAψα−1(tLA)g · φα(tLA)f · φα(tLA∗)Lβ
A∗h dx dt,

I3 :=
∞̂

0

ˆ

Ω

φα(tLA)f · φα(tLA)g · LA∗ψα−1(tLA∗)Lβ
A∗hdx dt.

We shall show that the critical term is I3. We label it the resonant term, owing to its 
resemblance to the equally named terms Π(f, g) from [9].

8.2.3. Estimating the terms I1 and I2
Below we provide details for the estimate of I1 only, because I2 can be treated similarly.
We expand φα(tLA) and φα(tLA∗) by means of (8.2) and reduce the estimate of I1 to 

bounding from above a finite sum of double integrals of the type
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∞̂

0

ˆ

Ω

LAψα−1(tLA)f · ψk(tLA)g · ψj(tLA∗)Lβ
A∗hdx dt, 0 � j, k � α− 1. (8.18)

Now we can either 1) subordinate ψj(tLA) and ψk(tLA∗) to the imaginary powers and 
make a reduction to the case k = j = 0, or 2) control each term separately, as we show 
below.

Observe that

ψα−1(tLA)f · ψj(tLA∗)Lβ
A∗h = ψα−β−1(tLA)Lβ

Af · ψj+β(tLA∗)h.

Hence in order to estimate (8.18) it suffices to estimate terms of the type

∞̂

0

ˆ

Ω

LAψα−β−1(tLA)Lβ
Af · ψk(tLA)g · ψj+β(tLA∗)h dx dt. (8.19)

We now integrate by parts the inner integral by using the first part of Lemma 8.4 with 
u = ψα−β−1(tLA)Lβ

Af , v = ψk(tLA)g and w = ψj+β(tLA∗)h, and we apply the trilinear 
embedding from Proposition 8.2 which gives the estimate

|I1| � ‖Lβ
Af‖p1‖g‖q1‖h‖r.

By using the very same arguments we also get |I2| � ‖Lβ
Ag‖q2‖f‖p2

‖h‖r.

Remark 8.7. At this level of generality, we cannot estimate I1 (or I2) starting from (8.19)
and using two vertical square functions of the type

⎛⎝ +∞ˆ

0

|ψγ(tLE)u|2 dt
t

⎞⎠1/2

, γ > 0.

Indeed by [22] the square functions are bounded, but for estimating the factor ψk(tLA)g
in (8.19) we either need the boundedness of the maximal heat semigroup on Lχ(Ω) for 
χ-elliptic matrices, or the uniform boundedness of the semigroups in L∞(Ω) which, in 
our generality, are respectively unknown and false.

8.2.4. Decomposing the resonant term I3
We expand φα(tLA) by means of (8.2) and integrate by parts by means of Corol-

lary 8.5. In such a manner the estimate of I3 reduces to estimating a finite number of 
terms of the type
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J1 :=
∞̂

0

ˆ

Ω

LAψj(tLA)f · ψk(tLA)g · ψα−1(tLA∗)Lβ
A∗hdx dt

J2 :=
∞̂

0

ˆ

Ω

ψj(tLA)f · LAψk(tLA)g · ψα−1(tLA∗)Lβ
A∗hdx dt

and the term

J3 :=
∞̂

0

ˆ

Ω

〈
As∇φα(tLA)f,∇φα(tLA)g

〉
ψα−1(tLA∗)Lβ

A∗h dx dt.

8.2.5. Estimating the terms J1 and J2

We transfer the fractional power “from h to f”:

LAψj(tLA)f · ψk(tLA)g · ψα−1(tLA∗)Lβ
A∗h

= t−βL1−β
A ψj(tLA)Lβ

Af · ψk(tLA)g · ψα+β−1(tLA∗)h

= ψj+1−β(tLA)Lβ
Af · ψk(tLA)g · LA∗ψα+β−2(tLA∗)h.

We now proceed much as we did for I1: we integrate over Ω, we integrate by parts 
by means of the first part of Lemma 8.4 and we apply Proposition 8.2. This gives the 
estimate

|J1| � ‖Lβ
Af‖p1‖g‖q1‖h‖r.

A similar argument gives |J2| � ‖Lβ
Ag‖q2‖f‖p2

‖h‖r.

8.2.6. The term J3

Write ψα−1(tLA∗)Lβ
A∗h = t−βψα+β−1(tLA∗)h. Lemma 8.1 (ii) gives

〈
As∇φα(tLA)f,∇φα(tLA)g

〉
= −

∞̂

t

d
ds

〈
As∇φα(sLA)f,∇φα(sLA)g

〉
ds

=
∞̂

t

(〈
As∇LAψα−1(sLA)f,∇φα(sLA)g

〉
+

〈
As∇φα(sLA)f,∇LAψα−1(sLA)g

〉)
ds.

In accordance with this decomposition and (1.2) we have |J3| � Λ(J ′
3 + J ′′

3 ), where
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J ′
3 =

∞̂

0

t−β

∞̂

t

ˆ

Ω

|∇LAψα−1(sLA)f | |∇φα(sLA)g| |ψα+β−1(tLA∗)h| dx dsdt,

J ′′
3 =

∞̂

0

t−β

∞̂

t

ˆ

Ω

|∇φα(sLA)f | |∇LAψα−1(sLA)g| |ψα+β−1(tLA∗)h| dx dsdt.

8.2.7. Estimating the term J ′
3

Writing t−βLAψα−1(sLA)f = (s/t)βψα−β(sLA)Lβ
Af s−1 we get

J ′
3 =

∞̂

0

∞̂

t

(s
t

)β
ˆ

Ω

∣∣∣∇ψα−β(sLA)Lβ
Af

∣∣∣ |∇φα(sLA)g| |ψα+β−1(tLA∗)h| dx dsdt
s

=
∞̂

1

sβ−1

⎛⎝ ∞̂

0

ˆ

Ω

∣∣∣∇ψα−β(stLA)Lβ
Af

∣∣∣ |∇φα(stLA)g| |ψα+β−1(tLA∗)h| dx dt

⎞⎠ ds.

Through the subordination to the imaginary powers (8.7), (8.8), we reduce the estimate 
of J ′

3 to proving

∞̂

1

sβ−1

⎛⎝ ∞̂

0

ˆ

Ω

∣∣∣∇TA
stL

iu1
A Lβ

Af
∣∣∣ ∣∣∇TA

stL
iu2
A g

∣∣ ∣∣∣TA∗

t Liu3
A∗ h

∣∣∣ dx dt

⎞⎠ ds

� β

∥∥∥Liu1
A Lβ

Af
∥∥∥
p

∥∥Liu2
A g

∥∥
q

∥∥Liu3
A∗ h

∥∥
r

(8.20)

for all u1, u2, u3 ∈ R and 0 < β < 1/r′. In order to prove (8.20), just apply Lemma 7.13.
This finishes the proof of Proposition 8.6 and thus of Theorem 1.7. �
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